1
|
Yuan C, Wang JY, Wang BY, Zhao YL, Li Y, Li D, Ling H, Zhuang M. Heptad repeat 1-derived N peptide inhibitors improve broad-spectrum anti-HIV-1 activity. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100364. [PMID: 40093556 PMCID: PMC11910682 DOI: 10.1016/j.crmicr.2025.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Background HIV-1 N-peptide inhibitor (NPI) derived from N-terminal heptad-repeat region (HR1) of gp41 can target C-terminal heptad-repeat region (HR2) or the HR1 to interfere with the formation of endogenous six-helix bundle (6HB). However, the NPI is less active than the C-peptide inhibitor. In this study, we reported three HR1-derived NPIs designed by adding fusion peptide proximal region (FPPR) of gp41 or a trimeric motif MTQ into the N36 peptide and then evaluated their anti-HIV-1 activities. Methods Molecular modeling was performed using Swiss Model. The inhibitory activity of NPIs on HIV-1 was assessed by Env-pseudovirus infection assays and cell-cell fusion assays. Interaction between NPIs and HR2 peptides was evaluated by circular dichroism and Native PAGE. Results The three newly designed NPIs, FPPR-N36, MTQ-N36, and MTQ-FPPR-N36, exhibited higher anti-HIV-1 activity than N36. The stability of the coiled-coil core formed by three designed NPIs or the 6HB formed by C34 and these NPIs were significantly higher than those of corresponding monomer N36 or isoleucine zipper-engineered trimeric N36 (IZN36). The 50 % inhibitory concentrations (IC50) of MTQ-N36 against HIV-1 infection were at a nanomolar level, lower than those of other tested NPIs. The FPPR-N36 could also inhibit infection of HIV-1 strains that were resistant to N36 and IZN36. Conclusions The three newly designed NPIs had inhibitory activity against HIV-1 infection. Among them, MTQ-N36 exhibited a higher potential to inhibit HIV-1 entry than other peptides, and FPPR-N36 might be a promising candidate NPI for suppressing HIV-1 strains that are resistant to conventional NPIs.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
| | - Bu-Yi Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yi-Lin Zhao
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
- Key Laboratory of Pathogen Biology, Harbin, 150081, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
- Key Laboratory of Pathogen Biology, Harbin, 150081, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
- Key Laboratory of Pathogen Biology, Harbin, 150081, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
- Key Laboratory of Pathogen Biology, Harbin, 150081, China
| |
Collapse
|
2
|
Maphumulo NF, Gordon ML. HIV-1 envelope facilitates the development of protease inhibitor resistance through acquiring mutations associated with viral entry and immune escape. Front Microbiol 2024; 15:1388729. [PMID: 38699474 PMCID: PMC11063367 DOI: 10.3389/fmicb.2024.1388729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction There is increasing evidence supporting a role for HIV-1 envelope in the development of Protease Inhibitor drug resistance, and a recent report from our group suggested that Env mutations co-evolve with Gag-Protease mutations in the pathway to Lopinavir resistance. In this study, we investigated the effect of co-evolving Env mutations on virus function and structure. Methods Co-receptor usage and n-linked glycosylation were investigated using Geno2Pheno as well as tools available at the Los Alamos sequence database. Molecular dynamics simulations were performed using Amber 18 and analyzed using Cpptraj, and molecular interactions were calculated using the Ring server. Results The results showed that under Protease Inhibitor drug selection pressure, the envelope gene modulates viral entry by protecting the virus from antibody recognition through the increased length and number of N-glycosylation sites observed in V1/V2 and to some extent V5. Furthermore, gp120 mutations appear to modulate viral entry through a switch to the CXCR4 coreceptor, induced by higher charge in the V3 region and specific mutations at the coreceptor binding sites. In gp41, S534A formed a hydrogen bond with L602 found in the disulfide loop region between the Heptad Repeat 1 and Heptad Repeat 2 domains and could negatively affect the association of gp120-gp41 during viral entry. Lastly, P724Q/S formed both intermolecular and intramolecular interactions with residues within the Kennedy loop, a known epitope. Discussion In conclusion, the results suggest that mutations in envelope during Protease Inhibitor treatment failure are related to immune escape and that S534A mutants could preferentially use the cell-to-cell route of infection.
Collapse
Affiliation(s)
| | - Michele L. Gordon
- Department of Virology, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natala, Durban, South Africa
| |
Collapse
|
3
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
4
|
Chiliveri SC, Louis JM, Best RB, Bax A. Real-time Exchange of the Lipid-bound Intermediate and Post-fusion States of the HIV-1 gp41 Ectodomain. J Mol Biol 2022; 434:167683. [PMID: 35700771 PMCID: PMC9378563 DOI: 10.1016/j.jmb.2022.167683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
The envelope glycoprotein gp41 of the HIV-1 virus mediates its entry into the host cell. During this process, gp41 undergoes large conformational changes and the energy released in the remodeling events is utilized to overcome the barrier associated with fusing the viral and host membranes. Although the structural intermediates of this fusion process are attractive targets for drug development, no detailed high-resolution structural information or quantitative thermodynamic characterization are available. By measuring the dynamic equilibrium between the lipid-bound intermediate and the post-fusion six-helical bundle (6HB) states of the gp41 ectodomain in the presence of bilayer membrane mimetics, we derived both the reaction kinetics and energies associated with these two states by solution NMR spectroscopy. At equilibrium, an exchange time constant of about 12 seconds at 38 °C is observed, and the post-fusion conformation is energetically more stable than the lipid-bound state by 3.4 kcal mol-1. The temperature dependence of the kinetics indicates that the folding occurs through a high-energy transition state which may resemble a 5HB structure. The energetics and kinetics of gp41 folding in the context of membrane bilayers provide a molecular basis for an improved understanding of viral membrane fusion.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. https://twitter.com/SaiChiliveri
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Chiliveri SC, Louis JM, Ghirlando R, Bax A. Transient lipid-bound states of spike protein heptad repeats provide insights into SARS-CoV-2 membrane fusion. SCIENCE ADVANCES 2021; 7:eabk2226. [PMID: 34623907 PMCID: PMC8500521 DOI: 10.1126/sciadv.abk2226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Entry of SARS-CoV-2 into a host cell is mediated by spike, a class I viral fusion protein responsible for merging the viral and host cell membranes. Recent studies have revealed atomic-resolution models for both the postfusion 6-helix bundle (6HB) and the prefusion state of spike. However, a mechanistic understanding of the molecular basis for the intervening structural transition, important for the design of fusion inhibitors, has remained elusive. Using nuclear magnetic resonance spectroscopy and other biophysical methods, we demonstrate the presence of α-helical, membrane-bound, intermediate states of spike’s heptad repeat (HR1 and HR2) domains that are embedded at the lipid-water interface while in a slow dynamic equilibrium with the postfusion 6HB state. These results support a model where the HR domains lower the large energy barrier associated with membrane fusion by destabilizing the host and viral membranes, while 6HB formation actively drives their fusion by forcing physical proximity.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.C.C.); (A.B.)
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.C.C.); (A.B.)
| |
Collapse
|
6
|
The late endosome-resident lipid bis(monoacylglycero)phosphate is a cofactor for Lassa virus fusion. PLoS Pathog 2021; 17:e1009488. [PMID: 34492091 PMCID: PMC8448326 DOI: 10.1371/journal.ppat.1009488] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/17/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
Arenavirus entry into host cells occurs through a low pH-dependent fusion with late endosomes that is mediated by the viral glycoprotein complex (GPC). The mechanisms of GPC-mediated membrane fusion and of virus targeting to late endosomes are not well understood. To gain insights into arenavirus fusion, we examined cell-cell fusion induced by the Old World Lassa virus (LASV) GPC complex. LASV GPC-mediated cell fusion is more efficient and occurs at higher pH with target cells expressing human LAMP1 compared to cells lacking this cognate receptor. However, human LAMP1 is not absolutely required for cell-cell fusion or LASV entry. We found that GPC-induced fusion progresses through the same lipid intermediates as fusion mediated by other viral glycoproteins–a lipid curvature-sensitive intermediate upstream of hemifusion and a hemifusion intermediate downstream of acid-dependent steps that can be arrested in the cold. Importantly, GPC-mediated fusion and LASV pseudovirus entry are specifically augmented by an anionic lipid, bis(monoacylglycero)phosphate (BMP), which is highly enriched in late endosomes. This lipid also specifically promotes cell fusion mediated by Junin virus GPC, an unrelated New World arenavirus. We show that BMP promotes late steps of LASV fusion downstream of hemifusion–the formation and enlargement of fusion pores. The BMP-dependence of post-hemifusion stages of arenavirus fusion suggests that these viruses evolved to use this lipid as a cofactor to selectively fuse with late endosomes. Pathogenic arenaviruses pose a serious health threat. The viral envelope glycoprotein GPC mediates attachment to host cells and drives virus entry via endocytosis and low pH-dependent fusion within late endosomes. Understanding the host factors and processes that are essential for arenavirus fusion may identify novel therapeutic targets. To delineate the mechanism of arenavirus entry, we examined cell-cell fusion induced by the Old World Lassa virus GPC proteins at low pH. Lassa GPC-mediated fusion was augmented by the human LAMP1 receptor and progressed through lipid curvature-sensitive intermediates, such as hemifusion (merger of contacting leaflets of viral and cell membrane without the formation of a fusion pore). We found that most GPC-mediated fusion events were off-path hemifusion structures and that the transition from hemifusion to full fusion and fusion pore enlargement were specifically promoted by an anionic lipid, bis(monoacylglycero)phosphate, which is highly enriched in late endosomes. This lipid also specifically promotes fusion of unrelated New World Junin arenavirus. Our results imply that arenaviruses evolved to use bis(monoacylglycero)phosphate to enter cells from late endosomes.
