1
|
Li S, Yan L, Li C, Lou L, Cui F, Yang X, He F, Jiang Y. NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression. Nat Commun 2025; 16:439. [PMID: 39762312 PMCID: PMC11704005 DOI: 10.1038/s41467-024-55788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl4 induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport. We identify that the 692-854 amino acid region of NPC1's transmembrane domain is critical for its interaction with TGF-β receptor type-1 (TGFBR1). This interaction prevents the binding of SMAD7 and SMAD ubiquitylation regulatory factors (SMURFs) to TGFBR1, reducing TGFBR1 ubiquitylation and degradation, thus enhancing its stability. Notably, the NPC1 (P691S) mutant, which is defective in cholesterol transport, still binds TGFBR1, underscoring a cholesterol-independent mechanism. These findings highlight a cholesterol transport-independent mechanism by which NPC1 contributes to the stability of TGFBR1 in HCC and suggest potential therapeutic strategies targeting NPC1 for HCC treatment.
Collapse
Affiliation(s)
- Shuangyan Li
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lishan Yan
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Chaoying Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lijuan Lou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fengjiao Cui
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao Yang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Anhui Medical University, Hefei, China.
| | - Ying Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
- Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Chung SW, Cooper CR, Farach-Carson MC, Ogunnaike BA. Computational Modeling and Analysis of the TGF-β-induced ERK and SMAD Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622480. [PMID: 39574616 PMCID: PMC11581039 DOI: 10.1101/2024.11.07.622480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
TGF-β, an important cytokine that plays a key role in many diseases regulates a wide array of cellular and physiologic processes via several TGF-β-driven signaling cascades, including the SMAD and non-SMAD-driven pathways. However, the detailed mechanisms by which TGF-β induces such diverse responses remain poorly understood. In particular, compared to the SMAD-dependent pathway, SMAD-independent pathways such as the ERK/MAPK pathway, which is critical in cancer progression, are less characterized. Here, we develop an integrated mechanistic model of the TGF-β-triggered ERK activation pathway and its crosstalk with the SMAD pathway, an analysis of which demonstrates how SMAD dynamics can be significantly modulated and regulated by the ERK pathway. In particular, SMAD-mediated transcription can be altered and delayed due to expedited phosphorylation of the linker of SMAD by TGF-β-activated ERK; and enhanced ERK activity, but attenuated SMAD activity, can be achieved simultaneously by fast turnover of TGF-β receptors via lipid-rafts. Also, in silico mutations of the TGF-β pathways reveal that the dynamic characteristics of both SMAD and ERK signaling may change significantly during cancer development. Specifically, normal cells may exhibit enhanced and sustained SMAD signaling with transient ERK activation, whereas cancerous cells may produce elevated and prolonged ERK signaling with enervated SMAD activation. These distinctive differences between normal and cancerous signaling behavior provide clues concerning, and potential explanations for, the seemingly contradictory roles played by TGF-β during cancer progression. We demonstrate how crosstalk among various branch pathways of TGF-β can influence overall cellular behavior. Based on model analysis, we hypothesize that aberrant molecular alterations drive changes in the intensity and duration of SMAD and ERK signaling during cancer progression and ultimately lead to an imbalance between the SMAD and ERK pathways in favor of tumor promotion. Thus, to treat cancer patients with a genetic signature of oncogenic Ras effectively may require at least a combination therapy to restore both the expression of TGF-β receptors and the GTPase activity of Ras.
Collapse
|
3
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
4
|
Tai SB, Huang CY, Chung CL, Sung PJ, Wen ZH, Chen CL. Prodigiosin Inhibits Transforming Growth Factor β Signaling by Interfering Receptor Recycling and Subcellular Translocation in Epithelial Cells. Mol Pharmacol 2024; 105:286-300. [PMID: 38278554 DOI: 10.1124/molpharm.123.000776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-β signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-β receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-β pathway. PG blocked TGF-β signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-β receptors in the cytoplasm by impeding the recycling of type II TGF-β receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-β-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-β pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-β signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-β strategies.
Collapse
Affiliation(s)
- Shun-Ban Tai
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yin Huang
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ling Chung
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Jyun Sung
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Chaudhary R, Goodman LS, Wang S, Asimakopoulos A, Weiskirchen R, Dooley S, Ehrlich M, Henis YI. Cholesterol modulates type I/II TGF-β receptor complexes and alters the balance between Smad and Akt signaling in hepatocytes. Commun Biol 2024; 7:8. [PMID: 38168942 PMCID: PMC10761706 DOI: 10.1038/s42003-023-05654-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Cholesterol mediates membrane compartmentalization, affecting signaling via differential distribution of receptors and signaling mediators. While excessive cholesterol and aberrant transforming growth factor-β (TGF-β) signaling characterize multiple liver diseases, their linkage to canonical vs. non-canonical TGF-β signaling remained unclear. Here, we subjected murine hepatocytes to cholesterol depletion (CD) or enrichment (CE), followed by biophysical studies on TGF-β receptor heterocomplex formation, and output to Smad2/3 vs. Akt pathways. Prior to ligand addition, raft-dependent preformed heteromeric receptor complexes were observed. Smad2/3 phosphorylation persisted following CD or CE. CD enhanced phospho-Akt (pAkt) formation by TGF-β or epidermal growth factor (EGF) at 5 min, while reducing it at later time points. Conversely, pAkt formation by TGF-β or EGF was inhibited by CE, suggesting a direct effect on the Akt pathway. The modulation of the balance between TGF-β signaling to Smad2/3 vs. pAkt (by TGF-β or EGF) has potential implications for hepatic diseases and malignancies.
Collapse
Affiliation(s)
- Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Laureen S Goodman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167, Mannheim, Germany
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, D-52074, Aachen, Germany
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167, Mannheim, Germany
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
7
|
Peng Z, Xiao H, Liu H, Jin H, Ma H, Sun L, Zhang X. Downregulation of ARNTL in renal tubules of diabetic db/db mice reduces kidney injury by inhibiting ferroptosis. Cell Signal 2023; 111:110883. [PMID: 37690659 DOI: 10.1016/j.cellsig.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The prevalence of ferroptosis in diabetic kidney tubules has been documented, yet the underlying mechanism remains elusive. The aim of this study was to ascertain the pivotal gene linked to ferroptosis and establish a novel target for the prevention and management of diabetic kidney disease (DKD). METHODS Transcriptomics data (GSE184836) from DKD mice (C57BLKS/J) were retrieved from the GEO database and intersected with ferroptosis-related genes from FerrDb. Then, differentially expressed genes associated with ferroptosis in the glomeruli and tubules were screened. Gene ontology analysis and protein-protein interaction network construction were used to identify key genes. Western blotting and real-time quantitative polymerase chain reaction were employed to validate the expression in the same model. Aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL) expression in patients and mice with DKD was assessed using immunohistochemistry staining. ARNTL knockdown in C57BLKS/J mice was established and plasma malonaldehyde, superoxide dismutase, and renal pathology were analyzed. The efficacy of ARNTL knockdown was evaluated using proteomics analysis. Mitochondrial morphology was observed using transmission electron microscopy. RESULTS ARNTL was screened by bioinformatics analysis and its overexpression verified in patients and mice with DKD. ARNTL knockdown reduced oxidative stress in plasma. Kidney proteomics revealed that ferroptosis was inhibited. The reduction of the classic alteration in mitochondrial morphology associated with ferroptosis was also observed. Gene set enrichment analysis demonstrated that the downregulation of the TGFβ pathway coincided with a decrease in collagen protein and TGFβ1 levels. CONCLUSIONS The ferroptosis-associated gene ARNTL is a potential target for treating DKD.
Collapse
Affiliation(s)
- Zhimei Peng
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Hua Xiao
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Hanyong Liu
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Hongtao Jin
- Department of Pathology, Shenzhen People's Hospital, Shenzhen, China
| | - Hualin Ma
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Liping Sun
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
8
|
Hao M, Guan Z, Zhang Z, Ai H, Peng X, Zhou H, Xu J, Gu Q. Atractylodinol prevents pulmonary fibrosis through inhibiting TGF-β receptor 1 recycling by stabilizing vimentin. Mol Ther 2023; 31:3015-3033. [PMID: 37641404 PMCID: PMC10556230 DOI: 10.1016/j.ymthe.2023.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Pirfenidone and nintedanib are only anti-pulmonary fibrosis (PF) drugs approved by the FDA. However, they are not target specific, and unable to modify the disease status. Therefore, it is still desirable to discover more effective agents against PF. Vimentin (VIM) plays key roles in tissue regeneration and wound healing, but its molecular mechanism remains unknown. In this work, we demonstrated that atractylodinol (ATD) significantly inhibits TGF-β1-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transition in vitro. ATD also reduces bleomycin-induced lung injury and fibrosis in mice models. Mechanistically, ATD inhibited TGF-β receptor I recycling by binding to VIM (KD = 454 nM) and inducing the formation of filamentous aggregates. In conclusion, we proved that ATD (derived from Atractylodes lancea) modified PF by targeting VIM and inhibiting the TGF-β/Smad signaling pathway. Therefore, VIM is a druggable target and ATD is a proper drug candidate against PF. We prove a novel VIM function that TGF-β receptor I recycling. These findings paved the way to develop new targeted therapeutics against PF.
