1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Yamamoto T. Autophagic stagnation: a key mechanism in kidney disease progression linked to aging and obesity. Clin Exp Nephrol 2025; 29:711-719. [PMID: 40131605 DOI: 10.1007/s10157-025-02653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Autophagy, a critical intracellular degradation and recycling pathway mediated by lysosomes, is essential for maintaining cellular homeostasis through the quality control of proteins and organelles. Our research focused on the role of proximal tubular autophagy in the pathophysiology of aging, obesity, and diabetes. Using a novel method to monitor autophagic flux in kidney tissue, we revealed that age-associated high basal autophagy supports mitochondrial quality control and delays kidney aging. However, an impaired ability to upregulate autophagy under additional stress accelerates kidney aging. In obesity induced by a high-fat diet, lysosomal dysfunction disrupts autophagy, leading to renal lipotoxicity. Although autophagy is initially activated to repair organelle membranes and maintain proximal tubular cell integrity, this demand overwhelms lysosomes, resulting in "autophagic stagnation" characterized by phospholipid accumulation. Similar lysosomal phospholipid accumulation was observed in renal biopsies from elderly and obese patients. We identified TFEB-mediated lysosomal exocytosis as a mechanism to alleviate lipotoxicity by expelling accumulated phospholipids. Therapeutically, interventions such as the SGLT2 inhibitor empagliflozin and eicosapentaenoic acid restore lysosomal function and autophagic activity. Based on these findings, we propose a novel disease concept, "Obesity-Related Proximal Tubulopathy." This study underscores autophagic stagnation as a key driver of kidney disease progression in aging and obesity, offering insights into the pathophysiology of kidney diseases and providing a foundation for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Box D11, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Chen T, Jia Y, Tang Y, Chen J, Xu H, Qi G. Cotton leaf curl Multan virus activates autophagy in the whitefly AsiaII7, weakening its vectorial capacity for transmission. PEST MANAGEMENT SCIENCE 2025; 81:3039-3047. [PMID: 39871813 DOI: 10.1002/ps.8674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Autophagy plays an important role against pathogen infections in both insects and plants. Insect vectors employ autophagy as an intrinsic antiviral defense mechanism against viral infections, whereas viruses can exploit autophagy to enhance their transmission via insect vectors. The Cotton leaf curl Multan virus (CLCuMuV) is transmitted by the AsiaII7 cryptic species of Bemisia tabaci, however, the role of autophagy is involved in regulating the transmission of this virus remains unclear. RESULT In this study, it was observed that CLCuMuV infection induced autophagy in AsiaII7 whitefly, as evidenced by an elevated in the level of ATG8-II and the upregulation of Atg3, Atg8, Atg9 and Atg12. Both the administration of the autophagy inhibitor bafilomycin A1 and the silencing of Atg9 expression increased the viral load and enhanced CLCuMuV transmission. Conversely, the activation of autophagy via rapamycin feeding significantly reduced the amount of CLCuMuV and inhibited the efficiency of virus transmission. CONCLUSION CLCuMuV infection can activate the autophagy pathway in whiteflies. The activation of autophagy leads to the subsequent degradation of the virus and suppresses CLCuMuV transmission efficiency, whereas suppression of autophagy promotes virus transmission. Our research provides insight into the potential role of autophagy in antiviral defense mechanisms. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Yanbo Jia
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
- Department of Life Sciences, Heibei University, Baoding, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Haiyun Xu
- Department of Life Sciences, Heibei University, Baoding, China
| | - Guojun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| |
Collapse
|
4
|
ALKhemeiri N, Eljack S, Saber-Ayad MM. Perspectives of Targeting Autophagy as an Adjuvant to Anti-PD-1/PD-L1 Therapy for Colorectal Cancer Treatment. Cells 2025; 14:745. [PMID: 40422248 DOI: 10.3390/cells14100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, with increasing incidence and mortality rates. Standard conventional treatments for CRC are surgery, chemotherapy, and radiotherapy. Recently, immunotherapy has been introduced as a promising alternative to CRC treatment that utilizes patients' immune system to combat cancer cells. The beneficial effect of immune checkpoint inhibitors, specifically anti-PD-1/ PD-L1, has been ascribed to the abundance of DNA replication errors that result in the formation of neoantigens. Such neoantigens serve as distinct flags that amplify the immune response when checkpoint inhibitors (ICIs) are administered. DNA replication errors in CRC patients are expressed as two statuses: the first is the deficient mismatch repair (MSI-H/dMMR) with a higher overall immune response and survival rate than the second status of patients with proficient mismatch repair (MSS/pMMR). There is a limitation to using anti-PD-1/PD-L1 as it is only confined to MSI-H/dMMR, where there is an abundance of T-cell inhibitory ligands (PD-L1). This calls for investigating new therapeutic interventions to widen the scope of ICIs' role in the treatment of CRC. Autophagy modulation provides a good example. Autophagy is a cellular process that plays a crucial role in maintaining cellular homeostasis and has been studied for its impact on tumor development, progression, and response to treatment. In this review, we aim to highlight autophagy as a potential determinant in tumor immune response and to study the impact of autophagy on the tumor immune microenvironment. Moreover, we aim to investigate the value of a combination of anti-PD-1/PD-L1 agents with autophagy modulators as an adjuvant therapeutic approach for CRC treatment.
Collapse
Affiliation(s)
- Nasrah ALKhemeiri
- College of Graduate Studies, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sahar Eljack
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Maha Mohamed Saber-Ayad
- College of Graduate Studies, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo 12211, Egypt
| |
Collapse
|
5
|
Oettinger D, Yamamoto A. Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Cheong LYT, Saipuljumri EN, Loi GWZ, Zeng J, Lo CH. Autolysosomal Dysfunction in Obesity-induced Metabolic Inflammation and Related Disorders. Curr Obes Rep 2025; 14:43. [PMID: 40366502 PMCID: PMC12078456 DOI: 10.1007/s13679-025-00638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF REVIEW Obesity is a global health crisis affecting individuals across all age groups, significantly increasing the risk of metabolic disorders such as type 2 diabetes (T2D), metabolic dysfunction-associated fatty liver disease (MAFLD), and cardiovascular diseases. The World Health Organization reported in 2022 that 2.5 billion adults were overweight, with 890 million classified as obese, emphasizing the urgent need for effective interventions. A critical aspect of obesity's pathophysiology is meta-inflammation-a chronic, systemic low-grade inflammatory state driven by excess adipose tissue, which disrupts metabolic homeostasis. This review examines the role of autolysosomal dysfunction in obesity-related metabolic disorders, exploring its impact across multiple metabolic organs and evaluating potential therapeutic strategies that target autophagy and lysosomal function. RECENT FINDINGS Emerging research highlights the importance of autophagy in maintaining cellular homeostasis and metabolic balance. Obesity-induced lysosomal dysfunction impairs the autophagic degradation process, contributing to the accumulation of damaged organelles and toxic aggregates, exacerbating insulin resistance, lipotoxicity, and chronic inflammation. Studies have identified autophagic defects in key metabolic tissues, including adipose tissue, skeletal muscle, liver, pancreas, kidney, heart, and brain, linking autophagy dysregulation to the progression of metabolic diseases. Preclinical investigations suggest that pharmacological and nutritional interventions-such as AMPK activation, caloric restriction mimetics, and lysosomal-targeting compounds-can restore autophagic function and improve metabolic outcomes in obesity models. Autolysosomal dysfunction is a pivotal contributor to obesity-associated metabolic disorders , influencing systemic inflammation and metabolic dysfunction. Restoring autophagy and lysosomal function holds promise as a therapeutic strategy to mitigate obesity-driven pathologies. Future research should focus on translating these findings into clinical applications, optimizing targeted interventions to improve metabolic health and reduce obesity-associated complications.
Collapse
Affiliation(s)
- Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | | | - Gavin Wen Zhao Loi
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
7
|
Bensalem J, Teong XT, Hattersley KJ, Hein LK, Fourrier C, Dang LVP, Singh S, Liu K, Wittert GA, Hutchison AT, Heilbronn LK, Sargeant TJ. Intermittent time-restricted eating may increase autophagic flux in humans: an exploratory analysis. J Physiol 2025; 603:3019-3032. [PMID: 40345145 DOI: 10.1113/jp287938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Autophagy slows age-related pathologies and is stimulated by nutrient restriction in animal studies. However, this has never been shown in humans. We measured autophagy using a physiologically relevant measure of autophagic flux (flux of MAP1LC3B isoform II/LC3B-II in peripheral blood mononuclear cells in the context of whole blood) in 121 humans with obesity who were randomised to standard care (SC, control condition), calorie restriction (CR) or intermittent fasting plus time-restricted eating (iTRE) for 6 months. While the differences in change from baseline between groups was not significant at 2 months, we observed a significant difference in change from baseline between iTRE compared to SC at 6 months (P = 0.04, post hoc analysis). This effect may be driven partly by a tendency for autophagy to decrease in the SC group. The difference in change from baseline between CR and SC was not significant. Uncorrected analysis of correlations showed a negative relationship between change in autophagy and change in blood triglycerides. Data on the specificity and performance of the methods used to measure human autophagy are also presented. This shows autophagy may be increased by intermittent nutrient restriction in humans. If so, this is a demonstration that nutrient restriction can be used to improve a primary hallmark of biological ageing and provides a mechanism for how fasting could delay the onset of age-related disease. KEY POINTS: Autophagy slows biological ageing, and dysfunction of autophagy has been implicated in age-related disease - an effective way of increasing autophagy in cells and animal models is nutrient restriction. However, the impact of different types of nutrient restriction on physiological autophagic flux in humans has not been extensively researched. Here we measure the effect of intermittent time-restricted eating (iTRE) and calorie restriction on physiological autophagic flux in peripheral blood mononuclear cells. After 6 months, there was a significant difference in change from baseline between the iTRE and the standard care control group, with flux being higher in the iTRE group at this timepoint. However, there was no significant increase from baseline within the iTRE group, showing that although autophagy may be modified by nutrient restriction in humans, further studies are required.
