1
|
Buonanno M, Hashmi R, Petersen CE, Tang Z, Welch D, Shuryak I, Brenner DJ. Wavelength-dependent DNA damage induced by single wavelengths of UV-C radiation (215 to 255 nm) in a human cornea model. Sci Rep 2025; 15:252. [PMID: 39747969 PMCID: PMC11696903 DOI: 10.1038/s41598-024-84196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet radiation in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UV-C radiation. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255 nm) cells with DNA dimers and their distribution within the epithelium were measured. Simulated tears reduced the fraction of damaged cells to an extent dependent on the wavelength and tissue layer. Subsequent experiments were performed with models exposed without simulated tears; yields of DNA-damaged cells and their distribution within the corneal epithelium were evaluated at each wavelength, together with other markers of cell and tissue integrity. Unlike relatively longer wavelengths, the range of wavelengths commonly referred to as far-UV-C (215-235 nm) only induced dimers in the uppermost layers of the epithelium and did not result in lasting damage or halt proliferation of the germinative cells. These results provide evidence for the recommended exposure limits for far-UV-C wavelengths, which have been proposed as a practical technology to reduce the risk of transmission of airborne diseases in occupied locations.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA.
| | - Raabia Hashmi
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA
| | - Camryn E Petersen
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA
| | - Zheng Tang
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA
| | - David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA
| |
Collapse
|
2
|
Suzuki T, Komaki Y, Amano M, Ando S, Shobu K, Ibuki Y. Faulty Gap Filling in Nucleotide Excision Repair Leads to Double-Strand Break Formation in Senescent Cells. J Invest Dermatol 2025; 145:32-41.e11. [PMID: 38871024 DOI: 10.1016/j.jid.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
The change of repair efficiency of UV-induced pyrimidine dimers due to aging was examined in replicatively senesced fibroblasts. The fibroblasts with repeated passages showed the characteristics of cellular senescence, including irreversible cell cycle arrest, elevated β-galactosidase activity, and senescence-associated secretory phenotype. The incision efficiency of oligonucleotide containing UV lesions was similar regardless of cell doubling levels, but the gap filling process was impaired in replicatively senescent cells. The releases of xeroderma pigmentosum group G, proliferating cell nuclear antigen, and replication protein A from damaged sites were delayed, which might have disturbed the DNA polymerase progression. The persistent single-stranded DNA was likely converted to double-strand breaks, leading to ataxia telangiectasia-mutated phosphorylation and 53BP1 foci formation. Phosphorylated histone H2AX (γ-H2AX) induction mainly occurred in G1 phase in senescent cells, not in S phase such as in normal cells, indicating that replication stress-independent double-strand breaks might be formed. MRE11 having nuclease activity accumulated to damaged sites at early time point after UV irradiation but not released in senescent cells. The pharmacological studies using specific inhibitors for the nuclease activity suggested that MRE11 contributed to the enlargement of single-stranded DNA gap, facilitating the double-strand break formation.
Collapse
Affiliation(s)
- Takashi Suzuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Momoka Amano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satoko Ando
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kosuke Shobu
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
3
|
Buonanno M, Hashmi R, Petersen CE, Tang Z, Welch D, Shuryak I, Brenner DJ. Wavelength-Dependent DNA Damage Induced by Single Wavelengths of UVC Light (215 to 255 nm) in a Human Cornea Model. RESEARCH SQUARE 2024:rs.3.rs-5129114. [PMID: 39678330 PMCID: PMC11643293 DOI: 10.21203/rs.3.rs-5129114/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet light in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UVC light. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255 nm) cells with DNA dimers and their distribution within the epithelium were measured. Simulated tears reduced the fraction of damaged cells to an extent dependent on the wavelength and tissue layer. Another set of models were exposed without tears; yields of DNA-damaged cells and their distribution within the corneal epithelium were evaluated at each wavelength, together with other markers of cell and tissue integrity. Unlike relatively longer wavelengths, the range commonly referred to as far-UVC (215-235 nm) only induced dimers in the uppermost layers of the epithelium and did not result in lasting damage or halt proliferation of the germinative cells. These results provide evidence for the recommended exposure limits for far-UVC wavelengths, which have been proposed as a practical technology to reduce the risk of transmission of airborne diseases in occupied locations.
Collapse
|
4
|
Abkar L, Zimmermann K, Dixit F, Kheyrandish A, Mohseni M. COVID-19 pandemic lesson learned- critical parameters and research needs for UVC inactivation of viral aerosols. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100183. [PMID: 36619826 PMCID: PMC9553962 DOI: 10.1016/j.hazadv.2022.100183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
The COVID-19 pandemic highlighted public awareness of airborne disease transmission in indoor settings and emphasized the need for reliable air disinfection technologies. This increased awareness will carry in the post-pandemic era along with the ever-emerging SARS-CoV variants, necessitating effective and well-defined protocols, methods, and devices for air disinfection. Ultraviolet (UV)-based air disinfection demonstrated promising results in inactivating viral bioaerosols. However, the reported data diversity on the required UVC doses has hindered determining the best UVC practices and led to confusion among the public and regulators. This article reviews available information on critical parameters influencing the efficacy of a UVC air disinfection system and, consequently, the required dose including the system's components as well as operational and environmental factors. There is a consensus in the literature that the interrelation of humidity and air temperature has a significant impact on the UVC susceptibility, which translate to changing the UVC efficacy of commercialized devices in indoor settings under varying conditions. Sampling and aerosolization techniques reported to have major influence on the result interpretation and it is recommended to use several sampling methods simultaneously to generate comparable and conclusive data. We also considered the safety concerns and the potential safe alternative of UVC, far-UVC. Finally, the gaps in each critical parameter and the future research needs of the field are represented. This paper is the first step to consolidating literature towards developing a standard validation protocol for UVC air disinfection devices which is determined as the one of the research needs.
Collapse
Key Words
- Aerosolization of pathogens
- Air sampling methods
- Airborne transmission
- CDC, centre for disease control and prevention (USA)
- CMD, count median diameter
- DNA, deoxyribonucleic acid
- DSB, double strand break
- Far-UVC
- Far-UVC, ultraviolet irradiation in the ‘far’ range of 200–230 nm
- GTC, growth tube collectors
- LED, light emitting diode
- LPUV, low-pressure ultraviolet lamp
- NIOSH, national institute for occupational safety and health
- PBS, phosphate buffered saline
- PRRS, porcine reproductive and respiratory syndrome
- Particle size distribution
- REL, recommended exposure limit
- RH, relative humidity
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
- SSB, single strand break
- Suspending media
- UV, ultraviolet irradiation
- UV-LED, light emitting diode in the ultraviolet range
- UVC, ultraviolet irradiation in the ‘C’, or germicidal, spectrum from 200 to 290 nm
- UVGI, ultraviolet germicidal irradiation
- Viral UVC susceptibility
- dsDNA, double-stranded deoxyribonucleic acid
- ssRNA, single-stranded ribonucleic acid
Collapse
|
5
|
Vogeley C, Rolfes KM, Krutmann J, Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor in the Pathogenesis of Environmentally-Induced Squamous Cell Carcinomas of the Skin. Front Oncol 2022; 12:841721. [PMID: 35311158 PMCID: PMC8927079 DOI: 10.3389/fonc.2022.841721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most frequent malignancies in humans and academia as well as public authorities expect a further increase of its incidence in the next years. The major risk factor for the development of SCC of the general population is the repeated and unprotected exposure to ultraviolet (UV) radiation. Another important risk factor, in particular with regards to occupational settings, is the chronic exposure to polycyclic aromatic hydrocarbons (PAH) which are formed during incomplete combustion of organic material and thus can be found in coal tar, creosote, bitumen and related working materials. Importantly, both exposomal factors unleash their carcinogenic potential, at least to some extent, by activating the aryl hydrocarbon receptor (AHR). The AHR is a ligand-dependent transcription factor and key regulator in xenobiotic metabolism and immunity. The AHR is expressed in all cutaneous cell-types investigated so far and maintains skin integrity. We and others have reported that in response to a chronic exposure to environmental stressors, in particular UV radiation and PAHs, an activation of AHR and downstream signaling pathways critically contributes to the development of SCC. Here, we summarize the current knowledge about AHR's role in skin carcinogenesis and focus on its impact on defense mechanisms, such as DNA repair, apoptosis and anti-tumor immune responses. In addition, we discuss the possible consequences of a simultaneous exposure to different AHR-stimulating environmental factors for the development of cutaneous SCC.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
6
|
Rolfes KM, Sondermann NC, Vogeley C, Dairou J, Gilardino V, Wirth R, Meller S, Homey B, Krutmann J, Lang D, Nakamura M, Haarmann-Stemmann T. Inhibition of 6-formylindolo[3,2-b]carbazole metabolism sensitizes keratinocytes to UVA-induced apoptosis: Implications for vemurafenib-induced phototoxicity. Redox Biol 2021; 46:102110. [PMID: 34418602 PMCID: PMC8379514 DOI: 10.1016/j.redox.2021.102110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Ultraviolet (UV) B irradiation of keratinocytes results in the formation of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) which is a high-affinity ligand for the aryl hydrocarbon receptor (AHR). The resulting activation of AHR signaling induces the expression of cytochrome P450 (CYP) 1A1 which subsequently metabolizes FICZ. Importantly, FICZ is also a nanomolar photosensitizer for UVA radiation. Here, we assess whether a manipulation of the AHR-CYP1A1 axis in human epidermal keratinocytes affects FICZ/UVA-induced phototoxic effects and whether this interaction might be mechanistically relevant for the phototoxicity of the BRAF inhibitor vemurafenib. Treatment of keratinocytes with an AHR agonist enhanced the CYP1A1-catalyzed metabolism of FICZ and thus prevented UVA photosensitization, whereas an inhibition of either AHR signaling or CYP1A1 enzyme activity resulted in an accumulation of FICZ and a sensitization to UVA-induced oxidative stress and apoptosis. Exposure of keratinocytes to vemurafenib resulted in the same outcome. Specifically, CYP phenotyping revealed that vemurafenib is primarily metabolized by CYP1A1 and to a lesser degree by CYP2J2 and CYP3A4. Hence, vemurafenib sensitized keratinocytes to UVA-induced apoptosis by interfering with the CYP1A1-mediated oxidative metabolism of FICZ. In contrast to this pro-apoptotic effect, a treatment of UVB-damaged keratinocytes with vemurafenib suppressed apoptosis, a process which might contribute to the skin carcinogenicity of the drug. Our results provide insight into the mechanisms responsible for the photosensitizing properties of vemurafenib and deliver novel information about its metabolism which might be relevant regarding potential drug-drug interactions. The data emphasize that the AHR-CYP1A1 axis contributes to the pathogenesis of cutaneous adverse drug reactions.