Collapse
Affiliation(s)
- Mengjiao Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhuoji Guan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhikang Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haopeng Ai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xing Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihao Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qiong Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
9
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
10
|
Zhang T, Cui M, Li Y, Cheng Y, Gao Z, Wang J, Zhang T, Han G, Yin R, Wang P, Tian W, Liu W, Hu J, Wang Y, Liu Z, Zhang H. Pax transactivation domain-interacting protein is required for preserving hematopoietic stem cell quiescence via regulating lysosomal activity. Haematologica 2023; 108:2410-2421. [PMID: 36924252 PMCID: PMC10483346 DOI: 10.3324/haematol.2022.282224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Hematopoietic stem cells (HSC) maintain lifetime whole blood hematopoiesis through self-renewal and differentiation. In order to sustain HSC stemness, most HSC reside in a quiescence state, which is affected by diverse cellular stress and intracellular signal transduction. How HSC accommodate those challenges to preserve lifetime capacity remains elusive. Here we show that Pax transactivation domain-interacting protein (PTIP) is required for preserving HSC quiescence via regulating lysosomal activity. Using a genetic knockout mouse model to specifically delete Ptip in HSC, we find that loss of Ptip promotes HSC exiting quiescence, and results in functional exhaustion of HSC. Mechanistically, Ptip loss increases lysosomal degradative activity of HSC. Restraining lysosomal activity restores the quiescence and repopulation potency of Ptip-/- HSC. Additionally, PTIP interacts with SMAD2/3 and mediates transforming growth factor-β signaling-induced HSC quiescence. Overall, our work uncovers a key role of PTIP in sustaining HSC quiescence via regulating lysosomal activity.
Collapse
Affiliation(s)
- Tong Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Manman Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Yashu Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Ying Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Zhuying Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan
| | - Tiantian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Guoqiang Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan
| | - Peipei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Wen Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Weidong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan
| | - Jin Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Yuhua Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan.
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China;.
| |
Collapse
|
11
|
Wu JC, Wang XJ, Zhu JH, Huang XY, Liu M, Qiao Z, Zhang Y, Sun Y, Wang ZY, Zhan P, Zhang T, Hu HL, Liu H, Tang W, Yi F. GPR97 deficiency ameliorates renal interstitial fibrosis in mouse hypertensive nephropathy. Acta Pharmacol Sin 2023; 44:1206-1216. [PMID: 36635422 PMCID: PMC10203364 DOI: 10.1038/s41401-022-01041-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
Hypertensive nephropathy (HTN) ranks as the second-leading cause of end-stage renal disease (ESRD). Accumulating evidence suggests that persistent hypertension injures tubular cells, leading to tubulointerstitial fibrosis (TIF), which is involved in the pathogenesis of HTN. G protein-coupled receptors (GPCRs) are implicated in many important pathological and physiological processes and act as important drug targets. In this study, we explored the intrarenal mechanisms underlying hypertension-associated TIF, and particularly, the potential role of GPR97, a member of the adhesion GPCR subfamily, in TIF. A deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mouse model was used. We revealed a significantly upregulated expression of GPR97 in the kidneys, especially in renal tubules, of the hypertensive mice and 10 patients with biopsy-proven hypertensive kidney injury. GPR97-/- mice showed markedly elevated blood pressure, which was comparable to that of wild-type mice following DOCA/salt treatment, but dramatically ameliorated renal injury and TIF. In NRK-52E cells, we demonstrated that knockdown of GPR97 suppressed the activation of TGF-β signaling by disturbing small GTPase RhoA-mediated cytoskeletal reorganization, thus inhibiting clathrin-mediated endocytosis of TGF-β receptors and subsequent Smad activation. Collectively, this study demonstrates that GPR97 contributes to hypertension-associated TIF at least in part by facilitating TGF-β signaling, suggesting that GPR97 is a pivotal intrarenal factor for TIF progression under hypertensive conditions, and therapeutic strategies targeting GPR97 may improve the outcomes of patients with HTN.
Collapse
Affiliation(s)
- Ji-Chao Wu
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiao-Jie Wang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jing-Han Zhu
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xue-Ying Huang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Min Liu
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhe Qiao
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu Sun
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zi-Ying Wang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, 250012, China
| | - Hui-Li Hu
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
12
|
Pang KT, Ghim M, Sarathchandra P, Warboys CM, Yacoub MH, Chester AH, Weinberg PD. Shear-mediated ALK5 expression regulates endothelial activation. Biochem Biophys Res Commun 2023; 642:90-96. [PMID: 36566567 DOI: 10.1016/j.bbrc.2022.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease affects the aortic side of the valve, exposed to low magnitude multidirectional ("disturbed) blood flow, more than it affects the ventricular side, exposed to high magnitude uniaxial flow. Overt disease is preceded by endothelial dysfunction and inflammation. Here we investigate the potential role of the transforming growth factor-β (TGF-β) receptor ALK5 in this process. Although ECs are always subject to shear stress due to blood flow, and their responses to shear stress are important in healthy valve development and homeostasis, low magnitude multidirectional flow can induce pathophysiological changes. Previous work has shown ALK5 to be an important mechanosensor. ALK5 transduces mechanically sensed signals via the activation of the SMAD2/3 transcriptional modulators. However, it is currently unclear precisely how ALK5-mediated shear stress responses translate into pathological changes under conditions of chronically disturbed flow. Here, we demonstrate that ALK5 mechanosensory signalling influences flow-induced endothelial leukocyte adhesion and paracellular permeability. Low magnitude multidirectional flow resulted in downregulation of the receptor, accompanied by increased SMAD2 phosphorylation, in human umbilical vein endothelial cell (HUVEC) monolayers. These changes correlated with elevated monocyte adhesion and significantly increased transendothelial transport of an albumin-sized tracer. These effects were abolished by inhibition of ALK5 kinase activity. Analysis of ALK5 expression patterns in porcine aortic valve tissue corroborated the findings from cell-based experiments. Together, these results suggest that ALK5 has a role in shear stress-associated cardiovascular disease pathology, emphasising the importance of further mechanistic investigations and supporting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Mean Ghim
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Padmini Sarathchandra
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Christina M Warboys
- Comparative Biomedical Sciences, The Royal Veterinary College, United Kingdom
| | - Magdi H Yacoub
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Adrian H Chester
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College London, United Kingdom.
| |
Collapse
|
13
|
Zhang J, van der Zon G, Ma J, Mei H, Cabukusta B, Agaser CC, Madunić K, Wuhrer M, Zhang T, Ten Dijke P. ST3GAL5-catalyzed gangliosides inhibit TGF-β-induced epithelial-mesenchymal transition via TβRI degradation. EMBO J 2023; 42:e110553. [PMID: 36504224 PMCID: PMC9841337 DOI: 10.15252/embj.2021110553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is pivotal in the initiation and development of cancer cell metastasis. We observed that the abundance of glycosphingolipids (GSLs), especially ganglioside subtypes, decreased significantly during TGF-β-induced EMT in NMuMG mouse mammary epithelial cells and A549 human lung adenocarcinoma cells. Transcriptional profiling showed that TGF-β/SMAD response genes and EMT signatures were strongly enriched in NMuMG cells, along with depletion of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme that catalyzes the initial step in GSL biosynthesis. Consistent with this finding, genetic or pharmacological inhibition of UGCG promoted TGF-β signaling and TGF-β-induced EMT. UGCG inhibition promoted A549 cell migration, extravasation in the zebrafish xenograft model, and metastasis in mice. Mechanistically, GSLs inhibited TGF-β signaling by promoting lipid raft localization of the TGF-β type I receptor (TβRI) and by increasing TβRI ubiquitination and degradation. Importantly, we identified ST3GAL5-synthesized a-series gangliosides as the main GSL subtype involved in inhibition of TGF-β signaling and TGF-β-induced EMT in A549 cells. Notably, ST3GAL5 is weakly expressed in lung cancer tissues compared to adjacent nonmalignant tissues, and its expression correlates with good prognosis.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard van der Zon
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jin Ma
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cedrick C Agaser
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Abstract
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Collapse
Affiliation(s)
| | - Jiri Novotny
- Jiri Novotny, Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
15
|
AP2 Regulates Thickveins Trafficking to Attenuate NMJ Growth Signaling in Drosophila. eNeuro 2022; 9:ENEURO.0044-22.2022. [PMID: 36180220 PMCID: PMC9581581 DOI: 10.1523/eneuro.0044-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Compromised endocytosis in neurons leads to synapse overgrowth and altered organization of synaptic proteins. However, the molecular players and the signaling pathways which regulate the process remain poorly understood. Here, we show that σ2-adaptin, one of the subunits of the AP2-complex, genetically interacts with Mad, Medea and Dad (components of BMP signaling) to control neuromuscular junction (NMJ) growth in Drosophila Ultrastructural analysis of σ2-adaptin mutants show an accumulation of large vesicles and membranous structures akin to endosomes at the synapse. We found that mutations in σ2-adaptin lead to an accumulation of Tkv receptors at the presynaptic membrane. Interestingly, the level of small GTPase Rab11 was significantly reduced in the σ2-adaptin mutant synapses. However, expression of Rab11 does not restore the synaptic defects of σ2-adaptin mutations. We propose a model in which AP2 regulates Tkv internalization and endosomal recycling to control synaptic growth.
