1
|
Gao Y, Chen A, Zhu D, Zhou M, Huang H, Pan R, Wang X, Li L, Shen J. Mitochondrial Energy Homeostasis and Membrane Interaction Regulate the Rapid Growth of Moso Bamboo. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255185 DOI: 10.1111/pce.15559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
The rapid growth of moso bamboo is primarily attributed to the swift elongation of its internodes. While mitochondria are known to provide energy for various cellular processes, the specific mechanisms by which they facilitate rapid growth in bamboo remain elusive. In this study, we optimised the procedures for mitochondria isolation and performed a comprehensive analysis of mitochondrial dynamics and proteomics from internodes at various growth stages, including the initial growth (IG) stage, the starting of cell division (SD), and the rapid elongation (RE). Confocal observation demonstrated that cells in the RE stage have a higher mitochondrial density and increased mitochondrial motility compared to other stages. Proteomic analysis of isolated mitochondria revealed an upregulation of the tricarboxylic acid cycle, along with a synchronous increase in both mitochondrial- and nuclear-encoded components of oxidative phosphorylation in RE cells. Moreover, the upregulation of various mitochondrial membrane transporters in RE cells suggests an enhanced exchange of metabolic intermediates and inorganic ions with the cytosol. Intriguingly, ultrastructural analysis and pharmacological treatments revealed membrane interactions between the endoplasmic reticulum (ER) and mitochondria in RE cells. In conclusion, our study provides novel insights into mitochondrial function and the intracellular dynamics that regulate the rapid growth of moso bamboo.
Collapse
Affiliation(s)
- Yanli Gao
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Anjing Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Dongmei Zhu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Mingbing Zhou
- National Key Laboratory for Development and Utilization of Forest Food Resources, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinbo Shen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
García-Villegas R, Odenthal F, Giannoula Y, Bonekamp NA, Kühl I, Park CB, Spåhr H, Motori E, Levander F, Larsson NG. In vivo composition of the mitochondrial nucleoid in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119955. [PMID: 40246179 DOI: 10.1016/j.bbamcr.2025.119955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Mitochondrial DNA (mtDNA) is compacted into dynamic structures called mitochondrial nucleoids (mt-nucleoids), with the mitochondrial transcription factor A (TFAM) as the core packaging protein. We generated bacterial artificial chromosome (BAC) transgenic mice expressing FLAG-tagged TFAM protein (Tfam-FLAGBAC mice) to investigate the mt-nucleoid composition in vivo. Importantly, we show that the TFAM-FLAG protein is functional and complements the absence of the wild-type TFAM protein in homozygous Tfam knockout mice. We performed immunoprecipitation experiments from different mouse tissues and identified 12 proteins as core mt-nucleoid components by proteomics analysis. Among these, eight proteins correspond to mtDNA replication and transcription factors, while the other four are involved in the mitoribosome assembly. In addition, we used the Tfam-FLAGBAC mice to identify ten proteins that may stabilize TFAM-FLAG upon depletion of the mitochondrial RNA polymerase despite the absence of mtDNA and induction of the LONP1 protease. Finally, we evaluated the changes in mt-nucleoids caused by very high levels of TFAM unraveling nine interactors that could counteract the high TFAM levels to maintain active mtDNA transcription. Altogether, we demonstrate that the Tfam-FLAGBAC mice are a valuable tool for investigating the mt-nucleoid composition in vivo.
Collapse
Affiliation(s)
- Rodolfo García-Villegas
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Franka Odenthal
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yvonne Giannoula
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell, UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Henrik Spåhr
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Motori
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Fredrik Levander
- Department of Immunotechnology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Roy M, Nandy S, Marchesan E, Banerjee C, Mondal R, Caicci F, Ziviani E, Chakraborty J. Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1). Autophagy 2025; 21:897-909. [PMID: 39513197 DOI: 10.1080/15548627.2024.2426116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Exposure of inner mitochondrial membrane resident protein PHB2 (prohibitin 2) during autophagic removal of depolarized mitochondria (mitophagy) depends on the ubiquitin-proteasome system. This uncovering facilitates the PHB2 interaction with phagophore membrane-associated protein MAP1LC3/LC3. It is unclear whether PHB2 is exposed randomly at mitochondrial rupture sites. Prior knowledge and initial screening indicated that VDAC1 (voltage dependent anion channel 1) might play a role in this phenomenon. Through in vitro biochemical assays and imaging, we have found that VDAC1-PHB2 interaction increases during mitochondrial depolarization. Subsequently, this interaction enhances the efficiency of PHB2 exposure and mitophagy. To investigate the relevance in vivo, we utilized porin (equivalent to VDAC1) knockout Drosophila line. Our findings demonstrate that during mitochondrial stress, porin is essential for Phb2 exposure, Phb2-Atg8 interaction and mitophagy. This study highlights that VDAC1 predominantly synchronizes efficient PHB2 exposure through mitochondrial rupture sites during mitophagy. These findings may provide insights to understand progressive neurodegeneration.
Collapse
Affiliation(s)
- Moumita Roy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumangal Nandy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Chayan Banerjee
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rupsha Mondal
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy
| | - Joy Chakraborty
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Pérez-López MI, Lubrano P, Angelidou G, Hoch S, Glatter T, Paczia N, Link H, Sourjik V. The SPFH complex HflK-HflC regulates aerobic respiration in bacteria. PLoS Biol 2025; 23:e3003077. [PMID: 40193326 PMCID: PMC12005517 DOI: 10.1371/journal.pbio.3003077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/17/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
The bacterial HflK-HflC membrane complex is a member of the highly conserved family of SPFH proteins, which are present in all domains of life and include eukaryotic stomatins, flotillins, and prohibitins. These proteins organize cell membranes and are involved in various processes. However, the exact physiological functions of most bacterial SPFH proteins remain unclear. Here, we report that the HflK-HflC complex in Escherichia coli is required for growth under high aeration. The absence of this complex causes a growth defect at high oxygen levels due to a reduced abundance of IspG, an essential iron-sulfur cluster enzyme in the isoprenoid biosynthetic pathway. This reduction might be related to lower stability of IspG and several other proteins, including the iron siderophore transporter TonB, in the absence of the HflK-HflC complex. Our results suggest that decreased IspG activity leads to lower levels of ubiquinone and misregulated expression of multiple respiratory enzymes, including cytochrome oxidases, and consequently reduced respiration and lower ATP levels. This impact of the hflK hflC deletion on aerobic respiration resembles the mitochondrial respiratory defects caused by the inactivation of prohibitins in mammalian and yeast cells, indicating functional parallels between these bacterial and eukaryotic SPFH proteins.
Collapse
Affiliation(s)
- María Isabel Pérez-López
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | | | - Sarah Hoch
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
5
|
Lange F, Ratz M, Dohrke JN, Le Vasseur M, Wenzel D, Ilgen P, Riedel D, Jakobs S. In situ architecture of the human prohibitin complex. Nat Cell Biol 2025; 27:633-640. [PMID: 40119201 PMCID: PMC11991916 DOI: 10.1038/s41556-025-01620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 01/14/2025] [Indexed: 03/24/2025]
Abstract
Prohibitins are a highly conserved family of proteins that have been implicated in a variety of functions including mitochondrial stress signalling and housekeeping, cell cycle progression, apoptosis, lifespan regulation and many others. The human prohibitins prohibitin 1 and prohibitin 2 have been proposed to act as scaffolds within the mitochondrial inner membrane, but their molecular organization has remained elusive. Here we determined the molecular organization of the human prohibitin complex within the mitochondrial inner membrane using an integrative structural biology approach combining quantitative western blotting, cryo-electron tomography, subtomogram averaging and molecular modelling. The proposed bell-shaped structure consists of 11 alternating prohibitin 1 and prohibitin 2 molecules. This study reveals an average of about 43 prohibitin complexes per crista, covering 1-3% of the crista membrane area. These findings provide a structural basis for understanding the functional contributions of prohibitins to the integrity and spatial organization of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Ratz
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Jan-Niklas Dohrke
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Dirk Wenzel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter Ilgen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany.