Collapse
|
7
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
8
|
Caillat C, Guilligay D, Torralba J, Friedrich N, Nieva JL, Trkola A, Chipot CJ, Dehez FL, Weissenhorn W. Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies. eLife 2021; 10:65005. [PMID: 33871352 PMCID: PMC8084527 DOI: 10.7554/elife.65005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/18/2021] [Indexed: 12/19/2022] Open
Abstract
The HIV-1 gp120/gp41 trimer undergoes a series of conformational changes in order to catalyze gp41-induced fusion of viral and cellular membranes. Here, we present the crystal structure of gp41 locked in a fusion intermediate state by an MPER-specific neutralizing antibody. The structure illustrates the conformational plasticity of the six membrane anchors arranged asymmetrically with the fusion peptides and the transmembrane regions pointing into different directions. Hinge regions located adjacent to the fusion peptide and the transmembrane region facilitate the conformational flexibility that allows high-affinity binding of broadly neutralizing anti-MPER antibodies. Molecular dynamics simulation of the MPER Ab-stabilized gp41 conformation reveals a possible transition pathway into the final post-fusion conformation with the central fusion peptides forming a hydrophobic core with flanking transmembrane regions. This suggests that MPER-specific broadly neutralizing antibodies can block final steps of refolding of the fusion peptide and the transmembrane region, which is required for completing membrane fusion.
Collapse
Affiliation(s)
- Christophe Caillat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Johana Torralba
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jose L Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christophe J Chipot
- Laboratoire de Physique et Chimie Théoriques (LPCT), University of Lorraine, Vandoeuvre-lès-Nancy, France.,Laboratoire International Associé, CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-lès-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - François L Dehez
- Laboratoire de Physique et Chimie Théoriques (LPCT), University of Lorraine, Vandoeuvre-lès-Nancy, France.,Laboratoire International Associé, CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-lès-Nancy, France
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
9
|
Buonvino S, Melino S. New Consensus pattern in Spike CoV-2: potential implications in coagulation process and cell-cell fusion. Cell Death Discov 2020; 6:134. [PMID: 33262894 PMCID: PMC7691694 DOI: 10.1038/s41420-020-00372-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022] Open
Abstract
Coagulopathy and syncytial formation are relevant effects of the SARS-CoV-2 infection, but the underlying molecular mechanisms triggering these processes are not fully elucidated. Here, we identified a potential consensus pattern in the Spike S glycoprotein present within the cytoplasmic domain; this consensus pattern was detected in only 79 out of 561,000 proteins (UniProt bank). Interestingly, the pattern was present in both human and bat the coronaviruses S proteins, in many proteins involved in coagulation process, cell-cell interaction, protein aggregation and regulation of cell fate, such as von Willebrand factor, coagulation factor X, fibronectin and Notch, characterized by the presence of the cysteine-rich EGF-like domain. This finding may suggest functional similarities between the matched proteins and the CoV-2 S protein, implying a new possible involvement of the S protein in the molecular mechanism that leads to the coagulopathy and cell fusion in COVID-19 disease.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Zhou G, Chu S, Kohli A, Szoka FC, Gochin M. Biophysical studies of HIV-1 glycoprotein-41 interactions with peptides and small molecules - Effect of lipids and detergents. Biochim Biophys Acta Gen Subj 2020; 1864:129724. [PMID: 32889078 DOI: 10.1016/j.bbagen.2020.129724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The hydrophobic pocket (HP) of HIV-1 glycoprotein-41 ectodomain is defined by two chains of the N-heptad repeat trimer, within the protein-protein interface that mediates 6HB formation. It is a potential target for inhibitors of viral fusion, but its hydrophobic nature and proximity to membrane in situ has precluded ready analysis of inhibitor interactions. METHODS We evaluated the sensitivity of 19F NMR and fluorescence for detecting peptide and small molecule binding to the HP and explored the effect of non-denaturing detergent or phospholipid as cosolvents and potential mimics of the membrane environment surrounding gp41. RESULTS Chemical shifts of aromatic fluorines were found to be sensitive to changes in the hydrogen bonding network that occurred when inhibitors transitioned from solvent into the HP or into ordered detergent micelles. Fluorescence intensities and emission maxima of autofluorescent compounds responded to changes in the local environment. CONCLUSIONS Gp41 - ligand binding occurred under all conditions, but was diminished in the presence of detergents. NMR and fluorescence studies revealed that dodecylphosphocholine (DPC) was a poor substitute for membrane in this system, while liposomes could mimic the membrane surroundings. GENERAL SIGNIFICANCE Our findings suggest that development of high potency small molecule binders to the HP may be frustrated by competition between binding to the HP and binding to the bilayer membrane.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America
| | - Shidong Chu
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America
| | - Aditya Kohli
- Department of Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America
| | - Francis C Szoka
- Department of Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America
| | - Miriam Gochin
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America.
| |
Collapse
|
11
|
Joshi VR, Newman RM, Pack ML, Power KA, Munro JB, Okawa K, Madani N, Sodroski JG, Schmidt AG, Allen TM. Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathog 2020; 16:e1008577. [PMID: 32392227 PMCID: PMC7241850 DOI: 10.1371/journal.ppat.1008577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry via conformational changes associated with binding the cell surface receptor (CD4) and coreceptor (CCR5/CXCR4), resulting in subsequent fusion of the viral and cellular membranes. While the gp120 Env surface subunit has been extensively studied for its role in viral entry and evasion of the host immune response, the gp41 transmembrane glycoprotein and its role in natural infection are less well characterized. Here, we identified a primary HIV-1 Env variant that consistently supports >300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. However, in the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. Using Env chimeras and sequence analysis, we mapped this phenotype to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. We demonstrate that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Intriguingly, antibodies that bind cluster I epitopes on gp41 overcome this inhibitory effect, restoring infectivity to wild-type levels. We further demonstrate that the Q563R change increases HIV-1 sensitivity to broadly neutralizing antibodies (bNAbs) targeting the gp41 membrane-proximal external region (MPER). In summary, we identify an HIV-1 Env variant with impaired infectivity whose Env functionality is restored through the binding of host antibodies. These data contribute to our understanding of gp41 residues involved in membrane fusion and identify a mechanism by which host factors can alleviate a viral defect.
Collapse
Affiliation(s)
- Vinita R. Joshi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruchi M. Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Melissa L. Pack
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ken Okawa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
12
|
The Polar Region of the HIV-1 Envelope Protein Determines Viral Fusion and Infectivity by Stabilizing the gp120-gp41 Association. J Virol 2019; 93:JVI.02128-18. [PMID: 30651369 DOI: 10.1128/jvi.02128-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023] Open
Abstract
HIV-1 enters cells through binding between viral envelope glycoprotein (Env) and cellular receptors to initiate virus and cell fusion. HIV-1 Env precursor (gp160) is cleaved into two units noncovalently bound to form a trimer on virions, including a surface unit (gp120) and a transmembrane unit (gp41) responsible for virus binding and membrane fusion, respectively. The polar region (PR) at the N terminus of gp41 comprises 17 residues, including 7 polar amino acids. Previous studies suggested that the PR contributes to HIV-1 membrane fusion and infectivity; however, the precise role of the PR in Env-mediated viral entry and the underlying mechanisms remain unknown. Here, we show that the PR is critical for HIV-1 fusion and infectivity by stabilizing Env trimers. Through analyzing the PR sequences of 57,645 HIV-1 isolates, we performed targeted mutagenesis and functional studies of three highly conserved polar residues in the PR (S532P, T534A, and T536A) which have not been characterized previously. We found that single or combined mutations of these three residues abolished or significantly decreased HIV-1 infectivity without affecting viral production. These PR mutations abolished or significantly reduced HIV-1 fusion with target cells and also Env-mediated cell-cell fusion. Three PR mutations containing S532P substantially reduced gp120 and gp41 association, Env trimer stability, and increased gp120 shedding. Furthermore, S532A mutation significantly reduced HIV-1 infectivity and fusogenicity but not Env expression and cleavage. Our findings suggest that the PR of gp41, particularly the key residue S532, is structurally essential for maintaining HIV-1 Env trimer, viral fusogenicity, and infectivity.IMPORTANCE Although extensive studies of the transmembrane unit (gp41) of HIV-1 Env have led to a fusion inhibitor clinically used to block viral entry, the functions of different domains of gp41 in HIV-1 fusion and infectivity are not fully elucidated. The polar region (PR) of gp41 has been proposed to participate in HIV-1 membrane fusion in biochemical analyses, but its role in viral entry and infectivity remain unclear. In our effort to characterize three nucleotide mutations of an HIV-1 RNA element that partially overlaps the PR coding sequence, we identified a novel function of the PR that determines viral fusion and infectivity. We further demonstrated the structural and functional impact of six PR mutations on HIV-1 Env stability, viral fusion, and infectivity. Our findings reveal the previously unappreciated function of the PR and the underlying mechanisms, highlighting the important role of the PR in regulating HIV-1 fusion and infectivity.
Collapse
|
13
|
Yamamoto M, Du Q, Song J, Wang H, Watanabe A, Tanaka Y, Kawaguchi Y, Inoue JI, Matsuda Z. Cell-cell and virus-cell fusion assay-based analyses of alanine insertion mutants in the distal α9 portion of the JRFL gp41 subunit from HIV-1. J Biol Chem 2019; 294:5677-5687. [PMID: 30737278 DOI: 10.1074/jbc.ra118.004579] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/04/2019] [Indexed: 12/28/2022] Open
Abstract
Membrane fusion is the first essential step in HIV-1 replication. The gp41 subunit of HIV-1 envelope protein (Env), a class I fusion protein, achieves membrane fusion by forming a structure called a six-helix bundle composed of N- and C-terminal heptad repeats. We have recently shown that the distal portion of the α9 helix in the C-terminal heptad repeat of X4-tropic HXB2 Env plays a critical role in the late-stage membrane fusion and viral infection. Here, we used R5-tropic JRFL Env and constructed six alanine insertion mutants, 641+A to 646+A, in the further distal portion of α9 where several glutamine residues are conserved (the number corresponds to the position of the inserted alanine in JRFL Env). 644+A showed the most severe defect in syncytia formation. Decreased fusion pore formation activity, revealed by a dual split protein assay, was observed in all mutants except 641+A. Sequence analysis and substitution of inserted 644A with Gln revealed that the glutamine residue at position 644 that forms complex hydrogen-bond networks with other polar residues on the surface of the six-helix bundle is critical for cell-cell fusion. We also developed a split NanoLuc® (Nluc) reporter-based assay specific to the virus-cell membrane fusion step to analyze several of the mutants. Interestingly syncytia-competent mutants failed to display Nluc activities. In addition to defective fusion activity, a reduction of Env incorporation into virions may further contribute to differences in cell-cell and virus-cell fusions.