Collapse
Affiliation(s)
- Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Natalie C Sondermann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006, Paris, France
| | - Viola Gilardino
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Ragnhild Wirth
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Stephan Meller
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Dieter Lang
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, 42096, Wuppertal, Germany
| | - Motoki Nakamura
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Department of Environmental and Geriatric Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | | |
Collapse
|
7
|
|
8
|
Development of insulin resistance in Nischarin mutant female mice. Int J Obes (Lond) 2018; 43:1046-1057. [PMID: 30546133 DOI: 10.1038/s41366-018-0241-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/18/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES NISCH-STAB1 is a newly identified locus correlated to human waist-hip ratio (WHR), which is a risk indicator of developing obesity-associated diabetes. Our previous studies have shown that Nisch mutant male mice increased glucose tolerance in chow-fed conditions. Thus we hypothesized that Nisch mutant mice will have changes in insulin resistance, adipocytes, hepatic steatosis when mice are fed with high-fat diet (HFD). METHODS Insulin resistance was assessed in Nisch mutant mice and WT mice fed with high-fat diet (60% by kCal) or chow diet. Whole-body energy metabolism was examined using an indirect calorimeter. Adipose depots including inguinal white adipose tissue (WAT), perigonadal WAT, retroperitoneal WAT, and mesenteric WAT were extracted. Area and eqdiameter of each adipocyte were determined, and insulin signaling was examined as well. Paired samples of subcutaneous and omental visceral adipose tissue were obtained from 400 individuals (267 women, 133 men), and examined the expression of Nischarin. RESULTS We found that insulin signaling was impaired in major insulin-sensitive tissues of Nisch mutant female mice. When mice were fed with HFD for 15 weeks, the Nisch mutant female mice not only developed severe insulin resistance and decreased glucose tolerance compared with wild-type control mice, but also accumulated more white fat, had larger adipocytes and developed severe hepatic steatosis than wild-type control mice. To link our animal studies to human diseases, we further analyzed Nischarin expression in the paired human samples of visceral and subcutaneous adipose tissue from Caucasians. In humans, we found that Nischarin expression is attenuated in adipose tissue with obesity. More importantly, we found that Nischarin mRNA inversely correlated with parameters of obesity, fat distribution, lipid and glucose metabolism. CONCLUSIONS Taken together, our data revealed sexual dimorphism of Nischarin in body fat distribution, insulin resistance, and glucose tolerance in mice.
Collapse
|
9
|
The Major Tegument Protein of Bovine Herpesvirus 1, VP8, Interacts with DNA Damage Response Proteins and Induces Apoptosis. J Virol 2018; 92:JVI.00773-18. [PMID: 29769345 DOI: 10.1128/jvi.00773-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
VP8, the UL47 gene product in bovine herpesvirus-1 (BoHV-1), is a major tegument protein that is essential for virus replication in vivo The major DNA damage response protein, ataxia telangiectasia mutated (ATM), phosphorylates Nijmegen breakage syndrome (NBS1) and structural maintenance of chromosome-1 (SMC1) proteins during the DNA damage response. VP8 was found to interact with ATM and NBS1 during transfection and BoHV-1 infection. However, VP8 did not interfere with phosphorylation of ATM in transfected or BoHV-1-infected cells. In contrast, VP8 inhibited phosphorylation of both NBS1 and SMC1 in transfected cells, as well as in BoHV-1-infected cells, but not in cells infected with a VP8 deletion mutant (BoHV-1ΔUL47). Inhibition of NBS1 and SMC1 phosphorylation was observed at 4 h postinfection by nuclear VP8. Furthermore, UV light-induced cyclobutane pyrimidine dimer (CPD) repair was reduced in the presence of VP8, and VP8 in fact enhanced etoposide or UV-induced apoptosis. This suggests that VP8 blocks the ATM/NBS1/SMC1 pathway and inhibits DNA repair. VP8 induced apoptosis in VP8-transfected cells through caspase-3 activation. The fact that BoHV-1 is known to induce apoptosis through caspase-3 activation is in agreement with this observation. The role of VP8 was confirmed by the observation that BoHV-1 induced significantly more apoptosis than BoHV-1ΔUL47. These data reveal a potential role of VP8 in the modulation of the DNA damage response pathway and induction of apoptosis during BoHV-1 infection.IMPORTANCE To our knowledge, the effect of BoHV-1 infection on the DNA damage response has not been characterized. Since BoHV-1ΔUL47 was previously shown to be avirulent in vivo, VP8 is critical for the progression of viral infection. We demonstrated that VP8 interacts with DNA damage response proteins and disrupts the ATM-NBS1-SMC1 pathway by inhibiting phosphorylation of DNA repair proteins NBS1 and SMC1. Furthermore, interference of VP8 with DNA repair was correlated with decreased cell viability and increased DNA damage-induced apoptosis. These data show that BoHV-1 VP8 developed a novel strategy to interrupt the ATM signaling pathway and to promote apoptosis. These results further enhance our understanding of the functions of VP8 during BoHV-1 infection and provide an additional explanation for the reduced virulence of BoHV-1ΔUL47.
Collapse
|
10
|
The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis. Cell Death Differ 2018; 25:1823-1836. [PMID: 30013037 PMCID: PMC6180092 DOI: 10.1038/s41418-018-0160-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet B (UVB) radiation induces mutagenic DNA photoproducts, in particular cyclobutane pyrimidine dimers (CPDs), in epidermal keratinocytes (KC). To prevent skin carcinogenesis, these DNA photoproducts must be removed by nucleotide excision repair (NER) or apoptosis. Here we report that the UVB-sensitive transcription factor aryl hydrocarbon receptor (AHR) attenuates the clearance of UVB-induced CPDs in human HaCaT KC and skin from SKH-1 hairless mice. Subsequent RNA interference and inhibitor studies in KC revealed that AHR specifically suppresses global genome but not transcription-coupled NER. In further experiments, we found that the accelerated repair of CPDs in AHR-compromised KC depended on a modulation of the p27 tumor suppressor protein. Accordingly, p27 protein levels were increased in AHR-silenced KC and skin biopsies from AHR−/− mice, and critical for the improvement of NER. Besides increasing NER activity, AHR inhibition was accompanied by an enhanced occurrence of DNA double-strand breaks triggering KC apoptosis at later time points after irradiation. The UVB-activated AHR thus acts as a negative regulator of both early defense systems against carcinogenesis, NER and apoptosis, implying that it exhibits tumorigenic functions in UVB-exposed skin. In fact, AHR−/− mice developed 50% less UVB-induced cutaneous squamous cell carcinomas in a chronic photocarcinogenesis study than their AHR+/+ littermates. Taken together, our data reveal that AHR influences DNA damage-dependent responses in UVB-irradiated KC and critically contributes to skin photocarcinogenesis in mice.
