1
|
Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. J Fungi (Basel) 2022; 8:jof8040368. [PMID: 35448599 PMCID: PMC9031059 DOI: 10.3390/jof8040368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
The cell wall integrity (CWI) MAPK pathway of budding yeast Saccharomyces cerevisiae is specialized in responding to cell wall damage, but ongoing research shows that it participates in many other stressful conditions, suggesting that it has functional diversity. The output of this pathway is mainly driven by the activity of the MAPK Slt2, which regulates important processes for yeast physiology such as fine-tuning of signaling through the CWI and other pathways, transcriptional activation in response to cell wall damage, cell cycle, or determination of the fate of some organelles. To this end, Slt2 precisely phosphorylates protein substrates, modulating their activity, stability, protein interaction, and subcellular localization. Here, after recapitulating the methods that have been employed in the discovery of proteins phosphorylated by Slt2, we review the bona fide substrates of this MAPK and the growing set of candidates still to be confirmed. In the context of the complexity of MAPK signaling regulation, we discuss how Slt2 determines yeast cell integrity through phosphorylation of these substrates. Increasing data from large-scale analyses and the available methodological approaches pave the road to early identification of new Slt2 substrates and functions.
Collapse
|
2
|
Ghorbel M, Zaidi I, Ebel C, Hanin M. Differential regulation of the durum wheat MAPK phosphatase 1 by calmodulin, bivalent cations and possibly mitogen activated protein kinase 3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:242-252. [PMID: 30584966 DOI: 10.1016/j.plaphy.2018.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
MAPK phosphatases (MKPs) are relevant negative regulators of MAPKs in eukaryotes as they mediate the feedback control of MAPK cascades in multiple cellular processes. Despite their relevance, our knowledge on the role of cereal MKPs in stress tolerance is scarce and TMKP1 remains today the only studied MKP in wheat. TMKP1 was previously reported to be involved in plant salt stress tolerance. Moreover, TMKP1 was shown to interact with calmodulin (CaM), 14-3-3 and TMPK3/TMPK6 proteins, which regulate its catalytic activity. To further understand the functional properties of TMKP1, we investigate here the contribution of its phosphorylation status, and of TMPK3 together with CaM and bivalent cations on the catalytic activity. In-gel kinase assays revealed that TMKP1 can be phosphorylated by similar wheat and Arabidopsis MAPKs, including most likely MPK3 and MPK6. In addition, we provide evidence for the capacity of wheat TMPK3 to bind to TMKP1 via a conserved Kinase Interacting Domain (KID) located on its C-terminal part. This interaction leads to a stimulation of TMKP1 activity in the presence of Mn2+ or Mg2+ ions, but to its inhibition in the presence of Ca2+ ions. However, the phosphorylation status of TMKP1 seems to be dispensable for TMKP1 activation by TMPK3. Remarkably, in assays combining TMPK3 with CaM/Ca2+ complex, we registered rather an inhibition of TMKP1 activity which however can be suppressed by Mn2+ cations. Our data are in favor of complex differential regulation of TMKP1 by its MPK substrates, metallic cations that might help in fine-tuning the plant cellular responses to various stresses.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia; Unité de Génomique Fonctionnelle et Physiologie des Plantes, Institut Supérieur de Biotechnologie, Université de Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Ikram Zaidi
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia
| | - Chantal Ebel
- Unité de Génomique Fonctionnelle et Physiologie des Plantes, Institut Supérieur de Biotechnologie, Université de Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Moez Hanin
- Unité de Génomique Fonctionnelle et Physiologie des Plantes, Institut Supérieur de Biotechnologie, Université de Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
3
|
Jiang L, Chen Y, Luo L, Peck SC. Central Roles and Regulatory Mechanisms of Dual-Specificity MAPK Phosphatases in Developmental and Stress Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1697. [PMID: 30515185 PMCID: PMC6255987 DOI: 10.3389/fpls.2018.01697] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 05/09/2023]
Abstract
Mitogen-Activated Protein Kinase (MAPK) cascades are conserved signaling modules that integrate multiple signaling pathways. One level of control on the activity of MAPKs is through their negative regulators, MAPK phosphatases (MKPs). Therefore, MKPs also play an integrative role for plants responding to diverse environmental stimulus; but the mechanism(s) by which these phosphatases contribute to specific signals remains largely unknown. In this review, we summarize recent advances in characterizing the biological functions of a sub-class of MKPs, dual-specificity phosphatases (DSPs), ranging from controlling plant growth and development to modulating stress adaptation. We also discuss putative regulatory mechanisms of DSP-type MKPs, which plants may use to control the correct level of responses at the right place and time. We highlight insights into potential regulation of cross-talk between different signaling pathways, facilitating the development of strategies for targeting such cross-talk and to help improve plant resistance against adverse environmental conditions without affecting the growth and development.
Collapse
Affiliation(s)
- Lingyan Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- *Correspondence: Lingyan Jiang
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Scott C. Peck
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Scott C. Peck
| |
Collapse
|
4
|
Jiang L, Anderson JC, Gonzalez Besteiro MA, Peck SC. Phosphorylation of Arabidopsis MAP Kinase Phosphatase 1 (MKP1) Is Required for PAMP Responses and Resistance against Bacteria. PLANT PHYSIOLOGY 2017; 175:1839-1852. [PMID: 29070514 PMCID: PMC5717735 DOI: 10.1104/pp.17.01152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 05/04/2023]
Abstract
Plants perceive potential pathogens via the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors, which initiates a series of intracellular responses that ultimately limit bacterial growth. PAMP responses include changes in intracellular protein phosphorylation, including the activation of mitogen-activated protein kinase (MAPK) cascades. MAP kinase phosphatases (MKPs), such as Arabidopsis (Arabidopsis thaliana) MKP1, are important negative regulators of MAPKs and play a crucial role in controlling the intensity and duration of MAPK activation during innate immune signaling. As such, the mkp1 mutant lacking MKP1 displays enhanced PAMP responses and resistance against the virulent bacterium Pseudomonas syringae pv tomato DC3000. Previous in vitro studies showed that MKP1 can be phosphorylated and activated by MPK6, suggesting that phosphorylation may be an important mechanism for regulating MKP1. We found that MKP1 was phosphorylated during PAMP elicitation and that phosphorylation stabilized the protein, resulting in protein accumulation after elicitation. MKP1 also can be stabilized by the proteasome inhibitor MG132, suggesting that MKP1 is constitutively degraded through the proteasome in the resting state. In addition, we investigated the role of MKP1 posttranslational regulation in plant defense by testing whether phenotypes of the mkp1 Arabidopsis mutant could be complemented by expressing phosphorylation site mutations of MKP1. The phosphorylation of MKP1 was found to be required for some, but not all, of MKP1's functions in PAMP responses and defense against bacteria. Together, our results provide insight into the roles of phosphorylation in the regulation of MKP1 during PAMP signaling and resistance to bacteria.
