1
|
Long Y, Chen X, Chen J, Zhang H, Lin Y, Cheng S, Pu N, Zhou X, Sheng R, Abubakar YS, Zheng H, Yun Y, Lu G, Wang Z, Zheng W. Golgi-associated retrograde protein (GARP) complex recruits retromer to trans-Golgi network for FgKex2 and FgSnc1 recycling, necessary for the development and pathogenicity of Fusarium graminearum. THE NEW PHYTOLOGIST 2025; 246:666-688. [PMID: 39953835 DOI: 10.1111/nph.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
In eukaryotes, the retromer complex plays a crucial role in the sorting and retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN). Despite its importance, the molecular details of this intracellular transport process remain unclear. Here, we have identified a Golgi-associated retrograde protein (GARP) complex as a mediator of vesicle transport that facilitates the recruitment of the retromer complex to the TGN to exert its functions. The GARP complex is mainly localized in the TGN where it interacts with the retromer complex. This interaction is evolutionarily conserved across species. Furthermore, we identified FgKex2 and FgSnc1 as cargo proteins in the GARP/retromer-mediated recycling pathway. Loss of GARP or retromer results in a complete missorting of FgKex2 and FgSnc1 into the vacuolar degradation pathway, which affects the growth, development, biogenesis of toxisomes and pathogenicity of Fusarium graminearum. In summary, we demonstrate for the first time that GARP promotes the recruitment of retromer from endosomes to the TGN, thereby establishing a GARP/retromer transport pathway that coordinates the recycling of cargo proteins FgKex2 and FgSnc1. This process is essential for maintaining sustained growth and development and significantly contributes to the pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Yunfei Long
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Xin Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Jia Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Haoran Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Ying Lin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Shuyuan Cheng
- Jiangxi Agricultural University, College of Agriculture, Nanchang, Jiangxi, 330000, China
| | - Neng Pu
- Agricultural and Rural Comprehensive Service Center, Shuitang Town, Xinping County, Yunnan, 653400, China
| | - Xuandong Zhou
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Renzhi Sheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Huawei Zheng
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yingzi Yun
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Guodong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Zonghua Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenhui Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| |
Collapse
|
2
|
Ishida M, Golding AE, Keren-Kaplan T, Li Y, Balla T, Bonifacino JS. ARMH3 is an ARL5 effector that promotes PI4KB-catalyzed PI4P synthesis at the trans-Golgi network. Nat Commun 2024; 15:10168. [PMID: 39580461 PMCID: PMC11585589 DOI: 10.1038/s41467-024-54410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
ARL5 is a member of the ARF family of small GTPases that is recruited to the trans-Golgi network (TGN) by another ARF-family member, ARFRP1, in complex with the transmembrane protein SYS1. ARL5 recruits its effector, the multisubunit tethering complex GARP, to promote SNARE-dependent fusion of endosome-derived retrograde transport carriers with the TGN. To further investigate the function of ARL5, we sought to identify additional effectors. Using proximity biotinylation and protein interaction assays, we found that the armadillo-repeat protein ARMH3 (C10orf76) binds to active, but not inactive, ARL5, and that it is recruited to the TGN in a SYS1-ARFRP1-ARL5-dependent manner. Unlike GARP, ARMH3 is not required for the retrograde transport of various cargo proteins. Instead, ARMH3 functions to activate phosphatidylinositol 4-kinase IIIβ (PI4KB), accounting for the main pool of phosphatidylinositol 4-phosphate (PI4P) at the TGN. This function contributes to recruitment of the oncoprotein GOLPH3 and glycan modifications at the TGN. These studies thus identify the SYS1-ARFRP1-ARL5-ARMH3 axis as a regulator of PI4KB-dependent generation of PI4P at the TGN.
Collapse
Affiliation(s)
- Morié Ishida
- Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Adriana E Golding
- Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tal Keren-Kaplan
- Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Division of Neurosciences and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Hecher L, Gorski-Alberts E, Begemann M, Herwig J, Lausberg E, Hillebrand G, Volk AE, Kurth I, Kraft F, Kutsche K. Complex structural variation and nonsense variant in trans cause VPS50-related disorder. J Med Genet 2024; 61:833-838. [PMID: 38876772 DOI: 10.1136/jmg-2024-109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Homozygous VPS50 variants have been previously described in two unrelated patients with a neurodevelopmental disorder with microcephaly, seizures and neonatal cholestasis. VPS50 encodes a subunit that is unique to the heterotetrameric endosome-associated recycling protein (EARP) complex. The other subunits of the EARP complex, such as VPS51, VPS52 and VPS53, are also shared by the Golgi-associated retrograde protein complex. We report on an 18-month-old female patient with biallelic VPS50 variants. She carried a paternally inherited heterozygous nonsense c.13A>T; p.(Lys5*) variant. By long-read genome sequencing, we characterised a structural variant with a 4.3 Mb inversion flanked by deletions at both breakpoints on the maternal allele. The ~428 kb deletion at the telomeric inversion breakpoint encompasses the entire VPS50 gene. We demonstrated a deficiency of VPS50 in patient-derived fibroblasts, confirming the loss-of-function nature of both VPS50 variants. VPS53 and VPS52 protein levels were significantly reduced and absent, respectively, in fibroblasts of the patient. These data show that VPS50 and/or EARP deficiency and the associated functional defects underlie the phenotype in patients with VPS50 pathogenic variants. The VPS50-related core phenotype comprises severe developmental delay, postnatal microcephaly, hypoplastic corpus callosum, neonatal low gamma-glutamyl transpeptidase cholestasis and failure to thrive. The disease is potentially fatal in early childhood.
Collapse
Affiliation(s)
- Laura Hecher
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Esther Gorski-Alberts
- Klinik für Kinder- und Jugendmedizin, Neonatologie und Pädiatrische Intensivmedizin, Klinikum Itzehoe, Itzehoe, Schleswig-Holstein, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Johanna Herwig
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Lausberg
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Hillebrand
- Klinik für Kinder- und Jugendmedizin, Neonatologie und Pädiatrische Intensivmedizin, Klinikum Itzehoe, Itzehoe, Schleswig-Holstein, Germany
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Khakurel A, Lupashin VV. Role of GARP Vesicle Tethering Complex in Golgi Physiology. Int J Mol Sci 2023; 24:6069. [PMID: 37047041 PMCID: PMC10094427 DOI: 10.3390/ijms24076069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
The Golgi associated retrograde protein complex (GARP) is an evolutionarily conserved component of Golgi membrane trafficking machinery that belongs to the Complexes Associated with Tethering Containing Helical Rods (CATCHR) family. Like other multisubunit tethering complexes such as COG, Dsl1, and Exocyst, the GARP is believed to function by tethering and promoting fusion of the endosome-derived small trafficking intermediate. However, even twenty years after its discovery, the exact structure and the functions of GARP are still an enigma. Recent studies revealed novel roles for GARP in Golgi physiology and identified human patients with mutations in GARP subunits. In this review, we summarized our knowledge of the structure of the GARP complex, its protein partners, GARP functions related to Golgi physiology, as well as cellular defects associated with the dysfunction of GARP subunits.