Collapse
Affiliation(s)
- Julien Bensalem
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Xiao Tong Teong
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Kathryn J Hattersley
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Leanne K Hein
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Célia Fourrier
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Linh V P Dang
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Sanjna Singh
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Kai Liu
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Gary A Wittert
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Amy T Hutchison
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Timothy J Sargeant
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Yang L, Guo C, Zheng Z, Dong Y, Xie Q, Lv Z, Li M, Lu Y, Guo X, Deng R, Liu Y, Feng Y, Mu R, Zhang X, Ma H, Chen Z, Zhang Z, Dong Z, Yang W, Zhang X, Cui Y. Stress dynamically modulates neuronal autophagy to gate depression onset. Nature 2025; 641:427-437. [PMID: 40205038 PMCID: PMC12058529 DOI: 10.1038/s41586-025-08807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
Chronic stress remodels brain homeostasis, in which persistent change leads to depressive disorders1. As a key modulator of brain homeostasis2, it remains elusive whether and how brain autophagy is engaged in stress dynamics. Here we discover that acute stress activates, whereas chronic stress suppresses, autophagy mainly in the lateral habenula (LHb). Systemic administration of distinct antidepressant drugs similarly restores autophagy function in the LHb, suggesting LHb autophagy as a common antidepressant target. Genetic ablation of LHb neuronal autophagy promotes stress susceptibility, whereas enhancing LHb autophagy exerts rapid antidepressant-like effects. LHb autophagy controls neuronal excitability, synaptic transmission and plasticity by means of on-demand degradation of glutamate receptors. Collectively, this study shows a causal role of LHb autophagy in maintaining emotional homeostasis against stress. Disrupted LHb autophagy is implicated in the maladaptation to chronic stress, and its reversal by autophagy enhancers provides a new antidepressant strategy.
Collapse
Affiliation(s)
- Liang Yang
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Chen Guo
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhiwei Zheng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yiyan Dong
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qifeng Xie
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zijian Lv
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Min Li
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xiaonan Guo
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongshan Deng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqin Liu
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yirong Feng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Mu
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xuliang Zhang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Huan Ma
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institute of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaoqi Dong
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangnan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Yihui Cui
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Ling LA, Boukhalfa A, Kung AH, Yang VK, Chen HH. Advances in Targeted Autophagy Modulation Strategies to Treat Cancer and Associated Treatment-Induced Cardiotoxicity. Pharmaceuticals (Basel) 2025; 18:671. [PMID: 40430490 PMCID: PMC12114528 DOI: 10.3390/ph18050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in cellular homeostasis and human diseases. Cardiovascular dysfunction, which presents during cancer treatment or in cancer-free individuals years after treatment, is a growing clinical challenge. Millions of cancer survivors and patients face an unpredictable risk of developing cardiotoxicity. Cardiotoxicity due to cancer treatment, as well as cancer progression, has been linked to autophagy dysregulation. Modulating autophagy has been further proposed as a therapeutic treatment for both cancer and cardiovascular disorders. The safe and effective use of autophagy modulation as a cardioprotective strategy during cancer treatment especially requires careful consideration and experimentation to minimize the impact on cancer treatment. We focus here on recent advances in targeted autophagy modulation strategies that utilize interdisciplinary approaches in biomedical sciences and are potentially translatable to treat cardiotoxicity and improve cancer treatment outcomes. This review highlights non-small molecule autophagy modulators to enhance targeted therapy, nanomedicine for autophagy modulation and monitoring, and in vitro models and future experiments needed to bring novel autophagy discoveries from basic research to clinical translation.
Collapse
Affiliation(s)
- Lauren A. Ling
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
- School of Medicine, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| | - Asma Boukhalfa
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
| | - Andrew H. Kung
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
| | - Vicky K. Yang
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA 01536, USA;
| | - Howard H. Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
- School of Medicine, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
10
|
Shao GC, Chen ZL, Lu S, Wu QC, Sheng Y, Wang J, Ma Y, Sui JH, Chi H, Qi XB, He SM, Du LL, Dong MQ. Global analysis of protein and small-molecule substrates of ubiquitin-like proteins (UBLs). Mol Cell Proteomics 2025:100975. [PMID: 40254064 DOI: 10.1016/j.mcpro.2025.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Ubiquitin-like proteins (UBLs) constitute a family of evolutionarily conserved proteins that share similarities with ubiquitin in 3D structures and modification mechanisms. For most UBLs including Small-Ubiquitin-like Modifiers (SUMO), their modification sites on substrate proteins cannot be identified using the mass spectrometry-based method that has been successful for identifying ubiquitination sites, unless a UBL protein is mutated accordingly. To identify UBL modification sites without having to mutate UBL, we have developed a dedicated search engine pLink-UBL on the basis of pLink, a software tool for identification of cross-linked peptide pairs. pLink-UBL exhibited superior precision, sensitivity, and speed than "make-do" search engines such as MaxQuant, pFind, and pLink. For example, compared to MaxQuant, pLink-UBL increased the number of identified SUMOylation sites by 50 ∼ 300% from the same datasets. Additionally, we present a method for identifying small-molecule modifications of UBLs. This method involves antibody enrichment of a UBL C-terminal peptide following enrichment of a UBL protein, followed by LC-MS/MS analysis and a pFind 3 blind search to identify unexpected modifications. Using this method, we have discovered non-protein substrates of SUMO, of which spermidine is the major one for fission yeast SUMO Pmt3. Spermidine can be conjugated to the C-terminal carboxylate group of Pmt3 through its N1 or also likely, N8 amino group in the presence of SUMO E1, E2, and ATP. Pmt3-spermidine conjugation does not require E3 and can be reversed by SUMO isopeptidase Ulp1. SUMO-spermidine conjugation is present in mice and humans. Also, spermidine can be conjugated to ubiquitin in vitro by E1 and E2 in the presence of ATP. The above observations suggest that spermidine may be a common small molecule substrate of SUMO and possibly ubiquitin across eukaryotic species.
Collapse
Affiliation(s)
- Guang-Can Shao
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100190, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Qing-Cui Wu
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Yao Sheng
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Jing Wang
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Jian-Hua Sui
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100190, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Bing Qi
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Si-Min He
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100190, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
11
|
Zhao K, Chan ITC, Tse EHY, Xie Z, Cheung TH, Zeng YA. Autophagy in adult stem cell homeostasis, aging, and disease therapy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:14. [PMID: 40208372 PMCID: PMC11985830 DOI: 10.1186/s13619-025-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
Autophagy is a crucial cellular process that facilitates the degradation of damaged organelles and protein aggregates, and the recycling of cellular components for the energy production and macromolecule synthesis. It plays an indispensable role in maintaining cellular homeostasis. Over recent decades, research has increasingly focused on the role of autophagy in regulating adult stem cells (SCs). Studies suggest that autophagy modulates various cellular processes and states of adult SCs, including quiescence, proliferation, self-renewal, and differentiation. The primary role of autophagy in these contexts is to sustain homeostasis, withstand stressors, and supply energy. Notably, the dysfunction of adult SCs during aging is correlated with a decline in autophagic activity, suggesting that autophagy is also involved in SC- and aging-associated disorders. Given the diverse cellular processes mediated by autophagy and the intricate mechanisms governing adult SCs, further research is essential to elucidate both universal and cell type-specific regulatory pathways of autophagy. This review discusses the role of autophagy in regulating adult SCs during quiescence, proliferation, self-renewal, and differentiation. Additionally, it summarizes the relationship between SC aging and autophagy, providing therapeutical insights into treating and ameliorating aging-associated diseases and cancers, and ultimately promoting longevity.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Indigo T C Chan
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Zhiyao Xie
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Canova PN, Katzenell S, Cerón S, Charron AJ, Pesola JM, Oh HS, Coen DM, Knipe DM, Leib DA. Regulation of the innate immune response in human neurons by ICP34.5 maintains herpes simplex virus 1 latency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647253. [PMID: 40291710 PMCID: PMC12026746 DOI: 10.1101/2025.04.04.647253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Herpes simplex virus 1 (HSV-1) establishes latent infections in sensory neurons, from which HSV sporadically reactivates due to external stress and other stimuli. Latency and reactivation are studied through in vivo models in a variety of hosts, as well as in vitro models using primary neurons, and neurons derived from pluripotent stem cells (iPSCs). These systems behave disparately, but the reasons remain unknown. The interferon (IFN)-based neuronal innate immune response is critical in controlling HSV-1 replication and HSV-1 counters these responses in part through infectedcell protein 34.5 (ICP34.5). ICP34.5 also promotes neurovirulence by preventing host translational shutoff and interfering with host cell autophagy. Here we demonstrate in a human iPSC neuronal model that sustaining host translation is the key activity of ICP34.5 for enhancement of reactivation. Specifically, our data shows that ICP34.5 was key for maintenance of HSV-1 latency. While interaction of ICP34.5 with the autophagy regulator Beclin 1 was important for maintaining latency, this was not due to modulation of bulk autophagy. Our work from primary mouse neurons suggested that the major effect of ICP34.5 on latency maintenance occurs in an IRF3/7-dependent manner. Notably, the role of ICP34.5 in regulating latency and reactivation differs between neurons derived from human iPSCs (iNeurons) and primary mouse trigeminal (TG) neurons. This highlights the importance of selecting an appropriate neuronal model and validating experimental outcomes in multiple models.