Collapse
Affiliation(s)
- Lingyan Jiang
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Jeffrey C Anderson
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | | | - Scott C Peck
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
5
|
Ghorbel M, Cotelle V, Ebel C, Zaidi I, Ormancey M, Galaud JP, Hanin M. Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:37-47. [PMID: 28224917 DOI: 10.1016/j.plantsci.2017.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 05/13/2023]
Abstract
Plant MAP kinase phosphatases (MKPs) are major regulators of MAPK signaling pathways and play crucial roles in controlling growth, development and stress responses. The presence of several functional domains in plant MKPs such as a dual specificity phosphatase catalytic domain, gelsolin, calmodulin-binding and serine-rich domains, suggests that MKPs can interact with distinct cellular partners, others than MAPKs. In this report, we identified a canonical mode I 14-3-3-binding motif (574KLPSLP579) located at the carboxy-terminal region of the wheat MKP, TMKP1. We found that this motif is well-conserved among other MKPs from monocots including Hordeum vulgare, Brachypodium distachyon and Aegilops taushii. Using co-immunoprecipitation assays, we provide evidence for interaction between TMKP1 and 14-3-3 proteins in wheat. Moreover, the phosphatase activity of TMKP1 is increased in a phospho-dependent manner by either Arabidopsis or yeast 14-3-3 isoforms. TMKP1 activation by 14-3-3 proteins is enhanced by Mn2+, whereas in the presence of Ca2+ ions, TMKP1 activation was limited to Arabidopsis 14-3-3φ (phi), an isoform harboring an EF-hand motif. Such findings strongly suggest that 14-3-3 proteins, in conjunction with specific divalent cations, may stimulate TMKP1 activity and point-out that 14-3-3 proteins bind and regulate the activity of a MKP in eukaryotes.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia; Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Chantal Ebel
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia; University of Sfax, Institute of Biotechnology, BP "1175", 3038 Sfax, Tunisia
| | - Ikram Zaidi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia
| | - Mélanie Ormancey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, BP 42617, 31326 Castanet-Tolosan, France.
| | - Moez Hanin
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia; University of Sfax, Institute of Biotechnology, BP "1175", 3038 Sfax, Tunisia.
| |
Collapse
|
6
|
Trappanese DM, Sivilich S, Ets HK, Kako F, Autieri MV, Moreland RS. Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle. Am J Physiol Cell Physiol 2016; 310:C921-30. [PMID: 27053523 DOI: 10.1152/ajpcell.00311.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries were mounted for isometric force recording and subjected to histamine stimulation in the presence and absence of inhibitors of PKC [bisindolylmaleimide-1 (Bis)], MAP kinase kinase (MEK) (U0126), and MKP-1 (sanguinarine) and flash frozen for measurement of MAP kinase, PKC-potentiated myosin phosphatase inhibitor 17 (CPI-17), and caldesmon phosphorylation levels. CPI-17 was phosphorylated in response to histamine and was inhibited in the presence of Bis. Caldesmon phosphorylation levels increased in response to histamine stimulation and were decreased in response to MEK inhibition but were not affected by the addition of Bis. Inhibition of PKC significantly increased p42 MAP kinase, but not p44 MAP kinase. Inhibition of MEK with U0126 inhibited both p42 and p44 MAP kinase activity. Inhibition of MKP-1 with sanguinarine blocked the Bis-dependent increase of MAP kinase activity. Sanguinarine alone increased MAP kinase activity due to its effects on MKP-1. Sanguinarine increased MKP-1 phosphorylation, which was inhibited by inhibition of MAP kinase. This suggests that MAP kinase has a negative feedback role in inhibiting MKP-1 activity. Therefore, PKC catalyzes MKP-1 phosphorylation, which is reversed by MAP kinase. Thus the fine tuning of vascular contraction is due to the concerted effort of PKC, MAP kinase, and MKP-1.
Collapse
Affiliation(s)
- Danielle M Trappanese
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Sarah Sivilich
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hillevi K Ets
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Farah Kako
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Michael V Autieri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Robert S Moreland
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Pinart M, Hussain F, Shirali S, Li F, Zhu J, Clark AR, Ammit AJ, Chung KF. Role of mitogen-activated protein kinase phosphatase-1 in corticosteroid insensitivity of chronic oxidant lung injury. Eur J Pharmacol 2014; 744:108-14. [PMID: 25310910 PMCID: PMC4266539 DOI: 10.1016/j.ejphar.2014.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/23/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and in the induction of corticosteroid (CS) insensitivity. Chronic ozone exposure leads to a model of COPD with lung inflammation and emphysema. Mitogen-activated protein kinase phosphatase-1 (MKP-1) may underlie CS insensitivity in COPD. We determined the role played by MKP-1 by studying the effect of corticosteroids in wild-type C57/BL6J and MKP-1−/− mice after chronic ozone exposure. Mice were exposed to ozone (3 ppm, 3 h) 12 times over 6 weeks. Dexamethasone (0.1 or 2 mg/kg; intraperitoneally) was administered before each exposure. Mice were studied 24 h after final exposure. In ozone-exposed C57/BL6J mice, bronchial hyperresponsiveness (BHR) was not inhibited by both doses of dexamethasone, but in MKP-1−/− mice, there was a small inhibition by high dose dexamethasone (2 mg/kg). There was an increase in mean linear intercept after chronic ozone exposure in both strains which was CS-insensitive. There was lesser inflammation after low dose of dexamethasone in MKP-1−/− mice compared to C57/Bl6J mice. Epithelial and collagen areas were modulated in ozone-exposed MKP-1−/− mice treated with dexamethasone compared to C57/Bl6J mice. MKP-1 regulated the expression of MMP-12, IL-13 and KC induced by ozone but did not alter dexamethasone׳s effects. Bronchial hyperresponsiveness, lung inflammation and emphySEMa after chronic exposure are CS-insensitive, and the contribution of MKP-1 to CS sensitivity in this model was negligible.
Collapse
Affiliation(s)
- Mariona Pinart
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Farhana Hussain
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sima Shirali
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Feng Li
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jie Zhu
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, London, UK
| | - Alaina J Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, NSW, Australia
| | - Kian Fan Chung
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
8
|
Bao A, Li F, Zhang M, Chen Y, Zhang P, Zhou X. Impact of ozone exposure on the response to glucocorticoid in a mouse model of asthma: involvements of p38 MAPK and MKP-1. Respir Res 2014; 15:126. [PMID: 25287866 PMCID: PMC4196074 DOI: 10.1186/s12931-014-0126-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 10/02/2014] [Indexed: 11/12/2022] Open
Abstract
Background Molecular mechanisms involved in the oxidative stress induced glucocorticoids insensitivity remain elusive. The mitogen-activated protein kinase phosphatase (MKP) 1 mediates a part of glucocorticoids action and can be modified by exogenous oxidants. Whether oxidant ozone (O3) can affect the function of MKP-1 and hence blunt the response to corticotherapy is not clear. Methods Here we employed a murine model of asthma established with ovalbumin (OVA) sensitization and challenge to evaluate the influence of O3 on the inhibitory effect of dexamethasone on AHR and airway inflammation, and by administration of SB239063, a selective p38 MAPK inhibitor, to explore the underlying involvements of the activation of p38 MAPK and the expression of MKP-1. Results Ozone exposure not only aggravated the pulmonary inflammation and AHR, but also decreased the inhibitory effects of dexamethasone, accompanied by the elevated oxidative stress, airway neutrophilia, enhanced phosphorylation of p38 MAPK, and upregulated expression of IL-17. Administration of SB239063 caused significant inhibition of the p38 MAPK phosphorylation, alleviation of the airway neutrophilia, and decrement of the ozone-induced IL-17 expression, and partly restored the ozone-impaired effects of dexamethasone. Ozone exposure not only decreased the protein expression of MKP-1, but also diminished the dexamethasone-mediated induction process of MKP-1 mRNA and protein expression. Conclusions The glucocorticoids insensitivity elicited by ozone exposure on current asthma model may involve the enhanced phosphorylation of p38 MAPK and disturbed expression of MKP-1. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0126-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Zhou
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiao tong University, 100 Haining Road, Shanghai 200080China.
| |
Collapse
|
9
|
González Besteiro MA, Ulm R. Phosphorylation and stabilization of Arabidopsis MAP kinase phosphatase 1 in response to UV-B stress. J Biol Chem 2012. [PMID: 23188831 DOI: 10.1074/jbc.m112.434654] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAP kinase phosphatases (MKPs) are important regulators of the activation levels and kinetics of MAP kinases. This is crucial for a large number of physiological processes during development and growth, as well as interactions with the environment, including the response to ultraviolet-B (UV-B) stress. Arabidopsis MKP1 is a key regulator of MAP kinases MPK3 and MPK6 in response to UV-B stress. However, virtually nothing is presently known about the post-translational regulation of plant MKPs in vivo. Here, we provide evidence that MKP1 is a phosphoprotein in vivo and that MKP1 accumulates in response to UV-B stress. Moreover, proteasome inhibitor experiments suggest that MKP1 is constantly turned-over under non-stress conditions and that MKP1 is stabilized upon stress treatment. Stress-responsive phosphorylation and stabilization of MKP1 demonstrate the post-translational regulation of a plant MKP in vivo, adding an additional regulatory layer to MAP kinase signaling in plants.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
10
|
Wancket LM, Frazier WJ, Liu Y. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sci 2012; 90:237-48. [PMID: 22197448 PMCID: PMC3465723 DOI: 10.1016/j.lfs.2011.11.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression.