Collapse
Affiliation(s)
| | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Gonzalez TL, Schaub AM, Lee B, Cui J, Taylor KD, Dorfman AE, Goodarzi MO, Wang ET, Chen YDI, Rotter JI, Hussaini R, Harakuni PM, Khan MH, Rich SS, Farber CR, Williams J, Pisarska MD. Infertility and treatments used have minimal effects on first-trimester placental DNA methylation and gene expression. Fertil Steril 2023; 119:301-312. [PMID: 36379261 DOI: 10.1016/j.fertnstert.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine whether deoxyribonucleic acid (DNA) methylation alterations exist in the first-trimester human placenta between conceptions using fertility treatments and those that do not and, if so, whether they are the result of underlying infertility or fertility treatments. We also assessed whether significant alterations led to changes in gene expression. DESIGN We compared DNA methylation of the first-trimester placenta from singleton pregnancies that resulted in live births from unassisted, in vitro fertilization (IVF), and non-IVF fertility treatment (NIFT) conceptions using the Infinium MethylationEPIC BeadChip array. Significant CpG sites were compared with corresponding ribonucleic acid sequencing analysis in similar cohorts to determine whether methylation alterations lead to differences in gene expression. SETTING Academic medical center. PATIENT(S) A total of 138 singleton pregnancies undergoing chorionic villus sampling resulting in a live birth were recruited for methylation analysis (56 unassisted, 38 NIFT, and 44 IVF conceptions). Ribonucleic acid-sequencing data consisted of 141 subjects (74 unassisted, 33 NIFT, and 34 IVF conceptions) of which 116 overlapped with the methylation cohort. INTERVENTION(S) In vitro fertilization-conceived pregnancy or pregnancy conceived via NIFT, such as ovulation induction and intrauterine insemination. MAIN OUTCOME MEASURE(S) Significant methylation changes at CpG sites after adjustment for multiple comparisons. The secondary outcome was gene expression changes of significant CpG sites. RESULT(S) Of the 741,145 probes analyzed in the placenta, few were significant at Bonferroni <0.05: 185 CpG sites (0.025%) significant in pregnancies conceived with the fertility treatments (NIFT + IVF) vs. unassisted conceptions; 28 in NIFT vs. unassisted; 195 in IVF vs. unassisted; and only 13 (0.0018%) in IVF vs. NIFT conceptions. Of all significant CpG sites combined, 10% (35) were located in genes with suggestive gene expression changes, but none were significant after adjustment for multiple comparisons (ribonucleic acid sequencing false discovery rate <0.05). None of the 13 differentially methylated probes in the IVF vs. NIFT placenta were located in genes with suggestive IVF vs. NIFT gene expression differences. CONCLUSION(S) Underlying infertility is the most significant contributor to the minimal differences in first-trimester placental methylation, and not the specific fertility treatment used, such as IVF.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Amelia M Schaub
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Bora Lee
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Jinrui Cui
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Anna E Dorfman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, California
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Rimsha Hussaini
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Paige M Harakuni
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Mayaal H Khan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - John Williams
- David Geffen School of Medicine, University of California, Los Angeles, California; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, California; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
6
|
SNARE proteins: zip codes in vesicle targeting? Biochem J 2022; 479:273-288. [PMID: 35119456 PMCID: PMC8883487 DOI: 10.1042/bcj20210719] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic.
Collapse
|
7
|
Schlarmann P, Ikeda A, Funato K. Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis. MEMBRANES 2021; 11:971. [PMID: 34940472 PMCID: PMC8707754 DOI: 10.3390/membranes11120971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
Sphingolipids are the most diverse class of membrane lipids, in terms of their structure and function. Structurally simple sphingolipid precursors, such as ceramides, act as intracellular signaling molecules in various processes, including apoptosis, whereas mature and complex forms of sphingolipids are important structural components of the plasma membrane. Supplying complex sphingolipids to the plasma membrane, according to need, while keeping pro-apoptotic ceramides in check is an intricate task for the cell and requires mechanisms that tightly control sphingolipid synthesis, breakdown, and storage. As each of these processes takes place in different organelles, recent studies, using the budding yeast Saccharomyces cerevisiae, have investigated the role of membrane contact sites as hubs that integrate inter-organellar sphingolipid transport and regulation. In this review, we provide a detailed overview of the findings of these studies and put them into the context of established regulatory mechanisms of sphingolipid homeostasis. We have focused on the role of membrane contact sites in sphingolipid metabolism and ceramide transport, as well as the mechanisms that prevent toxic ceramide accumulation.
Collapse
Affiliation(s)
| | | | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (P.S.); (A.I.)
| |
Collapse
|
8
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
9
|
Wilkinson EC, Starke EL, Barbee SA. Vps54 Regulates Lifespan and Locomotor Behavior in Adult Drosophila melanogaster. Front Genet 2021; 12:762012. [PMID: 34712272 PMCID: PMC8546322 DOI: 10.3389/fgene.2021.762012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Vps54 is an integral subunit of the Golgi-associated retrograde protein (GARP) complex, which is involved in tethering endosome-derived vesicles to the trans-Golgi network (TGN). A destabilizing missense mutation in Vps54 causes the age-progressive motor neuron (MN) degeneration, muscle weakness, and muscle atrophy observed in the wobbler mouse, an established animal model for human MN disease. It is currently unclear how the disruption of Vps54, and thereby the GARP complex, leads to MN and muscle phenotypes. To develop a new tool to address this question, we have created an analogous model in Drosophila by generating novel loss-of-function alleles of the fly Vps54 ortholog (scattered/scat). We find that null scat mutant adults are viable but have a significantly shortened lifespan. Like phenotypes observed in the wobbler mouse, we show that scat mutant adults are male sterile and have significantly reduced body size and muscle area. Moreover, we demonstrate that scat mutant adults have significant age-progressive defects in locomotor function. Interestingly, we see sexually dimorphic effects, with scat mutant adult females exhibiting significantly stronger phenotypes. Finally, we show that scat interacts genetically with rab11 in MNs to control age-progressive muscle atrophy in adults. Together, these data suggest that scat mutant flies share mutant phenotypes with the wobbler mouse and may serve as a new genetic model system to study the cellular and molecular mechanisms underlying MN disease.
Collapse
Affiliation(s)
- Emily C Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO, United States
| | - Emily L Starke
- Department of Biological Sciences, University of Denver, Denver, CO, United States
| | - Scott A Barbee
- Department of Biological Sciences, University of Denver, Denver, CO, United States.,Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, United States
| |
Collapse
|
10
|
Khakurel A, Kudlyk T, Bonifacino JS, Lupashin VV. The Golgi-associated retrograde protein (GARP) complex plays an essential role in the maintenance of the Golgi glycosylation machinery. Mol Biol Cell 2021; 32:1594-1610. [PMID: 34161137 PMCID: PMC8351751 DOI: 10.1091/mbc.e21-04-0169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery. [Media: see text].
Collapse
Affiliation(s)
- Amrita Khakurel
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| | - Tetyana Kudlyk
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Vladimir V. Lupashin
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR 72205
| |
Collapse
|
11
|
Schneeberger PE, Nampoothiri S, Holling T, Yesodharan D, Alawi M, Knisely AS, Müller T, Plecko B, Janecke AR, Kutsche K. Biallelic variants in VPS50 cause a neurodevelopmental disorder with neonatal cholestasis. Brain 2021; 144:3036-3049. [PMID: 34037727 DOI: 10.1093/brain/awab206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes are membrane-tethering heterotetramers located at the trans-Golgi network and recycling endosomes, respectively. GARP and EARP share the three subunits VPS51, VPS52, and VPS53, while VPS50 is unique to EARP and VPS54 to GARP. Retrograde transport of endosomal cargos to the TGN is mediated by GARP and endocytic recycling by EARP. Here we report two unrelated individuals with homozygous variants in VPS50, a splice variant (c.1978-1G>T) and an in-frame deletion (p.Thr608del). Both patients had severe developmental delay, postnatal microcephaly, corpus callosum hypoplasia, seizures and irritability, transient neonatal cholestasis, and failure to thrive. Light and transmission electron microscopy of liver from one revealed absence of gamma-glutamyltransferase at bile canaliculi, with mislocalization to basolateral membranes, and abnormal tight junctions. Using patient-derived fibroblasts, we identified reduced VPS50 protein accompanied by reduced levels of VPS52 and VPS53. While transferrin-receptor internalization rate was normal in cells of both patients, recycling of the receptor to the plasma membrane was significantly delayed. These data underscore the importance of VPS50 and/or the EARP complex in endocytic recycling and suggest an additional function in establishing cell polarity and trafficking between basolateral and apical membranes in hepatocytes. Individuals with biallelic hypomorphic variants in VPS50, VPS51 or VPS53 show an overarching neurodegenerative disorder with severe developmental delay, intellectual disability, microcephaly, early-onset epilepsy, and variable atrophy of the cerebellum, cerebrum, and/or brainstem. The term "GARP/EARP deficiency" designates disorders in such individuals.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin 682041, Kerala, India
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin 682041, Kerala, India
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, 8010 Graz, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Barbara Plecko
- Department of Pediatrics, Division of General Pediatrics, Medical University of Graz, 8010 Graz, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Jin X, Zhang J, An T, Zhao H, Fu W, Li D, Liu S, Cao X, Liu B. A Genome-Wide Screen in Saccharomyces cerevisiae Reveals a Critical Role for Oxidative Phosphorylation in Cellular Tolerance to Lithium Hexafluorophosphate. Cells 2021; 10:cells10040888. [PMID: 33924665 PMCID: PMC8070311 DOI: 10.3390/cells10040888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (J.Z.); (T.A.); (H.Z.); (W.F.); (D.L.); (S.L.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden
- Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
13
|
Nguyen JA, Yates RM. Better Together: Current Insights Into Phagosome-Lysosome Fusion. Front Immunol 2021; 12:636078. [PMID: 33717183 PMCID: PMC7946854 DOI: 10.3389/fimmu.2021.636078] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Following phagocytosis, the nascent phagosome undergoes maturation to become a phagolysosome with an acidic, hydrolytic, and often oxidative lumen that can efficiently kill and digest engulfed microbes, cells, and debris. The fusion of phagosomes with lysosomes is a principal driver of phagosomal maturation and is targeted by several adapted intracellular pathogens. Impairment of this process has significant consequences for microbial infection, tissue inflammation, the onset of adaptive immunity, and disease. Given the importance of phagosome-lysosome fusion to phagocyte function and the many virulence factors that target it, it is unsurprising that multiple molecular pathways have evolved to mediate this essential process. While the full range of these pathways has yet to be fully characterized, several pathways involving proteins such as members of the Rab GTPases, tethering factors and SNAREs have been identified. Here, we summarize the current state of knowledge to clarify the ambiguities in the field and construct a more comprehensive phagolysosome formation model. Lastly, we discuss how other cellular pathways help support phagolysosome biogenesis and, consequently, phagocyte function.