Collapse
|
11
|
Luijckx P, Ho EKH, Stanić A, Agrawal AF. Mutation accumulation in populations of varying size: large effect mutations cause most mutational decline in the rotifer Brachionus calyciflorus under UV-C radiation. J Evol Biol 2018; 31:924-932. [PMID: 29672987 DOI: 10.1111/jeb.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/19/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Theory predicts that fitness decline via mutation accumulation will depend on population size, but there are only a few direct tests of this key idea. To gain a qualitative understanding of the fitness effect of new mutations, we performed a mutation accumulation experiment with the facultative sexual rotifer Brachionus calyciflorus at six different population sizes under UV-C radiation. Lifetime reproduction assays conducted after ten and sixteen UV-C radiations showed that while small populations lost fitness, fitness losses diminished rapidly with increasing population size. Populations kept as low as 10 individuals were able to maintain fitness close to the nonmutagenized populations throughout the experiment indicating that selection was able to remove the majority of large effect mutations in small populations. Although our results also seem to imply that small populations are effectively immune to mutational decay, we caution against this interpretation. Given sufficient time, populations of moderate to large size can experience declines in fitness from accumulating weakly deleterious mutations as demonstrated by fitness estimates from simulations and, tentatively, from a long-term experiment with populations of moderate size. There is mounting evidence to suggest that mutational distributions contain a heavier tail of large effects. Our results suggest that this is also true when the mutational spectrum is altered by UV radiation.
Collapse
Affiliation(s)
- Pepijn Luijckx
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Andrijana Stanić
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Zhu K, Liu G, Hu J, Liu S. Near-Infrared Light-Activated Photochemical Internalization of Reduction-Responsive Polyprodrug Vesicles for Synergistic Photodynamic Therapy and Chemotherapy. Biomacromolecules 2017; 18:2571-2582. [DOI: 10.1021/acs.biomac.7b00693] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kangning Zhu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft
Matter Chemistry, Hefei National Laboratory for Physical Sciences
at the Microscale, iChem (Collaborative Innovation Center of Chemistry
for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Vishwanatha U, Guruprasad KP, Gopinath PM, Acharya RV, Prasanna BV, Nayak J, Ganesh R, Rao J, Shree R, Anchan S, Raghu KS, Joshi MB, Paladhi P, Varier PM, Muraleedharan K, Muraleedharan TS, Satyamoorthy K. Effect of Amalaki rasayana on DNA damage and repair in randomized aged human individuals. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:387-397. [PMID: 27364038 DOI: 10.1016/j.jep.2016.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 05/05/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Preparations from Phyllanthus emblica called Amalaki rasayana is used in the Indian traditional medicinal system of Ayurveda for healthy living in elderly. The biological effects and its mechanisms are not fully understood. Since the diminishing DNA repair is the hallmark of ageing, we tested the influence of Amalaki rasayana on recognized DNA repair activities in healthy aged individuals. METHODS Amalaki rasayana was prepared fresh and healthy aged randomized human volunteers were administrated with either rasayana or placebo for 45 days strictly as per the traditional text. The DNA repair was analyzed in peripheral blood mononuclear cells before and after rasayana administration and after 45 days post-rasayana treatment regimen. UVC-induced DNA strand break repair (DSBR) based on extent of DNA unwinding by fluorometric analysis, nucleotide excision repair (NER) by flow cytometry and constitutive base excision repair (BER) by gap filling method were analyzed. RESULTS Amalaki rasayana administration stably maintained/enhanced the DSBR in aged individuals. There were no adverse side effects. Further, subjects with different body mass index showed differential DNA strand break repair capacity. No change in unscheduled DNA synthesis during NER and BER was observed between the groups. CONCLUSION Intake of Amalaki rasayana by aged individuals showed stable maintenance of DNA strand break repair without toxic effects. However, there was no change in nucleotide and base excision repair activities. Results warrant further studies on the effects of Amalaki rasayana on DSBR activities.
Collapse
Affiliation(s)
- Udupi Vishwanatha
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Kanive P Guruprasad
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Puthiya M Gopinath
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Raviraj V Acharya
- Department of Medicine, Kasturba Medical College Hospital, Manipal University, Manipal 576 104, Karnataka, India.
| | - Bokkasa V Prasanna
- Sri Dharmasthala Manjunatheshwara College of Ayurveda, Kuthpady, Udyavara, Udupi 574 118, Karnataka, India.
| | - Jayakrishna Nayak
- Sri Dharmasthala Manjunatheshwara College of Ayurveda, Kuthpady, Udyavara, Udupi 574 118, Karnataka, India.
| | - Rajeshwari Ganesh
- Sri Dharmasthala Manjunatheshwara College of Ayurveda, Kuthpady, Udyavara, Udupi 574 118, Karnataka, India.
| | - Jayalaxmi Rao
- Sri Dharmasthala Manjunatheshwara College of Ayurveda, Kuthpady, Udyavara, Udupi 574 118, Karnataka, India.
| | - Rashmi Shree
- Sri Dharmasthala Manjunatheshwara College of Ayurveda, Kuthpady, Udyavara, Udupi 574 118, Karnataka, India.
| | - Suchitra Anchan
- Sri Dharmasthala Manjunatheshwara College of Ayurveda, Kuthpady, Udyavara, Udupi 574 118, Karnataka, India.
| | - Kothanahalli S Raghu
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Manjunath B Joshi
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Puspendu Paladhi
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| | - Panniampilly M Varier
- Ayurvedic Hospital and Research Centre, Arya Vaidya Sala, Kottakkal, 676 503, Mallapuram, Kerala, India.
| | - Kollath Muraleedharan
- Ayurvedic Hospital and Research Centre, Arya Vaidya Sala, Kottakkal, 676 503, Mallapuram, Kerala, India.
| | - Thrikovil S Muraleedharan
- Ayurvedic Hospital and Research Centre, Arya Vaidya Sala, Kottakkal, 676 503, Mallapuram, Kerala, India.
| | - Kapaettu Satyamoorthy
- School of Life Sciences, Manipal University, Planetarium Complex, Manipal 576 104, Karnataka, India.
| |
Collapse
|
14
|
Antithymocyte Globulin at Clinically Relevant Concentrations Kills Leukemic Blasts. Biol Blood Marrow Transplant 2016; 22:815-24. [DOI: 10.1016/j.bbmt.2016.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/04/2016] [Indexed: 01/03/2023]
|
15
|
Porreca I, Ulloa Severino L, D’Angelo F, Cuomo D, Ceccarelli M, Altucci L, Amendola E, Nebbioso A, Mallardo M, De Felice M, Ambrosino C. "Stockpile" of Slight Transcriptomic Changes Determines the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells. PLoS One 2016; 11:e0151618. [PMID: 26982218 PMCID: PMC4794173 DOI: 10.1371/journal.pone.0151618] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental data highlighted the thyroid-disrupting activity of bisphenol A (BPA). Although pivotal to identify the mechanisms of toxicity, direct low-dose BPA effects on thyrocytes have not been assessed. Here, we report the results of microarray experiments revealing that the transcriptome reacts dynamically to low-dose BPA exposure, adapting the changes in gene expression to the exposure duration. The response involves many genes, enriching specific pathways and biological functions mainly cell death/proliferation or DNA repair. Their expression is only slightly altered but, since they enrich specific pathways, this results in major effects as shown here for transcripts involved in the DNA repair pathway. Indeed, even though no phenotypic changes are induced by the treatment, we show that the exposure to BPA impairs the cell response to further stressors. We experimentally verify that prolonged exposure to low doses of BPA results in a delayed response to UV-C-induced DNA damage, due to impairment of p21-Tp53 axis, with the BPA-treated cells more prone to cell death and DNA damage accumulation. The present findings shed light on a possible mechanism by which BPA, not able to directly cause genetic damage at environmental dose, may exert an indirect genotoxic activity.