Collapse
Affiliation(s)
- Lyn M. Wancket
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - W. Joshua Frazier
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - Yusen Liu
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| |
Collapse
|
11
|
Zhang F, Yang H, Pan Z, Wang Z, Wolosin JM, Gjorstrup P, Reinach PS. Dependence of resolvin-induced increases in corneal epithelial cell migration on EGF receptor transactivation. Invest Ophthalmol Vis Sci 2010; 51:5601-9. [PMID: 20538990 DOI: 10.1167/iovs.09-4468] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To determine whether resolvin E1 (RvE1), an endogenous oxygenation product of eicosapentaenoic acid (EPA), induces increases in migration in human corneal epithelial cells (HCECs) and to identify signal pathways mediating this response. METHODS Migration was measured with the scratch wound assay. Western blot analysis identified changes in the phosphorylation status of prospective intracellular signal transduction mediators. Immunocytochemistry probed for intracellular paxillin localization and actin reorganization. RESULTS RvE1 enhanced HCEC migratory rates to levels comparable to those induced by epidermal growth factor (EGF). These increases were accompanied by increases in the phosphorylation status of epidermal growth factor receptor (EGFR), Akt, p38 MAPK, GSK-3α/β, and paxillin, which essentially persisted for up to 60 minutes. The EGFR inhibitor AG1478 blocked the subsequent effects of RvE1 to induce increases in phosphorylation status and cell migration. The PI3-K inhibitor LY294002 or wortmannin or the p38 inhibitor BIRB796 blocked resolvin-induced increases in cell migration. Either the matrix metalloproteinase (MMP) inhibitor GM6001 or the specific heparin-bound EGF-like growth factor inhibitor CRM197 suppressed RvE1-induced stimulation of EGFR/PI3-K/Akt phosphorylation and cell migration. CONCLUSIONS RvE1 enhances HCEC migration through MMP and sheddase-mediated EGFR transactivation. This response is dependent on PI3-K and p38-linked signaling eliciting paxillin (Tyr118) phosphorylation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biological Sciences, State University of New York, College of Optometry, New York, New York 10036, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mitogen-activated protein kinase phosphatase 2 regulates the inflammatory response in sepsis. Infect Immun 2010; 78:2868-76. [PMID: 20351138 DOI: 10.1128/iai.00018-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sepsis results from a dysregulation of the regulatory mechanisms of the pro- and anti-inflammatory response to invading pathogens. The mitogen-activated protein (MAP) kinase cascades are key signal transduction pathways involved in the cellular production of cytokines. The dual-specific phosphatase 1 (DUSP 1), mitogen-activated protein kinase phosphatase-1 (MKP-1), has been shown to be an important negative regulator of the inflammatory response by regulating the p38 and Jun N-terminal protein kinase (JNK) MAP kinase pathways to influence pro- and anti-inflammatory cytokine production. MKP-2, also a dual-specific phosphatase (DUSP 4), is a phosphatase highly homologous with MKP-1 and is known to regulate MAP kinase signaling; however, its role in regulating the inflammatory response is not known. We hypothesized a regulatory role for MKP-2 in the setting of sepsis. Mice lacking the MKP-2 gene had a survival advantage over wild-type mice when challenged with intraperitoneal lipopolysaccharide (LPS) or a polymicrobial infection via cecal ligation and puncture. The MKP-2(-/-) mice also exhibited decreased serum levels of both pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-alpha], interleukin-1beta [IL-1beta], IL-6) and anti-inflammatory cytokines (IL-10) following endotoxin challenge. Isolated bone marrow-derived macrophages (BMDMs) from MKP-2(-/-) mice showed increased phosphorylation of the extracellular signal-regulated kinase (ERK), decreased phosphorylation of JNK and p38, and increased induction of MKP-1 following LPS stimulation. The capacity for cytokine production increased in MKP-2(-/-) BMDMs following MKP-1 knockdown. These data support a mechanism by which MKP-2 targets ERK deactivation, thereby decreasing MKP-1 and thus removing the negative inhibition of MKP-1 on cytokine production.
Collapse
|
13
|
Proteasomal inhibition upregulates the endogenous MAPK deactivator MKP-1 in human airway smooth muscle: mechanism of action and effect on cytokine secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:416-23. [PMID: 20043958 DOI: 10.1016/j.bbamcr.2009.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/08/2009] [Accepted: 12/17/2009] [Indexed: 11/20/2022]
Abstract
Asthma is a chronic inflammatory condition. Inhibition of the ubiquitin-proteasome system offers promise as a anti-inflammatory strategy, being responsible for the degradation of key proteins involved in crucial cellular functions, including gene expression in inflammation (e.g. inhibitory IkappaB-alpha and the endogenous MAPK deactivator - MKP-1). As MKP-1 inhibits MAPK-mediated pro-remodeling functions in human airway smooth muscle (ASM; a pivotal immunomodulatory cell in asthma) in this study we investigate the effect of the proteasome inhibitor MG-132 on MKP-1 and evaluate the anti-inflammatory effect of MG-132 on cytokine secretion from ASM cells. Examining the time-course of induction of MKP-1 mRNA and protein by MG-132 (10microM) we show that MKP-1 mRNA was first detected at 30min, increased to significant levels by 4h, resulting in a 12.6+/-1.5-fold increase in MKP-1 mRNA expression by 24h (P<0.05). MKP-1 protein levels corroborate the mRNA results. Investigating the effect of MG-132 on secretion of the cytokine IL-6 we show that while short-term pretreatment with MG-132 (30min) partially reduced TNFalpha-induced IL-6 via inhibition of IkappaB-alpha degradation and the NF-kappaB pathway, longer-term proteasome inhibition (up to 24h) robustly upregulated MKP-1 and was temporally correlated with repression of p38-mediated IL-6 secretion from ASM cells. Moreover, utilizing a cytokine array we show that MG-132 represses the secretion of multiple cytokines implicated in asthma. Taken together, our results demonstrate that MG-132 upregulates MKP-1 and represses cytokine secretion from ASM and highlight the potential of the proteasome as a therapeutic target in asthma.