Collapse
Affiliation(s)
- Mizuki Yamamoto
- From the Research Center for Asian Infectious Diseases.,the Division of Cellular and Molecular Biology, and
| | - Qingling Du
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Jiping Song
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Hongyun Wang
- the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| | - Aya Watanabe
- From the Research Center for Asian Infectious Diseases.,the Division of Cellular and Molecular Biology, and
| | - Yuetsu Tanaka
- the Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yasushi Kawaguchi
- From the Research Center for Asian Infectious Diseases.,the Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Jun-Ichiro Inoue
- From the Research Center for Asian Infectious Diseases, .,the Division of Cellular and Molecular Biology, and
| | - Zene Matsuda
- From the Research Center for Asian Infectious Diseases, .,the Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, 100101 China, and
| |
Collapse
|
14
|
Allen AG, Chung CH, Atkins A, Dampier W, Khalili K, Nonnemacher MR, Wigdahl B. Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Front Microbiol 2018; 9:2940. [PMID: 30619107 PMCID: PMC6304358 DOI: 10.3389/fmicb.2018.02940] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Antiretroviral therapy has prolonged the lives of people living with human immunodeficiency virus type 1 (HIV-1), transforming the disease into one that can be controlled with lifelong therapy. The search for an HIV-1 vaccine has plagued researchers for more than three decades with little to no success from clinical trials. Due to these failures, scientists have turned to alternative methods to develop next generation therapeutics that could allow patients to live with HIV-1 without the need for daily medication. One method that has been proposed has involved the use of a number of powerful gene editing tools; Zinc Finger Nucleases (ZFN), Transcription Activator–like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to edit the co-receptors (CCR5 or CXCR4) required for HIV-1 to infect susceptible target cells efficiently. Initial safety studies in patients have shown that editing the CCR5 locus is safe. More in depth in vitro studies have shown that editing the CCR5 locus was able to inhibit infection from CCR5-utilizing virus, but CXCR4-utilizing virus was still able to infect cells. Additional research efforts were then aimed at editing the CXCR4 locus, but this came with other safety concerns. However, in vitro studies have since confirmed that CXCR4 can be edited without killing cells and can confer resistance to CXCR4-utilizing HIV-1. Utilizing these powerful new gene editing technologies in concert could confer cellular resistance to HIV-1. While the CD4, CCR5, CXCR4 axis for cell-free infection has been the most studied, there are a plethora of reports suggesting that the cell-to-cell transmission of HIV-1 is significantly more efficient. These reports also indicated that while broadly neutralizing antibodies are well suited with respect to blocking cell-free infection, cell-to-cell transmission remains refractile to this approach. In addition to stopping cell-free infection, gene editing of the HIV-1 co-receptors could block cell-to-cell transmission. This review aims to summarize what has been shown with regard to editing the co-receptors needed for HIV-1 entry and how they could impact the future of HIV-1 therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Ranaweera A, Ratnayake PU, Weliky DP. The Stabilities of the Soluble Ectodomain and Fusion Peptide Hairpins of the Influenza Virus Hemagglutinin Subunit II Protein Are Positively Correlated with Membrane Fusion. Biochemistry 2018; 57:5480-5493. [PMID: 30141905 DOI: 10.1021/acs.biochem.8b00764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular entry of influenza virus is mediated by the viral protein hemagglutinin (HA), which forms an initial complex of three HA1 and three HA2 subunits. Each HA2 includes a fusion peptide (FP), a soluble ectodomain (SE), and a transmembrane domain. HA1 binds to cellular sialic acids, followed by virus endocytosis, pH reduction, dissociation of HA1, and structural rearrangement of HA2 into a final trimer-of-SE hairpins. A decrease in pH also triggers HA2-mediated virus/endosome membrane fusion. SE hairpins have an interior parallel helical bundle and C-terminal strands in the grooves of the exterior of the bundle. FPs are separate helical hairpins. This study compares wild-type HA2 (WT-HA2) with G1E(FP) and I173E(SE strand) mutants. WT-HA2 induces vesicle fusion at pH 5.0, whereas the extent of fusion is greatly reduced for both mutants. Circular dichroism for HA2 and FHA2≡FP+SE constructs shows dramatic losses of stability for the mutants, including a Tm reduced by 40 °C for I173E-FHA2. This is evidence of destabilization of SE hairpins via dissociation of strands from the helical bundle, which is also supported by larger monomer fractions for mutant versus WT proteins. The G1E mutant may have disrupted FP hairpins, with consequent non-native FP binding to dissociated SE strands. It is commonly proposed that free energy released by the HA2 structural rearrangement catalyzes HA-mediated fusion. This study supports an alternate mechanistic model in which fusion is preceded by FP insertion in the target membrane and formation of the final SE hairpin. Less fusion by the mutants is due to the loss of hairpin stability and consequent reduced level of membrane apposition of the virus and target membranes.
Collapse
Affiliation(s)
- Ahinsa Ranaweera
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Punsisi U Ratnayake
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - David P Weliky
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
16
|
Liu D, Wang H, Yamamoto M, Song J, Zhang R, Du Q, Kawaguchi Y, Inoue JI, Matsuda Z. Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection. Retrovirology 2018; 15:27. [PMID: 29609648 PMCID: PMC5879932 DOI: 10.1186/s12977-018-0410-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/22/2018] [Indexed: 11/16/2022] Open
Abstract
Background The native pre-fusion structure of gp120/gp41 complex of human immunodeficiency virus type 1 was recently revealed. In the model, the helices of gp41 (α6, α7, α8, and α9) form a four-helix collar underneath trimeric gp120. Gp41 is a class I fusion protein and mediates membrane fusion by forming a post-fusion structure called the six-helix bundle (6HB). The comparison of the pre- and post-fusion structures revealed the large conformational changes in gp41 during the antiparallel packing of the N- and C-terminal heptad repeats (NHRs and CHRs) in membrane fusion. Several mutagenesis studies of gp41 performed in the past were interpreted based on 6HB, the only available structure at that time. To obtain an insight about the current pre-fusion structural model and conformational changes during membrane fusion, alanine insertion mutagenesis of the NHR, CHR and connecting loop regions of HXB2 gp41 was performed. The effects of mutations on biosynthesis and membrane fusion were analyzed by immunoblotting and fusion assays, respectively. The extent of membrane fusion was evaluated by split luciferase-based pore formation and syncytia formation assays, respectively. Results Consistent with the current structural model, drastic negative effects of mutations on biosynthesis and membrane fusion were observed for NHR, loop, and proximal regions of CHR (up to amino acid position 643). The insertions in α9 after it leaves the four-helix collar were tolerable for biosynthesis. These CHR mutants showed varying effects on membrane fusion. Insertion at position 644 or 645 resulted in poor pore and syncytia formation. Efficient pore and syncytia formation almost similar to that of the wild type was observed for insertion at position 647, 648 or 649. However, recovery of virus infectivity was only observed for the insertions beyond position 648. Conclusions The mutagenesis data for HXB2 gp41 is in agreement with the recent pre-fusion structure model. The virus infection data suggested that fusion pores sufficiently large enough for the release of the virus genome complex are formed after the completion of 6HB beyond position 648. Electronic supplementary material The online version of this article (10.1186/s12977-018-0410-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dehua Liu
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Hongyun Wang
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiping Song
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qingling Du
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Zene Matsuda
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
17
|
Liu W, An X, Wang J, Zhang X, Tan J, Zhou Z, Zeng Y. A novel peptide shows excellent anti-HIV-1 potency as a gp41 fusion inhibitor. Bioorg Med Chem Lett 2018; 28:910-914. [DOI: 10.1016/j.bmcl.2018.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023]
|
18
|
Liang S, Ratnayake PU, Keinath C, Jia L, Wolfe R, Ranaweera A, Weliky DP. Efficient Fusion at Neutral pH by Human Immunodeficiency Virus gp41 Trimers Containing the Fusion Peptide and Transmembrane Domains. Biochemistry 2018; 57:1219-1235. [PMID: 29345922 DOI: 10.1021/acs.biochem.7b00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) is membrane-enveloped, and an initial infection step is joining/fusion of viral and cell membranes. This step is catalyzed by gp41, which is a single-pass integral viral membrane protein. The protein contains an ∼170-residue ectodomain located outside the virus that is important for fusion and includes the fusion peptide (FP), N-helix, loop, C-helix, and viral membrane-proximal external region (MPER). The virion initially has noncovalent complexes between three gp41 ectodomains and three gp120 proteins. A gp120 contains ∼500 residues and functions to identify target T-cells and macrophages via binding to specific protein receptors of the target cell membrane. gp120 moves away from the gp41 ectodomain, and the ectodomain is thought to bind to the target cell membrane and mediate membrane fusion. The secondary and tertiary structures of the ectodomain are different in the initial complex with gp120 and the final state without gp120. There is not yet imaging of gp41 during fusion, so the temporal relationship between the gp41 and membrane structures is not known. This study describes biophysical and functional characterization of large gp41 constructs that include the ectodomain and transmembrane domain (TM). Significant fusion is observed of both neutral and anionic vesicles at neutral pH, which reflects the expected conditions of HIV/cell fusion. Fusion is enhanced by the FP, which in HIV/cell fusion likely contacts the host membrane, and the MPER and TM, which respectively interfacially contact and traverse the HIV membrane. Initial contact with vesicles is made by protein trimers that are in a native oligomeric state that reflects the initial complex with gp120 and also is commonly observed for the ectodomain without gp120. Circular dichroism data support helical structure for the N-helix, C-helix, and MPER and nonhelical structure for the FP and loop. Distributions of monomer, trimer, and hexamer states are observed by size-exclusion chromatography (SEC), with dependences on solubilizing detergent and construct. These SEC and other data are integrated into a refined working model of HIV/cell fusion that includes dissociation of the ectodomain into gp41 monomers followed by folding into hairpins that appose the two membranes, and subsequent fusion catalysis by trimers and hexamers of hairpins. The monomer and oligomer gp41 states may therefore satisfy dual requirements for HIV entry of membrane apposition and fusion.