Collapse
Affiliation(s)
| | - Luisa Ulloa Severino
- University of Trieste, PhD School of Nanotechnology, Piazzale Europa 1, 34127, Trieste, Italy
| | - Fulvio D’Angelo
- IRGS, Biogem, Via Camporeale, 83031, Ariano Irpino, Avellino, Italy
| | - Danila Cuomo
- Department of Science and Technology, University of Sannio, Via Port’Arsa 11, 82100, Benevento, Italy
| | - Michele Ceccarelli
- IRGS, Biogem, Via Camporeale, 83031, Ariano Irpino, Avellino, Italy
- Department of Science and Technology, University of Sannio, Via Port’Arsa 11, 82100, Benevento, Italy
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138, Napoli, Italy
| | - Elena Amendola
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Pansini 6, 80131, Napoli, Italy
| | - Angela Nebbioso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138, Napoli, Italy
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Pansini 6, 80131, Napoli, Italy
| | - Mario De Felice
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Pansini 6, 80131, Napoli, Italy
- IEOS-CNR, Via Pansini 6, 80131 Napoli, Italy
| | - Concetta Ambrosino
- IRGS, Biogem, Via Camporeale, 83031, Ariano Irpino, Avellino, Italy
- Department of Science and Technology, University of Sannio, Via Port’Arsa 11, 82100, Benevento, Italy
- * E-mail:
| |
Collapse
|
16
|
Svetec N, Cridland JM, Zhao L, Begun DJ. The Adaptive Significance of Natural Genetic Variation in the DNA Damage Response of Drosophila melanogaster. PLoS Genet 2016; 12:e1005869. [PMID: 26950216 PMCID: PMC4780809 DOI: 10.1371/journal.pgen.1005869] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/22/2016] [Indexed: 01/15/2023] Open
Abstract
Despite decades of work, our understanding of the distribution of fitness effects of segregating genetic variants in natural populations remains largely incomplete. One form of selection that can maintain genetic variation is spatially varying selection, such as that leading to latitudinal clines. While the introduction of population genomic approaches to understanding spatially varying selection has generated much excitement, little successful effort has been devoted to moving beyond genome scans for selection to experimental analysis of the relevant biology and the development of experimentally motivated hypotheses regarding the agents of selection; it remains an interesting question as to whether the vast majority of population genomic work will lead to satisfying biological insights. Here, motivated by population genomic results, we investigate how spatially varying selection in the genetic model system, Drosophila melanogaster, has led to genetic differences between populations in several components of the DNA damage response. UVB incidence, which is negatively correlated with latitude, is an important agent of DNA damage. We show that sensitivity of early embryos to UVB exposure is strongly correlated with latitude such that low latitude populations show much lower sensitivity to UVB. We then show that lines with lower embryo UVB sensitivity also exhibit increased capacity for repair of damaged sperm DNA by the oocyte. A comparison of the early embryo transcriptome in high and low latitude embryos provides evidence that one mechanism of adaptive DNA repair differences between populations is the greater abundance of DNA repair transcripts in the eggs of low latitude females. Finally, we use population genomic comparisons of high and low latitude samples to reveal evidence that multiple components of the DNA damage response and both coding and non-coding variation likely contribute to adaptive differences in DNA repair between populations.
Collapse
Affiliation(s)
- Nicolas Svetec
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Julie M. Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Li Zhao
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
17
|
Tatewaki N, Konishi T, Nakajima Y, Nishida M, Saito M, Eitsuka T, Sakamaki T, Ikekawa N, Nishida H. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase. PLoS One 2016; 11:e0147570. [PMID: 26824362 PMCID: PMC4732816 DOI: 10.1371/journal.pone.0147570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.
Collapse
Affiliation(s)
- Naoto Tatewaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Tetsuya Konishi
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yuki Nakajima
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Miyako Nishida
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masafumi Saito
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takahiro Eitsuka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Toshiyuki Sakamaki
- Department of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Hiroshi Nishida
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
18
|
Takayama K, Kawakami Y, Lee S, Greco N, Lavasani M, Mifune Y, Cummins JH, Yurube T, Kuroda R, Kurosaka M, Fu FH, Huard J. Involvement of ERCC1 in the pathogenesis of osteoarthritis through the modulation of apoptosis and cellular senescence. J Orthop Res 2014; 32:1326-32. [PMID: 24964749 PMCID: PMC4134687 DOI: 10.1002/jor.22656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/10/2014] [Indexed: 02/04/2023]
Abstract
DNA damage is a cause of age related pathologies, including osteoarthritis (OA). Excision repair cross complementation group 1 (ERCC1) is an endonuclease required for DNA damage repair. In this study we investigated the function of ERCC1 in chondrocytes and its association with the pathophysiology of OA. ERCC1 expression in normal and osteoarthritic cartilage was assessed, as were changes in ERCC1 expression in chondrocytes under catabolic stress. Inhibiting ERCC1 in chondrocytes under interleukin-1β stimulation using small interfering RNA (siRNA) was also evaluated. Finally, cellular senescence and apoptosis were examined in relation to ERCC1 function. ERCC1 expression was decreased in OA cartilage and increased within 4 h of exposure to interleukin (IL)-1β, but decreased after 12 h. The inhibition of ERCC1 by siRNA increased the expression of matrix metallopeptidase 13 and decreased collagen type II. ERCC1 inhibition also increased the number of apoptotic and senescent cells. The inhibition of ERCC1 in chondrocytes increased their expression of OA related proteins, apoptosis, cellular senescence, and hypertrophic-like changes which suggest that ERCC1 is critical for protecting human chondrocytes (HCs) from catabolic stresses and provides insights into the pathophysiology of OA and a potential target for its treatment. (191)
Collapse
Affiliation(s)
- Koji Takayama
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yohei Kawakami
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Sahnghoon Lee
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Nick Greco
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mitra Lavasani
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yutaka Mifune
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - James H. Cummins
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Takashi Yurube
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Freddie H. Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Johnny Huard
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
19
|
Storm T, Wulf K, Teske M, Löbler M, Kundt G, Luderer F, Schmitz KP, Sternberg K, Hovakimyan M. Chemical activation and changes in surface morphology of poly(ε-caprolactone) modulate VEGF responsiveness of human endothelial cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2003-2015. [PMID: 24811954 DOI: 10.1007/s10856-014-5226-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The high degree of clinical routine in percutaneous transluminal coronary angioplasty (PTCA) with and without stenting has not changed the fact that a large number of coronary heart disease patients are still affected by post-operative complications such as restenosis and thrombosis. Because re-endothelialization is the crucial aspect of wound healing after cardiovascular implant surgery, there is a need for modern biomaterials to aid endothelial cells in their adhesion and functional recovery post-stenting. This study systematically examines the potential of numerous chemical polymer modifications with regard to endothelialization. Poly(ε-caprolactone) (PCL) and its chemically activated forms are investigated in detail, as well as the impact of polymer surface morphology and precoating with matrix protein. Human umbilical vein endothelial cells (HUVECs) are used to characterize endothelial cell responses in terms of in vitro viability and adhesion. As a potential component in drug eluting implants, VEGF is applied as stimulus to boost endothelial cell proliferation on the polymer. In conclusion, plasma chemical activation of PCL combined with VEGF stimulation best enhances in vitro endothelialization. Examining the impact of morphological, chemical and biological modifications of PCL, this study makes an important new contribution towards the existing body of work on polymer endothelialization.
Collapse
Affiliation(s)
- Thilo Storm
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119, Rostock, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.
Collapse
Affiliation(s)
- Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
21
|
Ortolan TG, Menck CFM. UVB-induced cell death signaling is associated with G1-S progression and transcription inhibition in primary human fibroblasts. PLoS One 2013; 8:e76936. [PMID: 24155908 PMCID: PMC3796564 DOI: 10.1371/journal.pone.0076936] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.