Collapse
|
14
|
Jacob A, Rajan D, Pathickal B, Balouch I, Hartman A, Wu R, Zhou M, Wang P. The inhibitory effect of ghrelin on sepsis-induced inflammation is mediated by the MAPK phosphatase-1. Int J Mol Med 2010; 25:159-164. [PMID: 19956915 PMCID: PMC2797446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Hepatocellular dysfunction occurs early in sepsis and this appears to be caused by Kupffer cell-derived TNF-alpha production from the liver as a result of the increased release of the sympathetic neurotransmitter, norepinephrine, from the gut. Ghrelin, a novel stomach-derived peptide, is down-regulated in sepsis and administration of ghrelin into rodents decrease pro-inflammatory cytokines, attenuates hepatic and other organ injuries and improves survival. Ghrelin's beneficial effect in sepsis is mediated by the inhibition of the sympathetic nervous system (SNS), as evidenced by the reduced gut-derived norepineprine (NE) release in sepsis after ghrelin treatment. Recent data suggest that MKP-1, the MAPK phosphatase-1, is involved in the innate immune responses. To determine that the beneficial effect of ghrelin in sepsis is mediated by MKP-1, rats were subjected to sepsis by cecal ligation and puncture (CLP) alone, or treated with ghrelin, beginning at 5-h post-CLP and liver tissues were harvested and examined for MKP-1 mRNA and protein expression. CLP alone produced a significant decrease in MKP-1 gene expression in liver tissues at 20 h after CLP (P<0.05). MKP-1 mRNA was decreased by 30-40% at 2 and 5 h after CLP, but not statistically significant. MKP-1 protein expression was significantly decreased as early as 2 h after CLP and remained low at 5-20 h after CLP. While septic rats treated with vehicle produced significant decreases from sham rats, ghrelin treatment improved both mRNA and protein from vehicle group (0.58+/-0.069 vs. 0.91+/-0.16, P<0.05; 0.14+/-0.027 vs. 0.22+/-0.017, P=0.013), respectively. Since ghrelin's inhibitory effect is mediated by the SNS, we hypothesized that NE treatment in Kupffer cells may downregulate MKP-1. Kupffer cells were treated with NE and examined for MKP-1. Treatment with NE for 60 min showed an average of 46.9% decrease in MKP-1 mRNA expression compared to untreated cells (P<0.001). Likewise, NE treatment in RAW264.7 cells produced significantly lower MKP-1 mRNA than that of control cells. To further confirm the effect of NE on MKP-1, normal rats were infused with NE for 2 h through the portal vein and MKP-1 mRNA from the liver was examined. Infusion with NE produced a significant 73.7% decrease in MKP-1 mRNA. Therefore, ghrelin's inhibitory effect on gut-derived NE release in sepsis leading to the downregulation of pro-inflammatory cytokines is mediated by MKP-1.
Collapse
Affiliation(s)
- Asha Jacob
- Laboratory of Surgical Research, Department of Surgery North Shore University Hospital and Long Island Jewish Medical Center, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li L, Chen SF, Liu Y. MAP kinase phosphatase-1, a critical negative regulator of the innate immune response. Int J Clin Exp Med 2009; 2:48-67. [PMID: 19436832 PMCID: PMC2680050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
Mitogen-activated protein (MAP) kinase cascades are crucial signal transduction pathways in the regulation of the host inflammatory response to infection. MAP kinase phosphatase (MKP)-1, an archetypal member of the MKP family, plays a pivotal role in the deactivation of p38 and JNK. In vitro studies using cultured macrophages have provided compelling evidence for a central role of MKP-1 in the restraint of pro-inflammatory cytokine biosynthesis. Studies using MKP-1 knockout mice have strengthened the findings from in vitro studies and defined the critical importance of MKP-1 in the regulation of pro-inflammatory cytokine synthesis in vivo during the host response to bacterial cell wall components. Upon challenge with Toll-like receptor ligands MKP-1 knockout mice produced dramatically greater amounts of inflammatory cytokines, developed severe hypotension and multi-organ failure, and exhibited a remarkable increase in mortality. More recent investigations using intact bacteria confirmed these observations and further revealed novel functions of MKP-1 in host defense against bacterial infection. These studies demonstrate that MKP-1 is an essential feedback regulator of the innate immune response, and that it plays a critical role in preventing septic shock and multi-organ dysfunction during pathogenic infection. In this review, we will summarize the studies on the function of MKP-1 in innate immune responses and discuss the regulation of this novel protein phosphatase.
Collapse
Affiliation(s)
- Liwu Li
- Department of Biological Sciences, Virginia TechBlacksburg, Virginia, USA
| | - Shuang-Feng Chen
- Department of Laboratory Medicine, Liaocheng People's HospitalLiaocheng, Shandong, China
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of MedicineColumbus, Ohio, USA
| |
Collapse
|
16
|
Abstract
Mitogen-activated protein (MAP)(§) kinase cascades are crucial signal transduction pathways in the biosynthesis of proinflammatory cytokines. MAP kinase phosphatase (MKP)-1, an archetypal member of the MKP family, plays a pivotal role in the feedback control of p38 and JNK. In vitro studies using cultured macrophages have provided strong evidence for a critical role of MKP-1 in the restraint of pro-inflammatory cytokine biosynthesis. Recently, a number of studies conducted using MKP-1 knockout mice have verified the importance of MKP-1 in the regulation of p38 and JNK and in the regulation of pro-inflammatory cytokine synthesis. Upon lipopolysaccharide challenge MKP-1 knockout mice produced dramatically greater amounts of inflammatory cytokines, developed severe hypotension, and multi-organ failure, and exhibited a remarkable increase in mortality. These studies demonstrate that MKP-1 is an essential feedback regulator of the innate immune response, and that it plays a critical role in preventing septic shock and multi-organ dysfunction during pathogenic infection.
Collapse
Affiliation(s)
- Yusen Liu
- Center for Perinatal Research, Children’s Research Institute, Columbus Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Thomas P. Shanley
- Division of Pediatric Critical Care Medicine, C. S. Mott Children′s Hospital, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Abstract
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are protein phosphatases that dephosphorylate both the phosphothreonine and phosphotyrosine residues on activated MAPKs. Removal of the phosphates renders MAPKs inactive, effectively halting their cellular function. In recent years, evidence has emerged that, similar to MAPKs, MKPs are pivotal in the regulation of immune responses. By deactivating MAPKs, MKPs can modulate both innate and adaptive immunity. A number of immunomodulatory agents have been found to influence the expression of MKP1 in particular, highlighting the central role of this phosphatase in immune regulation. This Review discusses the properties, function and regulation of MKPs during immune responses.
Collapse
Affiliation(s)
- Yusen Liu
- Center for Perinatal Research, Columbus Children's Research Institute, Columbus Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, USA.
| | | | | |
Collapse
|
18
|
Sánchez-Tilló E, Comalada M, Xaus J, Farrera C, Valledor AF, Caelles C, Lloberas J, Celada A. JNK1 Is Required for the Induction of Mkp1 Expression in Macrophages during Proliferation and Lipopolysaccharide-dependent Activation. J Biol Chem 2007; 282:12566-73. [PMID: 17337450 DOI: 10.1074/jbc.m609662200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages proliferate in the presence of their growth factor, macrophage colony-stimulating factor (M-CSF), in a process that is dependent on early and short ERK activation. Lipopolysaccharide (LPS) induces macrophage activation, stops proliferation, and delays ERK phosphorylation, thereby triggering an inflammatory response. Proliferating or activating responses are balanced by the kinetics of ERK phosphorylation, the inactivation of which correlates with Mkp1 induction. Here we show that the transcriptional induction of this phosphatase by M-CSF or LPS depends on JNK but not on the other MAPKs, ERK and p38. The lack of Mkp1 induction caused by JNK inhibition prolonged ERK-1/2 and p38 phosphorylation. The two JNK genes, jnk1 and jnk2, are constitutively expressed in macrophages. However, only the JNK1 isoform was phosphorylated and, as determined in single knock-out mice, was necessary for Mkp1 induction by M-CSF or LPS. JNK1 was also required for pro-inflammatory cytokine biosynthesis (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6) and LPS-induced NO production. This requirement is independent of Mkp1 expression, as shown in Mkp1 knock-out mice. Our results demonstrate a critical role for JNK1 in the regulation of Mkp1 induction and in LPS-dependent macrophage activation.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Institute for Research in Biomedicine and University of Barcelona, Barcelona Science Park, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang R, He G, Nelman-Gonzalez M, Ashorn CL, Gallick GE, Stukenberg PT, Kirschner MW, Kuang J. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 2007; 128:1119-32. [PMID: 17382881 DOI: 10.1016/j.cell.2006.11.053] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/31/2006] [Accepted: 11/21/2006] [Indexed: 02/08/2023]
Abstract
The tumor suppressor PTEN, a critical regulator for multiple cellular processes, is mutated or deleted frequently in various human cancers. Subtle reductions in PTEN expression levels have profound impacts on carcinogenesis. Here we show that PTEN level is regulated by ubiquitin-mediated proteasomal degradation, and purified its ubiquitin ligase as HECT-domain protein NEDD4-1. In cells NEDD4-1 negatively regulates PTEN stability by catalyzing PTEN polyubiquitination. Consistent with the tumor-suppressive role of PTEN, overexpression of NEDD4-1 potentiated cellular transformation. Strikingly, in a mouse cancer model and multiple human cancer samples where the genetic background of PTEN was normal but its protein levels were low, NEDD4-1 was highly expressed, suggesting that aberrant upregulation of NEDD4-1 can posttranslationally suppress PTEN in cancers. Elimination of NEDD4-1 expression inhibited xenotransplanted tumor growth in a PTEN-dependent manner. Therefore, NEDD4-1 is a potential proto-oncogene that negatively regulates PTEN via ubiquitination, a paradigm analogous to that of Mdm2 and p53.