| |
Collapse
|
6
|
Chen N, Liu X, Wang L, Yu H, Liu F, Yuan M, Wang Q, Zhang T, Zhou X, Wang H, Ji Z, Shen H. Prohibitins in infection: potential therapeutic targets. Future Microbiol 2025; 20:345-355. [PMID: 39881489 PMCID: PMC11938962 DOI: 10.1080/17460913.2025.2459530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Prohibitins (PHBs) are members of a highly conserved family of proteins, including prohibitin1 and prohibitin2. These proteins are predominantly localized in mitochondria, the nucleus, and cell membranes, where they play critical roles in mitochondrial biogenesis, apoptosis, immune regulation, and other biological processes. Recent studies have demonstrated that both PHB1 and PHB2 can act as a complex or independently to participate in the pathogen infection process. This review focuses on the regulatory roles of PHB1 and PHB2 in viral, bacterial, parasitic and fungal infections, providing a theoretical basis and innovative perspectives for a comprehensive understanding of the roles and mechanisms of PHB1 and PHB2 in the regulation of microbial infections. Due to exerting multiple functions, PHB proteins have been recognized as a potential target for therapeutic interventions, with the expectation that targeting PHB proteins will provide new strategies for the treatment of infection-related diseases.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaolan Liu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Lulu Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Hui Yu
- Cardiothoracic surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Fangqian Liu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Mengran Yuan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Qimeng Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Tianyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaoxiang Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Hua Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Zengjun Ji
- Department of Laboratory Medicine, Taizhou Second People’s Hospital, Taizhou, P. R. China
| | - Hongxing Shen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
7
|
Joshi A, Stanfield RA, Spletter AT, Gohil VM. Proteolytic regulation of mitochondrial magnesium channel by m-AAA protease and prohibitin complex. Genetics 2025; 229:iyae203. [PMID: 39657011 PMCID: PMC11796461 DOI: 10.1093/genetics/iyae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial membrane phospholipid cardiolipin is essential for the stability of several inner mitochondrial membrane protein complexes. We recently showed that the abundance of mitochondrial magnesium channel MRS2 is reduced in models of Barth syndrome, an X-linked genetic disorder caused by a remodeling defect in cardiolipin. However, the mechanism underlying the reduced abundance of MRS2 in cardiolipin-depleted mitochondria remained unknown. In this study, we utilized yeast mutants of mitochondrial proteases to identify an evolutionarily conserved m-AAA protease, Yta10/Yta12, responsible for degrading Mrs2. The activity of m-AAA protease is regulated by the inner mitochondrial membrane scaffolding complex prohibitin, and consistent with this role, we find that Mrs2 turnover is increased in yeast prohibitin mutants. Importantly, we find that deleting Yta10 in cardiolipin-deficient yeast cells restores the steady-state levels of Mrs2 to the wild-type cells, and the knockdown of AFG3L2, a mammalian homolog of Yta12, increases the abundance of MRS2 in a murine muscle cell line. Thus, our work has identified the m-AAA protease/prohibitin complex as an evolutionarily conserved regulator of Mrs2 that can be targeted to restore Mrs2 abundance in cardiolipin-depleted cells.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, MS 3474, College Station, TX 77843, USA
| | - Rachel A Stanfield
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, MS 3474, College Station, TX 77843, USA
| | - Andrew T Spletter
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, MS 3474, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, MS 3474, College Station, TX 77843, USA
| |
Collapse
|
8
|
Kim H, Heredia MY, Chen X, Ahmed M, Qasim M, Callender TL, Hernday AD, Rauceo JM. Mitochondrial targeting of Candida albicans SPFH proteins and requirement of stomatins for SDS-induced stress tolerance. Microbiol Spectr 2025; 13:e0173324. [PMID: 39641539 PMCID: PMC11705831 DOI: 10.1128/spectrum.01733-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast Candida albicans, stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and SLP3 overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, H2O2. Here, we sought to determine the cellular localization and functionally characterize stomatin-like protein 2 (Slp2), prohibitin-1 (Phb1), prohibitin-2 (Phb2), and prohibitin-12 (Phb12) in C. albicans. Cytological and western blotting results showed that Slp2-Gfp/Rfp and prohibitin-Gfp fusion proteins localize to the mitochondrion in yeast cells. Growth assay results did not identify any respiration defects in a panel of stomatin and prohibitin mutant strains, suggesting that SPFH respiratory function has diverged in C. albicans from other model eukaryotes. However, a slp2Δ/Δ/slp3Δ/Δ double mutant strain grew poorly in the presence of 0.08% SDS, accumulated intracellular reactive oxidative species, and displayed aberrant ergosterol distribution in the plasma membrane. These phenotypes were not observed in slp2Δ/Δ or slp3Δ/Δ single mutants, indicating a possible indirect genetic interaction between SLP2 and SLP3. In addition, slp2Δ/Δ and slp2Δ/Δ/slp3Δ/Δ mutant strains were slightly resistant to the antifungal drug, fluconazole. Collectively, these findings reveal the cellular localization of Slp2, Phb1, Phb2, and Phb12, highlight the significance of stomatins in C. albicans SDS stress tolerance, and, for the first time, associate stomatins with antifungal resistance. IMPORTANCE Stomatins and prohibitins coordinate respiration and stress adaptation in fungi. Invasive mycoses caused by Candida albicans are a significant cause of morbidity, and candidemia patients show high mortality rates worldwide. Mitochondria are essential for C. albicans commensalism and virulence, and mitochondrial proteins are targets for antifungal interventions. C. albicans encodes five SPFH proteins: two stomatin-like proteins and three prohibitins. We have previously shown that Slp3 is important for C. albicans adaptation to various types of environmental stress. Moreover, synthetic compounds that bind to mammalian prohibitins inhibit C. albicans filamentation and are fungicidal. However, there is limited information available regarding the remaining SPFH proteins. Our findings show that mitochondrial localization of SPFH proteins is conserved in C. albicans. In addition, we demonstrate the importance of stomatins in plasma membrane and mitochondrial stress tolerance.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Marienela Y. Heredia
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Xiao Chen
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Maisha Ahmed
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Tracy L. Callender
- Department of Biology, Farmingdale State College of the State University of New York, Farmingdale, New York, USA
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
9
|
Ban T, Kuroda K, Nishigori M, Yamashita K, Ohta K, Koshiba T. Prohibitin 1 tethers lipid membranes and regulates OPA1-mediated membrane fusion. J Biol Chem 2025; 301:108076. [PMID: 39675719 PMCID: PMC11760825 DOI: 10.1016/j.jbc.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Prohibitins (PHBs) are ubiquitously expressed proteins in the mitochondrial inner membrane (MIM) that provide membrane scaffolds for both mitochondrial proteins and phospholipids. Eukaryotic PHB complexes contain two highly homologous PHB subunits, PHB1 and PHB2, which are involved in various cellular processes, including metabolic control through the regulation of mitochondrial dynamics and integrity. Their mechanistic actions at the molecular level, however, particularly those of PHB1, remain poorly understood. To gain insight into the mechanistic actions of PHB1, we established an overexpression system for the full-length recombinant protein using silkworm larvae and characterized its biophysical properties in vitro. Using recombinant PHB1 proteoliposomes reconstituted into MIM-mimicking phospholipids, we found that PHB1 forms an oligomer via its carboxy-terminal coiled-coil region. A proline substitution into the PHB1 coiled-coil collapsed its well-ordered oligomeric state, and its destabilization correlated with mitochondrial morphologic defects. Negative-staining electron microscopy revealed that homotypic PHB1-PHB1 interactions via the coiled-coil also induced liposome tethering with remodeling of the lipid membrane structure. We clarified that PHB1 promotes membrane fusion mediated by optic atrophy 1 (OPA1), a key regulator of MIM fusion. Additionally, the presence of PHB1 reduces the dependency of lipids and OPA1 for completing the fusion process. Our in vitro study provides structural insight into how the mitochondrial scaffold plays a crucial role in regulating mitochondrial dynamics. Modulating the structure and/or function of PHB1 may offer new therapeutic potential, not only for mitochondrial dysfunction but also for other cell-related disorders.
Collapse
Affiliation(s)
- Tadato Ban
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Kimiya Kuroda
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Mitsuhiro Nishigori
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Keisuke Yamashita
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
10
|
Elancheliyan P, Maruszczak KK, Serwa RA, Stephan T, Gulgec AS, Borrero-Landazabal MA, Ngati S, Gosk A, Jakobs S, Wasilewski M, Chacinska A. OCIAD1 and prohibitins regulate the stability of the TIM23 protein translocase. Cell Rep 2024; 43:115038. [PMID: 39630581 PMCID: PMC11672691 DOI: 10.1016/j.celrep.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 09/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Mitochondrial proteins are transported and sorted to the matrix or inner mitochondrial membrane by the presequence translocase TIM23. In yeast, this essential and highly conserved machinery is composed of the core subunits Tim23 and Tim17. The architecture, assembly, and regulation of the human TIM23 complex are poorly characterized. The human genome encodes two paralogs, TIMM17A and TIMM17B. Here, we describe an unexpected role of the ovarian cancer immunoreactive antigen domain-containing protein 1 (OCIAD1) and the prohibitin complex in the biogenesis of human TIM23. Prohibitins were required to stabilize both the TIMM17A- and TIMM17B-containing variants of the translocase. Interestingly, OCIAD1 assembled with the prohibitin complex to protect the TIMM17A variant from degradation by the YME1L protease. The expression of OCIAD1 was in turn regulated by the status of the TIM23 complex. We postulate that OCIAD1 together with prohibitins constitute a regulatory axis that differentially regulates variants of human TIM23.
Collapse
Affiliation(s)
- Praveenraj Elancheliyan
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | | | | | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | | | | | - Sonia Ngati
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Aleksandra Gosk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany
| | | | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland.
| |
Collapse
|
11
|
Du Y, Wang L, Perez-Castro L, Conacci-Sorrell M, Sieber M. Non-cell autonomous regulation of cell-cell signaling and differentiation by mitochondrial ROS. J Cell Biol 2024; 223:e202401084. [PMID: 39535785 PMCID: PMC11561560 DOI: 10.1083/jcb.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondrial reactive oxygen species (ROS) function intrinsically within cells to induce cell damage, regulate transcription, and cause genome instability. However, we know little about how mitochondrial ROS production non-cell autonomously impacts cell-cell signaling. Here, we show that mitochondrial dysfunction inhibits the plasma membrane localization of cell surface receptors that drive cell-cell communication during oogenesis. Within minutes, we found that mitochondrial ROS impairs exocyst membrane binding and leads to defective endosomal recycling. This endosomal defect impairs the trafficking of receptors, such as the Notch ligand Delta, during oogenesis. Remarkably, we found that overexpressing RAB11 restores ligand trafficking and rescues the developmental defects caused by ROS production. ROS production from adjacent cells acutely initiates a transcriptional response associated with growth and migration by suppressing Notch signaling and inducing extra cellualr matrix (ECM) remodeling. Our work reveals a conserved rapid response to ROS production that links mitochondrial dysfunction to the non-cell autonomous regulation of cell-cell signaling.