Collapse
Affiliation(s)
- S Liang
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - P U Ratnayake
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - C Keinath
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - L Jia
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - R Wolfe
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - A Ranaweera
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - D P Weliky
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Giroud C, Du Y, Marin M, Min Q, Jui NT, Fu H, Melikyan GB. Screening and Functional Profiling of Small-Molecule HIV-1 Entry and Fusion Inhibitors. Assay Drug Dev Technol 2017; 15:53-63. [PMID: 28322598 DOI: 10.1089/adt.2017.777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV-1 entry and fusion with target cells is an important target for antiviral therapy. However, a few currently approved treatments are not effective as monotherapy due to the emergence of drug resistance. This consideration has fueled efforts to develop new bioavailable inhibitors targeting different steps of the HIV-1 entry process. Here, a high-throughput screen was performed of a large library of 100,000 small molecules for HIV-1 entry/fusion inhibitors, using a direct virus-cell fusion assay in a 384 half-well format. Positive hits were validated using a panel of functional assays, including HIV-1 specificity, cytotoxicity, and single-cycle infectivity assays. One compound-4-(2,5-dimethyl-pyrrol-1-yl)-2-hydroxy-benzoic acid (DPHB)-that selectively inhibited HIV-1 fusion was further characterized. Functional experiments revealed that DPHB caused irreversible inactivation of HIV-1 Env on cell-free virions and that this effect was related to binding to the third variable loop (V3) of the gp120 subunit of HIV-1 Env. Moreover, DPHB selectively inhibited HIV-1 strains that use CXCR4 or both CXCR4 and CCR5 co-receptors for entry, but not strains exclusively using CCR5. This selectivity was mapped to the gp120 V3 loop using chimeric Env glycoproteins. However, it was found that pure DPHB was not active against HIV-1 and that its degradation products (most likely polyanions) were responsible for inhibition of viral fusion. These findings highlight the importance of post-screening validation of positive hits and are in line with previous reports of the broad antiviral activity of polyanions.
Collapse
Affiliation(s)
- Charline Giroud
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia
| | - Yuhong Du
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia
| | - Mariana Marin
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia
| | - Qui Min
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia
| | - Nathan T Jui
- 4 Department of Chemistry, Emory University , Atlanta, Georgia
| | - Haian Fu
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia .,5 Department of Hematology and Medical Oncology, Winship Cancer Institute , Atlanta, Georgia
| | - Gregory B Melikyan
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia .,6 Children's Healthcare of Atlanta , Atlanta, Georgia
| |
Collapse
|
20
|
Desai TM, Marin M, Mason C, Melikyan GB. pH regulation in early endosomes and interferon-inducible transmembrane proteins control avian retrovirus fusion. J Biol Chem 2017; 292:7817-7827. [PMID: 28341742 DOI: 10.1074/jbc.m117.783878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
Enveloped viruses infect host cells by fusing their membranes with those of the host cell, a process mediated by viral glycoproteins upon binding to cognate host receptors or entering into acidic intracellular compartments. Whereas the effect of receptor density on viral infection has been well studied, the role of cell type-specific factors/processes, such as pH regulation, has not been characterized in sufficient detail. Here, we examined the effects of cell-extrinsic factors (buffer environment) and cell-intrinsic factors (interferon-inducible transmembrane proteins, IFITMs), on the pH regulation in early endosomes and on the efficiency of acid-dependent fusion of the avian sarcoma and leukosis virus (ASLV), with endosomes. First, we found that a modest elevation of external pH can raise the pH in early endosomes in a cell type-dependent manner and thereby delay the acid-induced fusion of endocytosed ASLV. Second, we observed a cell type-dependent delay between the low pH-dependent and temperature-dependent steps of viral fusion, consistent with the delayed enlargement of the fusion pore. Third, ectopic expression of IFITMs, known to potently block influenza virus fusion with late compartments, was found to only partially inhibit ASLV fusion with early endosomes. Interestingly, IFITM expression promoted virus uptake and the acidification of endosomal compartments, resulting in an accelerated fusion rate when driven by the glycosylphosphatidylinositol-anchored, but not by the transmembrane isoform of the ASLV receptor. Collectively, these results highlight the role of cell-extrinsic and cell-intrinsic factors in regulating the efficiency and kinetics of virus entry and fusion with target cells.
Collapse
Affiliation(s)
- Tanay M Desai
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Mariana Marin
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Caleb Mason
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Gregory B Melikyan
- From the Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322 and .,the Children's Healthcare of Atlanta, Atlanta, Georgia 300322
| |
Collapse
|
21
|
Khasnis MD, Halkidis K, Bhardwaj A, Root MJ. Receptor Activation of HIV-1 Env Leads to Asymmetric Exposure of the gp41 Trimer. PLoS Pathog 2016; 12:e1006098. [PMID: 27992602 PMCID: PMC5222517 DOI: 10.1371/journal.ppat.1006098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/09/2017] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Structural rearrangements of HIV-1 glycoprotein Env promote viral entry through membrane fusion. Env is a symmetric homotrimer with each protomer composed of surface subunit gp120 and transmembrane subunit gp41. Cellular CD4- and chemokine receptor-binding to gp120 coordinate conformational changes in gp41, first to an extended prehairpin intermediate (PHI) and, ultimately, into a fusogenic trimer-of-hairpins (TOH). HIV-1 fusion inhibitors target gp41 in the PHI and block TOH formation. To characterize structural transformations into and through the PHI, we employed asymmetric Env trimers containing both high and low affinity binding sites for individual fusion inhibitors. Asymmetry was achieved using engineered Env heterotrimers composed of protomers deficient in either CD4- or chemokine receptor-binding. Linking receptor engagement to inhibitor affinity allowed us to assess conformational changes of individual Env protomers in the context of a functioning trimer. We found that the transition into the PHI could occur symmetrically or asymmetrically depending on the stoichiometry of CD4 binding. Sequential engagement of multiple CD4s promoted progressive exposure of individual fusion inhibitor binding sites in a CD4-dependent fashion. By contrast, engagement of only a single CD4 molecule led to a delayed, but symmetric, exposure of the gp41 trimer. This complex coupling between Env-CD4 interaction and gp41 exposure explained the multiphasic fusion-inhibitor titration observed for a mutant Env homotrimer with a naturally asymmetric gp41. Our results suggest that the spatial and temporal exposure of gp41 can proceed in a nonconcerted, asymmetric manner depending on the number of CD4s that engage the Env trimer. The findings have important implications for the mechanism of viral membrane fusion and the development of vaccine candidates designed to elicit neutralizing antibodies targeting gp41 in the PHI. For HIV, cellular invasion requires merging viral and cellular membranes, an event achieved through the activity of the viral fusion protein Env. Env consists of three gp120 and three gp41 subunits symmetrically arranged on the viral surface. The gp120 subunits bind cellular receptors, which, in turn, coordinate gp41 conformational changes that promote membrane fusion. Understanding these structural rearrangements illuminates the mechanism of viral membrane fusion, and also spurs development of targeted inhibitors of viral entry and vaccine candidates that elicit antiviral immune responses. In this study, we employed a novel strategy to investigate individual subunits in the context of functioning Env complexes. The strategy links distinct gp120-receptor interactions to conformational changes that expose specific gp41 subunits. We found that, despite the initial symmetric arrangement of its subunits, Env conformational changes most often proceed quite asymmetrically, leading to exposure of only one-third of the gp41 trimer for much of the fusion event. This finding might explain why attempts to elicit potent anti-HIV antibodies to a fully exposed gp41 trimer have been largely unsuccessful. The study gives us a glimpse of the early structural transitions leading to Env-mediated membrane fusion and provides a framework for interrogating the fusion proteins of other membrane-encapsulated viruses.
Collapse
Affiliation(s)
- Mukta D. Khasnis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Konstantine Halkidis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rebane AA, Ma L, Zhang Y. Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers. Biophys J 2016; 110:441-454. [PMID: 26789767 DOI: 10.1016/j.bpj.2015.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/17/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022] Open
Abstract
Optical tweezers (OTs) measure the force-dependent time-resolved extension of a single macromolecule tethered between two trapped beads. From this measurement, it is possible to determine the folding intermediates, energies, and kinetics of the macromolecule. Previous data analysis generally has used the extension as a reaction coordinate to characterize the observed folding transitions. Despite its convenience, the extension poorly describes folding in the absence of force. Here, we chose the contour length of the unfolded polypeptide as a reaction coordinate and modeled the extensions of protein structures along their predicted folding pathways based on high-resolution structures of the proteins in their native states. We included the extension in our model to calculate the total extensions, energies, and transition rates of the proteins as a function of force. We fit these calculations to the corresponding experimental measurements and obtained the best-fit conformations and energies of proteins in different folding states. We applied our method to analyze single-molecule trajectories of two representative protein complexes responsible for membrane fusion, the HIV-1 glycoprotein 41 and the synaptic SNARE proteins, which involved transitions between two and five states, respectively. Nonlinear fitting of the model to the experimental data revealed the structures of folding intermediates and transition states and their associated energies. Our results demonstrate that the contour length is a useful reaction coordinate to characterize protein folding and that intrinsic extensions of protein structures should be taken into account to properly derive the conformations and energies of protein folding intermediates from single-molecule manipulation experiments.