Collapse
|
13
|
Acosta Ingram D, Turkes E, Kim TY, Vo S, Sweeney N, Bonte MA, Rutherford R, Julian DL, Pan M, Marsh J, Argouarch AR, Wu M, Scharre DW, Bell EH, Honig LS, Vonsattel JP, Serrano GE, Beach TG, Karch CM, Kao AW, Hester ME, Han X, Fu H. GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau. Nat Commun 2025; 16:3312. [PMID: 40204713 PMCID: PMC11982250 DOI: 10.1038/s41467-025-58585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Lipid dyshomeostasis and tau pathology are present in frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). However, the relationship between lipid dyshomeostasis and tau pathology remains unclear. We report that GRAM Domain Containing 1B (GRAMD1B), a nonvesicular cholesterol transporter, is increased in excitatory neurons of human neural organoids (HNOs) with the MAPT R406W mutation. Human FTLD, AD cases, and PS19 tau mice also have increased GRAMD1B expression. We show that overexpression of GRAMD1B increases levels of free cholesterol, lipid droplets, and impairs autophagy flux. Modulating GRAMD1B in iPSC-derived neurons also alters key autophagy-related components such as PI3K, phospho-AKT, and p62, as well as phosphorylated tau, and CDK5R1. Blocking GRAMD1B function decreases free cholesterol and lipid droplets. Knocking down GRAMD1B additionally reduces phosphorylated tau, and CDK5R1 expression. Our findings elucidate the role of GRAMD1B in the nervous system and highlight its relevance to FTLD and AD.
Collapse
Affiliation(s)
- Diana Acosta Ingram
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Emir Turkes
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheeny Vo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicholas Sweeney
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Marie-Amandine Bonte
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea R Argouarch
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Erica H Bell
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jean Paul Vonsattel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Aimee W Kao
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Karpova A, Hiesinger PR, Kuijpers M, Albrecht A, Kirstein J, Andres-Alonso M, Biermeier A, Eickholt BJ, Mikhaylova M, Maglione M, Montenegro-Venegas C, Sigrist SJ, Gundelfinger ED, Haucke V, Kreutz MR. Neuronal autophagy in the control of synapse function. Neuron 2025; 113:974-990. [PMID: 40010347 DOI: 10.1016/j.neuron.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Neurons are long-lived postmitotic cells that capitalize on autophagy to remove toxic or defective proteins and organelles to maintain neurotransmission and the integrity of their functional proteome. Mutations in autophagy genes cause congenital diseases, sharing prominent brain dysfunctions including epilepsy, intellectual disability, and neurodegeneration. Ablation of core autophagy genes in neurons or glia disrupts normal behavior, leading to motor deficits, memory impairment, altered sociability, and epilepsy, which are associated with defects in synapse maturation, plasticity, and neurotransmitter release. In spite of the importance of autophagy for brain physiology, the substrates of neuronal autophagy and the mechanisms by which defects in autophagy affect synaptic function in health and disease remain controversial. Here, we summarize the current state of knowledge on neuronal autophagy, address the existing controversies and inconsistencies in the field, and provide a roadmap for future research on the role of autophagy in the control of synaptic function.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - P Robin Hiesinger
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Albrecht
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Janine Kirstein
- Leibniz Institute on Aging-Fritz-Lipmann-Institute, 07754 Jena, Germany; Friedrich-Schiller-Universität, Institute for Biochemistry & Biophysics, 07745 Jena, Germany
| | - Maria Andres-Alonso
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Britta J Eickholt
- Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marina Mikhaylova
- Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Marta Maglione
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Volker Haucke
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
15
|
Miyazaki J, Wagatsuma R, Okamoto K. Photothermal imaging of cellular responses to glucose deprivation. RSC Chem Biol 2025; 6:571-582. [PMID: 39927218 PMCID: PMC11801213 DOI: 10.1039/d4cb00269e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
In solid tumours, cancer cells modify their metabolic processes to endure environments with nutrient and oxygen scarcity due to inadequate blood flow. A thorough understanding of this adaptive mechanism, which requires reliable microscopic techniques, is crucial for developing effective cancer treatments. In the present study, we used multi-wavelength photothermal (PT) microscopy to visualise the cellular response to glucose deprivation in living cells derived from cervical cancer. We found increased mitochondrial PT signal intensity under glucose deprivation conditions, which is indicative of a correlation between mitochondrial crista density and PT signal intensity. Furthermore, PT microscopy revealed that the activity of the autophagy-lysosome system can be evaluated by detecting substances accumulated in lysosomes. Using this method, we confirmed that ferritin and denatured proteins from the endoplasmic reticulum were present within the lysosomes. The detectability of these substances using PT microscopy at visible wavelengths indicated the presence of iron ions. This method does not require labeling of molecules and provides reliable information and detailed insights into the cellular responses associated with the adaptation of cancer cell metabolism to nutrient stress conditions.
Collapse
Affiliation(s)
- Jun Miyazaki
- Faculty of Systems Engineering, Wakayama University Wakayama 640-8510 Japan
| | - Ryotaro Wagatsuma
- Faculty of Systems Engineering, Wakayama University Wakayama 640-8510 Japan
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University Osaka 565-0871 Japan
| |
Collapse
|
16
|
Sencha LM, Karpova MA, Dobrynina OE, Balalaeva IV. Cell-type dependent effect of 3D collagen matrix on cancer cell resistance to suboptimal conditions: the case of serum deprivation, glucose starvation, and hypoxia. Tissue Cell 2025; 93:102719. [PMID: 39823703 DOI: 10.1016/j.tice.2024.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/13/2024] [Accepted: 12/29/2024] [Indexed: 01/20/2025]
Abstract
The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds. However, the role of the ECM in tumor cell adaptation to nutritional deficiencies and hypoxic conditions remains significantly less studied. Since it is generally accepted that tumor cells resistance increases when cultured in a three-dimensional matrix, we sought to experimentally test the universality of this statement. In this work, we analyzed the responses of tumor cells with varying origins and proliferative activities, including human bladder carcinoma, epidermoid carcinoma, and ovarian carcinoma, to deprivation of serum, glucose and oxygen. We compared cell resistance to suboptimal conditions when cultured in a monolayer on tissue culture (TC)-treated polystyrene, on collagen-coated surfaces, or within a three-dimensional hydrogel composed of collagen type I. All three cell lines were stably transfected with fluorescent protein genes. To register the cell growth dynamics, we used a fluorescence-based technique that allows long-term quantitative observations without disrupting the hydrogel. The analyzed cell lines demonstrated different patterns of relative sensitivity to suboptimal conditions. We revealed that the direction and intensity of the collagen matrix effect depend on the cell type. Slowly proliferating ovarian carcinoma cells showed no noticeable changes in their behavior when cultured in a gel compared to a monolayer. In the case of bladder carcinoma, we registered predominantly resistance-stimulating effect of the collagen matrix, but it was significant only under serum deprivation. The most pronounced effect of collagen was registered for epidermoid carcinoma. Importantly, this effect was ambivalent: gel-embedded cells demonstrated significantly enhanced resistance to serum deprivation, but, at the same time, they were more responsive to glucose starvation and hypoxic conditions. We attribute the registered phenomenon to the individual characteristics of tumor cells with different origins and metabolic activities.
Collapse
Affiliation(s)
- Ludmila M Sencha
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria A Karpova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga E Dobrynina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
17
|
Gambarotto L, Wosnitzka E, Nikoletopoulou V. The Life and Times of Brain Autophagic Vesicles. J Mol Biol 2025:169105. [PMID: 40154918 DOI: 10.1016/j.jmb.2025.169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Most of the knowledge on the mechanisms and functions of autophagy originates from studies in yeast and other cellular models. How this valuable information is translated to the brain, one of the most complex and evolving organs, has been intensely investigated. Fueled by the tight dependence of the mammalian brain on autophagy, and the strong links of human brain diseases with autophagy impairment, the field has revealed adaptations of the autophagic machinery to the physiology of neurons and glia, the highly specialized cell types of the brain. Here, we first provide a detailed account of the tools available for studying brain autophagy; we then focus on the recent advancements in understanding how autophagy is regulated in brain cells, and how it contributes to their homeostasis and integrated functions. Finally, we discuss novel insights and open questions that the new knowledge has raised in the field.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
18
|
Tan ZY, Adade JKA, Gu X, Hecht CJS, Salcius M, Tong B, Liu S, Hwang S, Zécri FJ, Graham DB, Schreiber SL, Xavier RJ. Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator. Cell Chem Biol 2025; 32:498-510.e35. [PMID: 39753134 PMCID: PMC11928285 DOI: 10.1016/j.chembiol.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 03/23/2025]
Abstract
Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library. We deployed this strategy to modulate ATG16L1 T300A, which confers genetic susceptibility to Crohn's disease (CD), and identified a compound that stabilizes the variant protein against caspase-3 (Casp3) cleavage in a FKBP12-independent manner. We demonstrate in cellular models that this compound potentiates autophagy, and reverses the xenophagy defects as well as increased cytokine secretion characteristic of ATG16L1 T300A. This study provides a platform to access unexplored chemical space for CIP design to develop therapeutic modalities guided by human genetics.
Collapse
Affiliation(s)
- Zher Yin Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joel K A Adade
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xiebin Gu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cody J S Hecht
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Salcius
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Bingqi Tong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuang Liu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Seungmin Hwang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Frédéric J Zécri
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Arena BioWorks, Cambridge, MA 02139, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
19
|
Stott-Marshall RJ, McBeth C, Wileman T. Dynamic regulation of autophagy during Semliki Forest virus infection of neuroblastoma cells. J Gen Virol 2025; 106:002086. [PMID: 40042894 PMCID: PMC11882037 DOI: 10.1099/jgv.0.002086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 05/13/2025] Open
Abstract
Autophagy can defend against infection by delivering viruses to lysosomes for degradation. Semliki Forest virus (SFV) is a positive-sense, single-stranded RNA virus of the alphavirus genus which has been used extensively as a model for arbovirus infection and neuronal encephalitis. Here, we show that autophagy is suppressed during the early hours of SFV infection of neurons. We also show that a switch between autophagy suppression and upregulation between the early and later stages was mediated through modulation of the mammalian target of rapamycin (mTOR) activity during infection. At later stages of infection, autophagosomes colocalize with SFV nonstructural proteins suggesting the formation of a platform for virus replication. Inhibition of mTOR by torin reduced infectious virus production and intracellular virus gene expression while improving cell survival during infection. The results suggest that autophagy is suppressed early during infection of neurons to increase cell survival and then upregulated at later times to facilitate replication. This biphasic regulation of autophagy seen for SFV may be important for other arboviruses, and knowledge about the regulation of autophagy by alphaviruses may be useful for the development of antiviral therapies.