Collapse
Affiliation(s)
- Tatiana Grohmann Ortolan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Carlos Frederico M. Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
22
|
Zirkin S, Davidovich A, Don J. The PIM-2 kinase is an essential component of the ultraviolet damage response that acts upstream to E2F-1 and ATM. J Biol Chem 2013; 288:21770-83. [PMID: 23760264 DOI: 10.1074/jbc.m113.458851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oncogenic nature ascribed to the PIM-2 kinase relies mostly on phosphorylation of substrates that act as pro-survival/anti-apoptotic factors. Nevertheless, pro-survival effects can also result from activating DNA repair mechanisms following damage. In this study, we addressed the possibility that PIM-2 plays a role in the cellular response to UV damage, an issue that has never been addressed before. We found that in U2OS cells, PIM-2 expression and activity increased upon exposure to UVC radiation (2-50 mJ/cm(2)), and Pim-2-silenced cells were significantly more sensitive to UV radiation. Overexpression of PIM-2 accelerated removal of UV-induced DNA lesions over time, reduced γH2AX accumulation in damaged cells, and rendered these cells significantly more viable following UV radiation. The protective effect of PIM-2 was mediated by increased E2F-1 and activated ATM levels. Silencing E2F-1 reduced the protective effect of PIM-2, whereas inhibiting ATM activity abrogated this protective effect, irrespective of E2F-1 levels. The results obtained in this study place PIM-2 upstream to E2F-1 and ATM in the UV-induced DNA damage response.
Collapse
Affiliation(s)
- Shahar Zirkin
- Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | | |
Collapse
|
23
|
Scarpato R, Castagna S, Aliotta R, Azzara A, Ghetti F, Filomeni E, Giovannini C, Pirillo C, Testi S, Lombardi S, Tomei A. Kinetics of nuclear phosphorylation ( -H2AX) in human lymphocytes treated in vitro with UVB, bleomycin and mitomycin C. Mutagenesis 2013; 28:465-73. [DOI: 10.1093/mutage/get024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
24
|
Tomicic MT, Aasland D, Nikolova T, Kaina B, Christmann M. Human three prime exonuclease TREX1 is induced by genotoxic stress and involved in protection of glioma and melanoma cells to anticancer drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1832-43. [PMID: 23578789 DOI: 10.1016/j.bbamcr.2013.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/15/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
To counteract genotoxic stress, DNA repair functions are in effect. Most of them are constitutively expressed while some of them can be up-regulated depending on the level of DNA damage. In human cells, only few DNA repair functions are subject of induction following DNA damage, and thus there is a need to identify and characterize inducible repair functions more thoroughly. Here, we provide evidence that the "three prime exonuclease I" (TREX1) is up-regulated in human fibroblasts and cancer cells on mRNA and protein level. Transcriptional upregulation of TREX1 was observed upon exposure to ultraviolet light and various anticancer drugs in glioma and malignant melanoma cells. Induction of TREX1 was found following treatment with the crosslinking alkylating agents nimustine, carmustine, fotemustine and the topoisomerase I inhibitor topotecan, but not following temozolomide, etoposide and ionizing radiation. Induction of TREX1 following DNA damage requires the AP-1 components c-Jun and c-Fos, as shown by siRNA knockdown, EMSA experiments, ChIP analysis and reporter assays with the TREX1 promoter and constructs harboring mutations in the AP-1 binding site. To analyze whether TREX1 expression impacts the sensitivity of cancer cells to therapeutics, TREX1 expression was down-regulated by siRNA in malignant glioma and melanoma cells. TREX1 knockdown resulted in enhanced cell death following nimustine, fotemustine and topotecan and to a reduced recovery from the anticancer drug induced block to replication. The data revealed that induction of TREX1 is a survival response evoked by various genotoxic anticancer drugs and identified TREX1 as a potential therapeutic target for anticancer therapy.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | | | | | | |
Collapse
|
25
|
McKay BC, Cabrita MA. Arresting transcription and sentencing the cell: the consequences of blocked transcription. Mech Ageing Dev 2013; 134:243-52. [PMID: 23542592 DOI: 10.1016/j.mad.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/16/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.
Collapse
Affiliation(s)
- Bruce C McKay
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Canada.
| | | |
Collapse
|
26
|
Replication-mediated disassociation of replication protein A-XPA complex upon DNA damage: implications for RPA handing off. Cell Biol Int 2012; 36:713-20. [PMID: 22578086 DOI: 10.1042/cbi20110633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.
Collapse
|
27
|
Feeney WP. The Chinese or Striped-Back Hamster. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7149763 DOI: 10.1016/b978-0-12-380920-9.00035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chinese hamsters are small rodents with a grayish black coat and a black dorsal stripe. Adult animals weigh approximately 39–46 gm, and measure approximately 9 cm in length. This species has been shown to be susceptible to a number of experimentally induced viral, bacterial, and parasitic infections. In recent years, the Chinese hamster's contributions as a laboratory animal have been largely overshadowed by the focus on its cell lines and the role it plays in scientific research and biotechnology. The Chinese hamster used in biomedical research is traditionally classified as Cricetulus griseus. It has several biological features that have helped promote its use in biomedical research and these attributes include its small size, polyestrous cycle, short gestation period, and low chromosome number. The Chinese hamster has a low incidence of spontaneous and endogenous viral infections. This species has been shown to be susceptible to a number of experimentally induced viral, bacterial, and parasitic infections. Chinese hamster-derived cells have played a major role in cytogenetic toxicity assays and the production of glycosylated therapeutic proteins. The behavior, research uses, and general toxicology of the Chinese hamster are summarized in this chapter.
Collapse
|
28
|
The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination. DNA Repair (Amst) 2011; 10:1095-105. [DOI: 10.1016/j.dnarep.2011.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/08/2011] [Indexed: 11/17/2022]
|
29
|
Induction of the bystander effect in Chinese hamster V79 cells by actinomycin D. Toxicol Lett 2011; 202:178-85. [DOI: 10.1016/j.toxlet.2011.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/23/2022]
|
30
|
An J, Yang T, Huang Y, Liu F, Sun J, Wang Y, Xu Q, Wu D, Zhou P. Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair. BMC BIOCHEMISTRY 2011; 12:2. [PMID: 21214942 PMCID: PMC3022811 DOI: 10.1186/1471-2091-12-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 01/08/2011] [Indexed: 11/10/2022]
Abstract
Background In eukaryotic cells, there are two sub-pathways of nucleotide excision repair (NER), the global genome (gg) NER and the transcription-coupled repair (TCR). TCR can preferentially remove the bulky DNA lesions located at the transcribed strand of a transcriptional active gene more rapidly than those at the untranscribed strand or overall genomic DNA. This strand-specific repair in a suitable restriction fragment is usually determined by alkaline gel electrophoresis followed by Southern blotting transfer and hybridization with an indirect end-labeled single-stranded probe. Here we describe a new method of TCR assay based on strand-specific-PCR (SS-PCR). Using this method, we have investigated the role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related protein kinases (PIKK) family, in the TCR pathway of UV-induced DNA damage. Results Although depletion of DNA-PKcs sensitized HeLa cells to UV radiation, it did not affect the ggNER efficiency of UV-induced cyclobutane pyrimidine dimers (CPD) damage. We postulated that DNA-PKcs may involve in the TCR process. To test this hypothesis, we have firstly developed a novel method of TCR assay based on the strand-specific PCR technology with a set of smart primers, which allows the strand-specific amplification of a restricted gene fragment of UV radiation-damaged genomic DNA in mammalian cells. Using this new method, we confirmed that siRNA-mediated downregulation of Cockayne syndrome B resulted in a deficiency of TCR of the UV-damaged dihydrofolate reductase (DHFR) gene. In addition, DMSO-induced silencing of the c-myc gene led to a decreased TCR efficiency of UV radiation-damaged c-myc gene in HL60 cells. On the basis of the above methodology verification, we found that the depletion of DNA-PKcs mediated by siRNA significantly decreased the TCR capacity of repairing the UV-induced CPDs damage in DHFR gene in HeLa cells, indicating that DNA-PKcs may also be involved in the TCR pathway of DNA damage repair. By means of immunoprecipitation and MALDI-TOF-Mass spectrometric analysis, we have revealed the interaction of DNA-PKcs and cyclin T2, which is a subunit of the human transcription elongation factor (P-TEFb). While the P-TEFb complex can phosphorylate the serine 2 of the carboxyl-terminal domain (CTD) of RNA polymerase II and promote transcription elongation. Conclusion A new method of TCR assay was developed based the strand-specific-PCR (SS-PCR). Our data suggest that DNA-PKcs plays a role in the TCR pathway of UV-damaged DNA. One possible mechanistic hypothesis is that DNA-PKcs may function through associating with CyclinT2/CDK9 (P-TEFb) to modulate the activity of RNA Pol II, which has already been identified as a key molecule recognizing and initializing TCR.