Collapse
|
16
|
Rab11a promotes the malignant progression of ovarian cancer by inducing autophagy. Genes Genomics 2022; 44:1375-1384. [PMID: 36125654 DOI: 10.1007/s13258-022-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Rab11a is a novel identified tumorigenic factor involved in different cancers. OBJECTIVE This study aimed to assess the biological function of Rab11a in ovarian cancer (OC). METHODS GEPIA database and real-time PCR were used to determine Rab11a expression in OC tissues and normal ovarian tissues. CCK-8, cell cycle, wound healing, transwell, and enzyme linked immunosorbent assay were used to detect the effects of Rab11a knockdown or overexpression on the proliferation, migration, and invasion of OC cells. Western blot analysis of autophagy-related markers and immunofluorescence staining of LC3 were performed to determine autophagy induction in Rab11a-silenced or overexpressed OC cells. Moreover, autophagy inhibitor 3-MA was employed to clarify the effects of Rab11a-regulated autophagy on the malignant phenotypes of OC cells. RESULTS The mRNA level of Rab11a was increased in tumor tissues from OC patients as compared to the normal ovarian tissues. Knockdown of Rab11a in OVCAR-3 cells inhibited the growth of OC cells and led to cell cycle arrest, accompanied by reduced expression of PCNA and Cyclin D1. Rab11a deficiency suppressed migration and invasion of OC cells, accompanied by decreased secretion of MMP-2 and MMP-9. Silence of Rab11a impeded autophagy induction, as evidenced by decreased LC3 puncta formation, reduced abundance of LC3II and Beclin1, and increased p62 protein expression. In contrast, the ectopic expression of Rab11a in A2780 cells exerted opposite effects. Interestingly, autophagy inhibitor 3-MA abolished the effects of Rab11a overexpression on autophagy, proliferation, migration, and invasion. CONCLUSIONS Rab11a promotes the malignant phenotypes of OC cells by inducing autophagy.
Collapse
|
17
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
18
|
Wong DCP, Lee EHC, Er J, Yow I, Koean RAG, Ang O, Xiao J, Low BC, Ding JL. Lung Cancer Induces NK Cell Contractility and Cytotoxicity Through Transcription Factor Nuclear Localization. Front Cell Dev Biol 2022; 10:871326. [PMID: 35652099 PMCID: PMC9149376 DOI: 10.3389/fcell.2022.871326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Actomyosin-mediated cellular contractility is highly conserved for mechanotransduction and signalling. While this phenomenon has been observed in adherent cell models, whether/how contractile forces regulate the function of suspension cells like natural killer (NK) cells during cancer surveillance, is unknown. Here, we demonstrated in coculture settings that the evolutionarily conserved NK cell transcription factor, Eomes, undergoes nuclear shuttling during lung cancer cell surveillance. Biophysical and biochemical analyses revealed mechanistic enhancement of NK cell actomyosin-mediated contractility, which is associated with nuclear flattening, thus enabling nuclear entry of Eomes associated with enhanced NK cytotoxicity. We found that NK cells responded to the presumed immunosuppressive TGFβ in the NK-lung cancer coculture medium to sustain its intracellular contractility through myosin light chain phosphorylation, thereby promoting Eomes nuclear localization. Therefore, our results demonstrate that lung cancer cells provoke NK cell contractility as an early phase activation mechanism and that Eomes is a plausible mechano-responsive protein for increased NK cytotoxicity. There is scope for strategic application of actomyosin-mediated contractility modulating drugs ex vivo, to reinvigorate NK cells prior to adoptive cancer immunotherapy in vivo (177 words).
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Junzhi Er
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ivan Yow
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | | | - Owen Ang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jingwei Xiao
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
- University Scholars Programme, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Burgy O, Crestani B, Bonniaud P. Targeting the nasty nestin to shoot lung fibrosis. Eur Respir J 2022; 59:59/5/2103146. [PMID: 35512809 DOI: 10.1183/13993003.03146-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Olivier Burgy
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France .,Constitutive Reference Center for Rare Pulmonary Diseases - OrphaLung, Dijon-Bourgogne University Hospital, Dijon, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, U1152, laboratoire d'excellence INFLAMEX, Paris, France.,APHP, Service de Pneumologie A, Constitutive Reference Center for Rare Pulmonary Diseases - OrphaLung, FHU APOLLO, Hôpital Bichat, Paris, France
| | - Philippe Bonniaud
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Constitutive Reference Center for Rare Pulmonary Diseases - OrphaLung, Dijon-Bourgogne University Hospital, Dijon, France.,Dept of Pulmonary Medicine and Intensive Care Unit, Dijon-Bourgogne University Hospital, Dijon, France
| |
Collapse
|
20
|
Li YM, Xu C, Sun B, Zhong FJ, Cao M, Yang LY. Piezo1 promoted hepatocellular carcinoma progression and EMT through activating TGF-β signaling by recruiting Rab5c. Cancer Cell Int 2022; 22:162. [PMID: 35461277 PMCID: PMC9035260 DOI: 10.1186/s12935-022-02574-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Piezo1 has been revealed to play a regulatory role in vascular development and progression of variety tumors. However, whether and how the progression of hepatocellular carcinoma (HCC) regulated by Piezo1 remains elusive. This study aimed to elucidate the effect and mechanisms of Piezo1 in HCC. METHODS The mRNA and protein expression level of Piezo1 in HCC samples and cell lines was determined by qRT-PCR, western blot and immunohistochemistry analyses. Two independent study cohorts containing 280 patients were analyzed to reveal the association between Piezo1 expression and clinicopathological characteristics. Series of in vitro and in vivo experiments were used to validate the function of Piezo1 in HCC. Gene set enrichment analysis (GSEA) was performed to explore the signaling pathway of Piezo1. Immunoprecipitation, immunofluorescence and in vitro and in vivo experiments were used to explore the molecular mechanism of Piezo1 in HCC progression. RESULTS Our results demonstrated the Piezo1 expression was significantly upregulated in HCC tissues and cell lines, and upregulation of Piezo1 closely correlated with aggressive clinicopathological features and poor prognosis. Knockdown of Piezo1 in HCCLM3 and Hep3B cells significantly restrained proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of HCC cells in vitro, and tumor growth, metastasis, EMT in vivo. TGF-β signaling pathway was most significant enriched pathway in GSEA. Finally, tumor promotion effect of Piezo1 was found to exerted through recruiting and combining Rab5c to activating TGF-β signaling pathway. CONCLUSIONS Piezo1 significantly related to poor prognosis and promotes progression of hepatocellular carcinoma via activating TGF-β signaling, which suggesting that Piezo1 may serve as a novel prognostic predictor and the potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yi-ming Li
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Cong Xu
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Bo Sun
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Fang-jing Zhong
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Momo Cao
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Lian-yue Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| |
Collapse
|
21
|
Schlichtner S, Yasinska IM, Ruggiero S, Berger SM, Aliu N, Prunk M, Kos J, Meyer NH, Gibbs BF, Fasler-Kan E, Sumbayev VV. Expression of the Immune Checkpoint Protein VISTA Is Differentially Regulated by the TGF-β1 - Smad3 Signaling Pathway in Rapidly Proliferating Human Cells and T Lymphocytes. Front Med (Lausanne) 2022; 9:790995. [PMID: 35223897 PMCID: PMC8866318 DOI: 10.3389/fmed.2022.790995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/17/2022] [Indexed: 01/25/2023] Open
Abstract
Immune checkpoint proteins play crucial roles in human embryonic development but are also used by cancer cells to escape immune surveillance. These proteins and biochemical pathways associated with them form a complex machinery capable of blocking the ability of cytotoxic immune lymphoid cells to attack cancer cells and, ultimately, to fully suppress anti-tumor immunity. One of the more recently discovered immune checkpoint proteins is V-domain Ig-containing suppressor of T cell activation (VISTA), which plays a crucial role in anti-cancer immune evasion pathways. The biochemical mechanisms underlying regulation of VISTA expression remain unknown. Here, we report for the first time that VISTA expression is controlled by the transforming growth factor beta type 1 (TGF-β)-Smad3 signaling pathway. However, in T lymphocytes, we found that VISTA expression was differentially regulated by TGF-β depending on their immune profile. Taken together, our results demonstrate the differential biochemical control of VISTA expression in human T cells and various types of rapidly proliferating cells, including cancer cells, fetal cells and keratinocytes.