Collapse
Affiliation(s)
- Ruoning Wang
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Price DM, Terriff DL, Chik CL, Ho AK. The role of protein turnover in regulating MKP-1 levels in rat pinealocytes. Mol Cell Endocrinol 2007; 263:134-41. [PMID: 17079074 DOI: 10.1016/j.mce.2006.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/04/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
We have previously shown that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is induced at night under the control of a photoneural system in the rat pineal gland. Because of the established roles of MAPKs, glucocorticoids and proteasome activity in regulating MKP-1 expression in other cell types, their relative contributions to MKP-1 regulation were investigated in rat pinealocytes. We found that neither inhibition of MAPKs nor treatment with dexamethasone affected norepinephrine-stimulated MKP-1 expression. In contrast, treatment with proteasome inhibitors increased norepinephrine-stimulated MKP-1 protein levels and abolished the decline in norepinephrine-stimulated MKP-1 protein levels caused by inhibition of transcription or translation, or blockade of alpha-adrenergic receptors. Taken together, our results indicate that in rat pinealocytes, the continuous and rapid turnover of MKP-1 protein allows for its rapid induction but is not sufficient to generate the sustained increase in MKP-1 expression post-adrenergic stimulation.
Collapse
Affiliation(s)
- D M Price
- Department of Physiology, University of Alberta, 7-26 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
21
|
Abraham SM, Clark AR. Dual-specificity phosphatase 1: a critical regulator of innate immune responses. Biochem Soc Trans 2006; 34:1018-23. [PMID: 17073741 DOI: 10.1042/bst0341018] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Innate immune responses are critically dependent on MAPK (mitogen-activated protein kinase) signalling pathways, in particular JNK (c-Jun N-terminal kinase) and p38 MAPK. Both of these kinases are negatively regulated via their dephosphorylation by DUSP1 (dual-specificity phosphatase 1). Several pro- and anti-inflammatory stimuli converge to regulate the DUSP1 gene and to modulate the time course of its expression. In turn, the pattern of expression of DUSP1 dictates the kinetics of activation of JNK and p38 MAPK, and this influences the expression of several mediators of innate immunity. DUSP1 is therefore a central regulator of innate immunity, and its expression can profoundly affect the outcome of inflammatory challenges. We discuss possible implications for immune-mediated inflammatory diseases and their treatment.
Collapse
Affiliation(s)
- S M Abraham
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
22
|
Seo HR, Chung DY, Lee YJ, Lee DH, Kim JI, Bae S, Chung HY, Lee SJ, Jeoung D, Lee YS. Heat Shock Protein 25 or Inducible Heat Shock Protein 70 Activates Heat Shock Factor 1. J Biol Chem 2006; 281:17220-17227. [PMID: 16624816 DOI: 10.1074/jbc.m600062200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of heat shock proteins (HSPs) is known to be increased via activation of heat shock factor 1 (HSF1), and excess expression of HSPs exerts feedback inhibition of HSF1. However, the molecular mechanism to modulate such relationships between HSPs and HSF1 is not clear. In the present study, we show that stable transfection of either Hsp25 or inducible Hsp70 (Hsp70i) increased expression of endogenous HSPs such as HSP25 and HSP70i through HSF1 activation. However, these phenomena were abolished when the dominant negative Hsf1 mutant was transfected to HSP25 or HSP70i overexpressed cells. Moreover, the increased HSF1 activity by either HSP25 or HSP70i was found to result from dephosphorylation of HSF1 on serine 307 that increased the stability of HSF1. Either HSP25 or HSP70i inhibited ERK1/2 phosphorylation because of increased MKP1 phosphorylation by direct interaction of these HSPs with MKP1. Treatment of HOS and NCI-H358 cells, which showed high expressions of endogenous HSF1, with small interfering RNA (siRNA) of either HSP27 (siHSP27)or HSP70i (siHSP70i) inhibited both HSP27 and HSP70i proteins; this was because of increased ERK1/2 phosphorylation and serine phosphorylation of HSF1. The results, therefore, suggested that when the HSF1 protein level was high in cancer cells, excess expression of HSP27 or HSP70i strongly facilitates the expression of HSP proteins through HSF1 activation, resulting in severe radio- or chemoresistance.
Collapse
Affiliation(s)
- Haeng Ran Seo
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Da-Yeon Chung
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706; Department of Food and Microbial Technology College of Natural Science, Seoul Women's University, Seoul 139-774
| | - Yoon-Jin Lee
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | | | - Jong-Il Kim
- Department of Food and Microbial Technology College of Natural Science, Seoul Women's University, Seoul 139-774
| | - Sangwoo Bae
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Hee-Yong Chung
- Department of Microbiology, College of Medicine, Hanyang University, Seoul 133-791
| | - Su-Jae Lee
- Laboratory of Radiation Experimental Therapeutics, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Dooil Jeoung
- Division of Life Sciences, Kangwon National University College of Natural Sciences, Chuncheon 200-701, Korea
| | - Yun-Sil Lee
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706.
| |
Collapse
|
23
|
Martín H, Flández M, Nombela C, Molina M. Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 2006; 58:6-16. [PMID: 16164545 DOI: 10.1111/j.1365-2958.2005.04822.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of their key role in cell signalling, a rigorous regulation of mitogen-activated protein kinases (MAPKs) is essential in eukaryotic physiology. Whereas the use of binding motifs and scaffold proteins guarantees the selective activation of a specific MAPK pathway, activating kinases and downregulating phosphatases control the appropriate intensity and timing of MAPK activation. Tyrosine, serine/threonine and dual-specificity phosphatases co-ordinately dephosphorylate and thereby inactivate MAPKs. In budding yeast, enzymes that belong to these three types of phosphatases have been shown to counteract the MAPKs that govern the cellular response to varied extracellular stimuli. Studies carried out with these yeast phosphatases have expanded our knowledge of essential key aspects of the biology of these negative regulators, such as their function, the mechanisms that operate in their modulation by MAPK pathways and their binding to MAPK substrates. Furthermore, yeast MAPK phosphatases have been shown to play additional and essential roles in MAPK-mediated signalling, controlling MAPK localization or cross-talk among pathways. This review stresses the importance of these negative regulators in eukaryotic signalling by discussing the recent developments and perspectives in the study of yeast MAPK phosphatases.
Collapse
Affiliation(s)
- Humberto Martín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Lin YW, Yang JL. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem 2005; 281:915-26. [PMID: 16286470 DOI: 10.1074/jbc.m508720200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dual-specificity MAPK phosphatase MKP-1/CL100/DUSP1 is an inducible nuclear protein controlled by p44/42 MAPK (ERK1/2) in a negative feedback mechanism to inhibit kinase activity. Here, we report on the molecular basis for a novel positive feedback mechanism to sustain ERK activation by triggering MKP-1 proteolysis. Active ERK2 docking to the DEF motif (FXFP, residues 339-342) of N-terminally truncated MKP-1 in vitro initiated phosphorylation at the Ser(296)/Ser(323) domain, which was not affected by substituting Ala for Ser at Ser(359)/Ser(364). The DEF and Ser(296)/Ser(323) sites were essential for ubiquitin-mediated MKP-1 proteolysis stimulated by MKK1-ERK signaling in H293 cells, whereas the N-terminal domain and Ser(359)/Ser(364) sites were dispensable. ERK activation by serum increased the endogenous level of ubiquitinated phospho-Ser(296) MKP-1 and the degradation of MKP-1. Intriguingly, active ERK-promoted phospho-Ser(296) MKP-1 bound to SCF(Skp2) ubiquitin ligase in vivo and in vitro. Forced expression of Skp2 enhanced MKP-1 polyubiquitination and proteolysis upon ERK activation, whereas depletion of endogenous Skp2 suppressed such events. The kinetics of ERK signaling stimulated by serum correlated with the endogenous MKP-1 degradation rate in a Skp2-dependent manner. Thus, MKP-1 proteolysis can be achieved via ERK and SCF(Skp2) cooperation, thereby sustaining ERK activation.