Collapse
Affiliation(s)
- Jing An
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010:592980. [PMID: 21209706 PMCID: PMC3010660 DOI: 10.4061/2010/592980] [Citation(s) in RCA: 654] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
32
|
Delayed c-Fos activation in human cells triggers XPF induction and an adaptive response to UVC-induced DNA damage and cytotoxicity. Cell Mol Life Sci 2010; 68:1785-98. [PMID: 20976523 PMCID: PMC3078315 DOI: 10.1007/s00018-010-0546-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/16/2023]
Abstract
The oncoprotein c-Fos has been commonly found differently expressed in cancer cells. Our previous work showed that mouse cells lacking the immediate-early gene c-fos are hypersensitive to ultraviolet (UVC) light. Here, we demonstrate that in human diploid fibroblasts UV-triggered induction of c-Fos protein is a delayed and long-lasting event. Sustained upregulation of c-Fos goes along with transcriptional stimulation of the NER gene xpf, which harbors an AP-1 binding site in the promoter. Data gained on c-Fos knockdown and c-Fos overexpressing human cells provide evidence that c-Fos/AP-1 stimulates upregulation of XPF, thereby increasing the cellular repair capacity protecting from UVC-induced DNA damage. When these cells are pre-exposed to a low non-toxic UVC dose and challenged with a subsequent high dose of UVC irradiation, they show accelerated repair of UVC-induced DNA adducts and reduced cell kill. The data indicate a protective role of c-Fos induction by triggering an adaptive response pathway.
Collapse
|
33
|
Zhao H, Traganos F, Darzynkiewicz Z. Kinetics of the UV-induced DNA damage response in relation to cell cycle phase. Correlation with DNA replication. Cytometry A 2010; 77:285-93. [PMID: 20014310 DOI: 10.1002/cyto.a.20839] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It has been reported that exposure to UV light triggers DNA damage response (DDR) seen as induction of gammaH2AX not only in S- but also in G(1)-phase cells. In the present study, in addition to gammaH2AX, we assessed other markers of DDR, namely phosphorylation of ATM on Ser1981, of ATM/ATR substrate on Ser/Thr at SQ/TQ cluster domains and of the tumor suppressor p53 on Ser15, in human pulmonary carcinoma A549 cells irradiated with 50 J/m(2) of UV-B. Phosphorylation of these proteins detected with phospho-specific Abs and measured by laser scanning cytometry in relation the cell cycle phase was found to be selective to S-phase cells. The kinetics of phosphorylation of ATM was strikingly similar to that of ATM/ATR substrate, peaking at 30 min after UV irradiation and followed by rapid dephosphorylation. The peak of H2AX phosphorylation was seen at 2 h and the peak of p53 phosphorylation at 4 h after exposure to UV light. Local high spatial density of these phospho-proteins reported by intensity of maximal pixel of immunofluorescence in the DDR nuclear foci was distinctly more pronounced in the early compared to late portion of S-phase. Exposure of cells to UV following 1 h pulse-labeling of their DNA with 5-ethynyl-2'deoxyuridine (EdU) made it possible to correlate the extent of DNA replication during the pulse with the extent of the UV-induced H2AX phosphorylation within the same cells. This correlation was very strong (R(2) = 0.98) and the cells that did not incorporate EdU showed no evidence of H2AX phosphorylation. The data are consistent with the mechanism in which stalling of DNA replication forks upon collision with the primary UV-induced DNA lesions and likely formation of double-strand DNA breaks triggers DDR. The prior reports (including our own) on induction of gammaH2AX in G(1) cells by UV may have erroneously identified cells initiating DNA replication following UV exposure as G(1) cells due to the fact that their DNA content did not significantly differ from that of G(1) cells that had not initiated DNA replication.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
34
|
Christmann M, Tomicic MT, Aasland D, Berdelle N, Kaina B. Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against ultraviolet light and benzo(a)pyrene-induced DNA damage. Nucleic Acids Res 2010; 38:6418-32. [PMID: 20511593 PMCID: PMC2965218 DOI: 10.1093/nar/gkq455] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cells respond to genotoxic stress with the induction of DNA damage defence functions. Aimed at identifying novel players in this response, we analysed the genotoxic stress-induced expression of DNA repair genes in mouse fibroblasts proficient and deficient for c-Fos or c-Jun. The experiments revealed a clear up-regulation of the three prime exonuclease I (trex1) mRNA following ultraviolet (UV) light treatment. This occurred in the wild-type but not c-fos and c-jun null cells, indicating the involvement of AP-1 in trex1 induction. Trex1 up-regulation was also observed in human cells and was found on promoter, RNA and protein level. Apart from UV light, TREX1 is induced by other DNA damaging agents such as benzo(a)pyrene and hydrogen peroxide. The mouse and human trex1 promoter harbours an AP-1 binding site that is recognized by c-Fos and c-Jun, and its mutational inactivation abrogated trex1 induction. Upon genotoxic stress, TREX1 is not only up-regulated but also translocated into the nucleus. Cells deficient in TREX1 show reduced recovery from the UV and benzo(a)pyrene-induced replication inhibition and increased sensitivity towards the genotoxins compared to the isogenic control. The data revealed trex1 as a novel DNA damage-inducible repair gene that plays a protective role in the genotoxic stress response.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
35
|
Discovery of a new RNA-containing nuclear structure in UVC-induced apoptotic cells by integrated laser electron microscopy. Biol Cell 2009; 101:287-99. [PMID: 18823283 DOI: 10.1042/bc20080076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Treatment of cells with UVC radiation leads to the formation of DNA cross-links which, if not repaired, can lead to apoptosis. gamma-H2AX and cleaved caspase 3 are proteins formed during UVC-induced DNA damage and apoptosis respectively. The present study sets out to identify early morphological markers of apoptosis using a new method of correlative microscopy, ILEM (integrated laser electron microscopy). Cleaved caspase 3 and gamma-H2AX were immunofluorescently labelled to mark the cells of interest. These cells were subsequently searched in the fluorescence mode of the ILEM and further analysed at high resolution with TEM (transmission electron microscopy). RESULTS Following the treatment of HUVECs (human umbilical vein endothelial cells) with UVC radiation, in the majority of the cells gamma-H2AX was formed, whereas only in a subset of cells caspase 3 was activated. In severely damaged cells with high levels of gamma-H2AX a round, electron-dense nuclear structure was found, which was hitherto not identified in UV-stressed cells. This structure exists only in nuclei of cells containing cleaved caspase 3 and is present during all stages of the apoptotic process. Energy-loss imaging showed that the nuclear structure accumulates phosphorus, indicating that it is rich in nucleic acids. Because the nuclear structure did not label for DNA and was not affected by regressive EDTA treatment, it is suggested that the UV-induced nuclear structure contains a high amount of RNA. CONCLUSIONS Because the UV-induced nuclear structure was only found in cells labelled for cleaved caspase 3 it is proposed as an electron microscopic marker for all stages of apoptosis. Such a marker will especially facilitate the screening for early apoptotic cells, which lack the well-known hallmarks of apoptosis within a cell population. It also raises new questions on the mechanisms involved in the UV-induced apoptotic pathway.