Collapse
Affiliation(s)
- Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Snyder Institute of Chronic Disease, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Patel PH, Wilkinson EC, Starke EL, McGimsey MR, Blankenship JT, Barbee SA. Vps54 regulates Drosophila neuromuscular junction development and interacts genetically with Rab7 to control composition of the postsynaptic density. Biol Open 2020; 9:bio053421. [PMID: 32747448 PMCID: PMC7473652 DOI: 10.1242/bio.053421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 01/04/2023] Open
Abstract
Vps54 is a subunit of the Golgi-associated retrograde protein (GARP) complex, which is involved in tethering endosome-derived vesicles to the trans-Golgi network (TGN). In the wobbler mouse, a model for human motor neuron (MN) disease, reduction in the levels of Vps54 causes neurodegeneration. However, it is unclear how disruption of the GARP complex leads to MN dysfunction. To better understand the role of Vps54 in MNs, we have disrupted expression of the Vps54 ortholog in Drosophila and examined the impact on the larval neuromuscular junction (NMJ). Surprisingly, we show that both null mutants and MN-specific knockdown of Vps54 leads to NMJ overgrowth. Reduction of Vps54 partially disrupts localization of the t-SNARE, Syntaxin-16, to the TGN but has no visible impact on endosomal pools. MN-specific knockdown of Vps54 in MNs combined with overexpression of the small GTPases Rab5, Rab7, or Rab11 suppresses the Vps54 NMJ phenotype. Conversely, knockdown of Vps54 combined with overexpression of dominant negative Rab7 causes NMJ and behavioral abnormalities including a decrease in postsynaptic Dlg and GluRIIB levels without any effect on GluRIIA. Taken together, these data suggest that Vps54 controls larval MN axon development and postsynaptic density composition through a mechanism that requires Rab7.
Collapse
Affiliation(s)
- Prajal H Patel
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Emily C Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Emily L Starke
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Malea R McGimsey
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA
| | - Scott A Barbee
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
15
|
Best JT, Xu P, McGuire JG, Leahy SN, Graham TR. Yeast synaptobrevin, Snc1, engages distinct routes of postendocytic recycling mediated by a sorting nexin, Rcy1-COPI, and retromer. Mol Biol Cell 2020; 31:944-962. [PMID: 32074001 PMCID: PMC7185969 DOI: 10.1091/mbc.e19-05-0290] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
The budding yeast v-SNARE, Snc1, mediates fusion of exocytic vesicles to the plasma membrane (PM) and is subsequently recycled back to the Golgi. Postendocytic recycling of Snc1 requires a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), and the COPI coat complex. A portion of the endocytic tracer FM4-64 is also recycled back to the PM after internalization. However, the relationship between Snx4, Drs2, Rcy1, and COPI in recycling Snc1 or FM4-64 is unclear. Here we show that rcy1∆ and drs2∆ single mutants, or a COPI mutant deficient in ubiquitin binding, display a defect in recycling FM4-64 while snx4∆ cells recycle FM4-64 normally. The addition of latrunculin A to acutely inhibit endocytosis shows that rcy1∆ and snx4∆ single mutants retain the ability to recycle Snc1, but a snx4∆rcy1∆ mutant substantially blocks export. Additional deletion of a retromer subunit completely eliminates recycling of Snc1 in the triple mutant (snx4∆rcy1∆vps35∆). A minor role for retromer in Snc1 recycling can also be observed in single and double mutants harboring vps35∆. These data support the existence of three distinct and parallel recycling pathways mediated by Drs2/Rcy1/COPI, Snx4-Atg20, and retromer that retrieve an exocytic v-SNARE from the endocytic pathway to the Golgi.
Collapse
Affiliation(s)
- Jordan T. Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Jack G. McGuire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
16
|
Tu Y, Zhao L, Billadeau DD, Jia D. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Front Cell Dev Biol 2020; 8:163. [PMID: 32258039 PMCID: PMC7093645 DOI: 10.3389/fcell.2020.00163] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network (TGN) diverts proteins and lipids away from lysosomal degradation. It is essential for maintaining cellular homeostasis and signaling. In recent years, significant advancements have been made in understanding this classical pathway, revealing new insights into multiple steps of vesicular trafficking as well as critical roles of ER-endosome contacts for endosomal trafficking. In this review, we summarize up-to-date knowledge about this trafficking pathway, in particular, mechanisms of cargo recognition at endosomes and vesicle tethering at the TGN, and contributions of ER-endosome contacts.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Topalidou I, Cattin-Ortolá J, Hummer B, Asensio CS, Ailion M. EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells. Mol Biol Cell 2019; 31:59-79. [PMID: 31721635 PMCID: PMC6938272 DOI: 10.1091/mbc.e18-07-0469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dense-core vesicles (DCVs) are secretory vesicles found in neurons and endocrine cells. DCVs package and release cargoes including neuropeptides, biogenic amines, and peptide hormones. We recently identified the endosome-associated recycling protein (EARP) complex and the EARP-interacting-protein EIPR-1 as proteins important for controlling levels of DCV cargoes in Caenorhabditis elegans neurons. Here we determine the role of mammalian EIPR1 in insulinoma cells. We find that in Eipr1 KO cells, there is reduced insulin secretion, and mature DCV cargoes such as insulin and carboxypeptidase E (CPE) accumulate near the trans-Golgi network and are not retained in mature DCVs in the cell periphery. In addition, we find that EIPR1 is required for the stability of the EARP complex subunits and for the localization of EARP and its association with membranes, but EIPR1 does not affect localization or function of the related Golgi-associated retrograde protein (GARP) complex. EARP is localized to two distinct compartments related to its function: an endosomal compartment and a DCV biogenesis-related compartment. We propose that EIPR1 functions with EARP to control both endocytic recycling and DCV maturation.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Blake Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
18
|
Ishida M, Bonifacino JS. ARFRP1 functions upstream of ARL1 and ARL5 to coordinate recruitment of distinct tethering factors to the trans-Golgi network. J Cell Biol 2019; 218:3681-3696. [PMID: 31575603 PMCID: PMC6829661 DOI: 10.1083/jcb.201905097] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
SNARE-mediated fusion of endosome-derived transport carriers with the trans-Golgi network (TGN) depends on the concerted action of two types of tethering factors: long coiled-coil tethers of the golgin family, and the heterotetrameric complex GARP. Whereas the golgins mediate long-distance capture of the carriers, GARP promotes assembly of the SNAREs. It remains to be determined, however, how the functions of these tethering factors are coordinated. Herein we report that the ARF-like (ARL) GTPase ARFRP1 functions upstream of two other ARL GTPases, ARL1 and ARL5, which in turn recruit golgins and GARP, respectively, to the TGN. We also show that this mechanism is essential for the delivery of retrograde cargos to the TGN. Our findings thus demonstrate that ARFRP1 is a master regulator of retrograde-carrier tethering to the TGN. The coordinated recruitment of distinct tethering factors by a bifurcated GTPase cascade may be paradigmatic of other vesicular fusion events within the cell.
Collapse
Affiliation(s)
- Morié Ishida
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Uwineza A, Caberg JH, Hitayezu J, Wenric S, Mutesa L, Vial Y, Drunat S, Passemard S, Verloes A, El Ghouzzi V, Bours V. VPS51 biallelic variants cause microcephaly with brain malformations: A confirmatory report. Eur J Med Genet 2019; 62:103704. [PMID: 31207318 DOI: 10.1016/j.ejmg.2019.103704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022]
Abstract
Whole exome sequencing undertaken in two siblings with delayed psychomotor development, absent speech, severe intellectual disability and postnatal microcephaly, with brain malformations consisting of cerebellar atrophy in the eldest affected and hypoplastic corpus callosum in the younger sister; revealed a homozygous intragenic deletion in VPS51, which encodes the vacuolar protein sorting-associated protein, one the four subunits of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes that promotes the fusion of endosome-derived vesicles with the trans-Golgi network (GARP) and recycling endosomes (EARP). This observation supports a pathogenic effect of VPS51 variants, which has only been reported previously once, in a single child with microcephaly. It confirms the key role of membrane trafficking in normal brain development and homeostasis.