Collapse
Affiliation(s)
- Yun-Wei Lin
- Molecular Carcinogenesis Laboratory, Institute of Biotechnology, Hsinchu, Taiwan
| | | |
Collapse
|
25
|
Marchetti S, Gimond C, Chambard JC, Touboul T, Roux D, Pouysségur J, Pagès G. Extracellular signal-regulated kinases phosphorylate mitogen-activated protein kinase phosphatase 3/DUSP6 at serines 159 and 197, two sites critical for its proteasomal degradation. Mol Cell Biol 2005; 25:854-64. [PMID: 15632084 PMCID: PMC543408 DOI: 10.1128/mcb.25.2.854-864.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase phosphatases (MKPs) are dual-specificity phosphatases that dephosphorylate phosphothreonine and phosphotyrosine residues within MAP kinases. Here, we describe a novel posttranslational mechanism for regulating MKP-3/Pyst1/DUSP6, a member of the MKP family that is highly specific for extracellular signal-regulated kinase 1 and 2 (ERK1/2) inactivation. Using a fibroblast model in which the expression of either MKP-3 or a more stable MKP-3-green fluorescent protein (GFP) chimera was induced by tetracycline, we found that serum induces the phosphorylation of MKP-3 and its subsequent degradation by the proteasome in a MEK1 and MEK2 (MEK1/2)-ERK1/2-dependent manner. In vitro phosphorylation assays using glutathione S-transferase (GST)-MKP-3 fusion proteins indicated that ERK2 could phosphorylate MKP-3 on serines 159 and 197. Tetracycline-inducible cell clones expressing either single or double serine mutants of MKP-3 or MKP-3-GFP confirmed that these two sites are targeted by the MEK1/2-ERK1/2 module in vivo. Double serine mutants of MKP-3 or MKP-3-GFP were more efficiently protected from degradation than single mutants or wild-type MKP-3, indicating that phosphorylation of either serine by ERK1/2 enhances proteasomal degradation of MKP-3. Hence, double mutation caused a threefold increase in the half-life of MKP-3. Finally, we show that the phosphorylation of MKP-3 has no effect on its catalytic activity. Thus, ERK1/2 exert a positive feedback loop on their own activity by promoting the degradation of MKP-3, one of their major inactivators in the cytosol, a situation opposite to that described for the nuclear phosphatase MKP-1.
Collapse
Affiliation(s)
- Sandrine Marchetti
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre Antoine Lacassagne, 33 Ave. de Valombrose, 06189 Nice, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Katagiri C, Masuda K, Urano T, Yamashita K, Araki Y, Kikuchi K, Shima H. Phosphorylation of Ser-446 determines stability of MKP-7. J Biol Chem 2005; 280:14716-22. [PMID: 15689616 DOI: 10.1074/jbc.m500200200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MAPK cascades can be negatively regulated by members of the MAPK phosphatase (MKP) family. However, how MKP activity is regulated is not well characterized. MKP-7, a JNK-specific phosphatase, possesses a unique COOH-terminal stretch (CTS) in addition to domains conserved among MKP family members. The CTS contains several motifs such as a nuclear localization signal, a nuclear export signal, PEST sequences, and a serine residue (Ser-446) that can be phosphorylated by activated ERK, suggesting an important regulatory role(s).(35)S-pulse labeling experiments indicate that the half-life of MKP-7 is 1.5 h, a period significantly elongated by deleting the CTS. We also show that overexpressed MKP-7 is polyubiquitinated when co-expressed with ubiquitin and that proteasome inhibitors markedly inhibit MKP-7 degradation. We also determined that MKP-7 phosphorylated at Ser-446 has a longer half-life than unphosphorylated form of the wild type protein, as does a phospho-mimic mutant of MKP-7. These results indicate that activation of the ERK pathway strongly blocks JNK activation through stabilization of MKP-7 mediated by phosphorylation.
Collapse
Affiliation(s)
- Chiaki Katagiri
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Philipova R, Kisielewska J, Lu P, Larman M, Huang JY, Whitaker M. ERK1 activation is required for S-phase onset and cell cycle progression after fertilization in sea urchin embryos. Development 2005; 132:579-89. [PMID: 15634691 DOI: 10.1242/dev.01607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fertilization of sea urchin eggs results in a large, transient increase in intracellular free Ca2+ concentration that is responsible for re-initiation of the cell division cycle. We show that activation of ERK1, a Ca2+-dependent MAP kinase response, is required for both DNA synthesis and cell cycle progression after fertilization. We combine experiments on populations of cells with analysis at the single cell level, and develop a proxy assay for DNA synthesis in single embryos, using GFP-PCNA. We compare the effects of low molecular weight inhibitors with a recombinant approach targeting the same signalling pathway. We find that inhibition of the ERK pathway at fertilization using either recombinant ERK phosphatase or U0126, a MEK inhibitor, prevents accumulation of GFP-PCNA in the zygote nucleus and that U0126 prevents incorporation of [3H]-thymidine into DNA. Abrogation of the ERK1 signalling pathway also prevents chromatin decondensation of the sperm chromatin after pronuclear fusion, nuclear envelope breakdown and formation of a bipolar spindle.
Collapse
Affiliation(s)
- Rada Philipova
- University of Newcastle upon Tyne, Institute of Cell and Molecular Biosciences, Medical School, Framlington Place, Newcastle NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
28
|
Jacob A, Smolenski A, Lohmann SM, Begum N. MKP-1 expression and stabilization and cGK Iα prevent diabetes- associated abnormalities in VSMC migration. Am J Physiol Cell Physiol 2004; 287:C1077-86. [PMID: 15355857 DOI: 10.1152/ajpcell.00477.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a major risk factor in the development of atherosclerosis and cardiovascular disease conditions, involving intimal injury and enhanced vascular smooth muscle cell (VSMC) migration. We report a mechanistic basis for divergences between insulin’s inhibitory effects on migration of aortic VSMC from control Wistar Kyoto (WKY) rats versus Goto-Kakizaki (GK) diabetic rats. In normal WKY VSMC, insulin increased MAPK phosphatase-1 (MKP-1) expression as well as MKP-1 phosphorylation, which stabilizes it, and inhibited PDGF-mediated MAPK phosphorylation and cell migration. In contrast, basal migration was elevated in GK diabetic VSMCs, and all of insulin’s effects on MKP-1 expression and phosphorylation, MAPK phosphorylation, and PDGF-stimulated migration were markedly inhibited. The critical importance of MKP-1 in insulin inhibition of VSMC migration was evident from several observations. MKP-1 small interfering RNA inhibited MKP-1 expression and abolished insulin inhibition of PDGF-induced VSMC migration. Conversely, adenoviral expression of MKP-1 decreased MAPK phosphorylation and basal migration rate and restored insulin's ability to inhibit PDGF-directed migration in GK diabetic VSMCs. Also, the proteasomal inhibitors lactacystin and MG132 partially restored MKP-1 protein levels in GK diabetic VSMCs and inhibited their migration. Furthermore, GK diabetic aortic VSMCs had reduced cGMP-dependent protein kinase Iα (cGK Iα) levels as well as insulin-dependent, but not sodium nitroprusside-dependent, stimulation of cGMP. Adenoviral expression of cGK Iα enhanced MKP-1 inhibition of MAPK phosphorylation and VSMC migration. We conclude that enhanced VSMC migration in GK diabetic rats is due at least in part to a failure of insulin-stimulated cGMP/cGK Iα signaling, MKP-1 expression, and stabilization and thus MAPK inactivation.