Collapse
Affiliation(s)
- Yipeng Du
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Chan SW. CRISPR-editing of the virus vector Aedes albopictus cell line C6/36, illustrated by prohibitin 2 gene knockout. MethodsX 2024; 13:102817. [PMID: 39049926 PMCID: PMC11267050 DOI: 10.1016/j.mex.2024.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Aedes mosquitoes are important virus vectors. We provide a toolkit for CRISPR-Cas9-editing of difficult-to-knockdown gene previously shown to be refractory to siRNA silencing in mosquito cells, which is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations. Starting from database searches of Ae. albopictus and the C6/36 cell line whole genome shotgun sequences for the prohibitin 2 (PHB2) gene, primers were designed to confirm the gene sequence in our laboratory-passaged C6/36 cell line for the correct design and cloning of CRISPR RNA into an insect plasmid vector to create a single guide RNA for the PHB2 gene target. After transfection of this plasmid vector into the C6/36 cells, cell clones selected by puromycin and/or limiting dilution were analyzed for insertions and deletions (INDELs) using PCR, sequencing and computational sequence decomposition. From this, we have identified mono-allelic and bi-allelic knockout cell clones. Using a mono-allelic knockout cell clone as an example, we characterized its INDELs by molecular cloning and computational analysis. Importantly, mono-allelic knockout was sufficient to reduce >80 % of PHB2 expression, which led to phenotypic switching and the propensity to form foci but was insufficient to affect growth rate or to inhibit Zika virus infection.•We provide a toolkit for CRISPR-Cas9-editing of the virus vector, Aedes albopictus C6/36 cell line•We validate this using a difficult-to-knockdown gene prohibitin 2•This toolkit is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
13
|
Jain S, Narwal M, Omair Anwar M, Prakash N, Mohmmed A. Unravelling the anti-apoptotic role of Plasmodium falciparum Prohibitin-2 (PfPhb2) in maintaining mitochondrial homeostasis. Mitochondrion 2024; 79:101956. [PMID: 39245193 DOI: 10.1016/j.mito.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The functional mitochondrion is vital for the propagation of the malaria parasite in the human host. Members of the SPFH protein family, Prohibitins (PHBs), are known to play crucial roles in maintaining mitochondrial homeostasis and cellular functions. Here, we have functionally characterized the homologue of the Plasmodium falciparumProhibitin-2 (PfPhb2) protein. A transgenic parasite line, generated using the selection-linked integration (SLI) strategy for C-terminal tagging, was utilized for cellular localization as well as for inducible knock-down of PfPhb2. We show that PfPhb2 localizes in the parasite mitochondrion during the asexual life cycle. Inducible knock-down of PfPhb2 by GlmS ribozyme caused no significant effect on the growth and multiplication of parasites. However, depletion of PfPhb2 under mitochondrial-specific stress conditions, induced by inhibiting the essential mitochondrial AAA-protease, ClpQ protease, results in enhanced inhibition of parasite growth, mitochondrial ROS production, mitochondrial membrane potential loss and led to mitochondrial fission/fragmentation, ultimately culminating in apoptosis-like cell-death. Further, PfPhb2 depletion renders the parasites more susceptible to mitochondrial targeting drug proguanil. These data suggest the functional involvement of PfPhb2 along with ClpQ protease in stabilization of various mitochondrial proteins to maintain mitochondrial homeostasis and functioning. Overall, we show that PfPhb2 has an anti-apoptotic role in maintaining mitochondrial homeostasis in the parasite.
Collapse
Affiliation(s)
- Shilpi Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Monika Narwal
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Md Omair Anwar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Neha Prakash
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
14
|
García-Chávez D, Domínguez-Martín E, Kawasaki L, Ongay-Larios L, Ruelas-Ramírez H, Mendoza-Martinez AE, Pardo JP, Funes S, Coria R. Prohibitins, Phb1 and Phb2, function as Atg8 receptors to support yeast mitophagy and also play a negative regulatory role in Atg32 processing. Autophagy 2024; 20:2478-2489. [PMID: 38964378 PMCID: PMC11572199 DOI: 10.1080/15548627.2024.2371717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The prohibitins Phb1 and Phb2 assemble at the mitochondrial inner membrane to form a multi-dimeric complex. These scaffold proteins are highly conserved in eukaryotic cells, from yeast to mammals, and have been implicated in a variety of mitochondrial functions including aging, proliferation, and degenerative and metabolic diseases. In mammals, PHB2 regulates PINK1-PRKN mediated mitophagy by interacting with lipidated MAP1LC3B/LC3B. Despite their high conservation, prohibitins have not been linked to mitophagy in budding yeasts. In this study, we demonstrate that both Phb1 and Phb2 are required to sustain mitophagy in Saccharomyces cerevisiae. Prohibitin-dependent mitophagy requires formation of the Phb1-Phb2 complex and a conserved AIM/LIR-like motif identified in both yeast prohibitins. Furthermore, both Phb1 and Phb2 interact and exhibit mitochondrial colocalization with Atg8. Interestingly, we detected a basal C terminus processing of the mitophagy receptor Atg32 that depends on the presence of the i-AAA Yme1. In the absence of prohibitins this processing is highly enhanced but reverted by the inactivation of the rhomboid protease Pcp1. Together our results revealed a novel role of yeast prohibitins in mitophagy through its interaction with Atg8 and regulating an Atg32 proteolytic event. Abbreviation: AIM/LIR: Atg8-family interacting motif/LC3-interacting region; ANOVA: analysis of variance; ATG/Atg: autophagy related; C terminus/C-terminal: carboxyl terminus/carboxyl-terminal; GFP: green fluorescent protein; HA: human influenza hemagglutinin; Idh1: isocitrate dehydrogenase 1; MAP1C3B/LC3B: microtubule associated protein 1 light chain 3 beta; mCh: mCherry; MIM: mitochondrial inner membrane; MOM: mitochondrial outer membrane; N starvation: nitrogen starvation; N terminus: amino terminus; PARL: presenilin associated rhomboid like; Pcp1: processing of cytochrome c peroxidase 1; PCR: polymerase chain reaction; PGAM5: PGAM family member 5 mitochondrial serine/threonine protein phosphatase; PHBs/Phb: prohibitins; PINK1: PTEN induced kinase 1; PMSF: phenylmethylsulfonyl fluoride; PRKN: parkin RBR E3 ubiquitin protein ligase; SD: synthetic defined medium; SDS: sodium dodecyl sulfate; SMD-N: synthetic defined medium lacking nitrogen; WB: western blot; WT: wild type; Yme1: yeast mitochondrial escape 1; YPD: yeast extract-peptone-dextrose medium; YPLac: yeast extract-peptone-lactate medium.
Collapse
Affiliation(s)
- Diana García-Chávez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| | - Eunice Domínguez-Martín
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laura Kawasaki
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Mexico City, México
| | - Hilario Ruelas-Ramírez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Mexico City, México
| | | | - Juan P. Pardo
- Departamento de Bioquímica, Facultad de Medicina, Mexico City, México
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Mexico City, México
| | - Roberto Coria
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| |
Collapse
|
15
|
Ero R, Qiao Z, Tan KA, Gao YG. Structural insights into the membrane-bound proteolytic machinery of bacterial protein quality control. Biochem Soc Trans 2024; 52:2077-2086. [PMID: 39417347 DOI: 10.1042/bst20231250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
In bacteria and eukaryotic organelles of prokaryotic origin, ATP-dependent proteases are crucial for regulating protein quality control through substrate unfolding and degradation. Understanding the mechanism and regulation of this key cellular process could prove instrumental in developing therapeutic strategies. Very recently, cryo-electron microscopy structural studies have shed light on the functioning of AAA+ proteases, including membrane-bound proteolytic complexes. This review summarizes the structure and function relationship of bacterial AAA+ proteases, with a special focus on the sole membrane-bound AAA+ protease in Escherichia coli, FtsH. FtsH substrates include both soluble cytoplasmic and membrane-incorporated proteins, highlighting its intricate substrate recognition and processing mechanisms. Notably, 12 copies of regulatory HflK and HflC proteins, arranged in a cage-like structure embedded in the bacterial inner membrane, can encase up to 4 FtsH hexamers, thereby regulating their role in membrane protein quality control. FtsH represents an intriguing example, highlighting both its similarity to cytosolic AAA+ proteases with respect to overall architecture and oligomerization as well as its unique features, foremost its incorporation into a membrane-bound complex formed by HflK and HflC to mediate its function in protein quality control.
Collapse
Affiliation(s)
- Rya Ero
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Kwan Ann Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| |
Collapse
|
16
|
Krieger MR, Abrahamian M, He KL, Atamdede S, Hakimjavadi H, Momcilovic M, Ostrow D, Maggo SD, Tsang YP, Gai X, Chanfreau GF, Shackelford DB, Teitell MA, Koehler CM. Trafficking of mitochondrial double-stranded RNA from mitochondria to the cytosol. Life Sci Alliance 2024; 7:e202302396. [PMID: 38955468 PMCID: PMC11220484 DOI: 10.26508/lsa.202302396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.