Collapse
Affiliation(s)
- Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Nijas Aliu
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Mateja Prunk
- Department of Biotechnology, JoŽef Stefan Institute, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, JoŽef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany.,Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Bernhard F Gibbs
- Division of Experimental Allergology and Immunodermatology, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, Bern, Switzerland.,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
22
|
Sun L, Wang Y, Wang X, Navarro-Corcuera A, Ilyas S, Jalan-Sakrikar N, Gan C, Tu X, Shi Y, Tu K, Liu Q, Lou Z, Dong H, Sharpe AH, Shah VH, Kang N. PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II. Cell Rep 2022; 38:110349. [PMID: 35139382 PMCID: PMC8903892 DOI: 10.1016/j.celrep.2022.110349] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) contains abundant myofibroblasts derived from hepatic stellate cells (HSCs) through an activation process mediated by TGF-β. To determine the role of programmed death-ligand 1 (PD-L1) in myofibroblastic activation of HSCs, we disrupted PD-L1 of HSCs by shRNA or anti-PD-L1 antibody. We find that PD-L1, produced by HSCs, is required for HSC activation by stabilizing TGF-β receptors I (TβRI) and II (TβRII). While the extracellular domain of PD-L1 (amino acids 19-238) targets TβRII protein to the plasma membrane and protects it from lysosomal degradation, a C-terminal 260-RLRKGR-265 motif on PD-L1 protects TβRI mRNA from degradation by the RNA exosome complex. PD-L1 is required for HSC expression of tumor-promoting factors, and targeting HSC PD-L1 by shRNA or Cre/loxP recombination suppresses HSC activation and ICC growth in mice. Thus, myofibroblast PD-L1 can modulate the tumor microenvironment and tumor growth by a mechanism independent of immune suppression.
Collapse
Affiliation(s)
- Liankang Sun
- GI Research Unit and Cancer Cell Biology Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1(st) ST SW, Rochester, MN 55905, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, 801 16(th) Ave NE, Austin, MN 55912, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, 801 16(th) Ave NE, Austin, MN 55912, USA
| | - Amaia Navarro-Corcuera
- GI Research Unit and Cancer Cell Biology Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1(st) ST SW, Rochester, MN 55905, USA
| | - Sumera Ilyas
- GI Research Unit and Cancer Cell Biology Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1(st) ST SW, Rochester, MN 55905, USA
| | - Nidhi Jalan-Sakrikar
- GI Research Unit and Cancer Cell Biology Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1(st) ST SW, Rochester, MN 55905, USA
| | - Can Gan
- GI Research Unit and Cancer Cell Biology Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1(st) ST SW, Rochester, MN 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yu Shi
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Vijay H Shah
- GI Research Unit and Cancer Cell Biology Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1(st) ST SW, Rochester, MN 55905, USA.
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, 801 16(th) Ave NE, Austin, MN 55912, USA.
| |
Collapse
|
23
|
Chen Y, Wu X, Zhang J, Pan G, Wang X, Guo X, Wang J, Cui X, Gao H, Cheng M, Yang J, Zhang C, Jiang F. Amino acid starvation-induced LDLR trafficking accelerates lipoprotein endocytosis and LDL clearance. EMBO Rep 2022; 23:e53373. [PMID: 34994492 PMCID: PMC8892268 DOI: 10.15252/embr.202153373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Mammalian cells utilize Akt‐dependent signaling to deploy intracellular Glut4 toward cell surface to facilitate glucose uptake. Low‐density lipoprotein receptor (LDLR) is the cargo receptor mediating endocytosis of apolipoprotein B‐containing lipoproteins. However, signaling‐controlled regulation of intracellular LDLR trafficking remains elusive. Here, we describe a unique amino acid stress response, which directs the deployment of intracellular LDLRs, causing enhanced LDL endocytosis, likely via Ca2+ and calcium/calmodulin‐dependent protein kinase II‐mediated signalings. This response is independent of induction of autophagy. Amino acid stress‐induced increase in LDL uptake in vitro is comparable to that by pravastatin. In vivo, acute AAS challenge for up to 72 h enhanced the rate of hepatic LDL uptake without changing the total expression level of LDLR. Reducing dietary amino acids by 50% for 2 to 4 weeks ameliorated high fat diet‐induced hypercholesterolemia in heterozygous LDLR‐deficient mice, with reductions in both LDL and VLDL fractions. We suggest that identification of signaling‐controlled regulation of intracellular LDLR trafficking has advanced our understanding of the LDLR biology, and may benefit future development of additional therapeutic strategies for treating hypercholesterolemia.
Collapse
Affiliation(s)
- Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyun Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianli Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiqing Gao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Cheng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingwen Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
24
|
Huang S, Lai X, Yang L, Ye F, Huang C, Qiu Y, Lin S, Pu L, Wang Z, Huang W. Asporin Promotes TGF-β-induced Lung Myofibroblast Differentiation by Facilitating Rab11-dependent Recycling of TβRI. Am J Respir Cell Mol Biol 2021; 66:158-170. [PMID: 34705621 DOI: 10.1165/rcmb.2021-0257oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease with high mortality and morbidity. Asporin (ASPN), a member of the small leucine-rich proteoglycan (SLRP) family, plays crucial roles in tissue injury and regeneration. However, the precise pathophysiological role of ASPN and its molecular mechanisms in IPF remain unknown. We sought to investigate the role of ASPN during the development of pulmonary fibrosis and the therapeutic potential of targeting ASPN-related signaling pathways. In our study, three microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened out by bioinformatic analysis. Hub genes were selected from the protein-protein interaction network. ASPN was examined in lung tissues from pulmonary fibrosis mouse models and the role of ASPN in TGF-β/Smad signaling was determined by transfection with ASPN shRNA vectors in vitro. Biotinylation assays were conducted to measure plasma membrane TβRI and TβRI recycling after ASPN knockdown. The results showed ASPN expression was increased in the lungs of pulmonary fibrosis mouse models, and ASPN was primarily localized in α-SMA+ myofibroblasts. In vitro experiments proved that ASPN knockdown inhibited TGF-β/Smad signaling and myofibroblast differentiation by regulating the stability of TβRI. Further molecular mechanisms revealed that ASPN knockdown inhibited TGF-β/Smad signaling by suppressing recycling of TβRI to the cell surface in a Rab11-dependent manner and facilitated lysosome-mediated degradation of TβRI. In conclusion, our findings provide important evidence for the use of ASPN as a novel pharmacological target for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Shaojie Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Cardiac Surgery, Guangzhou, China
| | - Xiaofan Lai
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Lu Yang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Fang Ye
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Chanyan Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Yuan Qiu
- Sun Yat-Sen University, 26469, Center for stem cell biology and tissue engineering, Guangzhou, China
| | - Sijia Lin
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Lvya Pu
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Zhongxing Wang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Wenqi Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China;
| |
Collapse
|
25
|
Boog H, Medda R, Cavalcanti-Adam EA. Single Cell Center of Mass for the Analysis of BMP Receptor Heterodimers Distributions. J Imaging 2021; 7:jimaging7110219. [PMID: 34821850 PMCID: PMC8620704 DOI: 10.3390/jimaging7110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
At the plasma membrane, transmembrane receptors are at the interface between cells and their environment. They allow sensing and transduction of chemical and mechanical extracellular signals. The spatial distribution of receptors and the specific recruitment of receptor subunits to the cell membrane is crucial for the regulation of signaling and cell behavior. However, it is challenging to define what regulates such spatial patterns for receptor localization, as cell shapes are extremely diverse when cells are maintained in standard culture conditions. Bone morphogenetic protein receptors (BMPRs) are serine-threonine kinases, which build heteromeric complexes of BMPRI and II. These are especially interesting targets for receptor distribution studies, since the signaling pathways triggered by BMPR-complexes depends on their dimerization mode. They might exist as preformed complexes, or assemble upon binding of BMP, triggering cell signaling which leads to differentiation or migration. In this work we analyzed BMPR receptor distributions in single cells grown on micropatterns, which allow not only to control cell shape, but also the distribution of intracellular organelles and protein assemblies. We developed a script called ComRed (Center Of Mass Receptor Distribution), which uses center of mass calculations to analyze the shift and spread of receptor distributions according to the different cell shapes. ComRed was tested by simulating changes in experimental data showing that shift and spread of distributions can be reliably detected. Our ComRed-based analysis of BMPR-complexes indicates that receptor distribution depends on cell polarization. The absence of a coordinated internalization after addition of BMP suggests that a rapid and continual recycling of BMPRs might occur. Receptor complexes formation and localization in cells induced by BMP might yield insights into the local regulation of different signaling pathways.