Collapse
Affiliation(s)
- Asha Jacob
- Diabetes Rsearch Laboratory, Winthrop University Hospital, Mineola 11501, USA
| | | | | | | |
Collapse
|
29
|
Myers AP, Corson LB, Rossant J, Baker JC. Characterization of mouse Rsk4 as an inhibitor of fibroblast growth factor-RAS-extracellular signal-regulated kinase signaling. Mol Cell Biol 2004; 24:4255-66. [PMID: 15121846 PMCID: PMC400469 DOI: 10.1128/mcb.24.10.4255-4266.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signals regulate the specification of a varied array of tissue types by utilizing distinct modules of proteins to elicit diverse effects. The RSK proteins are part of the RTK signal transduction pathway and are thought to relay these signals by acting downstream of extracellular signal-regulated kinase (ERK). In this study we report the identification of ribosomal S6 kinase 4 (Rsk4) as an inhibitor of RTK signals. Among the RSK proteins, RTK inhibition is specific to RSK4 and, in accordance, is dependent upon a region of the RSK4 protein that is divergent from other RSK family members. We demonstrate that Rsk4 inhibits the transcriptional activation of specific targets of RTK signaling as well as the activation of ERK. Developmentally, Rsk4 is expressed in extraembryonic tissue, where RTK signals are known to have critical roles. Further examination of Rsk4 expression in the extraembryonic tissues demonstrates that its expression is inversely correlated with the presence of activated ERK 1/2. These studies demonstrate a new and divergent function for RSK4 and support a role for RSK proteins in the specification of RTK signals during early mouse development.
Collapse
Affiliation(s)
- Andrea Pomrehn Myers
- Department of Genetics, Stanford Medical School, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
30
|
Staal FJT, Weerkamp F, Baert MRM, van den Burg CMM, van Noort M, de Haas EFE, van Dongen JJM. Wnt Target Genes Identified by DNA Microarrays in Immature CD34+Thymocytes Regulate Proliferation and Cell Adhesion. THE JOURNAL OF IMMUNOLOGY 2004; 172:1099-108. [PMID: 14707084 DOI: 10.4049/jimmunol.172.2.1099] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The thymus is seeded by very small numbers of progenitor cells that undergo massive proliferation before differentiation and rearrangement of TCR genes occurs. Various signals mediate proliferation and differentiation of these cells, including Wnt signals. Wnt signals induce the interaction of the cytoplasmic cofactor beta-catenin with nuclear T cell factor (TCF) transcription factors. We identified target genes of the Wnt/beta-catenin/TCF pathway in the most immature (CD4-CD8-CD34+) thymocytes using Affymetrix DNA microarrays in combination with three different functional assays for in vitro induction of Wnt signaling. A relatively small number (approximately 30) of genes changed expression, including several proliferation-inducing transcription factors such as c-fos and c-jun, protein phosphatases, and adhesion molecules, but no genes involved in differentiation to mature T cell stages. The adhesion molecules likely confine the proliferating immature thymocytes to the appropriate anatomical sites in the thymus. For several of these target genes, we validated that they are true Wnt/beta-catenin/TCF target genes using real-time quantitative PCR and reporter gene assays. The same core set of genes was repressed in Tcf-1-null mice, explaining the block in early thymocyte development in these mice. In conclusion, Wnt signals mediate proliferation and cell adhesion, but not differentiation of the immature thymic progenitor pool.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Flández M, Cosano IC, Nombela C, Martín H, Molina M. Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway. J Biol Chem 2003; 279:11027-34. [PMID: 14703512 DOI: 10.1074/jbc.m306412200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dual-specificity protein phosphatases (DSPs) are involved in the negative regulation of mitogen-activated protein kinases (MAPKs) by dephosphorylating both threonine- and tyrosine-conserved residues located at the activation loop. Here we show that Msg5 DSP activity is essential for maintaining a low level of signaling through the cell integrity pathway in Saccharomyces cerevisiae. Consistent with a role of this phosphatase on cell wall physiology, cells lacking Msg5 displayed an increased sensitivity to the cell wall-interfering compound Congo Red. We have observed that the N-terminal non-catalytic region of this phosphatase was responsible for binding to the kinase domain of Slt2, the MAPK that operates in this pathway. In vivo and in vitro experiments revealed that both proteins act on each other. Msg5 bound and dephosphorylated activated Slt2. Reciprocally, Slt2 phosphorylated Msg5 as a consequence of the activation of the cell integrity pathway. In addition, alternative use of translation initiation sites at MSG5 resulted in two protein forms that are functional on Slt2 and became equally phosphorylated following activation of this MAPK. Under activating conditions, a decrease in the affinity between Msg5 and Slt2 was observed, leading us to suggest that the mechanism by which Slt2 controls the action of Msg5 was via the modulation of protein-protein interactions. Our results indicate the existence of posttranscriptional mechanisms of regulation of DSPs in yeast and provide new insights into the negative control of the cell integrity pathway.
Collapse
Affiliation(s)
- Marta Flández
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Pza Ramón y Cajal s/n., 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
Pratt PF, Bokemeyer D, Foschi M, Sorokin A, Dunn MJ. Alterations in subcellular localization of p38 MAPK potentiates endothelin-stimulated COX-2 expression in glomerular mesangial cells. J Biol Chem 2003; 278:51928-36. [PMID: 14530261 DOI: 10.1074/jbc.m309256200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide with mitogenic actions linked to activation of tyrosine kinase signaling pathways. ET-1 induces cyclooxygenase-2 (COX-2), an enzyme that converts arachidonic acid to pro-inflammatory eicosanoids. Activation of each of the three major mitogen-activated protein kinase (MAPK) pathways, ERK1/2, JNK/SAPK, and p38 MAPK (p38), have been shown to enhance the expression of COX-2. Negative regulation of MAPK may occur via a family of dual specificity phosphatases referred to as mitogen-activated protein kinase phosphatases (MKP). The goal of this work was to test the hypothesis that wild type MKP-1 regulates the expression of ET-1-induced COX-2 expression by inhibiting the activation of p38 in cultured glomerular mesangial cells (GMC). An adenovirus expressing both wild type and a catalytically inactive mutant of MKP-1 (MKP-1/CS) were constructed to study ET-1-regulated MAPK signaling and COX-2 expression in cultured GMC. ET-1 stimulated the phosphorylation of ERK and p38 alpha MAPK and induced the expression of COX-2. Expression of COX-2 was partially blocked by U0126, a MEK inhibitor, and SB 203580, a p38 MAPK inhibitor. Adenoviral expression of MKP-1/CS augmented basal and ET-1-induced phosphorylation of p38 alpha MAPK with less pronounced effects on ERK1/2 phosphorylation. Ectopic expression of wild type MKP-1 blocked the phosphorylation of p38 alpha MAPK by ET-1 but increased the phosphorylation of p38 gamma MAPK. Co-precipitation studies demonstrated association of MKP-1 with p38 alpha MAPK and ERK1/2. Immunofluorescent image analysis demonstrated trapping of phospho-p38 MAPK in the cytoplasm by MKP-1/CS/green fluorescent protein. ET-1-stimulated expression of COX-2 was increased in MKP-1/CS versus LacZ or green fluorescent protein-infected control cells. These results indicate that MKP-1 demonstrates a relative selectivity for p38 alpha MAPK versus p38 gamma MAPK in GMC and is likely to indirectly regulate the expression of COX-2.