Collapse
Affiliation(s)
- Robert J. Stott-Marshall
- One Virology, School of Veterinary Science and Medicine, University of Nottingham, Nottingham, LE12 5RD, UK
- School of Health, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Craig McBeth
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
20
|
Mandal N, Das A, Datta R. Unravelling a mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in Mucopolysaccharidosis VII. Neurobiol Dis 2025; 206:106825. [PMID: 39909083 DOI: 10.1016/j.nbd.2025.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Cognitive disability and neurodegeneration are prominent symptoms of Mucopolysaccharidosis VII (MPS VII), a lysosomal storage disorder caused by β-glucuronidase enzyme deficiency. Yet, the mechanism of neurodegeneration in MPS VII remains unclear thereby limiting the scope of targeted therapy. We aimed to bridge this knowledge gap by employing the β-glucuronidase-deficient (CG2135-/-) Drosophila model of MPS VII. Taking cues from our initial observation that the adult CG2135-/- flies displayed enhanced susceptibility to starvation, we investigated potential impairments in the autophagy-lysosomal clearance machinery in their brain to dissect the underlying cause of neurodegeneration. We found that both autophagosome biogenesis and lysosome-mediated autophagosomal turnover were impaired in the CG2135-/- fly brain. This was evidenced by lower Atg8a-II levels, reduced Atg1 and Ref(2)P expression along with accumulation of lipofuscin-like inclusions and multilamellar bodies. Mitophagy was also found to be defective in their brain, resulting in buildup of enlarged mitochondria with distorted cristae and reduced membrane potential. This, in turn, compromised mitochondrial function, as reflected by drastically reduced brain ATP levels. Energy depletion triggered apoptosis in neuronal as well as non-neuronal cells of the CG2135-/- fly brain, where apoptotic dopaminergic neurons were also detected. Interestingly, resveratrol treatment corrected the mitophagy defect and prevented ATP depletion in the CG2135-/- fly brain, providing an explanation for its neuroprotective effects. Collectively, our study reveals a pharmacologically targetable mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in MPS VII.
Collapse
Affiliation(s)
- Nishan Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, INDIA.
| |
Collapse
|
21
|
Khan N, Li Z, Ali A, Quan B, Kang J, Ullah M, Yin XJ, Shafiq M. Comprehensive transcriptomic analysis of myostatin-knockout pigs: insights into muscle growth and lipid metabolism. Transgenic Res 2025; 34:12. [PMID: 39979478 DOI: 10.1007/s11248-025-00431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Pigs are a vital source of protein worldwide, contributing approximately 43% of global meat production. Recent genetic advancements in the myostatin (MSTN) gene have facilitated the development of double-muscling traits in livestock. In this study, we investigate the transcriptomic profiles of second-generation MSTN-knockout (MSTN-/-) pigs, generated through CRISPR/Cas9 gene editing and somatic cell nuclear transfer (SCNT). Using RNA sequencing, we compared the transcriptomic landscapes of muscle tissues from MSTN-/- pigs and wild-type (WT) counterparts. The sequencing yielded an average unique read mapping rate of 86.7% to the Sus scrofa reference genome. Our analysis revealed 15,142 differentially expressed genes (DEGs), including 121 novel genes, with 2554 genes upregulated and 1629 downregulated in the MSTN-/- group relative to the wild-type group. Notable transcriptomic changes were identified in genes associated with muscle development, lipid metabolism, and other physiological processes. These findings provide valuable insights into the molecular consequences of MSTN inactivation, with potential applications in the optimization of livestock breeding and advancements in biomedical research.
Collapse
Affiliation(s)
- Nasar Khan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhouyan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Akbar Ali
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Biaohu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Jindan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Munib Ullah
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Department of Animal Science, Yanbian University, Yanji, Jilin, 133002, China.
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
22
|
Gao X, Xiong Y, Ma H, Zhou H, Liu W, Sun Q. Visualizing bulk autophagy in vivo by tagging endogenous LC3B. Autophagy 2025:1-17. [PMID: 39952286 DOI: 10.1080/15548627.2025.2457910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025] Open
Abstract
Macroautophagy/autophagy plays a crucial role in maintaining cellular and organismal health, making the measurement of autophagy flux in vivo essential for its study. Current tools often depend on the overexpression of autophagy probes. In this study, we developed a knock-in mouse model, termed tfLC3-KI, by inserting a tandem fluorescent tag coding sequence into the native Map1lc3b gene locus. We found that tfLC3-KI mice exhibit optimal expression of mRFP-eGFP-LC3B, allowing for convenient measurement of autophagic structures and flux at single-cell resolution, both in vivo and in primary cell cultures. Additionally, we compared autophagy in neurons and glial cells across various brain regions between tfLC3-KI mice and CAG-tfLC3 mice, the latter overexpressing the probe under the strong CMV promoter. Finally, we used tfLC3-KI mice to map the spatial and temporal dynamics of basal autophagy activity in the reproductive system. Our findings highlight the value of the tfLC3-KI mouse model for investigating autophagy flux in vivo and demonstrate the feasibility of tagging endogenous proteins to visualize autophagic structures and flux in both bulk and selective autophagy research in vivo.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; EBSS: Earle's balanced salt solution; Es: elongating spermatids; HPF: hippocampalformation; HY: hypothalamus; LCs: leydig cells; OLF: olfactory areas; PepA: pepstatin A; Rs: round spermatids; SCs: sertoli cells; Spc: spermatocytes; Spg: spermatogonia; tfLC3: tandem fluorescently tagged mRFP-eGFP-LC3; TH: thalamus.
Collapse
Affiliation(s)
- Xiukui Gao
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yue Xiong
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hangbin Ma
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hao Zhou
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiming Sun
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Xu P, He Z, Gao X, Zeng X, Wei D, Long X, Yu Y. Research on the Expression of Immune-Related Genes at Different Stages in the Third-Instar Larvae of Spodoptera frugiperda Infected by Metarhizium rileyi. INSECTS 2025; 16:199. [PMID: 40003829 PMCID: PMC11856804 DOI: 10.3390/insects16020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Spodoptera frugiperda is a major migratory agricultural pest that poses a significant threat to global crop safety. Metarhizium rileyi has emerged as an effective biocontrol agent against lepidopteran pests. In this study, we examined the immune responses of third-instar S. frugiperda larvae at various stages of an M. rileyi infection. Using RNA-seq and microscopic observation, we identified the immune-related pathways enriched at different infection stages, which were further validated by a qRT-PCR. Our findings revealed the following immune responses during infection: During the stage when M. rileyi penetrated the host cuticle (0-48 h), the genes related to energy metabolism, detoxification, and melanization were upregulated. Meanwhile, the TOLL and IMD signaling pathways were activated to counter the infection. During the stage of M. rileyi's internal infection (48-96 h), which was the peak expression period of the immune-related genes, cellular immunity predominated. Hemocytes encapsulated and phagocytosed the hyphal bodies. Phagocytosis was enhanced through the upregulation of the genes related to ROS and the melanization-related genes, as well as the genes involved in insect hormone biosynthesis. During the stage when M. rileyi grew from the inside to the outside of the host (96-120 h), immune system paralysis resulted in host mortality. These findings deepen our understanding of the immune interactions between M. rileyi and S. frugiperda, support the potential of M. rileyi as an effective biocontrol agent, and provide a theoretical foundation for the development of targeted biopesticides for pests using biotechnological approaches.
Collapse
Affiliation(s)
- Pengfei Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhan He
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xuyuan Gao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xianru Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dewei Wei
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiuzhen Long
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yonghao Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
24
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
Acheson J, Joanisse S, Sale C, Hodson N. Recycle, repair, recover: the role of autophagy in modulating skeletal muscle repair and post-exercise recovery. Biosci Rep 2025; 45:1-30. [PMID: 39670455 PMCID: PMC12096956 DOI: 10.1042/bsr20240137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Skeletal muscle is a highly plastic tissue that can adapt relatively rapidly to a range of stimuli. In response to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are disrupted and undergo a period of ultrastructural remodeling to regain full physiological function, normally within 7 days. The mechanisms that underpin this remodeling are believed to be a combination of cellular processes including ubiquitin-proteasome/calpain-mediated degradation, immune cell infiltration, and satellite cell proliferation/differentiation. A relatively understudied system that has the potential to be a significant contributing mechanism to repair and recovery is the autophagolysosomal system, an intracellular process that degrades damaged and redundant cellular components to provide constituent metabolites for the resynthesis of new organelles and cellular structures. This review summarizes our current understanding of the autophagolysosomal system in the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical models of how this system may interact with other processes involved in skeletal muscle remodeling and provide avenues for future research to improve our understanding of autophagy in human skeletal muscle.
Collapse
Affiliation(s)
- Jordan Acheson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K.
| | - Sophie Joanisse
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, U.K.
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K.
| | - Nathan Hodson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K.