Collapse
Affiliation(s)
- Annette Uwineza
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Jean-Hubert Caberg
- Center for Human Genetics, Centre Hospitalier Universitaire, University of Liege, Liege, Belgium
| | - Janvier Hitayezu
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Stephane Wenric
- GIGA-Research, Human Genetics Unit, University of Liege, Liege, Belgium
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Yoann Vial
- Department of Genetics, AP HP - Robert Debré University Hospital, Paris, France; PROTECT, INSERM UMR1141, Université de Paris, Paris, France
| | - Séverine Drunat
- Department of Genetics, AP HP - Robert Debré University Hospital, Paris, France; PROTECT, INSERM UMR1141, Université de Paris, Paris, France
| | - Sandrine Passemard
- Department of Genetics, AP HP - Robert Debré University Hospital, Paris, France; PROTECT, INSERM UMR1141, Université de Paris, Paris, France
| | - Alain Verloes
- Department of Genetics, AP HP - Robert Debré University Hospital, Paris, France; PROTECT, INSERM UMR1141, Université de Paris, Paris, France
| | | | - Vincent Bours
- Center for Human Genetics, Centre Hospitalier Universitaire, University of Liege, Liege, Belgium
| |
Collapse
|
20
|
Gershlick DC, Ishida M, Jones JR, Bellomo A, Bonifacino JS, Everman DB. A neurodevelopmental disorder caused by mutations in the VPS51 subunit of the GARP and EARP complexes. Hum Mol Genet 2019; 28:1548-1560. [PMID: 30624672 PMCID: PMC6489419 DOI: 10.1093/hmg/ddy423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 11/12/2022] Open
Abstract
Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) are related heterotetrameric complexes that associate with the cytosolic face of the trans-Golgi network and recycling endosomes, respectively. At these locations, GARP and EARP function to promote the fusion of endosome-derived transport carriers with their corresponding compartments. GARP and EARP share three subunits, VPS51, VPS52 and VPS53, and each has an additional complex-specific subunit, VPS54 or VPS50, respectively. The role of these complexes in human physiology, however, remains poorly understood. By exome sequencing, we have identified compound heterozygous mutations in the gene encoding the shared GARP/EARP subunit VPS51 in a 6-year-old patient with severe global developmental delay, microcephaly, hypotonia, epilepsy, cortical vision impairment, pontocerebellar abnormalities, failure to thrive, liver dysfunction, lower extremity edema and dysmorphic features. The mutation in one allele causes a frameshift that produces a longer but highly unstable protein that is degraded by the proteasome. In contrast, the other mutant allele produces a protein with a single amino acid substitution that is stable but assembles less efficiently with the other GARP/EARP subunits. Consequently, skin fibroblasts from the patient have reduced levels of fully assembled GARP and EARP complexes. Likely because of this deficiency, the patient's fibroblasts display altered distribution of the cation-independent mannose 6-phosphate receptor, which normally sorts acid hydrolases to lysosomes. Furthermore, a fraction of the patient's fibroblasts exhibits swelling of lysosomes. These findings thus identify a novel genetic locus for a neurodevelopmental disorder and highlight the critical importance of GARP/EARP function in cellular and organismal physiology.
Collapse
Affiliation(s)
- David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Morié Ishida
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Inhibition of Vesicular Transport Influences Fungal Susceptibility to Fluconazole. Antimicrob Agents Chemother 2019; 63:AAC.01998-18. [PMID: 30782993 DOI: 10.1128/aac.01998-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
Fungal infections pose a substantial threat to the human population. They can cause either mild and relatively harmless infections or invasive and often lethal diseases in patients with a weakened immune system. The majority of these human fungal infections are caused by Candida species. The limited amount of available therapies, together with the development of resistance against these drugs, strongly emphasizes the need for novel therapeutic strategies. As it is quite time-consuming to introduce completely new drugs to the market, potentiating the efficacy of existing drugs would be a better strategy. Therefore, it is important to identify cellular pathways involved in the development of drug resistance. We found that vesicular transport is involved in fungal susceptibility to the most widely used antifungal drug, fluconazole. We identified specific complexes in the vesicular transport pathway which contribute to fluconazole resistance or tolerance in the model organism Saccharomyces cerevisiae Furthermore, we confirmed our findings in the clinically relevant fungi Candida albicans and Candida glabrata Finally, we show that the combination of fluconazole with a specific inhibitor of the vesicular transport pathway increases the susceptibility of Candida species, indicating the potential of using vesicular transport as a target in combination therapy.
Collapse
|
22
|
Shi Z, Chen S, Han X, Peng R, Luo J, Yang L, Zheng Y, Wang H. The rare mutation in the endosome-associated recycling protein gene VPS50 is associated with human neural tube defects. Mol Cytogenet 2019; 12:8. [PMID: 30828385 PMCID: PMC6381738 DOI: 10.1186/s13039-019-0421-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Background Tight control of endosome trafficking is essential for the generation of a normally patterned embryo. Recent studies have found that VPS50 is a key ingredient in EARP which is required for recycling of internalized TfRs to the cell surface and dense-core vesicle maturation. However, the role of VPS50 in embryogenesis and human physiology are poorly understood. Results We identified a rare missense heterozygous VPS50 mutation (p. Gly169Val) in NTDs by high-throughput sequencing. In vitro functional analysis demonstrated that the p. Gly169Val was a loss-of-function mutation, delaying transferrin recycling and altering its interaction with VPS53. Using WISH during zebrafish embryogenesis, we demonstrated that vps50 gene was expressed throughout the early embryo, especially in the head. Abnormal body axis phenotypes were observed in those vps50 knock-down zebrafishes. Further rescue study in zebrafish suggested that the mutation displayed loss-of-function effects comparing with wild-type VPS50. Conclusions These findings thus demonstrated that the functional mutations in VPS50 might contribute to neurodevelopmental disorder and highlighted the critical importance of VPS50 function in cellular and organismal physiology. Electronic supplementary material The online version of this article (10.1186/s13039-019-0421-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiwen Shi
- 1Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011 China.,2Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032 China
| | - Shuxia Chen
- 1Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011 China.,2Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032 China
| | - Xiao Han
- 1Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011 China.,2Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032 China
| | - Rui Peng
- 1Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011 China.,2Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032 China
| | - Jin Luo
- 1Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011 China.,2Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032 China
| | - Luming Yang
- 2Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032 China
| | - Yufang Zheng
- 2Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032 China.,1Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011 China.,3Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433 China
| | - Hongyan Wang
- 2Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200032 China.,1Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200011 China.,4Children's Hospital and Institutes of Biomedical Sciences of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| |
Collapse
|
23
|
Chen YT, Wang IH, Wang YH, Chiu WY, Hu JH, Chen WH, Lee FJS. Action of Arl1 GTPase and golgin Imh1 in Ypt6-independent retrograde transport from endosomes to the trans-Golgi network. Mol Biol Cell 2019; 30:1008-1019. [PMID: 30726160 PMCID: PMC6589904 DOI: 10.1091/mbc.e18-09-0579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Arf and Rab/Ypt GTPases coordinately regulate membrane traffic and organelle structure by regulating vesicle formation and fusion. Ample evidence has indicated that proteins in these two families may function in parallel or complementarily; however, the manner in which Arf and Rab/Ypt proteins perform interchangeable functions remains unclear. In this study, we report that a Golgi-localized Arf, Arl1, could suppress Ypt6 dysfunction via its effector golgin, Imh1, but not via the lipid flippase Drs2. Ypt6 is critical for the retrograde transport of vesicles from endosomes to the trans-Golgi network (TGN), and its mutation leads to severe protein mislocalization and growth defects. We first overexpress the components of the Arl3-Syt1-Arl1-Imh1 cascade and show that only Arl1 and Imh1 can restore endosome-to-TGN trafficking in ypt6-deleted cells. Interestingly, increased abundance of Arl1 or Imh1 restores localization of the tethering factor Golgi associated retrograde–protein (GARP) complex to the TGN in the absence of Ypt6. We further show that the N-terminal domain of Imh1 is critical for restoring GARP localization and endosome-to-TGN transport in ypt6-deleted cells. Together, our results reveal the mechanism by which Arl1-Imh1 facilitates the recruitment of GARP to the TGN and compensates for the endosome-to-TGN trafficking defects in dysfunctional Ypt6 conditions.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Hao Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Hsun Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wan-Yun Chiu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jen-Hao Hu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wen-Hui Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
24
|
Zhang B, Yu Q, Huo D, Li J, Liang C, Li H, Yi X, Xiao C, Zhang D, Li M. Arf1 regulates the ER-mitochondria encounter structure (ERMES) in a reactive oxygen species-dependent manner. FEBS J 2018; 285:2004-2018. [PMID: 29603662 DOI: 10.1111/febs.14445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/07/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
Abstract
The Arf family of small GTP-binding and -hydrolyzing proteins are some of the most important intracellular regulators of membrane dynamics. In this study, we identified the Golgi-localized Arf family G protein Arf1 in Candida albicans and confirmed its conserved function in regulating the secretory pathway. Interestingly, deletion of ARF1 resulted in intracellular reactive oxygen species (ROS) accumulation, and induced formation of the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES). Moreover, N-acetylcysteine-mediated ROS scavenging in the arf1Δ/Δ strain attenuated ERMES formation, indicating that intracellular ROS accumulation resulting from ARF1 deletion facilitated ERMES formation. In addition, Arf1 regulated many key physiological processes in C. albicans, including cell cycle progression, morphogenesis and virulence. This study uncovers a role for Arf family G proteins in regulating ERMES formation and sheds new light on the crucial contribution of ROS to membrane dynamics.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Da Huo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Liang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyue Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiao Yi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
25
|
Yeast dynamin associates with the GARP tethering complex for endosome-to-Golgi traffic. Eur J Cell Biol 2017; 96:612-621. [DOI: 10.1016/j.ejcb.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
|
26
|
Araújo DS, de Sousa Lima P, Baeza LC, Parente AFA, Melo Bailão A, Borges CL, de Almeida Soares CM. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1304-1314. [PMID: 28844734 DOI: 10.1016/j.bbapap.2017.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MSE, was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture.