Collapse
Affiliation(s)
- Hendrik Boog
- Department of Cellular Biophysics-Growth Factor Mechanobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany; (H.B.); (R.M.)
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Rebecca Medda
- Department of Cellular Biophysics-Growth Factor Mechanobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany; (H.B.); (R.M.)
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics-Growth Factor Mechanobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany; (H.B.); (R.M.)
- Correspondence:
| |
Collapse
|
26
|
Wang J, Lai X, Yao S, Chen H, Cai J, Luo Y, Wang Y, Qiu Y, Huang Y, Wei X, Wang B, Lu Q, Guan Y, Wang T, Li S, Xiang AP. Nestin promotes pulmonary fibrosis via facilitating recycling of TGF-β receptor I. Eur Respir J 2021; 59:13993003.03721-2020. [PMID: 34625478 PMCID: PMC9068978 DOI: 10.1183/13993003.03721-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2021] [Indexed: 12/03/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is characterised by aberrant proliferation of activated myofibroblasts and pathological remodelling of the extracellular matrix. Previous studies have revealed that the intermediate filament protein nestin plays key roles in tissue regeneration and wound healing in different organs. Whether nestin plays a critical role in the pathogenesis of IPF needs to be clarified. Methods Nestin expression in lung tissues from bleomycin-treated mice and IPF patients was determined. Transfection with nestin short hairpin RNA vectors in vitro that regulated transcription growth factor (TGF)-β/Smad signalling was conducted. Biotinylation assays to observe plasma membrane TβRI, TβRI endocytosis and TβRI recycling after nestin knockdown were performed. Adeno-associated virus serotype (AAV)6-mediated nestin knockdown was assessed in vivo. Results We found that nestin expression was increased in a murine pulmonary fibrosis model and IPF patients, and that the upregulated protein primarily localised in lung α-smooth muscle actin-positive myofibroblasts. Mechanistically, we determined that nestin knockdown inhibited TGF-β signalling by suppressing recycling of TβRI to the cell surface and that Rab11 was required for the ability of nestin to promote TβRI recycling. In vivo, we found that intratracheal administration of AAV6-mediated nestin knockdown significantly alleviated pulmonary fibrosis in multiple experimental mice models. Conclusion Our findings reveal a pro-fibrotic function of nestin partially through facilitating Rab11-dependent recycling of TβRI and shed new light on pulmonary fibrosis treatment. Nestin regulates the vesicular trafficking system by promoting Rab11-dependent recycling of TβRI and thereby contributes to the progression of pulmonary fibrosis. Precise targeting of nestin may represent a potential therapeutic strategy for IPF.https://bit.ly/3zO75c3
Collapse
Affiliation(s)
- Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.,These authors contributed equally to this work
| | - Xiaofan Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Senyu Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Hainan Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,These authors contributed equally to this work
| | - Jianye Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, China
| | - Yulong Luo
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yinong Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Boyan Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Qiying Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Facility of Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Shiyue Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Galgoczi S, Ruzo A, Markopoulos C, Yoney A, Phan-Everson T, Li S, Haremaki T, Metzger JJ, Etoc F, Brivanlou AH. Huntingtin CAG expansion impairs germ layer patterning in synthetic human 2D gastruloids through polarity defects. Development 2021; 148:272380. [PMID: 34608934 PMCID: PMC8513611 DOI: 10.1242/dev.199513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs). Specifically, we observed a reduction in the extension of the ectodermal compartment that is associated with enhanced activin signaling. Surprisingly, rather than a cell-autonomous effect, tracking the dynamics of TGFβ signaling demonstrated that HTT-CAG expansion perturbs the spatial restriction of activin response. This is due to defects in the apicobasal polarization in the context of the polarized epithelium of the 2D gastruloid, leading to ectopic subcellular localization of TGFβ receptors. This work refines the earliest developmental window for the prodromal phase of HD to the first 2 weeks of human development, as modeled by our 2D gastruloids. Summary: 2D gastruloids of isogenic human embryonic stem cells modeling Huntington's Disease reveal that huntingtin CAG expansion perturbs the spatial restriction of the activin response in the context of the polarized epithelium.
Collapse
Affiliation(s)
- Szilvia Galgoczi
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Markopoulos
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Tien Phan-Everson
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Tomomi Haremaki
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Jakob J Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
28
|
Zakrzewski PK. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. J Clin Med 2021; 10:3900. [PMID: 34501347 PMCID: PMC8432036 DOI: 10.3390/jcm10173900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Endometrial cancer is one of the leading gynecological cancers diagnosed among women in their menopausal and postmenopausal age. Despite the progress in molecular biology and medicine, no efficient and powerful diagnostic and prognostic marker is dedicated to endometrial carcinogenesis. The canonical TGFβ pathway is a pleiotropic signaling cascade orchestrating a variety of cellular and molecular processes, whose alterations are responsible for carcinogenesis that originates from different tissue types. This review covers the current knowledge concerning the canonical TGFβ pathway (Smad-dependent) induced by prototypical TGFβ isoforms and the involvement of pathway alterations in the development and progression of endometrial neoplastic lesions. Since Smad-dependent signalization governs opposed cellular processes, such as growth arrest, apoptosis, tumor cells growth and differentiation, as well as angiogenesis and metastasis, TGFβ cascade may act both as a tumor suppressor or tumor promoter. However, the final effect of TGFβ signaling on endometrial cancer cells depends on the cancer disease stage. The multifunctional role of the TGFβ pathway indicates the possible utilization of alterations in the TGFβ cascade as a potential target of novel anticancer strategies.
Collapse
Affiliation(s)
- Piotr K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
29
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
30
|
Lord ND, Carte AN, Abitua PB, Schier AF. The pattern of nodal morphogen signaling is shaped by co-receptor expression. eLife 2021; 10:e54894. [PMID: 34036935 PMCID: PMC8266389 DOI: 10.7554/elife.54894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Embryos must communicate instructions to their constituent cells over long distances. These instructions are often encoded in the concentration of signals called morphogens. In the textbook view, morphogen molecules diffuse from a localized source to form a concentration gradient, and target cells adopt fates by measuring the local morphogen concentration. However, natural patterning systems often incorporate numerous co-factors and extensive signaling feedback, suggesting that embryos require additional mechanisms to generate signaling patterns. Here, we examine the mechanisms of signaling pattern formation for the mesendoderm inducer Nodal during zebrafish embryogenesis. We find that Nodal signaling activity spans a normal range in the absence of signaling feedback and relay, suggesting that diffusion is sufficient for Nodal gradient formation. We further show that the range of endogenous Nodal ligands is set by the EGF-CFC co-receptor Oep: in the absence of Oep, Nodal activity spreads to form a nearly uniform distribution throughout the embryo. In turn, increasing Oep levels sensitizes cells to Nodal ligands. We recapitulate these experimental results with a computational model in which Oep regulates the diffusive spread of Nodal ligands by setting the rate of capture by target cells. This model predicts, and we confirm in vivo, the surprising observation that a failure to replenish Oep transforms the Nodal signaling gradient into a travelling wave. These results reveal that patterns of Nodal morphogen signaling are shaped by co-receptor-mediated restriction of ligand spread and sensitization of responding cells.
Collapse
Affiliation(s)
- Nathan D Lord
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adam N Carte
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard UniversityCambridgeUnited States
- Biozentrum, University of BaselBaselSwitzerland
| | - Philip B Abitua
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Biozentrum, University of BaselBaselSwitzerland
- Allen Discovery Center for Cell Lineage Tracing, University of WashingtonSeattleUnited States
| |
Collapse
|
31
|
Tazat K, Pomeraniec-Abudy L, Hector-Greene M, Szilágyi SS, Sharma S, Cai EM, Corona AL, Ehrlich M, Blobe GC, Henis YI. ALK1 regulates the internalization of endoglin and the type III TGF-β receptor. Mol Biol Cell 2021; 32:605-621. [PMID: 33566682 PMCID: PMC8101464 DOI: 10.1091/mbc.e20-03-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | - Swati Sharma
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elise M Cai
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Armando L Corona
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
32
|
Lee S, Lim GE, Kim YN, Koo HS, Shim J. AP2M1 Supports TGF-β Signals to Promote Collagen Expression by Inhibiting Caveolin Expression. Int J Mol Sci 2021; 22:ijms22041639. [PMID: 33561975 PMCID: PMC7915421 DOI: 10.3390/ijms22041639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
The extracellular matrix (ECM) is important for normal development and disease states, including inflammation and fibrosis. To understand the complex regulation of ECM, we performed a suppressor screening using Caenorhabditis elegans expressing the mutant ROL-6 collagen protein. One cuticle mutant has a mutation in dpy-23 that encodes the μ2 adaptin (AP2M1) of clathrin-associated protein complex II (AP-2). The subsequent suppressor screening for dpy-23 revealed the lon-2 mutation. LON-2 functions to regulate body size through negative regulation of the tumor growth factor-beta (TGF-β) signaling pathway responsible for ECM production. RNA-seq analysis showed a dominant change in the expression of collagen genes and cuticle components. We noted an increase in the cav-1 gene encoding caveolin-1, which functions in clathrin-independent endocytosis. By knockdown of cav-1, the reduced TGF-β signal was significantly restored in the dpy-23 mutant. In conclusion, the dpy-23 mutation upregulated cav-1 expression in the hypodermis, and increased CAV-1 resulted in a decrease of TβRI. Finally, the reduction of collagen expression including rol-6 by the reduced TGF-β signal influenced the cuticle formation of the dpy-23 mutant. These findings could help us to understand the complex process of ECM regulation in organism development and disease conditions.