Collapse
Affiliation(s)
- Matthew R Krieger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Kevin L He
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Milica Momcilovic
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Simran Ds Maggo
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yik Pui Tsang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - David B Shackelford
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Michael A Teitell
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
17
|
Hayashi K, Kobayashi M, Mori K, Nakagawa Y, Watanabe B, Ashimori A, Higashijima F, Yoshimoto T, Sunada J, Morita T, Murai T, Kirihara-Kojima S, Kimura K. The benzoylphenylurea derivative BPU17 acts as an inhibitor of prohibitin and exhibits antifibrotic activity. Exp Cell Res 2024; 442:114221. [PMID: 39182665 DOI: 10.1016/j.yexcr.2024.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Inflammation-induced choroidal neovascularization followed by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) is a cause of neovascular age-related macular degeneration (nAMD). RPE-derived myofibroblasts overproduce extracellular matrix, leading to subretinal fibrosis. We already have demonstrated that benzylphenylurea (BPU) derivatives inhibit the function of cancer-associated fibroblasts. Here, we investigated the anti-myofibroblast effects of BPU derivatives and examined such BPU activity on subretinal fibrosis. A BPU derivative, BPU17, exhibits the most potent anti-myofibroblast activity among dozens of BPU derivatives and inhibits subretinal fibrosis in a mouse model of retinal degeneration. Investigations with primary cultured RPEs reveal that BPU17 suppresses cell motility and collagen synthesis in RPE-derived myofibroblasts. These effects depend on repressing the serum response factor (SRF)/CArG-box-dependent transcription. BPU17 inhibits the expression of SRF cofactor, cysteine and glycine-rich protein 2 (CRP2), which activates the SRF function. Proteomics analysis reveals that BPU17 binds to prohibitin 1 (PHB1) and inhibits the PHB1-PHB2 interaction, resulting in mild defects in mitochondrial function. This impairment causes a decrease in the expression of CRP2 and suppresses collagen synthesis. Our findings suggest that BPU17 is a promising agent against nAMD and the close relationship between PHB function and EMT.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Masaaki Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Kotaro Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, 8-3-1 Kokuryo, Chofu, Tokyo, 182-8570, Japan
| | - Atsushige Ashimori
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Junki Sunada
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama, 641-0011, Japan
| | - Toshiyuki Murai
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Saki Kirihara-Kojima
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
18
|
Collins BM. Revealing the architecture of the membrane-bound Flotillin cage assembly. Proc Natl Acad Sci U S A 2024; 121:e2413203121. [PMID: 39162724 PMCID: PMC11348225 DOI: 10.1073/pnas.2413203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Affiliation(s)
- Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD4072, Australia
| |
Collapse
|
19
|
Lu Y, Li L, Li J, Wang M, Yang J, Zhang M, Jiang Q, Tang X. Prx1/PHB2 axis mediates mitophagy in oral leukoplakia cellular senescence. Pathol Res Pract 2024; 260:155411. [PMID: 38936092 DOI: 10.1016/j.prp.2024.155411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Oral leukoplakia (OLK) is the most common oral potentially malignant disorder (OPMD), which can be malignantly transformed into oral squamous cell carcinoma (OSCC). Peroxiredoxin1(Prx1) has been predicted to bind to Prohibitin2 (PHB2), which confers to affect OLK progression; however, the mechanism of Prx1/PHB2 mediated mitophagy involved in OLK remains unclear. METHODS This study aimed to explore the mechanism of the Prx1/PHB2 axis on senescence in OLK through mediating mitophagy. The positive rate of Ki67 and the expression of p21, p16, PHB2, and LC3 in human normal, OLK, and OSCC tissues were detected by immunohistochemical staining. The mitophagy and mitochondrial function changes were then analyzed in Prx1 knockdown and Prx1C52S mutations in dysplastic oral keratinocyte (DOK) cells treated with H2O2. In situ Proximity Ligation Assay combined with co-immunoprecipitation was used to detect the interaction between Prx1 and PHB2. RESULTS Clinically, the positive rate of Ki67 progressively increased from normal to OLK, OLK with dysplasia, and OSCC. Higher p21, p16, PHB2, and LC3 expression levels were observed in OLK with dysplasia than in normal and OSCC tissues. In vitro, PHB2 and LC3II expression gradually increased with the degree of DOK cell senescence. Prx1/PHB2 regulated mitophagy and affected senescence in H2O2-induced DOK cells. Furthermore, Prx1C52S mutation specifically reduced interaction between Prx1 and PHB2. Prx1Cys52 is associated with mitochondrial reactive oxygen species (ROS) accumulated and cell cycle arrest. CONCLUSION Prx1Cys52 functions as a redox sensor that binds to PHB2 and regulates mitophagy in the senescence of OLK, suggesting its potential as a clinical target.
Collapse
Affiliation(s)
- Yunping Lu
- Department of Prosthodontics, Beijing Stomatology Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Lingyu Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jing Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Wang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jing Yang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Zhang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatology Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China.
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
20
|
Fu Z, MacKinnon R. Structure of the flotillin complex in a native membrane environment. Proc Natl Acad Sci U S A 2024; 121:e2409334121. [PMID: 38985763 PMCID: PMC11260169 DOI: 10.1073/pnas.2409334121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
In this study, we used cryoelectron microscopy to determine the structures of the Flotillin protein complex, part of the Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) superfamily, from cell-derived vesicles without detergents. It forms a right-handed helical barrel consisting of 22 pairs of Flotillin1 and Flotillin2 subunits, with a diameter of 32 nm at its wider end and 19 nm at its narrower end. Oligomerization is stabilized by the C terminus, which forms two helical layers linked by a β-strand, and coiled-coil domains that enable strong charge-charge intersubunit interactions. Flotillin interacts with membranes at both ends; through its SPFH1 domains at the wide end and the C terminus at the narrow end, facilitated by hydrophobic interactions and lipidation. The inward tilting of the SPFH domain, likely triggered by phosphorylation, suggests its role in membrane curvature induction, which could be connected to its proposed role in clathrin-independent endocytosis. The structure suggests a shared architecture across the family of SPFH proteins and will promote further research into Flotillin's roles in cell biology.
Collapse
Affiliation(s)
- Ziao Fu
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
21
|
Ukleja M, Kricks L, Torrens G, Peschiera I, Rodrigues-Lopes I, Krupka M, García-Fernández J, Melero R, Del Campo R, Eulalio A, Mateus A, López-Bravo M, Rico AI, Cava F, Lopez D. Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains. Nat Commun 2024; 15:5583. [PMID: 38961085 PMCID: PMC11222466 DOI: 10.1038/s41467-024-49951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The function of many bacterial processes depends on the formation of functional membrane microdomains (FMMs), which resemble the lipid rafts of eukaryotic cells. However, the mechanism and the biological function of these membrane microdomains remain unclear. Here, we show that FMMs in the pathogen methicillin-resistant Staphylococcus aureus (MRSA) are dedicated to confining and stabilizing proteins unfolded due to cellular stress. The FMM scaffold protein flotillin forms a clamp-shaped oligomer that holds unfolded proteins, stabilizing them and favoring their correct folding. This process does not impose a direct energy cost on the cell and is crucial to survival of ATP-depleted bacteria, and thus to pathogenesis. Consequently, FMM disassembling causes the accumulation of unfolded proteins, which compromise MRSA viability during infection and cause penicillin re-sensitization due to PBP2a unfolding. Thus, our results indicate that FMMs mediate ATP-independent stabilization of unfolded proteins, which is essential for bacterial viability during infection.
Collapse
Affiliation(s)
- Marta Ukleja
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Lara Kricks
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Ilaria Peschiera
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ines Rodrigues-Lopes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Marcin Krupka
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Julia García-Fernández
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Roberto Melero
- Department of Structural Biology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Rosa Del Campo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ramón y Cajal Hospital, 28034, Madrid, Spain
| | - Ana Eulalio
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - André Mateus
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - María López-Bravo
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ana I Rico
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Daniel Lopez
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain.
| |
Collapse
|
22
|
Marothia M, Behl A, Maurya P, Saini M, Shoaib R, Garg S, Kumari G, Biswas S, Munjal A, Anand S, Kahlon AK, Gupta P, Biswas S, Goswami B, Abdulhameed Almuqdadi HT, Bhowmick IP, Shevtsov M, Ramalingam S, Ranganathan A, Singh S. Targeting PfProhibitin 2-Hu-Hsp70A1A complex as a unique approach towards malaria vaccine development. iScience 2024; 27:109918. [PMID: 38812541 PMCID: PMC11134565 DOI: 10.1016/j.isci.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Malaria parasite invasion to host erythrocytes is mediated by multiple interactions between merozoite ligands and erythrocyte receptors that contribute toward the development of disease pathology. Here, we report a novel antigen Plasmodium prohibitin "PfPHB2" and identify its cognate partner "Hsp70A1A" in host erythrocyte that plays a crucial role in mediating host-parasite interaction during merozoite invasion. Using small interfering RNA (siRNA)- and glucosamine-6-phosphate riboswitch (glmS) ribozyme-mediated approach, we show that loss of Hsp70A1A in red blood cells (RBCs) or PfPHB2 in infected red blood cells (iRBCs), respectively, inhibit PfPHB2-Hsp70A1A interaction leading to invasion inhibition. Antibodies targeting PfPHB2 and monoclonal antibody therapeutics against Hsp70A1A efficiently block parasite invasion. Recombinant PfPHB2 binds to RBCs which is inhibited by anti-PfPHB2 antibody and monoclonal antibody against Hsp70A1A. The validation of PfPHB2 to serve as antigen is further supported by detection of anti-PfPHB2 antibody in patient sera. Overall, this study proposes PfPHB2 as vaccine candidate and highlights the use of monoclonal antibody therapeutics for future malaria treatment.