Collapse
Affiliation(s)
- Aleksander A Rebane
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut
| | - Lu Ma
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut
| | - Yongli Zhang
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
23
|
Adu-Gyamfi E, Kim LS, Jardetzky TS, Lamb RA. Flexibility of the Head-Stalk Linker Domain of Paramyxovirus HN Glycoprotein Is Essential for Triggering Virus Fusion. J Virol 2016; 90:9172-81. [PMID: 27489276 PMCID: PMC5044854 DOI: 10.1128/jvi.01187-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The Paramyxoviridae comprise a large family of enveloped, negative-sense, single-stranded RNA viruses with significant economic and public health implications. For nearly all paramyxoviruses, infection is initiated by fusion of the viral and host cell plasma membranes in a pH-independent fashion. Fusion is orchestrated by the receptor binding protein hemagglutinin-neuraminidase (HN; also called H or G depending on the virus type) protein and a fusion (F) protein, the latter undergoing a major refolding process to merge the two membranes. Mechanistic details regarding the coupling of receptor binding to F activation are not fully understood. Here, we have identified the flexible loop region connecting the bulky enzymatically active head and the four-helix bundle stalk to be essential for fusion promotion. Proline substitution in this region of HN of parainfluenza virus 5 (PIV5) and Newcastle disease virus HN abolishes cell-cell fusion, whereas HN retains receptor binding and neuraminidase activity. By using reverse genetics, we engineered recombinant PIV5-EGFP viruses with mutations in the head-stalk linker region of HN. Mutations in this region abolished virus recovery and infectivity. In sum, our data suggest that the loop region acts as a "hinge" around which the bulky head of HN swings to-and-fro to facilitate timely HN-mediate F-triggering, a notion consistent with the stalk-mediated activation model of paramyxovirus fusion. IMPORTANCE Paramyxovirus fusion with the host cell plasma membrane is essential for virus infection. Membrane fusion is orchestrated via interaction of the receptor binding protein (HN, H, or G) with the viral fusion glycoprotein (F). Two distinct models have been suggested to describe the mechanism of fusion: these include "the clamp" and the "provocateur" model of activation. By using biochemical and reverse genetics tools, we have obtained strong evidence in favor of the HN stalk-mediated activation of paramyxovirus fusion. Specifically, our data strongly support the notion that the short linker between the head and stalk plays a role in "conformational switching" of the head group to facilitate F-HN interaction and triggering.
Collapse
Affiliation(s)
- Emmanuel Adu-Gyamfi
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Lori S Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Theodore S Jardetzky
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, USA
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA Department of Structural Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Markosyan RM, Miao C, Zheng YM, Melikyan GB, Liu SL, Cohen FS. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger. PLoS Pathog 2016; 12:e1005373. [PMID: 26730950 PMCID: PMC4711667 DOI: 10.1371/journal.ppat.1005373] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. The devastation and transmissibility of Ebola virus (EBOV) are well known. However, the manner in which EBOV enters host cells through endosomal membrane remains elusive. Here, we have developed a convenient experimental system to mimic EBOV fusion in endosomes: cells expressing the fusion protein of EBOV, GP, on their surface are fused to target cells. This system exhibits the known key properties of EBOV fusion. We show that the pH-dependence of EBOV fusion is caused by the pH-dependence of cathepsins, proteases known to cleave EBOV GP into a fusion-competent form. We demonstrate that the fusion activity of this cleaved form is independent of pH. We further show that the enlargement of the fusion pore created by EBOV GP is unusually slow in reaching sizes necessary to pass EBOV’s genome—this is atypical of virally created fusion pores. This cell-cell fusion system should provide a useful platform for developing drugs against EBOV infection.
Collapse
Affiliation(s)
- Ruben M. Markosyan
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, Chicago, Illinois, United States of America
| | - Chunhui Miao
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
| | - Yi-Min Zheng
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
| | - Gregory B. Melikyan
- Emory University Medical School, Department of Pediatrics, Infectious Diseases, Atlanta, Georgia, United States of America
| | - Shan-Lu Liu
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
- * E-mail: (SLL); (FSC)
| | - Fredric S. Cohen
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, Chicago, Illinois, United States of America
- * E-mail: (SLL); (FSC)
| |
Collapse
|
25
|
Louis JM, Baber JL, Clore GM. The C34 Peptide Fusion Inhibitor Binds to the Six-Helix Bundle Core Domain of HIV-1 gp41 by Displacement of the C-Terminal Helical Repeat Region. Biochemistry 2015; 54:6796-805. [PMID: 26506247 DOI: 10.1021/acs.biochem.5b01021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational transition of the core domain of HIV-1 gp41 from a prehairpin intermediate to a six-helix bundle is responsible for virus-cell fusion. Several inhibitors which target the N-heptad repeat helical coiled-coil trimer that is fully accessible in the prehairpin intermediate have been designed. One such inhibitor is the peptide C34 derived from the C-heptad repeat of gp41 that forms the exterior of the six-helix bundle. Here, using a variety of biophysical techniques, including dye tagging, size-exclusion chromatography combined with multiangle light scattering, double electron-electron resonance EPR spectroscopy, and circular dichroism, we investigate the binding of C34 to two six-helix bundle mimetics comprising N- and C-heptad repeats either without (core(SP)) or with (core(S)) a short spacer connecting the two. In the case of core(SP), C34 directly exchanges with the C-heptad repeat. For core(S), up to two molecules of C34 bind the six-helix bundle via displacement of the C-heptad repeat. These results suggest that fusion inhibitors such as C34 can target a continuum of transitioning conformational states from the prehairpin intermediate to the six-helix bundle prior to the occurrence of irreversible fusion of viral and target cell membranes.
Collapse
Affiliation(s)
- John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - James L Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
26
|
Membrane-Active Sequences within gp41 Membrane Proximal External Region (MPER) Modulate MPER-Containing Peptidyl Fusion Inhibitor Activity and the Biosynthesis of HIV-1 Structural Proteins. PLoS One 2015; 10:e0134851. [PMID: 26230322 PMCID: PMC4521866 DOI: 10.1371/journal.pone.0134851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
The membrane proximal external region (MPER) is a highly conserved membrane-active region located at the juxtamembrane positions within class I viral fusion glycoproteins and essential for membrane fusion events during viral entry. The MPER in the human immunodeficiency virus type I (HIV-1) envelope protein (Env) interacts with the lipid bilayers through a cluster of tryptophan (Trp) residues and a C-terminal cholesterol-interacting motif. The inclusion of the MPER N-terminal sequence contributes to the membrane reactivity and anti-viral efficacy of the first two anti-HIV peptidyl fusion inhibitors T20 and T1249. As a type I transmembrane protein, Env also interacts with the cellular membranes during its biosynthesis and trafficking. Here we investigated the roles of MPER membrane-active sequences during both viral entry and assembly, specifically, their roles in the design of peptidyl fusion inhibitors and the biosynthesis of viral structural proteins. We found that elimination of the membrane-active elements in MPER peptides, namely, penta Trp→alanine (Ala) substitutions and the disruption of the C-terminal cholesterol-interacting motif through deletion inhibited the anti-viral effect against the pseudotyped HIV-1. Furthermore, as compared to C-terminal dimerization, N-terminal dimerization of MPER peptides and N-terminal extension with five helix-forming residues enhanced their anti-viral efficacy substantially. The secondary structure study revealed that the penta-Trp→Ala substitutions also increased the helical content in the MPER sequence, which prompted us to study the biological relevance of such mutations in pre-fusion Env. We observed that Ala mutations of Trp664, Trp668 and Trp670 in MPER moderately lowered the intracellular and intraviral contents of Env while significantly elevating the content of another viral structural protein, p55/Gag and its derivative p24/capsid. The data suggest a role of the gp41 MPER in the membrane-reactive events during both viral entry and budding, and provide insights into the future development of anti-viral therapeutics.
Collapse
|
27
|
Chu S, Kaur H, Nemati A, Walsh JD, Partida V, Zhang SQ, Gochin M. Swapped-domain constructs of the glycoprotein-41 ectodomain are potent inhibitors of HIV infection. ACS Chem Biol 2015; 10:1247-57. [PMID: 25646644 DOI: 10.1021/cb501021j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The conformational rearrangement of N- and C-heptad repeats (NHR, CHR) of the HIV-1 glycoprotein-41 (gp41) ectodomain into a trimer of hairpins triggers virus-cell fusion by bringing together membrane-spanning N- and C-terminal domains. Peptides derived from the NHR and CHR inhibit fusion by targeting a prehairpin intermediate state of gp41. Typically, peptides derived from the CHR are low nanomolar inhibitors, whereas peptides derived from the NHR are low micromolar inhibitors. Here, we describe the inhibitory activity of swapped-domain gp41 mimics of the form CHR-loop-NHR, which were designed to form reverse hairpin trimers exposing NHR grooves. We observed low nanomolar inhibition of HIV fusion in constructs that possessed the following properties: an extended NHR C-terminus, an exposed conserved hydrophobic pocket on the NHR, high helical content, and trimer stability. Low nanomolar activity was independent of CHR length. CD studies in membrane mimetic dodecylphosphocholine micelles suggested that bioactivity could be related to the ability of the inhibitors to interact with a membrane-associated prehairpin intermediate. The swapped-domain design resolves the problem of unstable and weakly active NHR peptides and suggests a different mechanism of action from that of CHR peptides in inhibition of HIV-1 fusion.
Collapse
Affiliation(s)
- Shidong Chu
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Hardeep Kaur
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Ariana Nemati
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Joseph D. Walsh
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Vivian Partida
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Shao-Qing Zhang
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Miriam Gochin
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| |
Collapse
|
28
|
Marin M, Du Y, Giroud C, Kim JH, Qui M, Fu H, Melikyan GB. High-Throughput HIV-Cell Fusion Assay for Discovery of Virus Entry Inhibitors. Assay Drug Dev Technol 2015; 13:155-66. [PMID: 25871547 DOI: 10.1089/adt.2015.639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HIV-1 initiates infection by merging its envelope membrane with the target cell membrane, a process that is mediated by the viral Env glycoprotein following its sequential binding to CD4 and coreceptors, CXCR4 or CCR5. Although HIV-1 fusion has been a target for antiviral therapy, the virus has developed resistance to drugs blocking the CCR5 binding or Env refolding steps of this process. This highlights the need for novel inhibitors. Here, we adapted and optimized an enzymatic HIV-cell fusion assay, which reports the transfer of virus-encapsulated β-lactamase into the cytoplasm, to high-throughput screening (HTS) with a 384-well format. The assay was robustly performed in HTS format and was validated by the pilot screen of a small library of pharmacologically active compounds. Several hits identified by screening included a prominent cluster of purinergic receptor antagonists. Functional studies demonstrated that P2X1 receptor antagonists selectively inhibited HIV-1 fusion without affecting the fusion activity of an unrelated virus that enters cells through an endocytic route. The inhibition of HIV-cell fusion by P2X1 antagonists was not through downmodulation of the cell surface expression of CD4 or coreceptors, thus implicating P2X1 receptor in the HIV-1 fusion step. The ability of these antagonists to inhibit viruses regardless of their coreceptor (CXCR4 or CCR5) preference indicates that fusion is blocked at a late step downstream of coreceptor binding. A future large-scale screening campaign for HIV-1 fusion inhibitors, using the above functional readout, will likely reveal novel classes of inhibitors and suggest potential targets for antiviral therapy.