Collapse
Affiliation(s)
- Saerom Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
- Department of Biochemistry, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ga-Eun Lim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
| | - Yong-Nyun Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
| | - Hyeon-Sook Koo
- Department of Biochemistry, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (H.-S.K.); (J.S.); Tel.: +82-2-2123-2695 (H.-S.K.); +82-31-920-2262 (J.S.)
| | - Jaegal Shim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
- Correspondence: (H.-S.K.); (J.S.); Tel.: +82-2-2123-2695 (H.-S.K.); +82-31-920-2262 (J.S.)
| |
Collapse
|
33
|
Souza ILM, Oliveira NH, Huamaní PAM, Martin ATS, Borgonovo ZLM, Nakao LS, Zanata SM. Endocytosis of the non-catalytic ADAM23: Recycling and long half-life properties. Exp Cell Res 2020; 398:112415. [PMID: 33296662 DOI: 10.1016/j.yexcr.2020.112415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022]
Abstract
A Disintegrin And Metalloprotease 23 (ADAM23) is a member of the ADAMs family of transmembrane proteins, mostly expressed in nervous system, and involved in traffic and stabilization of Kv1-potassium channels, synaptic transmission, neurite outgrowth, neuronal morphology and cell adhesion. Also, ADAM23 has been linked to human pathological conditions, such as epilepsy, cancer metastasis and cardiomyopathy. ADAM23 functionality depends on the molecule presence at the cell surface and along the secretory pathway, as expected for a cell surface receptor. Because endocytosis is an important functional regulatory mechanism of plasma membrane receptors and no information is available about the traffic or turnover of non-catalytic ADAMs, we investigated ADAM23 internalization, recycling and half-life properties. Here, we show that ADAM23 undergoes constitutive internalization from the plasma membrane, a process that depends on lipid raft integrity, and is redistributed to intracellular vesicles, especially early and recycling endosomes. Furthermore, we observed that ADAM23 is recycled from intracellular compartments back to the plasma membrane and thus has longer half-life and higher cell surface stability compared with other ADAMs. Our findings suggest that regulation of ADAM23 endocytosis/stability could be exploited therapeutically in diseases in which ADAM23 is directly involved, such as epilepsy, cancer progression and cardiac hypertrophy.
Collapse
Affiliation(s)
- Ingrid L M Souza
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Natália H Oliveira
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Pierina A M Huamaní
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Anh-Tuan S Martin
- Institut für Molekulare Zellbiologie, University of Münster, Münster, Germany
| | - Zaine L M Borgonovo
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lia S Nakao
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Silvio M Zanata
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
34
|
Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020; 8:578384. [PMID: 33282860 PMCID: PMC7691485 DOI: 10.3389/fcell.2020.578384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia (PC) are solitary, post-mitotic, microtubule-based, and membrane-covered protrusions that are found on almost every mammalian cell. PC are specialized cellular sensory organelles that transmit environmental information to the cell. Signaling through PC is involved in the regulation of a variety of cellular processes, including proliferation, differentiation, and migration. Conversely, defective, or abnormal PC signaling can contribute to the development of various pathological conditions. Our knowledge of the role of PC in organ development and function is largely based on ciliopathies, a family of genetic disorders with mutations affecting the structure and function of PC. In this review, we focus on the role of PC in their major signaling pathways active in skin cells, and their contribution to wound healing and scarring. To provide comprehensive insights into the current understanding of PC functions, we have collected data available in the literature, including evidence across cell types, tissues, and animal species. We conclude that PC are underappreciated subcellular organelles that significantly contribute to both physiological and pathological processes of the skin development and wound healing. Thus, PC assembly and disassembly and PC signaling may serve as attractive targets for antifibrotic and antiscarring therapies.
Collapse
Affiliation(s)
- Mayu Hosio
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Full-length IL-33 regulates Smad3 phosphorylation and gene transcription in a distinctive AP2-dependent manner. Cell Immunol 2020; 357:104203. [DOI: 10.1016/j.cellimm.2020.104203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
|
36
|
Liu D, Fu X, Wang Y, Wang X, Wang H, Wen J, Kang N. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis. FASEB J 2020; 34:7345-7359. [PMID: 32304339 PMCID: PMC7686927 DOI: 10.1096/fj.201903033r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/19/2023]
Abstract
TGFβ induces the differentiation of hepatic stellate cells (HSCs) into tumor-promoting myofibroblasts but underlying mechanisms remain incompletely understood. Because endocytosis of TGFβ receptor II (TβRII), in response to TGFβ stimulation, is a prerequisite for TGF signaling, we investigated the role of protein diaphanous homolog 1 (known as Diaph1 or mDia1) for the myofibroblastic activation of HSCs. Using shRNA to knockdown Diaph1 or SMIFH2 to target Diaph1 activity of HSCs, we found that the inactivation of Diaph1 blocked internalization and intracellular trafficking of TβRII and reduced SMAD3 phosphorylation induced by TGFβ1. Mechanistic studies revealed that the N-terminal portion of Diaph1 interacted with both TβRII and Rab5a directly and that Rab5a activity of HSCs was increased by Diaph1 overexpression and decreased by Diaph1 knockdown. Additionally, expression of Rab5aQ79L (active Rab5a mutant) increased whereas the expression of Rab5aS34N (inactive mutant) reduced the endosomal localization of TβRII in HSCs compared to the expression of wild-type Rab5a. Functionally, TGFβ stimulation promoted HSCs to express tumor-promoting factors, and α-smooth muscle actin, fibronection, and CTGF, markers of myofibroblastic activation of HSCs. Targeting Diaph1 or Rab5a suppressed HSC activation and limited tumor growth in a tumor implantation mouse model. Thus, Dipah1 and Rab5a represent targets for inhibiting HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Donglian Liu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xinhui Fu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Hua Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jialing Wen
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
37
|
Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules 2020; 10:biom10030487. [PMID: 32210029 PMCID: PMC7175140 DOI: 10.3390/biom10030487] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β.
Collapse
|
38
|
AGAP2: Modulating TGFβ1-Signaling in the Regulation of Liver Fibrosis. Int J Mol Sci 2020; 21:ijms21041400. [PMID: 32092977 PMCID: PMC7073092 DOI: 10.3390/ijms21041400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is a protein that belongs to the Arf GAP (GTPase activating protein) protein family. These proteins act as GTPase switches for Arfs, which are Ras superfamily members, being therefore involved in signaling regulation. Arf GAP proteins have been shown to participate in several cellular functions including membrane trafficking and actin cytoskeleton remodeling. AGAP2 is a multi-tasking Arf GAP that also presents GTPase activity and is involved in several signaling pathways related with apoptosis, cell survival, migration, and receptor trafficking. The increase of AGAP2 levels is associated with pathologies as cancer and fibrosis. Transforming growth factor beta-1 (TGF-β1) is the most potent pro-fibrotic cytokine identified to date, currently accepted as the principal mediator of the fibrotic response in liver, lung, and kidney. Recent literature has described that the expression of AGAP2 modulates some of the pro-fibrotic effects described for TGF-β1 in the liver. The present review is focused on the interrelated molecular effects between AGAP2 and TGFβ1 expression, presenting AGAP2 as a new player in the signaling of this pro-fibrotic cytokine, thereby contributing to the progression of hepatic fibrosis.