Collapse
Affiliation(s)
- Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pragya Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Saurav Biswas
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India
| | - Bidhan Goswami
- Multidisciplinary Research Unit, Agartala Government Medical College, Agartala, Tripura (West), India
| | - Haider Thaer Abdulhameed Almuqdadi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Ipsita Pal Bhowmick
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India
| | - Maxim Shevtsov
- Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Sivaprakash Ramalingam
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
23
|
Gilkerson R, Kaur H, Carrillo O, Ramos I. OMA1-Mediated Mitochondrial Dynamics Balance Organellar Homeostasis Upstream of Cellular Stress Responses. Int J Mol Sci 2024; 25:4566. [PMID: 38674151 PMCID: PMC11049825 DOI: 10.3390/ijms25084566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
In response to cellular metabolic and signaling cues, the mitochondrial network employs distinct sets of membrane-shaping factors to dynamically modulate organellar structures through a balance of fission and fusion. While these organellar dynamics mediate mitochondrial structure/function homeostasis, they also directly impact critical cell-wide signaling pathways such as apoptosis, autophagy, and the integrated stress response (ISR). Mitochondrial fission is driven by the recruitment of the cytosolic dynamin-related protein-1 (DRP1), while fusion is carried out by mitofusins 1 and 2 (in the outer membrane) and optic atrophy-1 (OPA1) in the inner membrane. This dynamic balance is highly sensitive to cellular stress; when the transmembrane potential across the inner membrane (Δψm) is lost, fusion-active OPA1 is cleaved by the overlapping activity with m-AAA protease-1 (OMA1 metalloprotease, disrupting mitochondrial fusion and leaving dynamin-related protein-1 (DRP1)-mediated fission unopposed, thus causing the collapse of the mitochondrial network to a fragmented state. OMA1 is a unique regulator of stress-sensitive homeostatic mitochondrial balance, acting as a key upstream sensor capable of priming the cell for apoptosis, autophagy, or ISR signaling cascades. Recent evidence indicates that higher-order macromolecular associations within the mitochondrial inner membrane allow these specialized domains to mediate crucial organellar functionalities.
Collapse
Affiliation(s)
- Robert Gilkerson
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
- Department of Health & Biomedical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Harpreet Kaur
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| | - Omar Carrillo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| | - Isaiah Ramos
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| |
Collapse
|
24
|
Mori K, Nakagawa Y, Watanabe B, Miyata H, Morita T, Hayashi K. Novel ability of diflubenzuron as an inhibitor of mitochondrial function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 167:104088. [PMID: 38342197 DOI: 10.1016/j.ibmb.2024.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Compounds classified as benzoylphenylurea (BPU), such as diflubenzuron (DFB), are used as insecticides. Although BPU disrupts molting by inhibiting chitin biosynthesis and exhibits insecticidal activity, their exact mode of action remains unknown. Since epidermal cells proliferate and morphologically change from squamous to columnar cells during the early stages of insect molting, we speculate that a transition similar to that from epithelium to mesenchyme occurs and that BPU may inhibit this transition. Here, we addressed this possibility. We found that DFB decreases actin expression in insect cells (the tissue cultures of insect integument). Detailed analysis in Schneider S2 cells reveals that DFB inhibits the expression of actin isoforms (Act5C and Act42A) and the Drosophila ortholog of myocardin-related transcription factor (Mrtf), leading to cell growth suppression. Proteomics identified the Drosophila ortholog of prohibitin (Phb1D and Phb2E) as one of the DFB-binding proteins. DFB inhibits the interaction between Phb1D and Phb2E and induces mitochondrial dysfunction. The knock-down of Phb2E suppresses the expression of Act5C, Act42A, and Mrtf, leading to cell growth inhibition. Thus, the disruption of Phb function is a possible novel target of DFB.
Collapse
Affiliation(s)
- Kotaro Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, 8-3-1 Kokuryo, Chofu, Tokyo, 182-8570, Japan
| | - Hiroshi Miyata
- Department of Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama, 641-0011, Japan
| | - Ken'ichiro Hayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan; Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Jung SJ, Sridhara S, Ott M. Early steps in the biogenesis of mitochondrially encoded oxidative phosphorylation subunits. IUBMB Life 2024; 76:125-139. [PMID: 37712772 DOI: 10.1002/iub.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
The complexes mediating oxidative phosphorylation (OXPHOS) in the inner mitochondrial membrane consist of proteins encoded in the nuclear or the mitochondrial DNA. The mitochondrially encoded membrane proteins (mito-MPs) represent the catalytic core of these complexes and follow complicated pathways for biogenesis. Owing to their overall hydrophobicity, mito-MPs are co-translationally inserted into the inner membrane by the Oxa1 insertase. After insertion, OXPHOS biogenesis factors mediate the assembly of mito-MPs into complexes and participate in the regulation of mitochondrial translation, while protein quality control factors recognize and degrade faulty or excess proteins. This review summarizes the current understanding of these early steps occurring during the assembly of mito-MPs by concentrating on results obtained in the model organism baker's yeast.
Collapse
Affiliation(s)
- Sung-Jun Jung
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
26
|
Schweke H, Pacesa M, Levin T, Goverde CA, Kumar P, Duhoo Y, Dornfeld LJ, Dubreuil B, Georgeon S, Ovchinnikov S, Woolfson DN, Correia BE, Dey S, Levy ED. An atlas of protein homo-oligomerization across domains of life. Cell 2024; 187:999-1010.e15. [PMID: 38325366 DOI: 10.1016/j.cell.2024.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.
Collapse
Affiliation(s)
- Hugo Schweke
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Prasun Kumar
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Yoan Duhoo
- Protein Production and Structure Characterization Core Facility (PTPSP), School of Life Sciences, École polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benjamin Dubreuil
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan, India.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Murik O, Geffen O, Shotland Y, Fernandez-Pozo N, Ullrich KK, Walther D, Rensing SA, Treves H. Genomic imprints of unparalleled growth. THE NEW PHYTOLOGIST 2024; 241:1144-1160. [PMID: 38072860 DOI: 10.1111/nph.19444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Chlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination. This included the genome of its close relative, but slower growing and photodamage sensitive, C. sorokiniana UTEX 1663. A larger number of ribosome-encoding genes, high intron abundance, increased codon bias and unique genes potentially involved in metabolic flexibility and resistance to photodamage are all consistent with the faster growth of C. ohadii. Some of these characteristics highlight general trends in Chlorophyta and Chlorella spp. evolution, and others open new broad avenues for mechanistic exploration of their relationship with growth. This work entails a unique case study for the genomic adaptations and costs of exceptionally fast growth and sheds light on the genomic signatures of fast growth in photosynthetic cells. It also provides an important resource for future studies leveraging the unique properties of C. ohadii for photosynthesis and stress response research alongside their utilization for synthetic biology and biotechnology aims.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Medical Genetics Institute, Shaare Zedek Medical Center, 93722, Jerusalem, Israel
| | - Or Geffen
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
| | - Yoram Shotland
- Chemical Engineering, Shamoon College of Engineering, 84100, Beer-Sheva, Israel
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
| | - Kristian Karsten Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Dirk Walther
- Max-Planck Institute for Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Stefan Andreas Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, 79098, Freiburg, Germany
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
28
|
Janz A, Walz K, Cirnu A, Surjanto J, Urlaub D, Leskien M, Kohlhaas M, Nickel A, Brand T, Nose N, Wörsdörfer P, Wagner N, Higuchi T, Maack C, Dudek J, Lorenz K, Klopocki E, Ergün S, Duff HJ, Gerull B. Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes. Mol Metab 2024; 79:101859. [PMID: 38142971 PMCID: PMC10792641 DOI: 10.1016/j.molmet.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. CONCLUSIONS Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.
Collapse
Affiliation(s)
- Anna Janz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Walz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Alexandra Cirnu
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Jessica Surjanto
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Urlaub
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Leskien
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Naoko Nose
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Eva Klopocki
- Institute for Human Genetics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Henry J Duff
- Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany; Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
29
|
Jin S, Sun J, Liu G, Shen L, Weng Y, Li J, Chen M, Wang Y, Gao Z, Jiang F, Li S, Chen D, Pang Q, Wu Y, Wang Z. Nrf2/PHB2 alleviates mitochondrial damage and protects against Staphylococcus aureus-induced acute lung injury. MedComm (Beijing) 2023; 4:e448. [PMID: 38077250 PMCID: PMC10701464 DOI: 10.1002/mco2.448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Staphylococcus aureus (SA) is a major cause of sepsis, leading to acute lung injury (ALI) characterized by inflammation and oxidative stress. However, the role of the Nrf2/PHB2 pathway in SA-induced ALI (SA-ALI) remains unclear. In this study, serum samples were collected from SA-sepsis patients, and a SA-ALI mouse model was established by grouping WT and Nrf2-/- mice after 6 h of intraperitoneal injection. A cell model simulating SA-ALI was developed using lipoteichoic acid (LTA) treatment. The results showed reduced serum Nrf2 levels in SA-sepsis patients, negatively correlated with the severity of ALI. In SA-ALI mice, downregulation of Nrf2 impaired mitochondrial function and exacerbated inflammation-induced ALI. Moreover, PHB2 translocation from mitochondria to the cytoplasm was observed in SA-ALI. The p-Nrf2/total-Nrf2 ratio increased in A549 cells with LTA concentration and treatment duration. Nrf2 overexpression in LTA-treated A549 cells elevated PHB2 content on the inner mitochondrial membrane, preserving genomic integrity, reducing oxidative stress, and inhibiting excessive mitochondrial division. Bioinformatic analysis and dual-luciferase reporter assay confirmed direct binding of Nrf2 to the PHB2 promoter, resulting in increased PHB2 expression. In conclusion, Nrf2 plays a role in alleviating SA-ALI by directly regulating PHB2 transcription and maintaining mitochondrial function in lung cells.