Collapse
|
36
|
Batista LFZ, Roos WP, Kaina B, Menck CFM. p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal. Mol Cancer Res 2009; 7:237-46. [PMID: 19208740 DOI: 10.1158/1541-7786.mcr-08-0428] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that it sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct importance of DNA repair is hard to access. Here, it is shown that the induction of photoproducts by UV light (UV-C) significantly induces apoptosis in a p53-mutated glioma background. This is caused by a reduced level of photoproduct repair, resulting in the persistence of DNA lesions in p53-mutated glioma cells. UV-C-induced apoptosis in p53 mutant glioma cells is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results indicate that UV-C-induced apoptosis of p53 mutant glioma cells is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data indicate that unrepaired DNA lesions induce apoptosis in p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that induce the formation of DNA lesions whose global genomic repair is dependent on p53.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | | | | | |
Collapse
|
37
|
Stubbert LJ, Smith JM, Hamill JD, Arcand TL, McKay BC. The anti-apoptotic role for p53 following exposure to ultraviolet light does not involve DDB2. Mutat Res 2009; 663:69-76. [PMID: 19428372 DOI: 10.1016/j.mrfmmm.2009.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 12/24/2008] [Accepted: 01/27/2009] [Indexed: 01/26/2023]
Abstract
The p53 tumour suppressor is a transcription factor that can either activate or repress the expression of specific genes in response to cellular stresses such as exposure to ultraviolet light. The p53 protein can exert both pro- and anti-apoptotic effects depending on cellular context. In primary human fibroblasts, p53 protects cells from UV-induced apoptosis at moderate doses but this is greatly affected by the nucleotide excision repair (NER) capacity of the cells. The damage-specific DNA binding protein 2 (DDB2) is involved in NER and is associated with xeroderma pigmentosum subgroup E (XP-E). Importantly, DDB2 is also positively regulated by the p53 protein. To study the potential interplay between DDB2 and p53 in determining the apoptotic response of primary fibroblasts exposed to UV light, the expression of these proteins was manipulated in primary normal and XP-E fibroblast strains using human papillomavirus E6 protein (HPV-E6), RNA interference and recombinant adenoviruses expressing either p53 or DDB2. Normal and XP-E fibroblast strains were equally sensitive to UV-induced apoptosis over a broad range of doses and disruption of p53 in these strains using HPV-E6 or RNA interference led to a similar increase in apoptosis following exposure to UV light. In contrast, forced expression of p53 or DDB2 did not affect UV-induced apoptosis greatly in these normal or XP-E fibroblast strains. Collectively, these results indicate that p53 is primarily protective against UV-induced apoptosis in primary human fibroblasts and this activity of p53 does not require DDB2.
Collapse
Affiliation(s)
- L J Stubbert
- Cancer Therapeutics Program, Ottawa Health Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
38
|
Staszewski O, Nikolova T, Kaina B. Kinetics of gamma-H2AX focus formation upon treatment of cells with UV light and alkylating agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:734-740. [PMID: 18800352 DOI: 10.1002/em.20430] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Histone H2AX is rapidly phosphorylated in response to DNA double-strand breaks (DSBs) induced by ionizing radiation (IR). Here we show that DNA damage induced by alkylating agents [methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)] and ultraviolet light (UV-C) leads to a dose and time dependent accumulation of phosphorylated H2AX (gamma-H2AX). Time course experiments revealed that the number of gamma-H2AX foci reached peak levels 8 hr after MMS or MNNG treatment and declined to almost control values within 24 hr after exposure. Upon UV-C treatment, a biphasic response was observed with a maximum 12 hr after treatment. In 43-3B cells deficient in nucleotide excision repair (NER) the number of gamma-H2AX foci increased steadily. gamma-H2AX foci were preferentially formed in BrdU labeled cells. In proliferation compromised cells, the gamma-H2AX level was significantly reduced, indicating that most of the gamma-H2AX foci induced by UV-C and alkylating agent treatments were replication dependent. The data are in line with the view that DNA damage induced by UV-C light and simple alkylating agents, leads to the formation of DSBs during DNA replication giving rise to H2AX phosphorylation. In replicating NER defective cells, DSBs accumulate due to nonrepaired primary DNA lesions that produce a high level of DSBs during replication. The data support that gamma-H2AX foci are a useful marker of DSBs that are induced by S-phase dependent genotoxins during replication.
Collapse
Affiliation(s)
- Ori Staszewski
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | |
Collapse
|
39
|
Albi E, Cataldi S, Rossi G, Viola Magni M, Toller M, Casani S, Perrella G. The nuclear ceramide/diacylglycerol balance depends on the physiological state of thyroid cells and changes during UV-C radiation-induced apoptosis. Arch Biochem Biophys 2008; 478:52-8. [DOI: 10.1016/j.abb.2008.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 11/25/2022]
|
40
|
How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 2008; 681:197-208. [PMID: 18845270 DOI: 10.1016/j.mrrev.2008.09.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/22/2022]
Abstract
Mammalian cells treated with ultraviolet (UV) light provide one of the best-known experimental systems for depicting the biological consequences of DNA damage. UV irradiation induces the formation of DNA photoproducts, mainly cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine-pyrimidone photoproducts [(6-4)PPs], that drastically impairs DNA metabolism, culminating in the induction of cell death by apoptosis. While CPDs are the most important apoptosis-inducing lesions in DNA repair proficient cells, recent data indicates that (6-4)PPs also signals for apoptosis in DNA repair deficient cells. The toxic effects of these unrepaired DNA lesions are commonly associated with transcription blockage, but there is increasing evidence supporting a role for replication blockage as an apoptosis-inducing signal. This is supported by the observations that DNA double-strand breaks (DSBs) arise at the sites of stalled replication forks, that these DSBs are potent inducers of apoptosis and that inhibition of S phase progression diminishes the apoptotic response. Reactive oxygen species, generated after exposure of mammalian cells to longer UV wavelengths, may also induce apoptotic responses. In this regard, emphasis is given to the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxoG), but indirect induced lesions such as lipoperoxide DNA adducts also deserve attention. ATR is the main established sensor molecule for UV-induced DNA damage. However, there is evidence that ATM as well as the MAPK pathway also play a role in the UV response by activating either the death receptor or the mitochondrial damage pathway. Adding more complexity to the subject, cells under stress suffer other types of processes that may result in cell death. Autophagy is one of these processes, with extensive cross-talks with apoptosis. No matter the mechanisms, cell death avoids cells to perpetuate mutations induced by genotoxic lesions. The understanding of such death responses may provide the means for the development of strategies for the prevention and treatment of cancer.
Collapse
|
41
|
de Campos-Nebel M, Larripa I, González-Cid M. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells. Mutat Res 2008; 646:8-16. [PMID: 18812179 DOI: 10.1016/j.mrfmmm.2008.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 07/30/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by gammaH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB in mammalian cells.
Collapse
Affiliation(s)
- Marcelo de Campos-Nebel
- Departamento de Genética, Instituto de Investigaciones Hematológicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | |
Collapse
|
42
|
Li PCH, Lam E, Roos WP, Zdzienicka MZ, Kaina B, Efferth T. Artesunate Derived from Traditional Chinese Medicine Induces DNA Damage and Repair. Cancer Res 2008; 68:4347-51. [PMID: 18519695 DOI: 10.1158/0008-5472.can-07-2970] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paul C H Li
- Institute of Toxicology, University of Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Carvalho H, Ortolan TG, dePaula T, Leite RA, Weinlich R, Amarante-Mendes GP, Menck CFM. Sustained activation of p53 in confluent nucleotide excision repair-deficient cells resistant to ultraviolet-induced apoptosis. DNA Repair (Amst) 2008; 7:922-31. [DOI: 10.1016/j.dnarep.2008.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/01/2008] [Accepted: 03/09/2008] [Indexed: 11/28/2022]
|
44
|
Goldstein M, Roos WP, Kaina B. Apoptotic death induced by the cyclophosphamide analogue mafosfamide in human lymphoblastoid cells: Contribution of DNA replication, transcription inhibition and Chk/p53 signaling. Toxicol Appl Pharmacol 2008; 229:20-32. [DOI: 10.1016/j.taap.2008.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/17/2007] [Accepted: 01/08/2008] [Indexed: 01/08/2023]
|
45
|
da Costa RMA, Quayle C, de Fátima Jacysyn J, Amarante-Mendes GP, Sarasin A, Menck CFM. Resistance to ultraviolet-induced apoptosis in DNA repair deficient growth arrested human fibroblasts is not related to recovery from RNA transcription blockage. Mutat Res 2008; 640:1-7. [PMID: 18207202 DOI: 10.1016/j.mrfmmm.2007.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 10/18/2007] [Accepted: 11/30/2007] [Indexed: 05/25/2023]
Abstract
The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions.