Collapse
Affiliation(s)
- Mariana Marin
- 1 Division of Pediatric Infectious Diseases, Emory University Children's Center , Atlanta, Georgia
| | | | | | | | | | | | | |
Collapse
|
29
|
Antiviral activity of a zymolytic grain based extract on human immunodeficiency virus type 1 in vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:642327. [PMID: 25838832 PMCID: PMC4370203 DOI: 10.1155/2015/642327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/22/2022]
Abstract
Increasing evidence shows that grains may play a role in disease prevention beyond the simple provision of energy and nutrients. It has been reported that some components contained in grains exert their functional effects on viral and bacterial infections and protect against various cancers. However, until now, hardly any intervention studies have investigated the effects of grains or grain based extracts on the inhibition of HIV-1 infection. In this study, the antiviral function of a zymolytic grain based extract (ZGE) was detected in vitro and in rats, and the antiviral mechanism was investigated. Results showed that ZGE had an inhibition effect on HIV-1 infection in vitro with low cytotoxic effects. The study of the mechanism demonstrated that this functional food possibly acted on the viral surface structure protein gp120 which is responsible for cell binding, as well as on the postattachment stage of the virus. The sera of model rats administrated with this food by gavage presented anti-infection abilities against HIV-1 in vitro during a serum concentration associated period of time. These findings provide valuable insights into the application of ZGE on the control of viral load, which may contribute to future anti-HIV treatment with less adverse effects.
Collapse
|
30
|
Roche J, Louis JM, Aniana A, Ghirlando R, Bax A. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding. JOURNAL OF BIOMOLECULAR NMR 2015; 61:235-48. [PMID: 25631354 PMCID: PMC4398632 DOI: 10.1007/s10858-015-9900-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/17/2015] [Indexed: 05/22/2023]
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6 HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6 HB trimer and the membrane affinity of gp41's ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41's transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Dai Z, Tao Y, Liu N, Brenowitz MD, Girvin ME, Lai JR. Conditional trimerization and lytic activity of HIV-1 gp41 variants containing the membrane-associated segments. Biochemistry 2015; 54:1589-99. [PMID: 25658332 DOI: 10.1021/bi501376f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fusion of host and viral membranes is a critical step during infection by membrane-bound viruses. The HIV-1 glycoproteins gp120 (surface subunit) and gp41 (fusion subunit) represent the prototypic system for studying this process; in the prevailing model, the gp41 ectodomain forms a trimeric six-helix bundle that constitutes a critical intermediate and provides the energetic driving force for overcoming barriers associated with membrane fusion. However, most structural studies of gp41 variants have been performed either on ectodomain constructs lacking one or more of the membrane-associated segments (the fusion peptide, FP, the membrane-proximal external region, MPER, and the transmembrane domain, TM) or on variants consisting of these isolated segments alone without the ectodomain. Several recent reports have suggested that the HIV-1 ectodomain, as well as larger construct containing the membrane-bound segments, dissociates from a trimer to a monomer in detergent micelles. Here we compare the properties of a series of gp41 variants to delineate the roles of the ectodomain, FP, and MPER and TM, all in membrane-mimicking environments. We find that these proteins are prone to formation of a monomer in detergent micelles. In one case, we observed exclusive monomer formation at pH 4 but conditional trimerization at pH 7 even at low micromolar (∼5 μM) protein concentrations. Liposome release assays demonstrate that these gp41-related proteins have the capacity to induce content leakage but that this activity is also strongly modulated by pH with much higher activity at pH 4. Circular dichroism, nuclear magnetic resonance, and binding assays with antibodies specific to the MPER provide insight into the structural and functional roles of the FP, MPER, and TM and their effect on structure within the larger context of the fusion subunit.
Collapse
Affiliation(s)
- Zhou Dai
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | | | | | | | | | |
Collapse
|
32
|
Apellániz B, Nieva JL. Fusion-competent state induced by a C-terminal HIV-1 fusion peptide in cholesterol-rich membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1014-22. [PMID: 25617671 DOI: 10.1016/j.bbamem.2015.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022]
Abstract
The replicative cycle of the human immunodeficiency virus type-1 begins after fusion of the viral and target-cell membranes. The envelope glycoprotein gp41 transmembrane subunit contains conserved hydrophobic domains that engage and perturb the merging lipid bilayers. In this work, we have characterized the fusion-committed state generated in vesicles by CpreTM, a synthetic peptide derived from the sequence connecting the membrane-proximal external region (MPER) and the transmembrane domain (TMD) of gp41. Pre-loading cholesterol-rich vesicles with CpreTM rendered them competent for subsequent lipid-mixing with fluorescently-labeled target vesicles. Highlighting the physiological relevance of the lasting fusion-competent state, the broadly neutralizing antibody 4E10 bound to the CpreTM-primed vesicles and inhibited lipid-mixing. Heterotypic fusion assays disclosed dependence on the lipid composition of the vesicles that acted either as virus or cell membrane surrogates. Lipid-mixing exhibited above all a critical dependence on the cholesterol content in those experiments. We infer that the fusion-competent state described herein resembles bona-fide perturbations generated by the pre-hairpin MPER-TMD connection within the viral membrane.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - José L Nieva
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
33
|
Different infectivity of HIV-1 strains is linked to number of envelope trimers required for entry. PLoS Pathog 2015; 11:e1004595. [PMID: 25569556 PMCID: PMC4287578 DOI: 10.1371/journal.ppat.1004595] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV. Our estimates of the HIV-1 entry stoichiometry, that is the number of envelope glycoprotein trimers needed to mediate fusion of viral and target cell membrane, close an important gap in our understanding of the HIV entry process. As we show, stoichiometric requirements for envelope trimers differ between HIV strains and steer virus entry efficacy and virus entry kinetics. Thus, the entry stoichiometry has important implications for HIV transmission, as demands on trimer numbers will dictate the infectivity of virus populations, target cell preferences and virus inactivation by trimer-targeting inhibitors and neutralizing antibodies. Beyond this, our data contribute to the general understanding of mechanisms and energetic requirements of protein-mediated membrane fusion, as HIV entry proved to follow similar stoichiometries as described for Influenza virus HA and SNARE protein mediated membrane fusion. In summary, our findings provide a relevant contribution towards a refined understanding of HIV-1 entry and pathogenesis with particular importance for ongoing efforts to generate neutralizing antibody based therapeutics and vaccines targeting the HIV-1 envelope trimer.
Collapse
|
34
|
Ratnayake PU, Sackett K, Nethercott MJ, Weliky DP. pH-dependent vesicle fusion induced by the ectodomain of the human immunodeficiency virus membrane fusion protein gp41: Two kinetically distinct processes and fully-membrane-associated gp41 with predominant β sheet fusion peptide conformation. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:289-98. [PMID: 25078440 PMCID: PMC4258546 DOI: 10.1016/j.bbamem.2014.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/25/2022]
Abstract
The gp41 protein of the Human Immunodeficiency Virus (HIV) catalyzes fusion between HIV and host cell membranes. The ~180-residue ectodomain of gp41 is outside the virion and is the most important gp41 region for membrane fusion. The ectodomain consists of an apolar fusion peptide (FP) region hypothesized to bind to the host cell membrane followed by N-heptad repeat (NHR), loop, and C-heptad repeat (CHR) regions. The present study focuses on the large gp41 ectodomain constructs "Hairpin" (HP) containing NHR+loop+CHR and "FP-Hairpin" (FP-HP) containing FP+NHR+loop+CHR. Both proteins induce rapid and extensive fusion of anionic vesicles at pH4 where the protein is positively-charged but do not induce fusion at pH7 where the protein is negatively charged. This observation, along with lack of fusion of neutral vesicles at either pH supports the significance of attractive protein/membrane electrostatics in fusion. There are two kinetically distinct fusion processes at pH4: (1) a faster ~100 ms⁻¹ process with rate strongly positively correlated with vesicle charge; and (2) a slower ~5 ms⁻¹ process with extent strongly inversely correlated with this charge. The slower process may be more physiologically relevant because HIV/host cell fusion occurs at physiologic pH with gp41 restricted to the narrow region between the two membranes. Previous solid-state NMR (SSNMR) of membrane-associated FP-HP has supported protein oligomers with FP's in an intermolecular antiparallel sheet. There was an additional population of molecules with α helical FPs and the samples likely contained a mixture of membrane-bound and -unbound proteins. For the present study, samples were prepared with fully membrane-bound FP-HP and subsequent SSNMR showed dominant β FP conformation at both low and neutral pH. SSNMR also showed close contact of the FP with the lipid headgroups at both low and neutral pH whereas the NHR+CHR regions had contact at low pH and were more distant at neutral pH, consistent with the protein/membrane electrostatics.