Collapse
Affiliation(s)
- Si‐Hao Jin
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
- Department of Nursing, School of MedicineShaoxing Vocational & Technical CollegeShaoxingChina
| | - Jiao‐Jiao Sun
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Gang Liu
- Department of Nosocomial InfectionThe Forth Affiliated Hospital of Zhejiang UniversityJinhuaChina
| | - Li‐Juan Shen
- Department of Critical Care MedicineWuxi Hospital of Traditional Chinese MedicineWuxiChina
| | - Yuan Weng
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Jin‐You Li
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Min Chen
- Department of LaboratoryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ying‐Ying Wang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Zhi‐Qi Gao
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Feng‐Juan Jiang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Sheng‐Peng Li
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Dan Chen
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Qing‐Feng Pang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Ya‐Xian Wu
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Zhi‐Qiang Wang
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| |
Collapse
|
30
|
Watanabe S, Haruyama R, Umezawa K, Tomioka I, Nakamura S, Katayama S, Mitani T. Genistein enhances NAD + biosynthesis by upregulating nicotinamide phosphoribosyltransferase in adipocytes. J Nutr Biochem 2023; 121:109433. [PMID: 37648097 DOI: 10.1016/j.jnutbio.2023.109433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
A decrease in the NAD+ level in adipocytes causes adipose-tissue dysfunction, leading to systemic glucose, and lipid metabolism failure. Therefore, it is necessary to develop small molecules and nutraceuticals that can increase NAD+ levels in adipocytes. Genistein, a nutraceutical derived from soybeans, has various physiological activities and improves glucose and lipid metabolism. In this study, we aimed to unravel the effects of genistein on the NAD+ level in adipocytes and the underlying molecular mechanisms. Genistein enhanced NAD+ biosynthesis by increasing the expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis. A pull-down assay using genistein-immobilized beads revealed prohibitin 1 (PHB1) as a target protein of genistein. The knockdown of Phb1 suppressed the genistein-induced increase in NAMPT expression and NAD+ level in adipocytes. Genistein-bound PHB1 contributed to the stabilization of the transcription factor CCAAT/enhancer-binding protein β through the activation of extracellular signal-regulated kinase, resulting in increased NAMPT expression at the transcriptional level. Genistein induced the dephosphorylation of peroxisome proliferator-activated receptor at serine 273 and increased the level of the insulin-sensitizing adipokine adiponectin in adipocytes, whereas the knockdown of Nampt and Phb1 abolished these genistein-mediated effects. Our results proved the potential efficacy of genistein in increasing the NAD+ level and restoring metabolic function in adipocytes. Furthermore, we identified PHB1, localized to the plasma membrane, as a novel candidate target protein for increased expression of NAMPT in adipocytes. Overall, these findings will assist in developing NAD+-boosting nutraceuticals to alleviate metabolic dysfunctions in adipose tissues.
Collapse
Affiliation(s)
- Shun Watanabe
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Riki Haruyama
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Ikuo Tomioka
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan; Division of Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Soichiro Nakamura
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Shigeru Katayama
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.
| |
Collapse
|
31
|
Samhan-Arias AK, Poejo J, Marques-da-Silva D, Martínez-Costa OH, Gutierrez-Merino C. Hexa-Histidine, a Peptide with Versatile Applications in the Study of Amyloid-β(1-42) Molecular Mechanisms of Action. Molecules 2023; 28:7138. [PMID: 38067638 PMCID: PMC10708093 DOI: 10.3390/molecules28237909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Amyloid β (Aβ) oligomers are the most neurotoxic forms of Aβ, and Aβ(1-42) is the prevalent Aβ peptide found in the amyloid plaques of Alzheimer's disease patients. Aβ(25-35) is the shortest peptide that retains the toxicity of Aβ(1-42). Aβ oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aβ(1-42) concentration range. Aβ and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aβ(1-42). The formation of His6/Aβ(1-42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aβ(1-42) and Aβ(25-35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aβ peptides toward selected cellular targets.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
32
|
Kohler A, Carlström A, Nolte H, Kohler V, Jung SJ, Sridhara S, Tatsuta T, Berndtsson J, Langer T, Ott M. Early fate decision for mitochondrially encoded proteins by a molecular triage. Mol Cell 2023; 83:3470-3484.e8. [PMID: 37751741 DOI: 10.1016/j.molcel.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sung-Jun Jung
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
33
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
34
|
Tam D, Lorenzo-Leal AC, Hernández LR, Bach H. Targeting SARS-CoV-2 Non-Structural Proteins. Int J Mol Sci 2023; 24:13002. [PMID: 37629182 PMCID: PMC10455537 DOI: 10.3390/ijms241613002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped respiratory β coronavirus that causes coronavirus disease (COVID-19), leading to a deadly pandemic that has claimed millions of lives worldwide. Like other coronaviruses, the SARS-CoV-2 genome also codes for non-structural proteins (NSPs). These NSPs are found within open reading frame 1a (ORF1a) and open reading frame 1ab (ORF1ab) of the SARS-CoV-2 genome and encode NSP1 to NSP11 and NSP12 to NSP16, respectively. This study aimed to collect the available literature regarding NSP inhibitors. In addition, we searched the natural product database looking for similar structures. The results showed that similar structures could be tested as potential inhibitors of the NSPs.
Collapse
Affiliation(s)
- Donald Tam
- Division of Infectious Disease, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.T.); (A.C.L.-L.)
| | - Ana C. Lorenzo-Leal
- Division of Infectious Disease, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.T.); (A.C.L.-L.)
| | - Luis Ricardo Hernández
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Horacio Bach
- Division of Infectious Disease, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.T.); (A.C.L.-L.)
| |
Collapse
|
35
|
Wang J, Gao X, Du C, Tang D, Hou C, Zhu J. The Effect of Prohibitins on Mitochondrial Function during Octopus tankahkeei Spermiogenesis. Int J Mol Sci 2023; 24:10030. [PMID: 37373178 DOI: 10.3390/ijms241210030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are essential for spermiogenesis. Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins that act as scaffolds in the inner mitochondrial membrane. In this study, we analyzed the molecular structure and dynamic expression characteristics of Ot-PHBs, observed the colocalization of Ot-PHB1 with mitochondria and polyubiquitin, and studied the effect of phb1 knockdown on mitochondrial DNA (mtDNA) content, reactive oxygen species (ROS) levels, and apoptosis-related gene expression in spermatids. Our aim was to explore the effect of Ot-PHBs on mitochondrial function during the spermiogenesis of Octopus tankahkeei (O. tankahkeei), an economically important species in China. The predicted Ot-PHB1/PHB2 proteins contained an N-terminal transmembrane, a stomatin/prohibitin/flotillin/HflK/C (SPFH) domain (also known as the prohibitin domain), and a C-terminal coiled-coil domain. Ot-phb1/phb2 mRNA were widely expressed in the different tissues, with elevated expression in the testis. Further, Ot-PHB1 and Ot-PHB2 were highly colocalized, suggesting that they may function primarily as an Ot-PHB compiex in O. tankahkeei. Ot-PHB1 proteins were mainly expressed and localized in mitochondria during spermiogenesis, implying that their function may be localized to the mitochondria. In addition, Ot-PHB1 was colocalized with polyubiquitin during spermiogenesis, suggesting that it may be a polyubiquitin substrate that regulates mitochondrial ubiquitination during spermiogenesis to ensure mitochondrial quality. To further investigate the effect of Ot-PHBs on mitochondrial function, we knocked down Ot-phb1 and observed a decrease in mtDNA content, along with increases in ROS levels and the expressions of mitochondria-induced apoptosis-related genes bax, bcl2, and caspase-3 mRNA. These findings indicate that PHBs might influence mitochondrial function by maintaining mtDNA content and stabilizing ROS levels; in addition, PHBs might affect spermatocyte survival by regulating mitochondria-induced apoptosis during spermiogenesis in O. tankahkeei.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Chen Du
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Daojun Tang
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Congcong Hou
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|
36
|
Krestinin R, Baburina Y, Odinokova I, Kruglov A, Sotnikova L, Krestinina O. The Effect of Astaxanthin on Mitochondrial Dynamics in Rat Heart Mitochondria under ISO-Induced Injury. Antioxidants (Basel) 2023; 12:1247. [PMID: 37371979 DOI: 10.3390/antiox12061247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are dynamic organelles that produce ATP in the cell and are sensitive to oxidative damage that impairs mitochondrial function in pathological conditions. Mitochondria are involved not only in a healthy heart but also in the development of heart disease. Therefore, attempts should be made to enhance the body's defense response against oxidative stress with the help of various antioxidants in order to decrease mitochondrial damage and reduce mitochondrial dysfunction. Mitochondrial fission and fusion play an important role in the quality control and maintenance of mitochondria. The ketocarotenoid astaxanthin (AX) is an antioxidant able to maintain mitochondrial integrity and prevent oxidative stress. In the present study, we investigated the effect of the protective effect of AX on the functioning of rat heart mitochondria (RHM). Changes in the content of proteins responsible for mitochondrial dynamics, prohibitin 2 (PHB2) as a protein that performs the function of quality control of mitochondrial proteins and participates in the stabilization of mitophagy, and changes in the content of cardiolipin (CL) in rat heart mitochondria after isoproterenol (ISO)-induced damage were examined. AX improved the respiratory control index (RCI), enhanced mitochondrial fusion, and inhibited mitochondrial fission in RHM after ISO injury. Rat heart mitochondria (RHM) were more susceptible to Ca2+-induced mitochondrial permeability pore (mPTP) opening after ISO injection, while AX abolished the effect of ISO. AX is able to perform a protective function in mitochondria, improving their efficiency. Therefore, AX can be considered an important ingredient in the diet for the prevention of cardiovascular disease. Therefore, AX can be examined as an important component of the diet for the prevention of heart disease.