Collapse
Affiliation(s)
- Renata M A da Costa
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Tomicic MT, Christmann M, Kaina B. Apoptosis in UV-C light irradiated p53 wild-type, apaf-1 and p53 knockout mouse embryonic fibroblasts: interplay of receptor and mitochondrial pathway. Apoptosis 2008; 10:1295-304. [PMID: 16215690 DOI: 10.1007/s10495-005-1392-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mouse embryonic fibroblasts (MEFs) deficient for the transcription factor p53 are hypersensitive to UV-C light. They also show a reduced recovery from UV-C induced replication blockage and are unable to repair UV-C photoproducts. In this study, we utilized wild-type (wt), Apaf-1 deficient (apaf-1(-/-)) and p53 deficient (p53(-/-)) MEFs in order to elucidate the role of non-repaired UV-C lesions in apoptotic signalling. Corresponding with the cellular sensitivity determined by the WST assay, p53(-/-) cells displayed the highest level of apoptosis, whereas wt cells showed moderate apoptosis after UV-C irradiation. Apaf1(-/-) cells were most resistant. In wt cells apoptosis was executed both via the mitochondrial and the receptor-mediated pathway, as shown by Bcl-2 decline, induction of fasR and activation of caspases-3,8,9. In apaf-1(-/-) (p53(+/+)) cells, the mitochondrial pathway was blocked downstream of Bcl-2, indicating that in this case apoptosis was mediated via the induction of fasR and caspase-3,8 activation. In p53 deficient cells, non-repaired UV-C induced DNA lesions triggered sustained up-regulation of fas ligand (fasL) mRNA, which was not seen in wt and apaf-1(-/-) cells. Therefore, in p53(-/-) MEFs, the receptor/ligand triggered pathway appeared to be dominant. This was confirmed by significant reduction of apoptosis after DN-FADD transfection. As opposed to wt and apaf-1(-/-) cells, p53 deficient MEFs showed no induction of Fas receptor and no Bcl-2 decline. Nevertheless, the resulting caspase-8 and -3 activation was stronger compared to wt and apaf-1(-/-) cells. The data indicate that UV-C light activates in MEFs both the Fas (CD95, Apo-1) receptor and the mitochondrial damage pathways. In p53(-/-) cells, however, the high level of non-repaired DNA damage forces signalling by fasL upregulation, leading to enhanced UV-C-induced apoptosis.
Collapse
Affiliation(s)
- M T Tomicic
- Department of Toxicology, University of Mainz, Germany
| | | | | |
Collapse
|
47
|
Tanaka T, Huang X, Halicka HD, Zhao H, Traganos F, Albino AP, Dai W, Darzynkiewicz Z. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A 2007; 71:648-61. [PMID: 17622968 PMCID: PMC3855668 DOI: 10.1002/cyto.a.20426] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.
Collapse
Affiliation(s)
- Toshiki Tanaka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
- First Department of Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Xuan Huang
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - H. Dorota Halicka
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Hong Zhao
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | - Frank Traganos
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
| | | | - Wei Dai
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595
- Department of Pathology, New York Medical College, Valhalla, New York 10595
- Correspondence to: Dr. Z. Darzynkiewicz, Brander Cancer Research Institute at NYMC, Department of Pathology, BSB 438, Valhalla, NY 10595, USA
| |
Collapse
|
48
|
Soares DG, Escargueil AE, Poindessous V, Sarasin A, de Gramont A, Bonatto D, Henriques JAP, Larsen AK. Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743. Proc Natl Acad Sci U S A 2007; 104:13062-7. [PMID: 17656556 PMCID: PMC1941813 DOI: 10.1073/pnas.0609877104] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adducts induced by the antitumor alkylator ecteinascidin 743 (ET-743, Yondelis, trabectedin) represent a unique challenge to the DNA repair machinery because no pathway examined to date is able to remove the ET adducts, whereas cells deficient in nucleotide excision repair show increased resistance. We here describe the processing of the initial ET adducts into cytotoxic lesions and characterize the influence of cellular repair pathways on this process. Our findings show that exposure of proliferating mammalian cells to pharmacologically relevant concentrations of ET-743 is accompanied by rapid formation of DNA double-strand breaks (DSBs), as shown by the neutral comet assay and induction of focalized phosphorylated H2AX. The ET adducts are stable and can be converted into DSBs hours after the drug has been removed. Loss of homologous recombination repair has no influence on the initial levels of DSBs but is associated with the persistence of unrepaired DSBs after ET-743 is removed, resulting in extensive chromosomal abnormalities and pronounced sensitivity to the drug. In comparison, loss of nonhomologous end-joining had only modest effect on the sensitivity. The identification of DSB formation as a key step in the processing of ET-743 lesions represents a novel mechanism of action for the drug that is in agreement with its unusual potency. Because loss of repair proteins is common in human tumors, expression levels of selected repair factors may be useful in identifying patients particularly likely to benefit, or not, from treatment with ET-743.
Collapse
Affiliation(s)
- Daniele Grazziotin Soares
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - Alexandre E. Escargueil
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Virginie Poindessous
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Alain Sarasin
- Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, and Université Paris-Sud, Institut Gustave-Roussy, Villejuif 94805, France
| | - Aimery de Gramont
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | - Diego Bonatto
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - João Antonio Pêgas Henriques
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de Biotecnologia e Departamento de Ciencias Biomedicas, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil; and
| | - Annette K. Larsen
- *Group of Cancer Biology and Therapeutics, Institut National de la Santé et de la Recherche Médicale, Unité 673, and Université Pierre et Marie Curie, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
- Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, and Université Paris-Sud, Institut Gustave-Roussy, Villejuif 94805, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Despras E, Pfeiffer P, Salles B, Calsou P, Kuhfittig-Kulle S, Angulo JF, Biard DSF. Long-term XPC silencing reduces DNA double-strand break repair. Cancer Res 2007; 67:2526-34. [PMID: 17363570 DOI: 10.1158/0008-5472.can-06-3371] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the relationships between different DNA repair pathways, we established a set of clones in which one specific DNA repair gene was silenced using long-term RNA interference in HeLa cell line. We focus here on genes involved in either nucleotide excision repair (XPA and XPC) or nonhomologous end joining (NHEJ; DNA-PKcs and XRCC4). As expected, XPA(KD) (knock down) and XPC(KD) cells were highly sensitive to UVC. DNA-PKcs(KD) and XRCC4(KD) cells presented an increased sensitivity to various inducers of double-strand breaks (DSBs) and a 70% to 80% reduction of in vitro NHEJ activity. Long-term silencing of XPC gene expression led to an increased sensitivity to etoposide, a topoisomerase II inhibitor that creates DSBs through the progression of DNA replication forks. XPC(KD) cells also showed intolerance toward acute gamma-ray irradiation. We showed that XPC(KD) cells exhibited an altered spectrum of NHEJ products with decreased levels of intramolecular joined products. Moreover, in both XPC(KD) and DNA-PKcs(KD) cells, XRCC4 and ligase IV proteins were mobilized on damaged nuclear structures at lower doses of DSB inducer. In XPC-proficient cells, XPC protein was released from nuclear structures after induction of DSBs. By contrast, silencing of XPA gene expression did not have any effect on sensitivity to DSB or NHEJ. Our results suggest that XPC deficiency, certainly in combination with other genetic defects, may contribute to impair DSB repair.
Collapse
Affiliation(s)
- Emmanuelle Despras
- Commissariat à l'Energie Atomique, Laboratoire de Génétique de la Radiosensibilité, Département de Radiobiologie et de Radiopathologie, Direction des Sciences du Vivant, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Stergiou L, Doukoumetzidis K, Sendoel A, Hengartner MO. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ 2007; 14:1129-38. [PMID: 17347667 DOI: 10.1038/sj.cdd.4402115] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ultraviolet (UV) radiation is a mutagen of major clinical importance in humans. UV-induced damage activates multiple signaling pathways, which initiate DNA repair, cell cycle arrest and apoptosis. To better understand these pathways, we studied the responses to UV-C light (254 nm) of germ cells in Caenorhabditis elegans. We found that UV activates the same cellular responses in worms as in mammalian cells. Both UV-induced apoptosis and cell cycle arrest were completely dependent on the p53 homolog CEP-1, the checkpoint proteins HUS-1 and CLK-2, and the checkpoint kinases CHK-2 and ATL-1 (the C. elegans homolog of ataxia telangiectasia and Rad3-related); ATM-1 (ataxia telangiectasia mutated-1) was also required, but only at low irradiation doses. Importantly, mutation of genes encoding nucleotide excision repair pathway components severely disrupted both apoptosis and cell cycle arrest, suggesting that these genes not only participate in repair, but also signal the presence of damage to downstream components of the UV response pathway that we delineate here. Our study suggests that whereas DNA damage response pathways are conserved in metazoans in their general outline, there is significant evolution in the relative importance of individual checkpoint genes in the response to specific types of DNA damage.
Collapse
Affiliation(s)
- L Stergiou
- Institute of Molecular Biology, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | | | | | | |
Collapse
|