Collapse
Affiliation(s)
- Punsisi U Ratnayake
- Department of Chemistry, Michigan State University, 578S. Shaw Lane, East Lansing, MI 48824, USA
| | - Kelly Sackett
- Department of Chemistry, Michigan State University, 578S. Shaw Lane, East Lansing, MI 48824, USA
| | - Matthew J Nethercott
- Department of Chemistry, Michigan State University, 578S. Shaw Lane, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, 578S. Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Banerjee K, Weliky DP. Folded monomers and hexamers of the ectodomain of the HIV gp41 membrane fusion protein: potential roles in fusion and synergy between the fusion peptide, hairpin, and membrane-proximal external region. Biochemistry 2014; 53:7184-98. [PMID: 25372604 PMCID: PMC4245979 DOI: 10.1021/bi501159w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
HIV
is an enveloped virus and fusion between the HIV and host cell
membranes is catalyzed by the ectodomain of the HIV gp41 membrane
protein. Both the N-terminal fusion peptide (FP)
and C-terminal membrane-proximal external region
(MPER) are critical for fusion and are postulated to bind to the host
cell and HIV membranes, respectively. Prior to fusion, the gp41 on
the virion is a trimer in noncovalent complex with larger gp120 subunits.
The gp120 bind host cell receptors and move away or dissociate from
gp41 which subsequently catalyzes fusion. In the present work, large
gp41 ectodomain constructs were produced and biophysically and structurally
characterized. One significant finding is observation of synergy between
the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced
fusion can be very efficient with only ∼15 gp41 per vesicle,
which is comparable to the number of gp41 on a virion. Conditions
are found with predominant monomer or hexamer but not trimer and these
may be oligomeric states during fusion. Monomer gp41 ectodomain is
hyperthermostable and has helical hairpin structure. A new HIV fusion
model is presented where (1) hemifusion is catalyzed by folding of
gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps
are catalyzed by assembly into a hexamer with FPs in an antiparallel
β sheet. There is also significant interest in the gp41 MPER
because it is the epitope of several broadly neutralizing antibodies.
Two of these antibodies bind our gp41 ectodomain constructs and support
investigation of the gp41 ectodomain as an immunogen in HIV vaccine
development.
Collapse
Affiliation(s)
- Koyeli Banerjee
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | |
Collapse
|
36
|
Abstract
INTRODUCTION Highly active antiretroviral therapy has been the big paradigm for transforming HIV infection in a chronic disease. However, it requires lifelong administration as the HIV provirus integrated within infected cells cannot be eliminated and virus replication resumes following antiviral discontinuation. Cumulative toxicities, incomplete immune restoration, elevated cost, drug-drug interactions and selection of drug-resistant viruses are well-known limitations of prolonged HIV medication. AREAS COVERED The first proof-of-concept that HIV infection could be cured was the Berlin patient. By blocking infection of target cells, gene therapy may allow viral clearance from carriers or prevention of infection in newly exposed individuals. Advances in the field of gene-targeting strategies, T-cell-based approaches and human stem cells are revolutionizing the field. A series of ongoing and planned trials are testing gene therapy as HIV cure. The ultimate goal is the elimination of latent viral reservoirs in HIV-infected persons and the need for lifelong antiretroviral therapy. Following a search in PubMed, we have reviewed current gene therapy strategies investigated for HIV infection as well as the latest communications on HIV eradication presented at international conferences. EXPERT OPINION Multiple efforts are underway to reproduce the Berlin patient situation by engineering autologous T cells or hematopoietic stem cells resistant to HIV infection. There is no doubt that the major challenge is the elimination of latent viral reservoirs. With this goal in mind, we have entered a new era in the hope for HIV cure.
Collapse
Affiliation(s)
- Carmen de Mendoza
- Puerta de Hierro Research Institute and University Hospital, Department of Internal Medicine , Majadahonda, Madrid , Spain
| | | | | | | |
Collapse
|
37
|
Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain. Proc Natl Acad Sci U S A 2014; 111:E3795-804. [PMID: 25157143 DOI: 10.1073/pnas.1403609111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enveloped viruses such as HIV and members of the paramyxovirus family use metastable, proteinaceous fusion machineries to merge the viral envelope with cellular membranes for infection. A hallmark of the fusogenic glycoproteins of these pathogens is refolding into a thermodynamically highly stable fusion core structure composed of six antiparallel α-helices, and this structure is considered instrumental for pore opening and/or enlargement. Using a paramyxovirus fusion (F) protein, we tested this paradigm by engineering covalently restricted F proteins that are predicted to be unable to close the six-helix bundle core structure fully. Several candidate bonds formed efficiently, resulting in F trimers and higher-order complexes containing covalently linked dimers. The engineered F complexes were incorporated into recombinant virions efficiently and were capable of refolding into a postfusion conformation without temporary or permanent disruption of the disulfide bonds. They efficiently formed fusion pores based on virus replication and quantitative cell-to-cell and virus-to-cell fusion assays. Complementation of these F mutants with a monomeric, fusion-inactive F variant enriched the F oligomers for heterotrimers containing a single disulfide bond, without affecting fusion complementation profiles compared with standard F protein. Our demonstration that complete closure of the fusion core does not drive paramyxovirus entry may aid the design of strategies for inhibiting virus entry.
Collapse
|
38
|
Gene therapy targeting HIV entry. Viruses 2014; 6:1395-409. [PMID: 24662607 PMCID: PMC3970157 DOI: 10.3390/v6031395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 12/19/2022] Open
Abstract
Despite the unquestionable success of antiretroviral therapy (ART) in the treatment of HIV infection, the cost, need for daily adherence, and HIV-associated morbidities that persist despite ART all underscore the need to develop a cure for HIV. The cure achieved following an allogeneic hematopoietic stem cell transplant (HSCT) using HIV-resistant cells, and more recently, the report of short-term but sustained, ART-free control of HIV replication following allogeneic HSCT, using HIV susceptible cells, have served to both reignite interest in HIV cure research, and suggest potential mechanisms for a cure. In this review, we highlight some of the obstacles facing HIV cure research today, and explore the roles of gene therapy targeting HIV entry, and allogeneic stem cell transplantation in the development of strategies to cure HIV infection.
Collapse
|
39
|
Sackett K, Nethercott MJ, Zheng Z, Weliky DP. Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel β sheet fusion peptide structure in the final six-helix bundle state. J Mol Biol 2014; 426:1077-94. [PMID: 24246500 PMCID: PMC3944376 DOI: 10.1016/j.jmb.2013.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/18/2013] [Accepted: 11/11/2013] [Indexed: 11/21/2022]
Abstract
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not well characterized in large gp41 constructs that model the gp41 state at different times during fusion. This paper describes solid-state NMR (SSNMR) studies of FP structure in a membrane-associated construct (FP-Hairpin), which likely models the final fusion state thought to be thermostable trimers with six-helix bundle structure in the region C-terminal of the FP. The SSNMR data show that there are populations of FP-Hairpin with either α helical or β sheet FP conformation. For the β sheet population, measurements of intermolecular (13)C-(13)C proximities in the FP are consistent with a significant fraction of intermolecular antiparallel β sheet FP structure with adjacent strand crossing near L7 and F8. There appears to be negligible in-register parallel structure. These findings support assembly of membrane-associated gp41 trimers through interleaving of N-terminal FPs from different trimers. Similar SSNMR data are obtained for FP-Hairpin and a construct containing the 70 N-terminal residues of gp41 (N70), which is a model for part of the putative pre-hairpin intermediate state of gp41. FP assembly may therefore occur at an early fusion stage. On a more fundamental level, similar SSNMR data are obtained for FP-Hairpin and a construct containing the 34 N-terminal gp41 residues (FP34) and support the hypothesis that the FP is an autonomous folding domain.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | - Zhaoxiong Zheng
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
40
|
Dissociation of the trimeric gp41 ectodomain at the lipid-water interface suggests an active role in HIV-1 Env-mediated membrane fusion. Proc Natl Acad Sci U S A 2014; 111:3425-30. [PMID: 24550514 DOI: 10.1073/pnas.1401397111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. The actual fusion process involves a switch from a homotrimeric prehairpin intermediate conformation, consisting of parallel coiled-coil helices, to a postfusion state where the ectodomains are arranged as a trimer of helical hairpins, adopting a six-helix bundle (6HB) state. Here, we show by solution NMR spectroscopy that a water-soluble 6HB gp41 ectodomain binds to zwitterionic detergents that contain phosphocholine or phosphatidylcholine head groups and phospholipid vesicles that mimic T-cell membrane composition. Binding results in the dissociation of the 6HB and the formation of a monomeric state, where its two α-helices, N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), become embedded in the lipid-water interface of the virus and host cell. The atomic structure of the gp41 ectodomain monomer, based on NOE distance restraints and residual dipolar couplings, shows that the NHR and CHR helices remain mostly intact, but they completely lose interhelical contacts. The high affinity of the ectodomain helices for phospholipid surfaces suggests that unzippering of the prehairpin intermediate leads to a state where the NHR and CHR helices become embedded in the host cell and viral membranes, respectively, thereby providing a physical force for bringing these membranes into close juxtaposition before actual fusion.
Collapse
|
41
|
Melikyan GB. HIV entry: a game of hide-and-fuse? Curr Opin Virol 2013; 4:1-7. [PMID: 24525288 DOI: 10.1016/j.coviro.2013.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 11/24/2022]
Abstract
Human Immunodeficiency Virus (HIV) initiates infection by fusing its envelope membrane with the cell membrane through a process which is triggered through interactions with the cellular receptor and coreceptor. Although the mechanism of HIV fusion has been extensively studied, the point of its entry into cells remains controversial. HIV has long been thought to fuse directly with the cell plasma membrane. However, several lines of evidence suggest that endocytic entry of HIV can lead to infection and, moreover, that endocytosis could be the predominant HIV entry pathway into different cell types. This review discusses recent findings pertinent to HIV entry routes and novel approaches to pinpoint the sites of virus entry.