Collapse
Affiliation(s)
- Roman Krestinin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Alexey Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Linda Sotnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
37
|
Chen S, Ma J, Yin P, Liang F. The landscape of mitophagy in sepsis reveals PHB1 as an NLRP3 inflammasome inhibitor. Front Immunol 2023; 14:1188482. [PMID: 37359543 PMCID: PMC10285102 DOI: 10.3389/fimmu.2023.1188482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Mitophagy is a selective autophagy targeting damaged and potential cytotoxic mitochondria, which can effectively prevent excessive cytotoxic production from damaged mitochondria and alleviate the inflammatory response. However, the potential role of mitophagy in sepsis remains poorly explored. Here, we studied the role of mitophagy in sepsis and its immune heterogeneity. By performing mitophagy-related typing on 348 sepsis samples, three clusters (A, B, and C) were obtained. Cluster A had the highest degree of mitophagy accompanied by lowest disease severity, while cluster C had the lowest degree of mitophagy with the highest disease severity. The three clusters had unique immune characteristics. We further revealed that the expression of PHB1 in these three clusters was significantly different and negatively correlated with the severity of sepsis, suggesting that PHB1 was involved in the development of sepsis. It has been reported that impaired mitophagy leads to the over-activation of inflammasomes, which promotes sepsis development. Further analysis showed that the expressions of NLRP3 inflammasomes core genes in cluster C were significantly up-regulated and negatively correlated with PHB1. Next, we verified whether PHB1 downregulation caused the activation of inflammasomes and found that the PHB1 knockdown increased the levels of mtDNA in the cytoplasm and enhanced the activation of NLRP3 inflammasomes. In addition, mitophagy inhibitor treatment abolished PHB1 knockdown-mediated activation of NLRP3 inflammasomes, suggesting that PHB1 inhibited the activation of inflammasomes through mitophagy. In conclusion, this study reveals that a high degree of mitophagy may predict a good outcome of sepsis, and PHB1 is a key NLRP3 inflammasome regulator via mitophagy in inflammatory diseases such as sepsis.
Collapse
Affiliation(s)
- Shipeng Chen
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jinqi Ma
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Yin
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Liang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
Wei Q, Chen B, Wang J, Huang M, Gui Y, Sayyed A, Tan BC. PHB3 Is Required for the Assembly and Activity of Mitochondrial ATP Synthase in Arabidopsis. Int J Mol Sci 2023; 24:ijms24108787. [PMID: 37240131 DOI: 10.3390/ijms24108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial ATP synthase is a multiprotein complex, which consists of a matrix-localized F1 domain (F1-ATPase) and an inner membrane-embedded Fo domain (Fo-ATPase). The assembly process of mitochondrial ATP synthase is complex and requires the function of many assembly factors. Although extensive studies on mitochondrial ATP synthase assembly have been conducted on yeast, much less study has been performed on plants. Here, we revealed the function of Arabidopsis prohibitin 3 (PHB3) in mitochondrial ATP synthase assembly by characterizing the phb3 mutant. The blue native PAGE (BN-PAGE) and in-gel activity staining assays showed that the activities of ATP synthase and F1-ATPase were significantly decreased in the phb3 mutant. The absence of PHB3 resulted in the accumulation of the Fo-ATPase and F1-ATPase intermediates, whereas the abundance of the Fo-ATPase subunit a was decreased in the ATP synthase monomer. Furthermore, we showed that PHB3 could interact with the F1-ATPase subunits β and δ in the yeast two-hybrid system (Y2H) and luciferase complementation imaging (LCI) assay and with Fo-ATPase subunit c in the LCI assay. These results indicate that PHB3 acts as an assembly factor required for the assembly and activity of mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Qingqing Wei
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baoyin Chen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Junjun Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Manna Huang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yuanye Gui
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
39
|
Saini M, Julius Ngwa C, Marothia M, Verma P, Ahmad S, Kumari J, Anand S, Vandana V, Goyal B, Chakraborti S, Pandey KC, Garg S, Pati S, Ranganathan A, Pradel G, Singh S. Characterization of Plasmodium falciparum prohibitins as novel targets to block infection in humans by impairing the growth and transmission of the parasite. Biochem Pharmacol 2023; 212:115567. [PMID: 37088154 DOI: 10.1016/j.bcp.2023.115567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Prohibitins (PHBs) are highly conserved pleiotropic proteins as they have been shown to mediate key cellular functions. Here, we characterize PHBs encoding putative genes of Plasmodium falciparum by exploiting different orthologous models. We demonstrated that PfPHB1 (PF3D7_0829200) and PfPHB2 (PF3D7_1014700) are expressed in asexual and sexual blood stages of the parasite. Immunostaining indicated these proteins as mitochondrial residents as they were found to be localized as branched structures. We further validated PfPHBs as organellar proteins residing in Plasmodium mitochondria, where they interact with each other. Functional characterization was done in Saccharomyces cerevisiae orthologous model by expressing PfPHB1 and PfPHB2 in cells harboring respective mutants. The PfPHBs functionally complemented the yeast PHB1 and PHB2 mutants, where the proteins were found to be involved in stabilizing the mitochondrial DNA, retaining mitochondrial integrity and rescuing yeast cell growth. Further, Rocaglamide (Roc-A), a known inhibitor of PHBs and anti-cancerous agent, was tested against PfPHBs and as an antimalarial. Roc-A treatment retarded the growth of PHB1, PHB2, and ethidium bromide petite yeast mutants. Moreover, Roc-A inhibited growth of yeast PHBs mutants that were functionally complemented with PfPHBs, validating P. falciparum PHBs as one of the molecular targets for Roc-A. Roc-A treatment led to growth inhibition of artemisinin-sensitive (3D7), artemisinin-resistant (R539T) and chloroquine-resistant (RKL-9) parasites in nanomolar ranges. The compound was able to retard gametocyte and oocyst growth with significant morphological aberrations. Based on our findings, we propose the presence of functional mitochondrial PfPHB1 and PfPHB2 in P. falciparum and their druggability to block parasite growth.
Collapse
Affiliation(s)
- Monika Saini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pritee Verma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shakeel Ahmad
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Kumari
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vandana Vandana
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Bharti Goyal
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India; Academic Council of Scientific and Innovative Research, Faridabad, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
40
|
Qi A, Lamont L, Liu E, Murray SD, Meng X, Yang S. Essential Protein PHB2 and Its Regulatory Mechanisms in Cancer. Cells 2023; 12:cells12081211. [PMID: 37190120 DOI: 10.3390/cells12081211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Prohibitins (PHBs) are a highly conserved class of proteins and have an essential role in transcription, epigenetic regulation, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism. Prohibitins form a heterodimeric complex, consisting of two proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2). They have been discovered to have crucial roles in regulating cancer and other metabolic diseases, functioning both together and independently. As there have been many previously published reviews on PHB1, this review focuses on the lesser studied prohibitin, PHB2. The role of PHB2 in cancer is controversial. In most human cancers, overexpressed PHB2 enhances tumor progression, while in some cancers, it suppresses tumor progression. In this review, we focus on (1) the history, family, and structure of prohibitins, (2) the essential location-dependent functions of PHB2, (3) dysfunction in cancer, and (4) the promising modulators to target PHB2. At the end, we discuss future directions and the clinical significance of this common essential gene in cancer.
Collapse
Affiliation(s)
- Amanda Qi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillie Lamont
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Evelyn Liu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sarina D Murray
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
41
|
An B, Zhang Y, Yan B, Cai J. RNA interference of PHB1 enhances virulence of Vip3Aa to Sf9 cells and Spodoptera frugiperda larvae. PEST MANAGEMENT SCIENCE 2023. [PMID: 36964944 DOI: 10.1002/ps.7469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In our previous work, we demonstrated that prohibitin 2 (PHB2) on the membrane of Sf9 cells was a receptor for Vip3Aa, and PHB2 in mitochondria contributed to the mitochondrial stability to reduce Vip3Aa toxicity. Prohibitin 1 (PHB1), another prohibitin family member, forms heterodimers with PHB2 to maintain the structure and stability of mitochondria. To explore whether PHB1 impacts the action process of Vip3Aa, we examined the correlation between PHB1 and Vip3Aa virulence. RESULTS We revealed that PHB1 did not colocalize with Vip3Aa in Sf9 cells. The pulldown and CoIP experiments confirmed that PHB1 interacted with neither Vip3Aa nor scavenger receptor-C (another Vip3Aa receptor). Downregulating phb1 expression in Sf9 cells did not affect the internalization of Vip3Aa but increased Vip3Aa toxicity. Further exploration revealed that the decrease of phb1 expression affected mitochondrial function, leading to increased ROS levels and mitochondrial membrane permeability and decreased mitochondrial membrane potential. The increase of mitochondrial cytochrome c release, caspase-3 activity and genomic DNA fragmentation implied that the apoptotic process was also affected. Finally, we applied RNAi to inhibit phb1 expression in Spodoptera frugiperda larvae. As a result, it significantly increased Vip3Aa virulence. CONCLUSION We found that PHB1 was not a receptor for Vip3Aa but played an essential role in mitochondria. The downregulation of phb1 expression in Sf9 cells caused instability of mitochondria, and the cells were more prone to apoptosis when challenged with Vip3Aa. The combined use of Vip3Aa and phb1 RNAi showed a synergistic effect against S. frugiperda larvae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Colllege of Life Science, Nankai University, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
42
|
Inner mitochondrial membrane protein Prohibitin 1 mediates Nix-induced, Parkin-independent mitophagy. Sci Rep 2023; 13:18. [PMID: 36593241 PMCID: PMC9807637 DOI: 10.1038/s41598-022-26775-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Autophagy of damaged mitochondria, called mitophagy, is an important organelle quality control process involved in the pathogenesis of inflammation, cancer, aging, and age-associated diseases. Many of these disorders are associated with altered expression of the inner mitochondrial membrane (IMM) protein Prohibitin 1. The mechanisms whereby dysfunction occurring internally at the IMM and matrix activate events at the outer mitochondrial membrane (OMM) to induce mitophagy are not fully elucidated. Using the gastrointestinal epithelium as a model system highly susceptible to autophagy inhibition, we reveal a specific role of Prohibitin-induced mitophagy in maintaining intestinal homeostasis. We demonstrate that Prohibitin 1 induces mitophagy in response to increased mitochondrial reactive oxygen species (ROS) through binding to mitophagy receptor Nix/Bnip3L and independently of Parkin. Prohibitin 1 is required for ROS-induced Nix localization to mitochondria and maintaining homeostasis of epithelial cells highly susceptible to mitochondrial dysfunction.