Collapse
|
39
|
Tetraspanins TSP-12 and TSP-14 function redundantly to regulate the trafficking of the type II BMP receptor in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:2968-2977. [PMID: 31988138 DOI: 10.1073/pnas.1918807117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tetraspanins are a unique family of 4-pass transmembrane proteins that play important roles in a variety of cell biological processes. We have previously shown that 2 paralogous tetraspanins in Caenorhabditis elegans, TSP-12 and TSP-14, function redundantly to promote bone morphogenetic protein (BMP) signaling. The underlying molecular mechanisms, however, are not fully understood. In this study, we examined the expression and subcellular localization patterns of endogenously tagged TSP-12 and TSP-14 proteins. We found that TSP-12 and TSP-14 share overlapping expression patterns in multiple cell types, and that both proteins are localized on the cell surface and in various types of endosomes, including early, late, and recycling endosomes. Animals lacking both TSP-12 and TSP-14 exhibit reduced cell-surface levels of the BMP type II receptor DAF-4/BMPRII, along with impaired endosome morphology and mislocalization of DAF-4/BMPRII to late endosomes and lysosomes. These findings indicate that TSP-12 and TSP-14 are required for the recycling of DAF-4/BMPRII. Together with previous findings that the type I receptor SMA-6 is recycled via the retromer complex, our work demonstrates the involvement of distinct recycling pathways for the type I and type II BMP receptors and highlights the importance of tetraspanin-mediated intracellular trafficking in the regulation of BMP signaling in vivo. As TSP-12 and TSP-14 are conserved in mammals, our findings suggest that the mammalian TSP-12 and TSP-14 homologs may also function in regulating transmembrane protein recycling and BMP signaling.
Collapse
|
40
|
Cruz DF, Mitash N, Farinha CM, Swiatecka-Urban A. TGF-β1 Augments the Apical Membrane Abundance of Lemur Tyrosine Kinase 2 to Inhibit CFTR-Mediated Chloride Transport in Human Bronchial Epithelia. Front Cell Dev Biol 2020; 8:58. [PMID: 32117984 PMCID: PMC7018669 DOI: 10.3389/fcell.2020.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The most common disease-causing mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, F508del, leads to cystic fibrosis (CF), by arresting CFTR processing and trafficking to the plasma membrane. The FDA-approved modulators partially restore CFTR function and slow down the progression of CF lung disease by increasing processing and delivery to the plasma membrane and improving activity of F508del-CFTR Cl– channels. However, the modulators do not correct compromised membrane stability of rescued F508del-CFTR. Transforming growth factor (TGF)-β1 is a well-established gene modifier of CF associated with worse lung disease in F508del-homozygous patients, by inhibiting CFTR biogenesis and blocking the functional rescue of F508del-CFTR. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein localized at the apical and basolateral membrane domain of human bronchial epithelial cells. Phosphorylation of the apical membrane CFTR by LMTK2 triggers its endocytosis and reduces the abundance of membrane-associated CFTR, impairing the CFTR-mediated Cl– transport. We have previously shown that LMTK2 knockdown improves the pharmacologically rescued F508del-CFTR abundance and function. Thus, reducing the LMTK2 recruitment to the plasma membrane may provide a useful strategy to potentiate the pharmacological rescue of F508del-CFTR. Here, we elucidate the mechanism of LMTK2 recruitment to the apical plasma membrane in polarized CFBE41o- cells. TGF-β1 increased LMTK2 abundance selectively at the apical membrane by accelerating its recycling in Rab11-positive vesicles without affecting LMTK2 mRNA levels, protein biosynthesis, or endocytosis. Our data suggest that controlling TGF-β1 signaling may attenuate recruitment of LMTK2 to the apical membrane thereby improving stability of pharmacologically rescued F508del-CFTR.
Collapse
Affiliation(s)
- Daniel F Cruz
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nilay Mitash
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Carlos M Farinha
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
41
|
Chen Y, Li Q, Tu K, Wang Y, Wang X, Liu D, Chen C, Liu D, Yang R, Qiu W, Kang N. Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2. Hepatol Commun 2020; 4:268-283. [PMID: 32025610 PMCID: PMC6996408 DOI: 10.1002/hep4.1452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/03/2019] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor β (TGFβ) induces hepatic stellate cell (HSC) differentiation into tumor-promoting myofibroblast, although underlying mechanism remains incompletely understood. Focal adhesion kinase (FAK) is activated in response to TGFβ stimulation, so it transmits TGFβ stimulus to extracellular signal-regulated kinase and P38 mitogen-activated protein kinase signaling. However, it is unknown whether FAK can, in return, modulate TGFβ receptors. In this study, we tested whether FAK phosphorylated TGFβ receptor 2 (TGFβR2) and regulated TGFβR2 intracellular trafficking in HSCs. The FAKY397F mutant and PF-573,228 were used to inhibit the kinase activity of FAK, the TGFβR2 protein level was quantitated by immunoblotting, and HSC differentiation into myofibroblast was assessed by expression of HSC activation markers, alpha-smooth muscle actin, fibronectin, or connective tissue growth factor. We found that targeting FAK kinase activity suppressed the TGFβR2 protein level, TGFβ1-induced mothers against decapentaplegic homolog phosphorylation, and myofibroblastic activation of HSCs. At the molecular and cellular level, active FAK (phosphorylated FAK at tyrosine 397) bound to TGFβR2 and kept TGFβR2 at the peripheral plasma membrane of HSCs, and it induced TGFβR2 phosphorylation at tyrosine 336. In contrast, targeting FAK or mutating Y336 to F on TGFβR2 led to lysosomal sorting and degradation of TGFβR2. Using RNA sequencing, we identified that the transcripts of 764 TGFβ target genes were influenced by FAK inhibition, and that through FAK, TGFβ1 stimulated HSCs to produce a panel of tumor-promoting factors, including extracellular matrix remodeling proteins, growth factors and cytokines, and immune checkpoint molecule PD-L1. Functionally, targeting FAK inhibited tumor-promoting effects of HSCs in vitro and in a tumor implantation mouse model. Conclusion: FAK targets TGFβR2 to the plasma membrane and protects TGFβR2 from lysosome-mediated degradation, thereby promoting TGFβ-mediated HSC activation. FAK is a target for suppressing HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Yunru Chen
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Qing Li
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Kangsheng Tu
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Yuanguo Wang
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
| | - Xianghu Wang
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
| | - Dandan Liu
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
| | - Chen Chen
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiP. R. China
| | - Donglian Liu
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
- Present address:
Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanGuangdongP. R. China
| | - Rendong Yang
- Computational Cancer GenomicsHormel InstituteUniversity of MinnesotaAustinMN
| | - Wei Qiu
- Department of Surgery and Cancer BiologyLoyola University Chicago Stritch School of MedicineMaywoodIL
| | - Ningling Kang
- Tumor Microenvironment and MetastasisHormel InstituteUniversity of MinnesotaAustinMN
| |
Collapse
|
42
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
43
|
Wu Y, Zhao Y, He X, He Z, Wang T, Wan L, Chen L, Yan N. Hydroxypropyl‑β‑cyclodextrin attenuates the epithelial‑to‑mesenchymal transition via endoplasmic reticulum stress in MDA‑MB‑231 breast cancer cells. Mol Med Rep 2019; 21:249-257. [PMID: 31746388 PMCID: PMC6896369 DOI: 10.3892/mmr.2019.10802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) has been reported to serve vital roles in regulating the progress of cancer metastasis. In addition, lipid rafts enriched in sphingolipids and cholesterol serve important roles in physiological and biochemical processes as a signaling platform. The present study explored the effects of hydroxypropyl-β-cyclodextrin (HP-β-CD), a cholesterol-depleting agent of lipid rafts, on the transforming growth factor (TGF)-β/Smad signaling pathway and endoplasmic reticulum (ER) stress in mediating EMT in MDA-MB-231 breast cancer cells. HP-β-CD treatment inhibited TGF-β1-induced EMT, based on increased expression of E-cadherin and decreased expression of vimentin. HP-β-CD reduced the expression of the TGF receptor TβRI and blocked the phosphorylation of Smad2. In addition, HP-β-CD increased the expression of ER stress-related proteins (binding immunoglobulin protein and activating transcription factor 6), but TGF-β1 could reverse these changes. Sodium 4-phenylbutyrate, an inhibitor of ER stress, suppressed these effects of HP-β-CD on EMT and TGF-β/Smad signaling pathway inhibition in breast cancer cells. Thus, HP-β-CD can block the TGF-β/Smad signaling pathway via diminishing the expression of TβRI which helps to activate ER stress and attenuate EMT in MDA-MB-231 cells, highlighting a potential target of lipid rafts for breast cancer treatment.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yiyang Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tian Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxi Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lai Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
44
|
Miller DSJ, Schmierer B, Hill CS. TGF-β family ligands exhibit distinct signalling dynamics that are driven by receptor localisation. J Cell Sci 2019; 132:jcs234039. [PMID: 31217285 PMCID: PMC6679586 DOI: 10.1242/jcs.234039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/29/2022] Open
Abstract
Growth factor-induced signal transduction pathways are tightly regulated at multiple points intracellularly, but how cells monitor levels of extracellular ligand and translate this information into appropriate downstream responses remains unclear. Understanding signalling dynamics is thus a key challenge in determining how cells respond to external cues. Here, we demonstrate that different TGF-β family ligands, namely activin A and BMP4, signal with distinct dynamics, which differ profoundly from those of TGF-β itself. The signalling dynamics are driven by differences in the localisation and internalisation of receptors for each ligand, which in turn determine the capability of cells to monitor levels of extracellular ligand. By using mathematical modelling, we demonstrate that the distinct receptor behaviours and signalling dynamics observed may be primarily driven by differences in ligand-receptor affinity. Furthermore, our results provide a clear rationale for the different mechanisms of pathway regulation found in vivo for each of these growth factors.