Collapse
Affiliation(s)
- Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil; Laboratório Interdisciplinar de Biologia, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Ana Flávia Alves Parente
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Biologia, Campus Universitário Darci Ribeiro, Brasília, DF, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil.
| |
Collapse
|
27
|
Dalton LE, Bean BDM, Davey M, Conibear E. Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes. Mol Biol Cell 2017; 28:1539-1550. [PMID: 28404745 PMCID: PMC5449152 DOI: 10.1091/mbc.e16-11-0772] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked. However, the role of Neo1 in endosomal recycling is not well characterized. To identify novel regulators of Neo1 trafficking and activity at endosomes, we first identified mutants with impaired recycling of a Snc1-based reporter and subsequently used high-content microscopy to classify these mutants based on the localization of Neo1 or its binding partners, Mon2 and Dop1. This analysis identified a role for Arl1 in stabilizing the Mon2/Dop1 complex and uncovered a new function for Vps13 in early endosome recycling and Neo1 localization. We further showed that the cargo-selective sorting nexin Snx3 is required for Neo1 trafficking and identified an Snx3 sorting motif in the Neo1 N-terminus. Of importance, the Snx3-dependent sorting of Neo1 was required for the correct sorting of another Snx3 cargo protein, suggesting that the incorporation of Neo1 into recycling tubules may influence their formation.
Collapse
Affiliation(s)
- Lauren E Dalton
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
28
|
RNF41 interacts with the VPS52 subunit of the GARP and EARP complexes. PLoS One 2017; 12:e0178132. [PMID: 28542518 PMCID: PMC5439944 DOI: 10.1371/journal.pone.0178132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2017] [Indexed: 11/19/2022] Open
Abstract
RNF41 (Ring Finger Protein 41) is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap) screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein) and the EARP (Endosome-Associated Recycling Protein) complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies.
Collapse
|
29
|
Rodriguez PA, Escudero-Martinez C, Bos JIB. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence. PLANT PHYSIOLOGY 2017; 173:1892-1903. [PMID: 28100451 PMCID: PMC5338666 DOI: 10.1104/pp.16.01458] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/16/2017] [Indexed: 05/20/2023]
Abstract
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to Mpersicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom (P.A.R., C.E.-M., J.I.B.B.); and
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (C.E.-M., J.I.B.B.)
| | - Carmen Escudero-Martinez
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom (P.A.R., C.E.-M., J.I.B.B.); and
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (C.E.-M., J.I.B.B.)
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom (P.A.R., C.E.-M., J.I.B.B.); and
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom (C.E.-M., J.I.B.B.)
| |
Collapse
|
30
|
Fári K, Takács S, Ungár D, Sinka R. The role of acroblast formation during Drosophila spermatogenesis. Biol Open 2016; 5:1102-10. [PMID: 27481842 PMCID: PMC5004609 DOI: 10.1242/bio.018275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Protein recycling is important for maintaining homeostasis of the Golgi and its cisternae. The Vps54 (Scat) protein, a subunit of the GARP tethering complex, is a central factor in retrograde transport to the trans-Golgi. We found the scat1 mutant to be male sterile in Drosophila with individualization problems occurring during spermatogenesis. Another typically observed phenotype was the abnormal nuclear structure in elongated mutant cysts. When examining the structure and function of the Golgi, a failure in acrosome formation and endosome-Golgi vesicular transport were found in the scat1 mutant. This acrosome formation defect was due to a fault in the trans-Golgi side of the acroblast ribbon. When testing a mutation in a second retrograde transport protein, Fws, a subunit of the conserved oligomeric Golgi (COG) tethering complex, the acroblast structure, was again disrupted. fwsP caused a similar, albeit milder, acrosome and sperm individualization phenotype as the scat1 mutant. In the case of fwsP the cis side of the acroblast ribbon was dispersed, in-line with the intra-Golgi retrograde function of COG. Our results highlight the importance of an intact acroblast for acrosome formation, nuclear elongation and therefore sperm maturation. Moreover, these results suggest the importance of retrograde tethering complexes in the formation of a functional Golgi ribbon. Summary: This study demonstrates that retrograde tethering complexes are necessary to form a functional acroblast, which is essential for normal nuclear elongation and acrosome formation during Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Karolina Fári
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Sándor Takács
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Dániel Ungár
- Department of Biology, University of York, York YO10 5DD, UK
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| |
Collapse
|
31
|
Gershlick DC, Schindler C, Chen Y, Bonifacino JS. TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 2016; 27:2867-78. [PMID: 27440922 PMCID: PMC5025273 DOI: 10.1091/mbc.e16-04-0209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022] Open
Abstract
A previously uncharacterized WD40 domain–containing protein named TSSC1 is shown to interact with the GARP and EARP tethering complexes, promoting retrograde transport of Shiga toxin from endosomes to the TGN, as well as recycling internalized transferrin from endosomes to the plasma membrane. Endosomes function as a hub for multiple protein-sorting events, including retrograde transport to the trans-Golgi network (TGN) and recycling to the plasma membrane. These processes are mediated by tubular-vesicular carriers that bud from early endosomes and fuse with a corresponding acceptor compartment. Two tethering complexes named GARP (composed of ANG2, VPS52, VPS53, and VPS54 subunits) and EARP (composed of ANG2, VPS52, VPS53, and Syndetin subunits) were previously shown to participate in SNARE-dependent fusion of endosome-derived carriers with the TGN and recycling endosomes, respectively. Little is known, however, about other proteins that function with GARP and EARP in these processes. Here we identify a protein named TSSC1 as a specific interactor of both GARP and EARP and as a novel component of the endosomal retrieval machinery. TSSC1 is a predicted WD40/β-propeller protein that coisolates with both GARP and EARP in affinity purification, immunoprecipitation, and gel filtration analyses. Confocal fluorescence microscopy shows colocalization of TSSC1 with both GARP and EARP. Silencing of TSSC1 impairs transport of internalized Shiga toxin B subunit to the TGN, as well as recycling of internalized transferrin to the plasma membrane. Fluorescence recovery after photobleaching shows that TSSC1 is required for efficient recruitment of GARP to the TGN. These studies thus demonstrate that TSSC1 plays a critical role in endosomal retrieval pathways as a regulator of both GARP and EARP function.
Collapse
Affiliation(s)
- David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Christina Schindler
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Yu Chen
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
32
|
Vukašinović N, Žárský V. Tethering Complexes in the Arabidopsis Endomembrane System. Front Cell Dev Biol 2016; 4:46. [PMID: 27243010 PMCID: PMC4871884 DOI: 10.3389/fcell.2016.00046] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/02/2016] [Indexed: 12/30/2022] Open
Abstract
Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model—Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology.