Collapse
Affiliation(s)
- Phillip F Pratt
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
33
|
Wester L, Koczan D, Holmberg J, Olofsson P, Thiesen HJ, Holmdahl R, Ibrahim S. Differential gene expression in pristane-induced arthritis susceptible DA versus resistant E3 rats. Arthritis Res Ther 2003; 5:R361-72. [PMID: 14680511 PMCID: PMC333422 DOI: 10.1186/ar993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 07/21/2003] [Accepted: 08/04/2003] [Indexed: 11/02/2022] Open
Abstract
Arthritis susceptibility genes were sought by analysis of differential gene expression between pristane-induced arthritis (PIA)-susceptible DA rats and PIA-resistant E3 rats. Inguinal lymph nodes of naïve animals and animals 8 days after pristane injection were analyzed for differential gene expression. mRNA expression was investigated by microarray and real-time PCR, and protein expression was analyzed by flow cytometry or ELISA. Twelve genes were significantly differentially expressed when analyzed by at least two independent methods, and an additional five genes showed a strong a tendency toward differential expression. In naïve DA rats IgE, the bone marrow stromal cell antigen 1 (Bst1) and the MHC class II beta-chain (MhcII) were expressed at a higher level, and the immunoglobulin kappa chain (Igkappa) was expressed at a lower level. In pristane-treated DA rats the MHC class II beta-chain, gelatinase B (Mmp9) and the protein tyrosine phosphatase CL100 (Ptpn16) were expressed at a higher level, whereas immunoglobulins, the CD28 molecule (Cd28), the mast cell specific protease 1 (Mcpt1), the carboxylesterase precursor (Ces2), K-cadherin (Cdh6), cyclin G1 (Ccng1), DNA polymerase IV (Primase) and the tumour associated glycoprotein E4 (Tage) were expressed at a lower level. Finally, the differentially expressed mRNA was confirmed with protein expression for some of the genes. In conclusion, the results show that animal models are well suited for reproducible microarray analysis of candidate genes for arthritis. All genes have functions that are potentially important for arthritis, and nine of the genes are located within genomic regions previously associated with autoimmune disease.
Collapse
MESH Headings
- Animals
- Arthritis/chemically induced
- Arthritis/genetics
- Arthritis/metabolism
- Arthritis/pathology
- Autoimmune Diseases/genetics
- B-Lymphocytes/metabolism
- Cell Count
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Gene Expression Profiling
- Genetic Predisposition to Disease
- Immunity, Innate/genetics
- Killer Cells, Natural/metabolism
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphocyte Subsets/metabolism
- Male
- Oligonucleotide Array Sequence Analysis
- Polymerase Chain Reaction
- Protein Biosynthesis
- Proteins/genetics
- Quantitative Trait Loci
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Inbred Strains
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Reproducibility of Results
- Subtraction Technique
- T-Lymphocyte Subsets/metabolism
- Terpenes/toxicity
Collapse
Affiliation(s)
- Lena Wester
- Institute für Immunologie, Universität Rostock, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Masuda K, Shima H, Katagiri C, Kikuchi K. Activation of ERK induces phosphorylation of MAPK phosphatase-7, a JNK specific phosphatase, at Ser-446. J Biol Chem 2003; 278:32448-56. [PMID: 12794087 DOI: 10.1074/jbc.m213254200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously showed that MKP-7 suppresses MAPK activation in COS-7 cells in the order of selectivity, JNK >> p38 > ERK, but interacts with ERK as well as JNK and p38. In this study we found that, when expressed in COS-7 cells with HA-ERK2, the mobility of FLAG-MKP-7 was decreased on SDS-PAGE gels depending on several stimuli, including phorbol 12-myristate 13-acetate, fetal bovine serum, epidermal growth factor, H2O2, and ionomycin. By using U0126, a MEK inhibitor, and introducing several point mutations, we demonstrated that this upward mobility shift is because of phosphorylation and identified Ser-446 of MKP-7 as the phosphorylation site targeted by ERK activation. To determine how MKP-7 interacts with MAPKs, we identified three domains in MKP-7 required for interaction with MAPKs, namely, putative MAP kinase docking domains (D-domain) I and II and a long COOH-terminal stretch unique to MKP-7. The D-domain I is required for interaction with ERK and p38, whereas the D-domain II is required for interaction with JNK and p38, which is likely to be important for MKP-7 to suppress JNK and p38 activations. The COOH-terminal stretch of MKP-7 was shown to determine JNK preference for MKP-7 by masking MKP-7 activity toward p38 and is a domain bound by ERK. These data strongly suggested that Ser-446 of MKP-7 is phosphorylated by ERK.
Collapse
Affiliation(s)
- Kouhei Masuda
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
35
|
Waetzig GH, Schreiber S. Review article: mitogen-activated protein kinases in chronic intestinal inflammation - targeting ancient pathways to treat modern diseases. Aliment Pharmacol Ther 2003; 18:17-32. [PMID: 12848623 DOI: 10.1046/j.1365-2036.2003.01642.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Conventional treatment of chronic inflammatory disorders, including inflammatory bowel diseases, employs broad-range anti-inflammatory drugs. In order to reduce the side-effects and increase the efficacy of treatment, several strategies have been developed in the last decade to interfere with intercellular and intracellular inflammatory signalling processes. The highly conserved mitogen-activated protein kinase pathways regulate most cellular processes, particularly defence mechanisms such as stress reactions and inflammation. In this review, we provide an overview of the current knowledge of the specificity and interconnection of mitogen-activated protein kinase pathways, their functions in the gut immune system and published and ongoing studies on the role of mitogen-activated protein kinases in inflammatory bowel disease. The development of mitogen-activated protein kinase inhibitors and their use for the therapy of inflammatory disorders is a paradigm of the successful bridging of the gap between basic research and clinical practice.
Collapse
Affiliation(s)
- G H Waetzig
- Mucosal Immunology Research Group, Department of General Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | |
Collapse
|
36
|
Yang J, Yu Y, Duerksen-Hughes PJ. Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res 2003; 543:31-58. [PMID: 12510016 DOI: 10.1016/s1383-5742(02)00069-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells are constantly subjected to genotoxic stress, and much has been learned regarding their response to this type of stress during the past year. In general, the cellular genotoxic response can be thought to occur in three stages: (1) damage sensing; (2) activation of signal transduction pathways; (3) biological consequences and attenuation of the response. The biological consequences, in particular, include cell cycle arrest and cell death. Although our understanding of the molecular mechanisms underlying cellular genotoxic stress responses remains incomplete, many cellular components have been identified over the years, including a group of protein kinases that appears to play a major role. Various DNA-damaging agents can activate these protein kinases, triggering a protein phosphorylation cascade that leads to the activation of transcription factors, and altering gene expression. In this review, the involvement of protein kinases, particularly the mitogen-activated protein kinases (MAPKs), at different stages of the genotoxic response is discussed.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310031, China
| | | | | |
Collapse
|
37
|
Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y. Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6408-16. [PMID: 12444149 DOI: 10.4049/jimmunol.169.11.6408] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exposure of macrophages to LPS elicits the production of proinflammatory cytokines, such as TNF-alpha, through complex signaling mechanisms. Mitogen-activated protein (MAP) kinases play a critical role in this process. In the present study, we have addressed the role of MAP kinase phosphatase-1 (MKP-1) in regulating proinflammatory cytokine production using RAW264.7 macrophages. Analysis of MAP kinase activity revealed a transient activation of c-Jun N-terminal kinase (JNK) and p38 after LPS stimulation. Interestingly, MKP-1 was induced concurrently with the inactivation of JNK and p38, whereas blocking MKP-1 induction by triptolide prevented this inactivation. Ectopic expression of MKP-1 accelerated JNK and p38 inactivation and substantially inhibited the production of TNF-alpha and IL-6. Induction of MKP-1 by LPS was found to be extracellular signal-regulated kinase dependent and involved enhanced gene expression and increased protein stability. Finally, MKP-1 expression was also induced by glucocorticoids as well as cholera toxin B subunit, an agent capable of preventing autoimmune diseases in animal models. These findings highlight MKP-1 as a critical negative regulator of the macrophage inflammatory response, underscoring its premise as a potential target for developing novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Peili Chen
- Stress Signaling Unit, Laboratory of Cellular and Molecular Biology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|