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Jia Y, Li R, Li Y, Kachler K, Meng X, Gießl A, Qin Y, Zhang F, Liu N, Andreev D, Schett G, Bozec A. Melanoma bone metastasis-induced osteocyte ferroptosis via the HIF1α-HMOX1 axis. Bone Res 2025; 13:9. [PMID: 39814705 PMCID: PMC11735842 DOI: 10.1038/s41413-024-00384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 01/30/2025] Open
Abstract
Osteocytes are the main cells in mineralized bone tissue. Elevated osteocyte apoptosis has been observed in lytic bone lesions of patients with multiple myeloma. However, their precise contribution to bone metastasis remains unclear. Here, we investigated the pathogenic mechanisms driving melanoma-induced osteocyte death. Both in vivo models and in vitro assays were combined with untargeted RNA sequencing approaches to explore the pathways governing melanoma-induced osteocyte death. We could show that ferroptosis is the primary mechanism behind osteocyte death in the context of melanoma bone metastasis. HMOX1 was identified as a crucial regulatory factor in this process, directly involved in inducing ferroptosis and affecting osteocyte viability. We uncover a non-canonical pathway that involves excessive autophagy-mediated ferritin degradation, highlighting the complex relationship between autophagy and ferroptosis in melanoma-induced osteocyte death. In addition, HIF1α pathway was shown as an upstream regulator, providing a potential target for modulating HMOX1 expression and influencing autophagy-dependent ferroptosis. In conclusion, our study provides insight into the pathogenic mechanisms of osteocyte death induced by melanoma bone metastasis, with a specific focus on ferroptosis and its regulation. This would enhance our comprehension of melanoma-induced osteocyte death.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rui Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Li
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Gießl
- Department of Opthalmology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Qin
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fulin Zhang
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ning Liu
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Technische Universität Dresden (TUD), Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
27
|
Balnis J, Jackson EL, Drake LA, Singer DV, Bossardi Ramos R, Singer HA, Jaitovich A. Rapamycin improves satellite cells' autophagy and muscle regeneration during hypercapnia. JCI Insight 2025; 10:e182842. [PMID: 39589836 PMCID: PMC11721297 DOI: 10.1172/jci.insight.182842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Both CO2 retention, or hypercapnia, and skeletal muscle dysfunction predict higher mortality in critically ill patients. Mechanistically, muscle injury and reduced myogenesis contribute to critical illness myopathy, and while hypercapnia causes muscle wasting, no research has been conducted on hypercapnia-driven dysfunctional myogenesis in vivo. Autophagy flux regulates myogenesis by supporting skeletal muscle stem cell - satellite cell - activation, and previous data suggest that hypercapnia inhibits autophagy. We tested whether hypercapnia worsens satellite cell autophagy flux and myogenic potential and if autophagy induction reverses these deficits. Satellite cell transplantation and lineage-tracing experiments showed that hypercapnia undermined satellite cells' activation, replication, and myogenic capacity. Bulk and single-cell sequencing analyses indicated that hypercapnia disrupts autophagy, senescence, and other satellite cell programs. Autophagy activation was reduced in hypercapnic cultured myoblasts, and autophagy genetic knockdown phenocopied these changes in vitro. Rapamycin stimulation led to AMPK activation and downregulation of the mTOR pathway, which are both associated with accelerated autophagy flux and cell replication. Moreover, hypercapnic mice receiving rapamycin showed improved satellite cell autophagy flux, activation, replication rate, and posttransplantation myogenic capacity. In conclusion, we have shown that hypercapnia interferes with satellite cell activation, autophagy flux, and myogenesis, and systemic rapamycin administration improves these outcomes.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Emily L. Jackson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Lisa A. Drake
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Diane V. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
28
|
Sayed N, Ali AE, Elsherbiny DM, Azab SS. Involvement of Autophagic Machinery in Neuropathogenesis: Targeting and Relevant Methods of Detection. Methods Mol Biol 2025; 2879:183-206. [PMID: 38441722 DOI: 10.1007/7651_2024_516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
The exquisite balance between cellular prosurvival and death pathways is extremely necessary for homeostasis. Different forms of programmed cell death have been widely studied and reported such as apoptosis, necroptosis, pyroptosis, and autophagy. Autophagy is a catabolic process important for normal cellular functioning. The main aim of this machinery is to degrade the misfolded or damaged proteins, unuseful organelles, and pathogens, which invade the cells, thereby maintaining cellular homeostasis and assuring the regular renewal of cell components. This prosurvival function of autophagy highlights its importance in many human diseases, as the disturbance of this tightly organized process ultimately causes detrimental effects. Interestingly, neurons are particularly susceptible to damage upon the presence of any alteration in the basal level of the autophagic activity; this could be due to their high metabolic demand, post-mitotic nature, and the contribution of autophagy in the different fundamental functions of neurons. Herein, we have reported the role of autophagy in different CNS disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and epilepsy, besides the pharmacological agents targeting autophagy. Due to the significant contribution of autophagy in the pathogenesis of many diseases, it is crucial to develop effective methods to detect this dynamic process. In this chapter, we have summarized the most frequently employed techniques in studying and detecting autophagy including electron microscopy, fluorescence microscopy, Western blotting, intracellular protein degradation, and sequestration assay.
Collapse
Affiliation(s)
- Nourhan Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Alaa Emam Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa Mokhtar Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
29
|
Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, Wileman T, Tepikin AV. Deletion of the WD40 domain of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy 2025; 21:210-222. [PMID: 39216469 PMCID: PMC11702947 DOI: 10.1080/15548627.2024.2392478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The WD40 domain (WDD) of ATG16L1 plays a pivotal role in non-canonical autophagy. This study examined the role of recently identified LAP-like non-canonical autophagy (LNCA) in acute pancreatitis. LNCA involves rapid single-membrane LC3 conjugation to endocytic vacuoles in pancreatic acinar cells. The rationale for this study was the previously observed presence of trypsin in the organelles undergoing LNCA; aberrant trypsin formation is an important factor in pancreatitis development. Here we report that the deletion of WDD (attained in ATG16L1[E230] mice) eliminated LNCA, aggravated caerulein-induced acute pancreatitis and suppressed the fast trypsin degradation observed in both a rapid caerulein-induced disease model and in caerulein-treated isolated pancreatic acinar cells. These experiments indicate that LNCA is a WDD-dependent mechanism and suggest that it plays not an activating but a protective role in acute pancreatitis. Furthermore, palmitoleic acid, another inducer of experimental acute pancreatitis, strongly inhibited LNCA, suggesting a novel mechanism of pancreatic lipotoxicity.Abbreviation: AMY: amylase; AP: acute pancreatitis; CASM: conjugation of Atg8 to single membranes; CCK: cholecystokinin; FAEE model: fatty acid and ethanol model; IL6: interleukin 6; LA: linoleic acid; LAP: LC3-associated phagocytosis; LMPO: lung myeloperoxidase; LNCA: LAP-like non-canonical autophagy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MPO: myeloperoxidase; PMPO: pancreatic myeloperoxidase; POA: palmitoleic acid; WDD: WD40 domain; WT: wild type.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Jefferson
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David N. Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexei V. Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Filis P, Peschos D, Simos YV, Filis N, Zachariou C, Stagikas D, Tsamis KI. The treatment interventions and targets of cancer cachexia research during the past decade: a systematic review of the literature. Ann Gastroenterol 2025; 38:85-92. [PMID: 39802285 PMCID: PMC11724389 DOI: 10.20524/aog.2024.0918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/07/2024] [Indexed: 01/16/2025] Open
Abstract
Background Cachexia is a detrimental multifactorial syndrome that has been strongly associated with cancer. A growing body of data concerning its management is being generated from the ongoing advances of experimental cancer cachexia research. This study aimed to delineate the broad landscape of cancer cachexia research, by comprehensively presenting the treatment interventions and targets of cancer cachexia during the past decade. Methods A systematic literature search was performed in Medline and Scopus databases from January to April 2023. Articles were considered eligible if they described any type of intervention in tumor-bearing rodents to study the effect on prevention or treatment of cancer cachexia. The corresponding signaling and metabolic pathways that were targeted by these interventions were documented. Results A total of 271 articles were considered eligible for our study. Of these, 176 studies pertained to pharmaceutical interventions with 100 corresponding targets, 58 studies pertained to nutritional interventions with 60 corresponding targets, and 37 studies pertained to exercise interventions with 60 corresponding targets. Conclusions The continuous evolution of cancer cachexia research has provided a plethora of disease targets and corresponding treatment interventions. Moving forward, the available management strategies should be refined and clinical research should efficiently capitalize on the robust experimental evidence.
Collapse
Affiliation(s)
- Panagiotis Filis
- Department of Medical Oncology, School of Medicine, University of Ioannina, Greece (Panagiotis Filis)
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Greece (Panagiotis Filis)
| | - Dimitrios Peschos
- Department of Physiology, School of Medicine, University of Ioannina, Greece (Dimitrios Peschos, Yannis V. Simos, Christianna Zachariou, Dimitrios Stagikas, Konstantinos I. Tsamis)
| | - Yannis V. Simos
- Department of Physiology, School of Medicine, University of Ioannina, Greece (Dimitrios Peschos, Yannis V. Simos, Christianna Zachariou, Dimitrios Stagikas, Konstantinos I. Tsamis)
| | - Nikolaos Filis
- Medical School, University of Ioannina, Greece (Nikolaos Filis)
| | - Christianna Zachariou
- Department of Physiology, School of Medicine, University of Ioannina, Greece (Dimitrios Peschos, Yannis V. Simos, Christianna Zachariou, Dimitrios Stagikas, Konstantinos I. Tsamis)
| | - Dimitrios Stagikas
- Department of Physiology, School of Medicine, University of Ioannina, Greece (Dimitrios Peschos, Yannis V. Simos, Christianna Zachariou, Dimitrios Stagikas, Konstantinos I. Tsamis)
| | - Konstantinos I. Tsamis
- Department of Physiology, School of Medicine, University of Ioannina, Greece (Dimitrios Peschos, Yannis V. Simos, Christianna Zachariou, Dimitrios Stagikas, Konstantinos I. Tsamis)
| |
Collapse
|
31
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter TR, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes. Cell Chem Biol 2024; 31:2138-2155.e32. [PMID: 39547236 PMCID: PMC11837778 DOI: 10.1016/j.chembiol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Chemical proteomics enables the global analysis of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, remained limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these "photo-stereoprobes" interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible NanoBRET assays. Integrated phenotypic screening and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of DOS-inspired photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and facilitating the discovery and characterization of bioactive compounds in phenotypic screens.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zher Yin Tan
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haoxin Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trever R Carter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen E DeMeester
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Chaphalkar RM, Kodati B, Maddineni P, He S, Brooks CD, Stankowska DL, Yang S, Zode G, Krishnamoorthy RR. A Reduction in Mitophagy Is Associated with Glaucomatous Neurodegeneration in Rodent Models of Glaucoma. Int J Mol Sci 2024; 25:13040. [PMID: 39684751 PMCID: PMC11642561 DOI: 10.3390/ijms252313040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Glaucoma is a heterogenous group of optic neuropathies characterized by the degeneration of optic nerve axons and the progressive loss of retinal ganglion cells (RGCs), which could ultimately lead to vision loss. Elevated intraocular pressure (IOP) is a major risk factor in the development of glaucoma, and reducing IOP remains the main therapeutic strategy. Endothelin-1 (ET-1), a potent vasoactive peptide, has been shown to produce neurodegenerative effects in animal models of glaucoma. However, the detailed mechanisms underlying ET-1-mediated neurodegeneration in glaucoma are not completely understood. In the current study, using a Seahorse Mitostress assay, we report that ET-1 treatment for 4 h and 24 h time points causes a significant decline in various parameters of mitochondrial function, including ATP production, maximal respiration, and spare respiratory capacity in cultured RGCs. This compromise in mitochondrial function could trigger activation of mitophagy as a quality control mechanism to restore RGC health. Contrary to our expectation, we observed a decrease in mitophagy following ET-1 treatment for 24 h in cultured RGCs. Using Morrison's model of ocular hypertension in rats, we investigated here, for the first time, changes in mitophagosome formation by analyzing the co-localization of LC-3B and TOM20 in RGCs. We also injected ET-1 (24 h) into transgenic GFP-LC3 mice to analyze the formation of mitophagosomes in vivo. In Morrison's model of ocular hypertension, as well as in ET-1 injected GFP-LC3 mice, we found a decrease in co-localization of LC3 and TOM20, indicating reduced mitophagy. Taken together, these results demonstrate that both ocular hypertension and ET-1 administration in rats and mice lead to reduced mitophagy, thus predisposing RGCs to neurodegeneration.