Collapse
Affiliation(s)
- Nemanja Vukašinović
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University Prague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University Prague, Czech Republic
| |
Collapse
|
33
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Dubuke ML, Munson M. The Secret Life of Tethers: The Role of Tethering Factors in SNARE Complex Regulation. Front Cell Dev Biol 2016; 4:42. [PMID: 27243006 PMCID: PMC4860414 DOI: 10.3389/fcell.2016.00042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/25/2016] [Indexed: 02/03/2023] Open
Abstract
Trafficking in eukaryotic cells is a tightly regulated process to ensure correct cargo delivery to the proper destination organelle or plasma membrane. In this review, we focus on how the vesicle fusion machinery, the SNARE complex, is regulated by the interplay of the multisubunit tethering complexes (MTC) with the SNAREs and Sec1/Munc18 (SM) proteins. Although these factors are used in different stages of membrane trafficking, e.g., Golgi to plasma membrane transport vs. vacuolar fusion, and in a variety of diverse eukaryotic cell types, many commonalities between their functions are being revealed. We explore the various protein-protein interactions and findings from functional reconstitution studies in order to highlight both their common features and the differences in their modes of regulation. These studies serve as a starting point for mechanistic explorations in other systems.
Collapse
Affiliation(s)
- Michelle L Dubuke
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, MA USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, MA USA
| |
Collapse
|
35
|
Choy JS, Qadri B, Henry L, Shroff K, Bifarin O, Basrai MA. A Genome-Wide Screen with Nicotinamide to Identify Sirtuin-Dependent Pathways in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2015; 6:485-94. [PMID: 26646153 PMCID: PMC4751566 DOI: 10.1534/g3.115.022244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Sirtuins are evolutionarily conserved NAD-dependent deacetylases that catalyze the cleavage of NAD(+) into nicotinamide (NAM), which can act as a pan-sirtuin inhibitor in unicellular and multicellular organisms. Sirtuins regulate processes such as transcription, DNA damage repair, chromosome segregation, and longevity extension in yeast and metazoans. The founding member of the evolutionarily conserved sirtuin family, SIR2, was first identified in budding yeast. Subsequent studies led to the identification of four yeast SIR2 homologs HST1, HST2, HST3, and HST4. Understanding the downstream physiological consequences of inhibiting sirtuins can be challenging since most studies focus on single or double deletions of sirtuins, and mating defects in SIR2 deletions hamper genome-wide screens. This represents an important gap in our knowledge of how sirtuins function in highly complex biological processes such as aging, metabolism, and chromosome segregation. In this report, we used a genome-wide screen to explore sirtuin-dependent processes in Saccharomyces cerevisiae by identifying deletion mutants that are sensitive to NAM. We identified 55 genes in total, 36 of which have not been previously reported to be dependent on sirtuins. We find that genome stability pathways are particularly vulnerable to loss of sirtuin activity. Here, we provide evidence that defects in sister chromatid cohesion renders cells sensitive to growth in the presence of NAM. The results of our screen provide a broad view of the biological pathways sensitive to inhibition of sirtuins, and advance our understanding of the function of sirtuins and NAD(+) biology.
Collapse
Affiliation(s)
- John S Choy
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| | - Bayan Qadri
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| | - Leah Henry
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| | - Kunal Shroff
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| | - Olatomiwa Bifarin
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
36
|
Abstract
The wobbler mouse is an animal model for human motor neuron disease, such as amyotrophic lateral sclerosis (ALS). The spontaneous, recessive wobbler mutation causes degeneration of upper and lower motor neurons leading to progressive muscle weakness with striking similarities to the ALS pathology. The wobbler mutation is a point mutation affecting Vps54, a component of the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a ubiquitously expressed Golgi-localized vesicle tethering complex, tethering endosome-derived vesicles to the trans Golgi network. The wobbler point mutation leads to a destabilization of the Vps54 protein and thereby the whole GARP complex. This effectuates impairments of the retrograde vesicle transport, mis-sorting of Golgi- and endosome localized proteins and on the long run defects in Golgi morphology and function. It is currently largely unknown how the destabilization of the GARP complex interferes with the pathological hallmarks, reported for the wobbler motor neuron degeneration, like neurofilament aggregation, axonal transport defects, hyperexcitability, mitochondrial dysfunction, and how these finally lead to motor neuron death. However, the impairments of the retrograde vesicle transport and the Golgi-function appear to be critical phenomena in the molecular pathology of the wobbler motor neuron disease.
Collapse
Affiliation(s)
- Thomas Schmitt-John
- Neurogenetics, Department of Molecular Biology and Genetics, Aarhus University Aarhus, Denmark ; Tauros-Diagnostik Bielefeld, Germany
| |
Collapse
|
37
|
Dubuke ML, Maniatis S, Shaffer SA, Munson M. The Exocyst Subunit Sec6 Interacts with Assembled Exocytic SNARE Complexes. J Biol Chem 2015; 290:28245-28256. [PMID: 26446795 DOI: 10.1074/jbc.m115.673806] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and into the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multisubunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in intracellular trafficking pathways. However, the mechanism by which the exocyst, the exocytosis-specific multisubunit tethering complex, interacts with the exocytic SNAREs to mediate vesicle targeting and fusion is currently unknown. We have demonstrated previously that the Saccharomyces cerevisiae exocyst subunit Sec6 directly bound the plasma membrane SNARE protein Sec9 in vitro and that Sec6 inhibited the assembly of the binary Sso1-Sec9 SNARE complex. Therefore, we hypothesized that the interaction between Sec6 and Sec9 prevented the assembly of premature SNARE complexes at sites of exocytosis. To map the determinants of this interaction, we used cross-linking and mass spectrometry analyses to identify residues required for binding. Mutation of residues identified by this approach resulted in a growth defect when introduced into yeast. Contrary to our previous hypothesis, we discovered that Sec6 does not change the rate of SNARE assembly but, rather, binds both the binary Sec9-Sso1 and ternary Sec9-Sso1-Snc2 SNARE complexes. Together, these results suggest a new model in which Sec6 promotes SNARE complex assembly, similar to the role proposed for other tether subunit-SNARE interactions.
Collapse
Affiliation(s)
- Michelle L Dubuke
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Stephanie Maniatis
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts 01545
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts 01545
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
38
|
Peuralinna T, Myllykangas L, Oinas M, Nalls MA, Keage HAD, Isoviita VM, Valori M, Polvikoski T, Paetau A, Sulkava R, Ince PG, Zaccai J, Brayne C, Traynor BJ, Hardy J, Singleton AB, Tienari PJ. Genome-wide association study of neocortical Lewy-related pathology. Ann Clin Transl Neurol 2015; 2:920-31. [PMID: 26401513 PMCID: PMC4574809 DOI: 10.1002/acn3.231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/22/2015] [Indexed: 02/04/2023] Open
Abstract
Objective Dementia with Lewy bodies is an α-synucleinopathy characterized by neocortical Lewy-related pathology (LRP). We carried out a genome-wide association study (GWAS) on neocortical LRP in a population-based sample of subjects aged 85 or over. Methods LRP was analyzed in 304 subjects in the Vantaa 85+ sample from Southern Finland. The GWAS included 41 cases with midbrain, hippocampal, and neocortical LRP and 177 controls without midbrain and hippocampal LRP. The Medical Research Council Cognitive Function and Ageing Study (CFAS) material was used for replication (51 cases and 131 controls). Results By analyzing 327,010 markers the top signal was obtained at the HLA-DPA1/DPB1 locus (P = 1.29 × 10−7); five other loci on chromosomes 15q14, 2p21, 2q31, 18p11, and 5q23 were associated with neocortical LRP at P < 10−5. Two loci were marked by multiple markers, 2p21 (P = 3.9 × 10−6, upstream of the SPTBN1 gene), and HLA-DPA1/DPB1; these were tested in the CFAS material. Single marker (P = 0.0035) and haplotype (P = 0.04) associations on 2p21 were replicated in CFAS, whereas HLA-DPA1/DPB1 association was not. Bioinformatic analyses suggest functional effects for the HLA-DPA1/DPB1 markers as well as the 15q14 marker rs8037309. Interpretation We identified suggestive novel risk factors for neocortical LRP. SPTBN1 is the candidate on 2p21, it encodes beta-spectrin, an α-synuclein binding protein and a component of Lewy bodies. The HLA-DPA1/DPB1 association suggests a role for antigen presentation or alternatively, cis-regulatory effects, one of the regulated neighboring genes identified here (vacuolar protein sorting 52) plays a role in vesicular trafficking and has been shown to interact with α-synuclein in a yeast model.