Collapse
Affiliation(s)
- Gregory B Melikyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
42
|
Demirkhanyan L, Marin M, Lu W, Melikyan GB. Sub-inhibitory concentrations of human α-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathog 2013; 9:e1003431. [PMID: 23785290 PMCID: PMC3681749 DOI: 10.1371/journal.ppat.1003431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Human defensins are at the forefront of the host responses to HIV and other pathogens in mucosal tissues. However, their ability to inactivate HIV in the bloodstream has been questioned due to the antagonistic effect of serum. In this study, we have examined the effect of sub-inhibitory concentrations of human α-defensin HNP-1 on the kinetics of early steps of fusion between HIV-1 and target cells in the presence of serum. Direct measurements of HIV-cell fusion using an enzymatic assay revealed that, in spite of the modest effect on the extent of fusion, HNP-1 prolonged the exposure of functionally important transitional epitopes of HIV-1 gp41 on the cell surface. The increased lifetime of gp41 intermediates in the presence of defensin was caused by a delay in the post-coreceptor binding steps of HIV-1 entry that correlated with the marked enhancement of the virus' sensitivity to neutralizing anti-gp41 antibodies. By contrast, the activity of antibodies to gp120 was not affected. HNP-1 appeared to specifically potentiate antibodies and peptides targeting the first heptad repeat domain of gp41, while its effect on inhibitors and antibodies to other gp41 domains was less prominent. Sub-inhibitory concentrations of HNP-1 also promoted inhibition of HIV-1 entry into peripheral blood mononuclear cells by antibodies and, more importantly, by HIV-1 immune serum. Our findings demonstrate that: (i) sub-inhibitory doses of HNP-1 potently enhance the activity of a number of anti-gp41 antibodies and peptide inhibitors, apparently by prolonging the lifetime of gp41 intermediates; and (ii) the efficiency of HIV-1 fusion inhibitors and neutralizing antibodies is kinetically restricted. This study thus reveals an important role of α-defensin in enhancing adaptive immune responses to HIV-1 infection and suggests future strategies to augment these responses. Human neutrophil peptide 1 (HNP-1) is a small cationic peptide that can directly block HIV-1 entry in the absence of serum. However, since serum attenuates the anti-HIV activity of this peptide, HNP-1 is unlikely to inhibit infection in the bloodstream. Here, we demonstrate that sub-inhibitory doses of HNP-1 in the presence of serum can strongly enhance the activity of neutralizing antibodies and inhibitors targeting transiently exposed intermediate conformations of HIV-1 gp41. HNP-1 appears to exert this effect by delaying post-coreceptor binding steps of fusion and thereby prolonging the exposure of gp41 intermediates. These results imply that the HIV-1 fusion kinetics is an important determinant of sensitivity to neutralizing antibodies and peptides against transiently exposed functional domains of gp41. The surprising synergy between sub-inhibitory concentrations of HNP-1 and anti-gp41 antibodies suggests new strategies to sensitize the virus to circulating antibodies by developing compounds that prolong the exposure of conserved gp41 epitopes on the cell surface.
Collapse
Affiliation(s)
- Lusine Demirkhanyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory B. Melikyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
- Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Chao L, Lu L, Yang H, Zhu Y, Li Y, Wang Q, Yu X, Jiang S, Chen YH. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure. PLoS One 2013; 8:e66156. [PMID: 23741527 PMCID: PMC3669275 DOI: 10.1371/journal.pone.0066156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/02/2013] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR) of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462–521) of the human POB1 (the partner of RalBP1), designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR) of gp41, and to the six-helix bundle (6-HB) formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.
Collapse
Affiliation(s)
- Lijun Chao
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
| | - Lu Lu
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, P. R. China
| | - Hengwen Yang
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
| | - Yun Zhu
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
| | - Yuan Li
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, P. R. China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, P. R. China
| | - Xiaowen Yu
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, P. R. China
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail: (SJ); (YC)
| | - Ying-Hua Chen
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Beijing, P. R. China
- * E-mail: (SJ); (YC)
| |
Collapse
|
44
|
Detection of receptor-induced glycoprotein conformational changes on enveloped virions by using confocal micro-Raman spectroscopy. J Virol 2013; 87:3130-42. [PMID: 23283947 DOI: 10.1128/jvi.03220-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Conformational changes in the glycoproteins of enveloped viruses are critical for membrane fusion, which enables viral entry into cells and the pathological cell-cell fusion (syncytia) associated with some viral infections. However, technological capabilities for identifying viral glycoproteins and their conformational changes on actual enveloped virus surfaces are generally scarce, challenging, and time-consuming. Our model, Nipah virus (NiV), is a syncytium-forming biosafety level 4 pathogen with a high mortality rate (40 to 75%) in humans. Once the NiV attachment glycoprotein (G) (NiV-G) binds the cell receptor ephrinB2 or -B3, G triggers conformational changes in the fusion glycoprotein (F) that result in membrane fusion and viral entry. We demonstrate that confocal micro-Raman spectroscopy can, within minutes, simultaneously identify specific G and F glycoprotein signals and receptor-induced conformational changes in NiV-F on NiV virus-like particles (VLPs). First, we identified reproducible G- and F-specific Raman spectral features on NiV VLPs containing M (assembly matrix protein), G, and/or F or on NiV/vesicular stomatitis virus (VSV) pseudotyped virions via second-derivative transformations and principal component analysis (PCA). Statistical analyses validated our PCA models. Dynamic temperature-induced conformational changes in F and G or receptor-induced target membrane-dependent conformational changes in F were monitored in NiV pseudovirions in situ in real time by confocal micro-Raman spectroscopy. Advantageously, Raman spectroscopy can identify specific protein signals in relatively impure samples. Thus, this proof-of-principle technological development has implications for the rapid identification and biostability characterization of viruses in medical, veterinary, and food samples and for the analysis of virion glycoprotein conformational changes in situ during viral entry.
Collapse
|
45
|
Abstract
The retrovirus family contains several important human and animal pathogens, including the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Studies with retroviruses were instrumental to our present understanding of the cellular entry of enveloped viruses in general. For instance, studies with alpharetroviruses defined receptor engagement, as opposed to low pH, as a trigger for the envelope protein-driven membrane fusion. The insights into the retroviral entry process allowed the generation of a new class of antivirals, entry inhibitors, and these therapeutics are at present used for treatment of HIV/AIDS. In this chapter, we will summarize key concepts established for entry of avian sarcoma and leukosis virus (ASLV), a widely used model system for retroviral entry. We will then review how foamy virus and HIV, primate- and human retroviruses, enter target cells, and how the interaction of the viral and cellular factors involved in the cellular entry of these viruses impacts viral tropism, pathogenesis and approaches to therapy and vaccine development.
Collapse
|
46
|
Abstract
HIV entry involves binding of the trimeric viral envelope glycoprotein (Env) gp120/gp41 to cell surface receptors, which triggers conformational changes in Env that drive the membrane fusion reaction. The conformational landscape that the lipids and Env navigate en route to fusion has been examined by biophysical measurements on the microscale, whereas electron tomography, x-rays, and NMR have provided insights into the process on the nanoscale and atomic scale. However, the coupling between the lipid and protein pathways that give rise to fusion has not been resolved. Here, we discuss the known and unknown about the overall HIV Env-mediated fusion process.
Collapse
Affiliation(s)
| | - Stewart Durell
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, and
| | - Mathias Viard
- From the Nanobiology Program and
- the Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program (CCRNP), Frederick National Lab, Frederick, Maryland 21702
| |
Collapse
|
47
|
Abstract
Infection of cells by enveloped viruses requires merger of the viral envelope membrane with target cell membranes, resulting in the formation of fusion pores through which the viral genome is released. Since lipid membranes do not mix spontaneously, the fusion process is energy-dependent and mediated by viral envelope glycoprotein complexes. Based on their structural and mechanistic properties, three distinct classes of viral fusion proteins have been identified to date. Despite their diversity, basic principles of viral membrane fusion, simultaneous engagement of both donor and target membrane and refolding into hairpin-like structures, have emerged as universally conserved. This article provides an overview of the basic principles of viral membrane fusion common to all enveloped viruses and discusses the specific structural and functional features of the different fusion protein classes by example of the paramyxovirus, flavivirus and rhabdovirus families.
Collapse
|
48
|
Novel approaches to inhibit HIV entry. Viruses 2012; 4:309-24. [PMID: 22470838 PMCID: PMC3315218 DOI: 10.3390/v4020309] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/17/2012] [Accepted: 02/07/2012] [Indexed: 12/22/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) entry into target cells is a multi-step process involving binding of the viral glycoprotein, Env, to its receptor CD4 and a coreceptor-either CCR5 or CXCR4. Understanding the means by which HIV enters cells has led to the identification of genetic polymorphisms, such as the 32 base-pair deletion in the ccr5 gene (ccr5∆32) that confers resistance to infection in homozygous individuals, and has also resulted in the development of entry inhibitors-small molecule antagonists that block infection at the entry step. The recent demonstration of long-term control of HIV infection in a leukemic patient following a hematopoietic stem cell transplant using cells from a ccr5∆32 homozygous donor highlights the important role of the HIV entry in maintaining an established infection and has led to a number of attempts to treat HIV infection by genetically modifying the ccr5 gene. In this review, we describe the HIV entry process and provide an overview of the different classes of approved HIV entry inhibitors while highlighting novel genetic strategies aimed at blocking HIV infection at the level of entry.
Collapse
|
49
|
Beyond anchoring: the expanding role of the hendra virus fusion protein transmembrane domain in protein folding, stability, and function. J Virol 2012; 86:3003-13. [PMID: 22238302 DOI: 10.1128/jvi.05762-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion.
Collapse
|
50
|
Wilen CB, Tilton JC, Doms RW. Molecular mechanisms of HIV entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:223-42. [PMID: 22297516 DOI: 10.1007/978-1-4614-0980-9_10] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human immunodeficiency virus (HIV) entry is a complex and intricate process that facilitates delivery of the viral genome to the host cell. The only viral surface protein, Envelope (Env), is composed of a trimer of gp120 and gp41 heterodimers. It is essentially a fusion machine cloaked in a shroud of carbohydrate structures and variable loops of amino acids that enable it to evade the humoral immune response. For entry to occur gp120 sequentially engages the host protein CD4 and then one of two chemokine coreceptors, either CCR5 or CXCR4. CD4 binding facilitates exposure and formation of the coreceptor-binding site, and coreceptor binding then triggers the membrane fusion machinery in the gp41 subunit. Our understanding of HIV entry has led to the development of successful small molecule inhibitors for the clinical treatment of HIV infection as well as insights into viral tropism and pathogenesis.
Collapse
Affiliation(s)
- Craig B Wilen
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|