Collapse
Affiliation(s)
- Renuka M. Chaphalkar
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Prabhavathi Maddineni
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Shaoqing He
- Department of Pathology, Children’s Health at Dallas, Dallas, TX 75235, USA;
| | - Calvin D. Brooks
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Dorota L. Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- Department of Microbiology, Immunology and Genetics, College of Biomedical and Translational Sciences at University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
| | - Gulab Zode
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA;
| | - Raghu R. Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.M.C.); (B.K.); (C.D.B.); (S.Y.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
33
|
Zhou Y, Meng Z, Han Y, Yang X, Kuai J, Bao H. The effects of apelin-13 in a mouse model of post-traumatic stress disorder. Neuroreport 2024; 35:1098-1106. [PMID: 39423326 DOI: 10.1097/wnr.0000000000002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The objective is to investigate the effects of apelin-13 in models of post-traumatic stress disorder (PTSD). Mature male CD1 mice were subjected to the single prolonged stress method to induce PTSD-related behaviors. These behaviors were then evaluated using the elevated plus maze test, Morris water maze test, and open field test. Hippocampal neural cell death was assessed using propidium iodide labeling. The expression of hippocampal autophagy pathway-associated proteins was determined through immunoblotting analysis, and LC3 levels were also measured via quantitative real-time reverse transcription-PCR. The results demonstrate that administration of apelin-13 suppressed PTSD-induced hippocampal neural cell death and alleviated PTSD-related behaviors in mice. Additionally, PTSD led to an up-regulation of LC3 and FoxO3a, and down-regulation of P62, p-PI3K, p-Akt, and p-FoxO3a in the hippocampus. However, these changes were reversed by apelin-13 treatment. These findings support the hypothesis that apelin-13 prevents the development of PTSD-like behavior and inhibits autophagy of neuronal cells in a mouse model of PTSD. Apelin-13 may hold potential as a therapeutic agent for PTSD in clinical applications.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Zijun Meng
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Yuqing Han
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Xiaofang Yang
- Department of Histology and Embryology, Fenyang College, Shanxi Medical University, Fenyang
| | - Jinxia Kuai
- Department of Science and Technology, Public Experimental Research Center, Xuzhou Medical University, Xuzhou, China
| | - Haijun Bao
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| |
Collapse
|
34
|
Ji Y, Jeon YG, Lee WT, Han JS, Shin KC, Huh JY, Kim JB. PKA regulates autophagy through lipolysis during fasting. Mol Cells 2024; 47:100149. [PMID: 39547583 PMCID: PMC11697058 DOI: 10.1016/j.mocell.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Autophagy is a crucial intracellular degradation process that provides energy and supports nutrient deprivation adaptation. However, the mechanisms by which these cells detect lipid scarcity and regulate autophagy are poorly understood. In this study, we demonstrate that protein kinase A (PKA)-dependent lipolysis delays autophagy initiation during short-term nutrient deprivation by inhibiting AMP-activated protein kinase (AMPK). Using coherent anti-Stokes Raman spectroscopy, we visualized free fatty acids (FFAs) in vivo and observed that lipolysis-derived FFAs were used before the onset of autophagy. Our data suggest that autophagy is triggered when the supply of FFAs is insufficient to meet energy demands. Furthermore, PKA activation promotes lipolysis and suppresses AMPK-driven autophagy during early fasting. Disruption of this regulatory axis impairs motility and reduces the lifespan of Caenorhabditis elegans during fasting. These findings establish PKA as a critical regulator of catabolic pathways, prioritizing lipolysis over autophagy by modulating AMPK activity to prevent premature autophagic degradation during transient nutrient deprivation.
Collapse
Affiliation(s)
- Yul Ji
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Won Taek Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Cheul Shin
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
35
|
Xu Z, Notomi S, Wu G, Fukuda Y, Maehara Y, Fukushima M, Murakami Y, Takahashi M, Izumi Y, Sonoda KH. Altered fatty acid distribution in lysosome-associated membrane protein-2 deficient mice. Biochem Biophys Rep 2024; 40:101822. [PMID: 39290347 PMCID: PMC11405639 DOI: 10.1016/j.bbrep.2024.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Lysosome-associated membrane protein-2 (LAMP2) deficiency causes the human Danon disease and represents a lysosomal dysfunction because of its pivotal role in regulating autophagy and lysosome biogenesis. LAMP2-deficient mice exhibit a spectrum of phenotypes, including cardioskeletal myopathy, mental retardation, and retinopathy, similar to those observed in patients with Danon disease. Its pathology is thought to involve altered energy metabolism and lipid dysregulation; however, the lipidomic profiles of LAMP2-deficient animals have not been investigated. In this study, we investigated lipid alterations in LAMP2 KO mice tissues, including those of the liver, plasma, and retina, using liquid chromatography-mass spectrometry. Our results revealed significantly increased free fatty acid (FFA) levels and decreased in triglyceride (TG) levels in LAMP2 KO liver tissues at three and six months. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species significantly decreased in LAMP2 KO mice livers at six months. Similarly, plasma TG and PC/PE levels decreased in LAMP2 KO mice. In contrast, plasma FFA levels were significantly lower in LAMP2 KO mice. Retina FFA levels were elevated in LAMP2 KO mice, accompanied by a partial decrease in PC/PE at six months. In summary, FFA levels increased in several tissues but not in the LAMP2 KO mice plasma, suggesting the potential consumption of FFA as an energy source in the peripheral tissues. The depletion of TG and PC/PE accelerated with age, suggesting an underlying age-dependent energy crisis condition. Our findings underscore the dysregulated distribution of fatty acids in LAMP2-deficient animals and provide new mechanistic insights into the pathology of Danon disease.
Collapse
Affiliation(s)
- Ziming Xu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Guannan Wu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yosuke Fukuda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Maehara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
36
|
Wang M, Chen X, Li S, Wang L, Tang H, Pu Y, Zhang D, Fang B, Bai X. A crosstalk between autophagy and apoptosis in intracerebral hemorrhage. Front Cell Neurosci 2024; 18:1445919. [PMID: 39650799 PMCID: PMC11622039 DOI: 10.3389/fncel.2024.1445919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition that devastatingly harms human health and poses a financial burden on families and society. Bcl-2 Associated X-protein (Bax) and B-cell lymphoma 2 (Bcl-2) are two classic apoptotic markers post-ICH. Beclin 1 offers a competitive architecture with that of Bax, both playing a vital role in autophagy. However, the interaction between Beclin 1 and Bcl-2/Bax has not been conjunctively analyzed. This review aims to examine the crosstalk between autophagy and apoptosis in ICH by focusing on the interaction and balance of Beclin 1, Bax, and Bcl-2. We also explored the therapeutic potential of Western conventional medicine and traditional Chinese medicine (TCM) in ICH via controlling the crosstalk between autophagy and apoptosis.
Collapse
Affiliation(s)
- Moyan Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingxue Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuting Pu
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bangjiang Fang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Emergency, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Bai
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Kaade E, Mausbach S, Erps N, Sylvester M, Shakeri F, Jachimowicz RD, Gieselmann V, Thelen M. Starvation-induced metabolic rewiring affects mTORC1 composition in vivo. Sci Rep 2024; 14:28296. [PMID: 39550382 PMCID: PMC11569187 DOI: 10.1038/s41598-024-78873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Lysosomes play a crucial role in metabolic adaptation to starvation, but detailed in vivo studies are scarce. Therefore, we investigated the changes of the proteome of liver lysosomes in mice starved short-term for 6h or long-term for 24h. We verified starvation-induced catabolism by weight loss, ketone body production, drop in blood glucose and an increase of 3-methylhistidine. Deactivation of mTORC1 in vivo after short-term starvation causes a depletion of mTORC1 and the associated Ragulator complex in hepatic lysosomes, resulting in diminished phosphorylation of mTORC1 target proteins. While mTORC1 lysosomal protein levels and activity in liver were restored after long-term starvation, the lysosomal levels of Ragulator remained constantly reduced. To determine whether this mTORC1 activity pattern may be organ-specific, we further investigated the key metabolic organs muscle and brain. mTORC1 inactivation, but not re-activation, occurred in muscle after a starvation of 12 h or longer. In brain, mTORC1 activity remained unchanged during starvation. As mTORC1 deactivation is known to induce autophagy, we further investigated the more than 150 non-lysosomal proteins enriched in the lysosomal fraction upon starvation. Proteasomal, cytosolic and peroxisomal proteins dominated after short-term starvation, while after long-term starvation, mainly proteasomal and mitochondrial proteins accumulated, indicating ordered autophagic protein degradation.