Collapse
Affiliation(s)
- Terhi Peuralinna
- Molecular Neurology, Research Program Unit, Biomedicum, University of Helsinki Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB Helsinki, Finland ; Folkhalsan Institute of Genetics Helsinki, Finland
| | - Minna Oinas
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB Helsinki, Finland ; Department of Neurosurgery, Helsinki University Central Hospital Helsinki, Finland
| | - Mike A Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, NIH Bethesda, Maryland
| | - Hannah A D Keage
- School of Psychology, Social Work and Social Policy, University of South Australia Adelaide, Australia ; Department of Public Health and Primary Care, University of Cambridge Cambridge, United Kingdom
| | - Veli-Matti Isoviita
- Molecular Neurology, Research Program Unit, Biomedicum, University of Helsinki Helsinki, Finland
| | - Miko Valori
- Molecular Neurology, Research Program Unit, Biomedicum, University of Helsinki Helsinki, Finland
| | - Tuomo Polvikoski
- Institute for Ageing and Health, Newcastle University Newcastle, United Kingdom
| | - Anders Paetau
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB Helsinki, Finland
| | - Raimo Sulkava
- School of Public Health and Clinical Nutrition, University of Eastern Finland Kuopio, Finland
| | - Paul G Ince
- Department of Neuroscience, University of Sheffield Sheffield, United Kingdom
| | - Julia Zaccai
- Department of Public Health and Primary Care, University of Cambridge Cambridge, United Kingdom
| | - Carol Brayne
- Department of Public Health and Primary Care, University of Cambridge Cambridge, United Kingdom
| | - Bryan J Traynor
- Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, National Institute on Aging, NIH Bethesda, Maryland
| | - John Hardy
- Reta Lila Weston Research Laboratories, Departments of Molecular Neuroscience and of Clinical Neuroscience, UCL Institute of Neurology Queen Square, London, United Kingdom
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, NIH Bethesda, Maryland
| | - Pentti J Tienari
- Molecular Neurology, Research Program Unit, Biomedicum, University of Helsinki Helsinki, Finland ; Department of Neurology, Helsinki University Central Hospital Helsinki, Finland
| |
Collapse
|
39
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Kuhlee A, Raunser S, Ungermann C. Functional homologies in vesicle tethering. FEBS Lett 2015; 589:2487-97. [PMID: 26072291 DOI: 10.1016/j.febslet.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 11/24/2022]
Abstract
The HOPS multisubunit tethering factor (MTC) is a macromolecular protein complex composed of six different subunits. It is one of the key components in the perception and subsequent fusion of multivesicular bodies and vacuoles. Electron microscopy studies indicate structural flexibility of the purified HOPS complex. Inducing higher rigidity into HOPS by biochemically modifying the complex declines the potential to mediate SNARE-driven membrane fusion. Thus, we propose that integral flexibility seems to be not only a feature, but of essential need for the function of HOPS. This review focuses on the general features of membrane tethering and fusion. For this purpose, we compare the structure and mode of action of different tethering factors to highlight their common central features and mechanisms.
Collapse
Affiliation(s)
- Anne Kuhlee
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Christian Ungermann
- Department of Biology, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| |
Collapse
|
41
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
42
|
Heard W, Sklenář J, Tomé DFA, Robatzek S, Jones AME. Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection. Mol Cell Proteomics 2015; 14:1796-813. [PMID: 25900983 DOI: 10.1074/mcp.m115.050286] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 12/19/2022] Open
Abstract
The cell's endomembranes comprise an intricate, highly dynamic and well-organized system. In plants, the proteins that regulate function of the various endomembrane compartments and their cargo remain largely unknown. Our aim was to dissect subcellular trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with endomembrane markers. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for combinations of the Golgi, trans-Golgi network (TGN), early endosomes (EE), secretory vesicles, late endosomes (LE), multivesicular bodies (MVB), and the tonoplast. As comparisons we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast. We developed an easy-to-use method by refining published protocols based on affinity purification of fluorescent fusion constructs to these seven subcellular marker proteins in Arabidopsis thaliana seedlings. We present a total of 433 proteins, only five of which were shared among all enrichments, while many proteins were common between endomembrane compartments of the same trafficking route. Approximately half, 251 proteins, were assigned to one enrichment only. Our dataset contains known regulators of endosome functions including small GTPases, SNAREs, and tethering complexes. We identify known cargo proteins such as PIN3, PEN3, CESA, and the recently defined TPLATE complex. The subcellular localization of two GTPase regulators predicted from our enrichments was validated using live-cell imaging. This is the first proteomic dataset to discriminate between such highly overlapping endomembrane compartments in plants and can be used as a general proteomic resource to predict the localization of proteins and identify the components of regulatory complexes and provides a useful tool for the identification of new protein markers of the endomembrane system.
Collapse
Affiliation(s)
- William Heard
- From the ‡The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jan Sklenář
- From the ‡The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Daniel F A Tomé
- §The School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Silke Robatzek
- From the ‡The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alexandra M E Jones
- From the ‡The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; §The School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
43
|
Wang T, Grabski R, Sztul E, Hay JC. p115-SNARE interactions: a dynamic cycle of p115 binding monomeric SNARE motifs and releasing assembled bundles. Traffic 2015; 16:148-71. [PMID: 25406594 DOI: 10.1111/tra.12242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
Abstract
Tethering factors regulate the targeting of membrane-enclosed vesicles under the control of Rab GTPases. p115, a golgin family tether, has been shown to participate in multiple stages of ER/Golgi transport. Despite extensive study, the mechanism of action of p115 is poorly understood. SNARE proteins make up the machinery for membrane fusion, and strong evidence shows that function of p115 is directly linked to its interaction with SNAREs. Using a gel filtration binding assay, we have demonstrated that in solution p115 stably interacts with ER/Golgi SNAREs rbet1 and sec22b, but not membrin and syntaxin 5. These binding preferences stemmed from selectivity of p115 for monomeric SNARE motifs as opposed to SNARE oligomers. Soluble monomeric rbet1 can compete off p115 from coat protein II (COPII) vesicles. Furthermore, excess p115 inhibits p115 function in trafficking. We conclude that monomeric SNAREs are a major binding site for p115 on COPII vesicles, and that p115 dissociates from its SNARE partners upon SNAREpin assembly. Our results suggest a model in which p115 forms a mixed p115/SNARE helix bundle with a monomeric SNARE, facilitates the binding activity and/or concentration of the SNARE at prefusion sites and is subsequently ejected as SNARE complex formation and fusion proceed.