Collapse
Affiliation(s)
- Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bernhard Schmierer
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics and SciLifeLab Biomedicum 9B, Solnavägen 9, SE-171 65 Solna, Stockholm, Sweden
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
45
|
Mönnich M, Borgeskov L, Breslin L, Jakobsen L, Rogowski M, Doganli C, Schrøder JM, Mogensen JB, Blinkenkjær L, Harder LM, Lundberg E, Geimer S, Christensen ST, Andersen JS, Larsen LA, Pedersen LB. CEP128 Localizes to the Subdistal Appendages of the Mother Centriole and Regulates TGF-β/BMP Signaling at the Primary Cilium. Cell Rep 2019. [PMID: 29514088 DOI: 10.1016/j.celrep.2018.02.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure but caused impaired transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss of CEP128, and quantitative phosphoproteomics revealed that CEP128 loss affects TGF-β1-induced phosphorylation of multiple proteins that regulate cilium-associated vesicle trafficking.
Collapse
Affiliation(s)
- Maren Mönnich
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Louise Borgeskov
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Loretta Breslin
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Michaela Rogowski
- Cell Biology/Electron Microscopy, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Canan Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacob M Schrøder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Johanne B Mogensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Louise Blinkenkjær
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lea M Harder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Emma Lundberg
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | - Stefan Geimer
- Cell Biology/Electron Microscopy, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
46
|
Carter SP, Blacque OE. Membrane retrieval, recycling and release pathways that organise and sculpt the ciliary membrane. Curr Opin Cell Biol 2019; 59:133-139. [PMID: 31146146 DOI: 10.1016/j.ceb.2019.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
The microtubule-based cilium that extends from the surface of most eukaryotic cell types serves motility, sensory reception and cell-cell signaling functions, and is disrupted in wide-ranging ciliopathy disorders. The cilium is heavily reliant on dynamic and tuneable intracellular trafficking systems such as intraflagellar transport and Golgi-derived secretory pathways, which control the organelle's structure, function and molecular composition. More recently, endosomal retrieval and recycling, as well as extracellular vesicle (EV) release, pathways have been associated with ciliary membrane control. Here, we discuss the emerging role of these pathways in the control of ciliary membrane homeostasis. The new findings provide a deeper and more integrated understanding of how the ciliary membrane is organised.
Collapse
Affiliation(s)
- Stephen P Carter
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
47
|
Hocevar BA. Loss of Disabled-2 Expression in Pancreatic Cancer Progression. Sci Rep 2019; 9:7532. [PMID: 31101868 PMCID: PMC6525241 DOI: 10.1038/s41598-019-43992-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type characterized by rapid metastasis and resistance to chemotherapy, properties that are shared by cancer stem cells (CSCs). In pancreatic cancer, tumor cells which possess the properties of CSCs also phenotypically resemble cells that have undergone epithelial-to-mesenchymal transition or EMT. Disabled-2 (Dab2) is a multifunctional scaffold protein frequently downregulated in cancer that has been linked to the process of EMT. However, the role of Dab2 in pancreatic cancer development and progression remains unclear. Downregulation of Dab2 expression in pancreatic cancer cell lines was found to trigger induction of genes characteristic of EMT and the CSC phenotype, while overexpression of Dab2 in the Panc1 cell line blocked the process of TGFβ-stimulated EMT. In addition, selective inhibition of the TGFβRI/RII receptors was found to reverse genes altered by Dab2 downregulation. Dab2 mRNA expression was found to be decreased in PDAC tumor samples, as compared to levels observed in normal pancreatic tissue. Methylation of the Dab2 gene promoter was demonstrated in Stage I PDAC tumors and in the MiaPaCa2 cell line, suggesting that promoter methylation may silence Dab2 expression early in pancreatic cancer progression. These results suggest that Dab2 may function as a tumor suppressor in pancreatic cancer by modulation of the TGFβ-stimulated EMT and CSC phenotype.
Collapse
Affiliation(s)
- Barbara A Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
48
|
Lin J, Vora M, Kane NS, Gleason RJ, Padgett RW. Human Marfan and Marfan-like Syndrome associated mutations lead to altered trafficking of the Type II TGFβ receptor in Caenorhabditis elegans. PLoS One 2019; 14:e0216628. [PMID: 31071172 PMCID: PMC6508650 DOI: 10.1371/journal.pone.0216628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family plays an important role in many developmental processes and when mutated often contributes to various diseases. Marfan syndrome is a genetic disease with an occurrence of approximately 1 in 5,000. The disease is caused by mutations in fibrillin, which lead to an increase in TGFβ ligand activity, resulting in abnormalities of connective tissues which can be life-threatening. Mutations in other components of TGFβ signaling (receptors, Smads, Schnurri) lead to similar diseases with attenuated phenotypes relative to Marfan syndrome. In particular, mutations in TGFβ receptors, most of which are clustered at the C-terminal end, result in Marfan-like (MFS-like) syndromes. Even though it was assumed that many of these receptor mutations would reduce or eliminate signaling, in many cases signaling is active. From our previous studies on receptor trafficking in C. elegans, we noticed that many of these receptor mutations that lead to Marfan-like syndromes overlap with mutations that cause mis-trafficking of the receptor, suggesting a link between Marfan-like syndromes and TGFβ receptor trafficking. To test this hypothesis, we introduced three of these key MFS and MFS-like mutations into the C. elegans TGFβ receptor and asked if receptor trafficking is altered. We find that in every case studied, mutated receptors mislocalize to the apical surface rather than basolateral surface of the polarized intestinal cells. Further, we find that these mutations result in longer animals, a phenotype due to over-stimulation of the nematode TGFβ pathway and, importantly, indicating that function of the receptor is not abrogated in these mutants. Our nematode models of Marfan syndrome suggest that MFS and MFS-like mutations in the type II receptor lead to mis-trafficking of the receptor and possibly provides an explanation for the disease, a phenomenon which might also occur in some cancers that possess the same mutations within the type II receptor (e.g. colon cancer).
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/chemistry
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Disease Models, Animal
- Humans
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Mutation, Missense
- Protein Domains
- Receptor, Transforming Growth Factor-beta Type II/chemistry
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Species Specificity
Collapse
Affiliation(s)
- Jing Lin
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Mehul Vora
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MV); (RWP)
| | - Nanci S. Kane
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ryan J. Gleason
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard W. Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MV); (RWP)
| |
Collapse
|
49
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 532] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
50
|
Wang B, Xu X, Yang Z, Zhang L, Liu Y, Ma A, Xu G, Tang M, Jing T, Wu L, Liu Y. POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1. EBioMedicine 2019; 41:320-332. [PMID: 30745168 PMCID: PMC6441868 DOI: 10.1016/j.ebiom.2019.01.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background Hyper-activation of TGF-β signaling is critically involved in progression of hepatocellular carcinoma (HCC). However, the events that contribute to the dysregulation of TGF-β pathway in HCC, especially at the post-translational level, are not well understood. Methods Associations of deubiquitinase POH1 with TGF-β signaling activity and the outcomes of HCC patients were examined by data mining of online HCC datasets, immunohistochemistry analyses using human HCC specimens, spearman correlation and survival analyses. The effects of POH1 on the ubiquitination and stability of the TGF-β receptors (TGFBR1 and TGFBR2) and the activation of downstream effectors were tested by western blotting. Primary mouse liver tissues from polyinosinic:polycytidylic acid (poly I:C)- treated Mx-Cre+, poh1f/f mice and control mice were used to detect the TGF-β receptors. The metastatic-related capabilities of HCC cells were studied in vitro and in mice. Findings Here we show that POH1 is a critical regulator of TGF-β signaling and promotes tumor metastasis. Integrative analyses of HCC subgroups classified with unsupervised transcriptome clustering of the TGF-β response, metastatic potential and outcomes, reveal that POH1 expression positively correlates with activities of TGF-β signaling in tumors and with malignant disease progression. Functionally, POH1 intensifies TGF-β signaling delivery and, as a consequence, promotes HCC cell metastatic properties both in vitro and in vivo. The expression of the TGF-β receptors was severely downregulated in POH1-deficient mouse hepatocytes. Mechanistically, POH1 deubiquitinates the TGF-β receptors and CAV1, therefore negatively regulates lysosome pathway-mediated turnover of TGF-β receptors. Conclusion Our study highlights the pathological significance of aberrantly expressed POH1 in TGF-β signaling hyperactivation and aggressive progression in HCC.
Collapse
Affiliation(s)
- Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Aihui Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Guiqin Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ming Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Lin Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| |
Collapse
|