Collapse
Affiliation(s)
- Edgar Kaade
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Simone Mausbach
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Nina Erps
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany
| | - Marc Sylvester
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
- Core Facility Analytical Proteomics, Medical Faculty , Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ron D Jachimowicz
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Melanie Thelen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany.
- Max-Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9B, 50931, Cologne, Germany.
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Cologne, Germany.
| |
Collapse
|
38
|
Li J, Yang Y, Li L, Zheng S, Zhang H, Li C, Cai Y, Chen Y, Shi Q, Wang W, Luo J, Zhao X, Li R, Liang H, Chen Y, Zhang L, Liang X. Autophagic inhibitor ROC-325 ameliorates glomerulosclerosis and podocyte injury via inhibiting autophagic flux in experimental FSGS mice. Eur J Pharmacol 2024; 983:177007. [PMID: 39307335 DOI: 10.1016/j.ejphar.2024.177007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Autophagy plays an important role in the pathogenesis of focal segmental glomerulosclerosis (FSGS). Podocyte-specific Yes-associated protein (YAP) deletion mice, referred to as YAP-KO mice, is considered a new animal model to study the underlying mechanism of FSGS. ROC-325 is a novel small-molecule lysosomal autophagy inhibitor that is more effective than chloroquine (CQ) and hydroxychloroquine (HCQ) in suppressing autophagy. In this study, we sought to determine the therapeutic benefit and mechanism of action of ROC-325 in YAP-KO mice, an experimental FSGS model. METHODS AND RESULTS YAP-KO mice were treated with ROC-325 (50 mg/kg, p.o.) daily for one month. Our results revealed that albuminuria, mesangial matrix expension, and focal segmental glomerulosclerosis in YAP-KO mice were significantly attenuated by ROC-325 administration. Transmission electron microscopy and immunofluorescence staining showed that ROC-325 treatment significantly inhibited YAP-KO-induced autophagy activation by decreasing autophagosome-lysosome fusion and increasing LC3A/B and p62/SQSTM. Meanwhile, Immunofluorescence staining revealed that preapplication of ROC-325 in podocyte with YAP-targeted siRNA and mRFP-GFP-LC3 adenovirus markedly suppressed autophagic flux in vitro, suggesting that autophagy intervention may serve as a target for FSGS. CONCLUSIONS These results showed that the role of autophagic activity in FSGS mice model and ROC-325 could be a novel and promising agent for the treatment of FSGS.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan Yang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of nephropathy, Peking university Shenzhen Hospital, Guangdong, China
| | - Luan Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siqi Zheng
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cuili Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yating Cai
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yingwen Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingying Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weiteng Wang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jieyi Luo
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huaban Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Liu W, Wang K, Lin Y, Wang L, Jin X, Qiu Y, Sun W, Zhang L, Sun Y, Dou X, Luo S, Su Y, Sun Q, Xiang W, Diao F, Li J. VPS34 Governs Oocyte Developmental Competence by Regulating Mito/Autophagy: A Novel Insight into the Significance of RAB7 Activity and Its Subcellular Location. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308823. [PMID: 39287146 PMCID: PMC11538714 DOI: 10.1002/advs.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Asynchronous nuclear and cytoplasmic maturation in human oocytes is believed to cause morphological anomalies after controlled ovarian hyperstimulation. Vacuolar protein sorting 34 (VPS34) is renowned for its pivotal role in regulating autophagy and endocytic trafficking. To investigate its impact on oocyte development, oocyte-specific knockout mice (ZcKO) are generated, and these mice are completely found infertile, with embryonic development halted at 2- to 4-cell stage. This infertility is related with a disruption on autophagic/mitophagic flux in ZcKO oocytes, leading to subsequent failure of zygotic genome activation (ZGA) in derived 2-cell embryos. The findings further elucidated the regulation of VPS34 on the activity and subcellular translocation of RAS-related GTP-binding protein 7 (RAB7), which is critical not only for the maturation of late endosomes and lysosomes, but also for initiating mitophagy via retrograde trafficking. VPS34 binds directly with RAB7 and facilitates its activity conversion through TBC1 domain family member 5 (TBC1D5). Consistent with the cytoplasmic vacuolation observed in ZcKO oocytes, defects in multiple vesicle trafficking systems are also identified in vacuolated human oocytes. Furthermore, activating VPS34 with corynoxin B (CB) treatment improved oocyte quality in aged mice. Hence, VPS34 activation may represent a novel approach to enhance oocyte quality in human artificial reproduction.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring HealthWomen's Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing Medical UniversityNanjingJiangsu211166China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthCenter of Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhouJiangsu215002China
| | - Yuting Lin
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Lu Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Reproductive MedicineCangzhou Central HospitalCangzhouHebei061012China
| | - Xin Jin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Center of Reproductive MedicineWuxi Maternity and Child Health Care HospitalNanjing Medical UniversityWuxiJiangsu214200China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Ling Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yan Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Xiaowei Dou
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu210011China
| | - Shiming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Feiyang Diao
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Innovation Center of Suzhou Nanjing Medical UniversitySuzhou430074China
| |
Collapse
|
40
|
Yamaguchi N, Takakura Y, Akiyama T. Autophagy and proteasomes in thymic epithelial cells: essential bulk protein degradation systems for immune homeostasis maintenance. Front Immunol 2024; 15:1488020. [PMID: 39524450 PMCID: PMC11543444 DOI: 10.3389/fimmu.2024.1488020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
The thymus is a central organ that controls T cell development. Thymic epithelial cells (TECs) create a unique microenvironment essential for the differentiation of major histocompatibility complex (MHC)-restricted and self-tolerant T cells. TECs present a complex of self-peptides and MHC molecules (self-pMHCs) to immature T cells and regulate their survival and differentiation based on their affinity for self-pMHCs. The processing of self-peptides in TECs depends on bulk protein degradation systems, specifically autophagy and proteasomes. Studies using autophagy- and proteasome-deficient mouse models have demonstrated that these degradation systems in TECs are indispensable for maintaining immune homeostasis. Although autophagy and proteasomes are ubiquitous in nearly all eukaryotic cells, TECs exhibit unique characteristics in their autophagy and proteasome functions. Autophagy in TECs is constitutively active and independent of stress responses, while TEC proteasomes contain specialized catalytic subunits. This review summarizes the distinctive characteristics of autophagy and proteasomes in TECs and their roles in immune system regulation.
Collapse
Affiliation(s)
- Noritaka Yamaguchi
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Takakura
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
41
|
Eckhart L, Gruber F, Sukseree S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells 2024; 13:1675. [PMID: 39451193 PMCID: PMC11506049 DOI: 10.3390/cells13201675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of epithelial cells of the skin, commonly referred to as keratinocytes, involves major remodeling processes that generate metabolically inactive cell remnants serving as building blocks of the epidermal stratum corneum, nail plates and hair shafts. Only sebaceous gland differentiation results in cell disintegration and holocrine secretion. A series of studies performed in the past decade have revealed that the lysosome-dependent intracellular degradation mechanism of autophagy is active during keratinocyte differentiation, and the blockade of autophagy significantly alters the properties of the differentiation products. Here, we present a model for the autophagy-mediated degradation of organelles and cytosolic proteins as an important contributor to cellular remodeling in keratinocyte differentiation. The roles of autophagy are discussed in comparison to alternative intracellular degradation mechanisms and in the context of programmed cell death as an integral end point of epithelial differentiation.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence—SKINMAGINE, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
42
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
43
|
Rahman FA, Baechler BL, Quadrilatero J. Key considerations for investigating and interpreting autophagy in skeletal muscle. Autophagy 2024; 20:2121-2132. [PMID: 39007805 PMCID: PMC11423691 DOI: 10.1080/15548627.2024.2373676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle plays a crucial role in generating force to facilitate movement. Skeletal muscle is a heterogenous tissue composed of diverse fibers with distinct contractile and metabolic profiles. The intricate classification of skeletal muscle fibers exists on a continuum ranging from type I (slow-twitch, oxidative) to type II (fast-twitch, glycolytic). The heterogenous distribution and characteristics of fibers within and between skeletal muscles profoundly influences cellular signaling; however, this has not been broadly discussed as it relates to macroautophagy/autophagy. The growing interest in skeletal muscle autophagy research underscores the necessity of comprehending the interplay between autophagic responses among skeletal muscles and fibers with different contractile properties, metabolic profiles, and other related signaling processes. We recommend approaching the interpretation of autophagy findings with careful consideration for two key reasons: 1) the distinct behaviors and responses of different skeletal muscles or fibers to various perturbations, and 2) the potential impact of alterations in skeletal muscle fiber type or metabolic profile on observed autophagic outcomes. This review provides an overview of the autophagic profile and response in skeletal muscles/fibers of different types and metabolic profiles. Further, this review discusses autophagic findings in various conditions and diseases that may differentially affect skeletal muscle. Finally, we provide key points of consideration to better enable researchers to fine-tune the design and interpretation of skeletal muscle autophagy experiments.Abbreviation: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG4: autophagy related 4 cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: citrate synthase; DIA: diaphragm; EDL: extensor digitorum longus; FOXO3/FOXO3A: forkhead box O3; GAS; gastrocnemius; GP: gastrocnemius-plantaris complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MYH: myosin heavy chain; PINK1: PTEN induced kinase 1; PLANT: plantaris; PRKN: parkin RBR E3 ubiquitin protein ligase; QUAD: quadriceps; RA: rectus abdominis; RG: red gastrocnemius; RQ: red quadriceps; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; WG: white gastrocnemius; WQ: white quadriceps; WVL: white vastus lateralis; VL: vastus lateralis; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Fasih A. Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Brittany L. Baechler
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
44
|