Collapse
Affiliation(s)
- Ting Wang
- Division of Biological Sciences and Center for Structural & Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | | | | | | |
Collapse
|
44
|
Becuwe M, Léon S. Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5. eLife 2014; 3. [PMID: 25380227 PMCID: PMC4244573 DOI: 10.7554/elife.03307] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/04/2014] [Indexed: 01/04/2023] Open
Abstract
After endocytosis, membrane proteins can recycle to the cell membrane or be degraded in lysosomes. Cargo ubiquitylation favors their lysosomal targeting and can be regulated by external signals, but the mechanism is ill-defined. Here, we studied the post-endocytic trafficking of Jen1, a yeast monocarboxylate transporter, using microfluidics-assisted live-cell imaging. We show that the ubiquitin ligase Rsp5 and the glucose-regulated arrestin-related trafficking adaptors (ART) protein Rod1, involved in the glucose-induced internalization of Jen1, are also required for the post-endocytic sorting of Jen1 to the yeast lysosome. This new step takes place at the trans-Golgi network (TGN), where Rod1 localizes dynamically upon triggering endocytosis. Indeed, transporter trafficking to the TGN after internalization is required for their degradation. Glucose removal promotes Rod1 relocalization to the cytosol and Jen1 deubiquitylation, allowing transporter recycling when the signal is only transient. Therefore, nutrient availability regulates transporter fate through the localization of the ART/Rsp5 ubiquitylation complex at the TGN. DOI:http://dx.doi.org/10.7554/eLife.03307.001 The plasma membrane that surrounds cells contains many different proteins that perform tasks such as detecting signals sent to the cell, and transporting molecules into or out of the cell. To adapt to changing conditions, cells remodel their membrane to change how much of each type of protein is present. A process called endocytosis—where part of the plasma membrane and the proteins it contains buds off into the cell—plays an important role in this remodeling. The fate of a membrane protein after endocytosis can depend on whether a protein ‘tag’ called ubiquitin has been added to it. Ubiquitin-marked proteins bud off into the cell and are then sent to cell structures called lysosomes to be degraded, whereas unmarked proteins are recycled back to the plasma membrane. Yeast cell membranes contain a protein called Jen1 that transports certain molecules, including one called lactate that can be used as fuel for growth. However, glucose is a preferred nutrient for yeast, so when glucose is available, another protein called Rod1 becomes activated and promotes the addition of ubiquitin to Jen1, and hence its degradation. This means that the cells can no longer use lactate as a source of energy. However, it was not known where in the cell the Rod1 protein does this. Becuwe and Léon labeled proteins involved in endocytosis with fluorescent tags and used microscopy to observe their fate in live yeast cells exposed to glucose. This revealed two roles for Rod1. At the plasma membrane, Rod1 helps Jen1 to be taken into the cell in the early stages of endocytosis. But unexpectedly, Rod1 is also found at a cellular structure called the trans-Golgi network, small membrane sacs that are typically responsible for packaging proteins so they can be transported to a new destination, in particular the plasma membrane. This suggests that Rod1 can also act at this location in the cell. When the proteins responsible for maintaining transport to the trans-Golgi network are inhibited, Jen1 is no longer degraded, even when glucose is present; instead, Jen1 is recycled back to the plasma membrane. Becuwe and Léon therefore propose that a second level of control of the degradation of plasma membrane proteins occurs in the trans-Golgi network, and so this compartment has an essential role in sorting proteins for degradation or recycling. The group of proteins that Rod1 belongs to, named arrestins, has been suggested to play important roles in several diseases, including diabetes and cancer. As many of the features of the endocytic pathway are conserved in a broad range of species, arrestins may also be important for controlling the fate of membrane proteins at multiple places in mammalian cells. However, further work is required to confirm this. DOI:http://dx.doi.org/10.7554/eLife.03307.002
Collapse
Affiliation(s)
- Michel Becuwe
- Department of Cell Biology, Institut Jacques Monod, Université Paris-Diderot, CNRS, Paris, France
| | - Sébastien Léon
- Department of Cell Biology, Institut Jacques Monod, Université Paris-Diderot, CNRS, Paris, France
| |
Collapse
|
45
|
Brunet S, Sacher M. Are all multisubunit tethering complexes bona fide tethers? Traffic 2014; 15:1282-7. [PMID: 25048641 DOI: 10.1111/tra.12200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 01/15/2023]
Abstract
Since the late 1990s, a number of multisubunit tethering complexes (MTCs) have been described that function in membrane trafficking events: TRAPP I, TRAPP II, TRAPP III, COG, HOPS, CORVET, Dsl1, GARP and exocyst. On the basis of structural and sequence similarities, they have been categorized as complexes associated with tethering containing helical rods (CATCHR) (Dsl1, COG, GARP and exocyst) or non-CATCHR (TRAPP I, II and III, HOPS and CORVET) complexes (Yu IM, Hughson FM. Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 2010;26:137-156). Both acronyms (CATCHR and MTC) imply these complexes tether opposing membranes to facilitate fusion. The main question we will address is: have these complexes been formally demonstrated to function as tethers? If the answer is no, then is it premature or even correct to refer to them as tethers? In this commentary, we will argue that the vast majority of MTCs have not been demonstrated to act as a tether. We propose that a distinction between the terms tether and tethering factor be considered to address this issue.
Collapse
Affiliation(s)
- Stephanie Brunet
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
46
|
Pahari S, Cormark RD, Blackshaw MT, Liu C, Erickson JL, Schultz EA. Arabidopsis UNHINGED encodes a VPS51 homolog and reveals a role for the GARP complex in leaf shape and vein patterning. Development 2014; 141:1894-905. [PMID: 24757006 DOI: 10.1242/dev.099333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Asymmetric localization of PIN proteins controls directionality of auxin transport and many aspects of plant development. Directionality of PIN1 within the marginal epidermis and the presumptive veins of developing leaf primordia is crucial for establishing leaf vein pattern. One mechanism that controls PIN protein distribution within the cell membranes is endocytosis and subsequent transport to the vacuole for degradation. The Arabidopsis mutant unhinged-1 (unh-1) has simpler leaf venation with distal non-meeting of the secondary veins and fewer higher order veins, a narrower leaf with prominent serrations, and reduced root and shoot growth. We identify UNH as the Arabidopsis vacuolar protein sorting 51 (VPS51) homolog, a member of the Arabidopsis Golgi-associated retrograde protein (GARP) complex, and show that UNH interacts with VPS52, another member of the complex and colocalizes with trans Golgi network and pre-vacuolar complex markers. The GARP complex in yeast and metazoans retrieves vacuolar sorting receptors to the trans-Golgi network and is important in sorting proteins for lysosomal degradation. We show that vacuolar targeting is reduced in unh-1. In the epidermal cells of unh-1 leaf margins, PIN1 expression is expanded. The unh-1 leaf phenotype is partially suppressed by pin1 and cuc2-3 mutations, supporting the idea that the phenotype results from expanded PIN1 expression in the marginal epidermis. Our results suggest that UNH is important for reducing expression of PIN1 within margin cells, possibly by targeting PIN1 to the lytic vacuole.
Collapse
Affiliation(s)
- Shankar Pahari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB TIK 3M4, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
48
|
Feinstein M, Flusser H, Lerman-Sagie T, Ben-Zeev B, Lev D, Agamy O, Cohen I, Kadir R, Sivan S, Leshinsky-Silver E, Markus B, Birk OS. VPS53 mutations cause progressive cerebello-cerebral atrophy type 2 (PCCA2). J Med Genet 2014; 51:303-8. [PMID: 24577744 DOI: 10.1136/jmedgenet-2013-101823] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Progressive cerebello-cerebral atrophy (PCCA) leading to profound mental retardation, progressive microcephaly, spasticity and early onset epilepsy, was diagnosed in four non-consanguineous apparently unrelated families of Jewish Moroccan ancestry. Common founder mutation(s) were assumed. METHODS Genome-wide linkage analysis and whole exome sequencing were done, followed by realtime PCR and immunofluorescent microscopy. RESULTS Genome-wide linkage analysis mapped the disease-associated gene to 0.5 Mb on chromosome 17p13.3. Whole exome sequencing identified only two mutations within this locus, which were common to the affected individuals: compound heterozygous mutations in VPS53, segregating as expected for autosomal recessive heredity within all four families, and common in Moroccan Jews (∼1:37 carrier rate). The Golgi-associated retrograde protein (GARP) complex is involved in the retrograde pathway recycling endocytic vesicles to Golgi; c.2084A>G and c.1556+5G>A VPS53 founder mutations are predicted to affect the C-terminal domain of VPS53, known to be critical to its role as part of this complex. Immunofluorescent microscopy demonstrated swollen and abnormally numerous CD63 positive vesicular bodies, likely intermediate recycling/late endosomes, in fibroblasts of affected individuals. CONCLUSIONS Autosomal recessive PCCA type 2 is caused by VPS53 mutations.
Collapse
Affiliation(s)
- Miora Feinstein
- Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hong W, Lev S. Tethering the assembly of SNARE complexes. Trends Cell Biol 2014; 24:35-43. [DOI: 10.1016/j.tcb.2013.09.006] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
|
50
|
Role of retrograde trafficking in stress response, host cell interactions, and virulence of Candida albicans. EUKARYOTIC CELL 2013; 13:279-87. [PMID: 24363364 DOI: 10.1128/ec.00295-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the vacuolar protein sorting complexes Vps51/52/53/54 and Vps15/30/34/38 are essential for efficient endosome-to-Golgi complex retrograde transport. Here we investigated the function of Vps15 and Vps51, representative members of these complexes, in the stress resistance, host cell interactions, and virulence of Candida albicans. We found that C. albicans vps15Δ/Δ and vps51Δ/Δ mutants had abnormal vacuolar morphology, impaired retrograde protein trafficking, and dramatically increased susceptibility to a variety of stressors. These mutants also had reduced capacity to invade and damage oral epithelial cells in vitro and attenuated virulence in the mouse model of oropharyngeal candidiasis. Proteomic analysis of the cell wall of the vps51Δ/Δ mutant revealed increased levels of the Crh11 and Utr2 transglycosylases, which are targets of the calcineurin signaling pathway. The transcript levels of the calcineurin pathway members CHR11, UTR2, CRZ1, CNA1, and CNA2 were elevated in the vps15Δ/Δ and vps51Δ/Δ mutants. Furthermore, these strains were highly sensitive to the calcineurin-specific inhibitor FK506. Also, deletion of CHR11 and UTR2 further increased the stress susceptibility of these mutants. In contrast, overexpression of CRH11 and UTR2 partially rescued their defects in stress resistance, but not host cell interactions. Therefore, intact retrograde trafficking in C. albicans is essential for stress resistance, host cell interactions, and virulence. Aberrant retrograde trafficking stimulates the calcineurin signaling pathway, leading to the increased expression of Chr11 and Utr2, which enables C. albicans to withstand environmental stress.
Collapse
|