Satarker S, Wilson J, Kolathur KK, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Spermidine as an epigenetic regulator of autophagy in neurodegenerative disorders. Eur J Pharmacol 2024; 979:176823. [PMID: 39032763 DOI: 10.1016/j.ejphar.2024.176823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joel Wilson
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
45
|
Martinez-Canton M, Galvan-Alvarez V, Gallego-Selles A, Gelabert-Rebato M, Garcia-Gonzalez E, Gonzalez-Henriquez JJ, Martin-Rincon M, Calbet JAL. Activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle by high-intensity exercise in normoxia and hypoxia and after recovery with or without post-exercise ischemia. Free Radic Biol Med 2024; 222:607-624. [PMID: 39009244 DOI: 10.1016/j.freeradbiomed.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Autophagy is essential for the adaptive response to exercise and physiological skeletal muscle functionality. However, the mechanisms leading to the activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle in response to high-intensity exercise remain elusive. Our findings demonstrate that macroautophagy and chaperone-mediated autophagy are stimulated by high-intensity exercise in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg) in healthy humans. High-intensity exercise induces macroautophagy initiation through AMPKα phosphorylation, which phosphorylates and activates ULK1. ULK1 phosphorylates BECN1 at Ser15, eliciting the dissociation of BECN1-BCL2 crucial for phagophore formation. Besides, high-intensity exercise elevates the LC3B-II:LC3B-I ratio, reduces total SQSTM1/p62 levels, and induces p-Ser349 SQSTM1/p62 phosphorylation, suggesting heightened autophagosome degradation. PHAF1/MYTHO, a novel macroautophagy biomarker, is highly upregulated in response to high-intensity exercise. The latter is accompanied by elevated LAMP2A expression, indicating chaperone-mediated autophagy activation regardless of post-exercise HSPA8/HSC70 downregulation. Despite increased glycolytic metabolism, severe acute hypoxia does not exacerbate the autophagy signaling response. Signaling changes revert within 1 min of recovery with free circulation, while the application of immediate post-exercise ischemia impedes recovery. Our study concludes that macroautophagy and chaperone-mediated autophagy pathways are strongly activated by high-intensity exercise, regardless of PO2, and that oxygenation is necessary to revert these signals to pre-exercise values. PHAF1/MYTHO emerges as a pivotal exercise-responsive autophagy marker positively associated with the LC3B-II:LC3B-I ratio.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Mathematics, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| |
Collapse
|
46
|
Hao M, Zhang C, Shi N, Yuan L, Zhang T, Wang X. Procaine induces cell cycle arrest, apoptosis and autophagy through the inhibition of the PI3K/AKT and ERK pathways in human tongue squamous cell carcinoma. Oncol Lett 2024; 28:408. [PMID: 38988444 PMCID: PMC11234806 DOI: 10.3892/ol.2024.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/13/2024] [Indexed: 07/12/2024] Open
Abstract
Procaine (PCA), a local anesthetic commonly used in stomatology, exhibits antitumor activity in some human malignancies. However, the precise mechanism underlying PCA activity remains unknown, and its antitumor effect in human tongue squamous carcinoma cells has not been reported. Flow cytometry and western blotting were used to assess the effects of PCA on mitochondrial membrane potential (ΔΨm), intracellular reactive oxygen species (ROS) production, cell cycle and apoptosis. The results suggested that PCA inhibits CAL27 and SCC-15 cell proliferation, and clone formation in a dose-dependent manner. CAL27 cells were more sensitive to PCA than SCC-15 cells. PCA also significantly inhibited cell migration, induced mitochondrial damage, reduced ΔΨm and increased intracellular ROS production. PCA causes G2/M cycle arrest and induces apoptosis. The possible mechanism for the inhibition of human tongue squamous carcinoma cell proliferation is through the regulation of ERK phosphorylation and PI3K/AKT-mediated signaling pathways. The results further suggested that autophagy occurs during PCA-induced apoptosis in CAL27 cells, and the addition of the autophagy inhibitor hydroxychloroquine sulfate further enhanced the sensitivity of PCA to inhibit cell proliferation, indicating that autophagy plays an important role in protecting cancer cells from apoptosis. PCA shows potential as an anticancer drug and its combination with autophagy inhibitors enhances its sensitivity.
Collapse
Affiliation(s)
- Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chu Zhang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
- People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lin Yuan
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tianfu Zhang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
47
|
Delconte RB, Owyong M, Santosa EK, Srpan K, Sheppard S, McGuire TJ, Abbasi A, Diaz-Salazar C, Chun J, Rogatsky I, Hsu KC, Jordan S, Merad M, Sun JC. Fasting reshapes tissue-specific niches to improve NK cell-mediated anti-tumor immunity. Immunity 2024; 57:1923-1938.e7. [PMID: 38878769 PMCID: PMC11684419 DOI: 10.1016/j.immuni.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 08/16/2024]
Abstract
Fasting is associated with improved outcomes in cancer. Here, we investigated the impact of fasting on natural killer (NK) cell anti-tumor immunity. Cyclic fasting improved immunity against solid and metastatic tumors in an NK cell-dependent manner. During fasting, NK cells underwent redistribution from peripheral tissues to the bone marrow (BM). In humans, fasting also reduced circulating NK cell numbers. NK cells in the spleen of fasted mice were metabolically rewired by elevated concentrations of fatty acids and glucocorticoids, augmenting fatty acid metabolism via increased expression of the enzyme CPT1A, and Cpt1a deletion impaired NK cell survival and function in this setting. In parallel, redistribution of NK cells to the BM during fasting required the trafficking mediators S1PR5 and CXCR4. These cells were primed by an increased pool of interleukin (IL)-12-expressing BM myeloid cells, which improved IFN-γ production. Our findings identify a link between dietary restriction and optimized innate immune responses, with the potential to enhance immunotherapy strategies.
Collapse
Affiliation(s)
- Rebecca B Delconte
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Mark Owyong
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Endi K Santosa
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Katja Srpan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sam Sheppard
- Department of Life Sciences, Imperial College London, London, UK
| | - Tomi J McGuire
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Aamna Abbasi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carlos Diaz-Salazar
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Inez Rogatsky
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY 10065, USA; Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY 10021, USA
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stefan Jordan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
48
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
49
|
Yin H, Zhu W, Guo L, Li W, Liang M. Association between coffee intake and skeletal muscle mass among U.S. adults: a population-based study. Front Nutr 2024; 11:1390309. [PMID: 39171111 PMCID: PMC11335506 DOI: 10.3389/fnut.2024.1390309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background A limited number of studies have reported that the possible effects of coffee intake on skeletal muscle mass, but the results have been inconsistently conclusive and there are no large sample studies concerning the U.S. population. Therefore, the purpose of our study was to explore the connection between coffee consumption and skeletal muscle mass in U.S. adults. Methods The population for this cross-sectional study was drawn from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. Appendicular lean mass was accurately obtained from DXA, and skeletal muscle mass was assessed using appendicular skeletal muscle mass adjusted for body mass index (ASMBMI). Coffee and caffeine consumptions were obtained on a 24-h dietary recall questionnaire. Furthermore, the associations between coffee and caffeine intake and skeletal muscle mass were evaluated using three multiple linear regression models and smoothed curve fitting. Subgroup analyses based on age, gender, ethnicity and body mass index (BMI) were performed to assess the robustness of these relationships. Results This cross-sectional survey included a total of 8,333 participants. After adjusting for all covariates, higher intake of coffee, caffeinated coffee, and caffeine was associated with elevated ASMBMI (coffee: β = 0.01, 95% CI: 0.01, 0.02, P-value < 0.001; caffeinated coffee: β = 0.01, 95% CI: 0.01, 0.02, P-value < 0.001; caffeine: β = 0.02, 95% CI: 0.01, 0.04, P-value < 0.001). Meanwhile, smoothed curve fitting showed that coffee, caffeinated coffee, and caffeine intake were linearly and positively associated with ASMBMI. After further stratification by sex, age, and ethnicity, the positive relationships between coffee (especially caffeinated coffee) and caffeine intake and ASMBMI were not modified (P for interaction > 0.05). However, these relationships disappeared when the BMI over 30 kg/m2. Conclusions In general, consumption of coffee and caffeine is positively associated with skeletal muscle mass. Therefore, an appropriate increase in coffee and caffeine intake may be advocated in populations at high risk for low skeletal muscle mass.
Collapse
Affiliation(s)
- Huangyi Yin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Zhu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuqing Guo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weishan Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Liang
- Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
50
|
Catarinella G, Bracaglia A, Skafida E, Procopio P, Ruggieri V, Parisi C, De Bardi M, Borsellino G, Madaro L, Puri PL, Sacco A, Latella L. STAT3 inhibition recovers regeneration of aged muscles by restoring autophagy in muscle stem cells. Life Sci Alliance 2024; 7:e202302503. [PMID: 38843935 PMCID: PMC11157169 DOI: 10.26508/lsa.202302503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Age-related reduction in muscle stem cell (MuSC) regenerative capacity is associated with cell-autonomous and non-cell-autonomous changes caused by alterations in systemic and skeletal muscle environments, ultimately leading to a decline in MuSC number and function. Previous studies demonstrated that STAT3 plays a key role in driving MuSC expansion and differentiation after injury-activated regeneration, by regulating autophagy in activated MuSCs. However, autophagy gradually declines in MuSCs during lifespan and contributes to the impairment of MuSC-mediated regeneration of aged muscles. Here, we show that STAT3 inhibition restores the autophagic process in aged MuSCs, thereby recovering MuSC ability to promote muscle regeneration in geriatric mice. We show that STAT3 inhibition could activate autophagy at the nuclear level, by promoting transcription of autophagy-related genes, and at the cytoplasmic level, by targeting STAT3/PKR phosphorylation of eIF2α. These results point to STAT3 inhibition as a potential intervention to reverse the age-related autophagic block that impairs MuSC ability to regenerate aged muscles. They also reveal that STAT3 regulates MuSC function by both transcription-dependent and transcription-independent regulation of autophagy.
Collapse
Affiliation(s)
| | - Andrea Bracaglia
- IRCCS Fondazione Santa Lucia, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Emilia Skafida
- IRCCS Fondazione Santa Lucia, Rome, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Veronica Ruggieri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Parisi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | - Luca Madaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lucia Latella
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| |
Collapse
|