Collapse
|
43
|
Liao WT, Chu PY, Su CC, Wu CC, Li CJ. Mitochondrial AAA protease gene associated with immune infiltration is a prognostic biomarker in human ovarian cancer. Pathol Res Pract 2022; 240:154215. [DOI: 10.1016/j.prp.2022.154215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
44
|
Mitochondrial prohibitin complex regulates fungal virulence via ATG24-assisted mitophagy. Commun Biol 2022; 5:698. [PMID: 35835849 PMCID: PMC9283515 DOI: 10.1038/s42003-022-03666-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Prohibitins are highly conserved eukaryotic proteins in mitochondria that function in various cellular processes. The roles of prohibitins in fungal virulence and their regulatory mechanisms are still unknown. Here, we identified the prohibitins ChPhb1 and ChPhb2 in a plant pathogenic fungus Colletotrichum higginsianum and investigated their roles in the virulence of this anthracnose fungus attacking crucifers. We demonstrate that ChPhb1 and ChPhb2 are required for the proper functioning of mitochondria, mitophagy and virulence. ChPhb1 and ChPhb2 interact with the autophagy-related protein ChATG24 in mitochondria, and ChATG24 shares similar functions with these proteins in mitophagy and virulence, suggesting that ChATG24 is involved in prohibitin-dependent mitophagy. ChPhb1 and ChPhb2 modulate the translocation of ChATG24 into mitochondria during mitophagy. The role of ChATG24 in mitophagy is further confirmed to be conserved in plant pathogenic fungi. Our study presents that prohibitins regulate fungal virulence by mediating ATG24-assisted mitophagy. Prohibitins recruit ChATG24 into the mitochondria to modulate mitophagy, thereby affecting the virulence of Colletotrichum higginsianum.
Collapse
|
45
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
46
|
Divergence of Chemerin Reduction by an ATS9R Nanoparticle Targeting Adipose Tissue In Vitro vs. In Vivo in the Rat. Biomedicines 2022; 10:biomedicines10071635. [PMID: 35884940 PMCID: PMC9313470 DOI: 10.3390/biomedicines10071635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles (NPs) can enable delivery of a drug to a targeted tissue. Previous studies have shown that an NP utilizing an adipose targeting sequence (ATS) peptide in conjunction with a drug can selectively deliver the drug to mouse adipose tissues, using the prohibitin protein expressed in adipose tissue as the target of the ATS. Adipose tissue is a major source of the adipokine chemerin, a prohypertensive protein. Liver-derived chemerin, the largest source of circulating chemerin, is biologically inactive in blood pressure regulation. Our goal is to understand if chemerin produced in adipose tissue contributes to blood pressure/hypertension. We hypothesize the ATS drug delivery system could be used specifically to reduce the levels of adipose tissue-derived chemerin. We created an NP consisting of an antisense oligonucleotide (ASO) against chemerin and a FITC-labeled ATS with a nine arginine sequence (ATS9R). In vitro studies showed that the ASO is functional when incorporated into an NP with ATS9R as it reduced chemerin mRNA expression in isolated epidydimal (Epi) and retroperitoneal (RP) fat adipocytes from Dahl SS rats. This same NP reduced chemerin in isolated whole fats. However, this NP was unable to selectively deliver the ASO to adipose tissue in vivo; liver delivery was dominant. Varying NP doses, administration route, and the concentration of components constituting the NP showed no improvement in ASO delivery to fats vs. the liver. Further studies are therefore needed to develop the ATS9R system to deliver an ASO to adipose beds in rats.
Collapse
|
47
|
Characterization of Mitochondrial Prohibitin in Opsariichthys bidens and Its Potential Functions in Spermatogenesis. Int J Mol Sci 2022; 23:ijms23137295. [PMID: 35806298 PMCID: PMC9266877 DOI: 10.3390/ijms23137295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Spermatogenesis is the intricate and coordinated process by which spermatogonia develop into haploid differentiated spermatozoa. Mitochondria are essential for spermatogenesis, and prohibitin (PHB) is closely associated with mitochondrial structure and function during spermatogenesis. Although PHB has been implicated in spermatogenesis in some taxa, its roles in Opsariichthys bidens have not been determined. In this study, the expression patterns and potential functions of PHB in spermatogenesis in O. bidens were characterized using histological microscopic observations, PCR cloning, real-time quantitative PCR (qPCR), Western blotting (WB) and immunofluorescence (IF). The full-length cDNA of Ob-phb was 1500 bp encoding 271 amino acids. A sequence alignment demonstrated that the PHB protein is conserved among different animals. qPCR revealed that phb mRNA is widely distributed in O. bidens and highly expressed in the testes at stages IV and V. WB revealed that Ob-PHB is located in the mitochondria of testes. IF revealed the colocalization of PHB signals and mitochondria. Signals were detected around nuclei in spermatogonia and spermatocytes, gradually moving to the tail region during spermiogenesis, and finally aggregating in the midpiece. These results indicate that Ob-PHB was expressed in the mitochondria during spermatogenesis. In addition, this study proposed Ob-PHB may participate in the degradation of mitochondria and cell differentiation during spermatogenesis.
Collapse
|
48
|
Qiao Z, Yokoyama T, Yan XF, Beh IT, Shi J, Basak S, Akiyama Y, Gao YG. Cryo-EM structure of the entire FtsH-HflKC AAA protease complex. Cell Rep 2022; 39:110890. [PMID: 35649372 DOI: 10.1016/j.celrep.2022.110890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
The membrane-bound AAA protease FtsH is the key player controlling protein quality in bacteria. Two single-pass membrane proteins, HflK and HflC, interact with FtsH to modulate its proteolytic activity. Here, we present structure of the entire FtsH-HflKC complex, comprising 12 copies of both HflK and HflC, all of which interact reciprocally to form a cage, as well as four FtsH hexamers with periplasmic domains and transmembrane helices enclosed inside the cage and cytoplasmic domains situated at the base of the cage. FtsH K61/D62/S63 in the β2-β3 loop in the periplasmic domain directly interact with HflK, contributing to complex formation. Pull-down and in vivo enzymatic activity assays validate the importance of the interacting interface for FtsH-HflKC complex formation. Structural comparison with the substrate-bound human m-AAA protease AFG3L2 offers implications for the HflKC cage in modulating substrate access to FtsH. Together, our findings provide a better understanding of FtsH-type AAA protease holoenzyme assembly and regulation.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| | - Tatsuhiko Yokoyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| | - Ing Tsyr Beh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jian Shi
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
49
|
Kataoka K, Suzuki S, Tenno T, Goda N, Hibino E, Oshima A, Hiroaki H. A cryptic phosphate-binding pocket on the SPFH domain of human stomatin that regulates a novel fibril-like self-assembly. Curr Res Struct Biol 2022; 4:158-166. [PMID: 35663930 PMCID: PMC9157467 DOI: 10.1016/j.crstbi.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
Human stomatin (hSTOM) is a component of the membrane skeleton of erythrocytes that maintains the membrane's shape and stiffness through interconnecting spectrin and actin. hSTOM is a member of the protein family that possesses a single stomatin/prohibitin/flotillin/HflK (SPFH) domain at the center of the molecule. Although SPFH domain proteins are widely distributed from archaea to mammals, the detailed function of the domain remains unclear. In this study, we first determined the solution structure of the SPFH domain of hSTOM (hSTOM(SPFH)) via NMR. The solution structure of hSTOM(SPFH) is essentially identical to the already reported crystal structure of the STOM SPFH domain (mSTOM(SPFH)) of mice, except for the existence of a small hydrophilic pocket on the surface. We identified this pocket as a phosphate-binding site by comparing its NMR spectra with and without phosphate ions. Meanwhile, during the conventional process of protein NMR analysis, we eventually discovered that hSTOM(SPFH) formed a unique solid material after lyophilization. This lyophilized hSTOM(SPFH) sample was moderately slowly dissolved in a physiological buffer. Interestingly, it was resistant to dissolution against the phosphate buffer. We then found that the lyophilized hSTOM(SPFH) formed a fibril-like assembly under electron microscopy. Finally, we succeeded in reproducing this fibril-like assembly of hSTOM(SPFH) using a centrifugal ultrafiltration device, thus demonstrating that the increased protein concentration may promote self-assembly of hSTOM(SPFH) into fibril forms. Our observations may help understand the molecular function of the SPFH domain and its involvement in protein oligomerization as a component of the membrane skeleton. (245 words). Solution structure of human stomatin SPFH domain is determined. A cryptic phosphate-binding pocket was identified. Stomatin SPFH domain can form a fibril-like assembly at a high concentration. Phosphate ions promote formation of the fibril-like assembly.
Collapse
|
50
|
Bassi G, Mishra S. Prohibitin-1 plays a regulatory role in Leydig cell steroidogenesis. iScience 2022; 25:104165. [PMID: 35434552 PMCID: PMC9010647 DOI: 10.1016/j.isci.2022.104165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/20/2021] [Accepted: 03/24/2022] [Indexed: 10/31/2022] Open
Abstract
Mitochondria are essential for steroidogenesis. In steroidogenic cells, the initiation of steroidogenesis from cholesterol occurs on the matrix side of the inner mitochondrial membrane by the enzyme P450scc. This requires cholesterol import from the cytoplasm through the outer mitochondrial membrane, facilitated by the StAR protein. The subsequent steps leading to P450scc remain elusive. Here we report that the male transgenic mice that expressed a mutant form of a mitochondrial protein prohibitin-1 (PHB1Tyr114Phe) from the Fabp-4 gene promoter displayed smaller testes, higher testosterone, and lower gonadotropin levels compared with PHB1-expressing and wild-type mice. A subsequent analysis of the testis and Leydig cells from the mice revealed that PHB1 played a previously unknown regulatory role in Leydig cell steroidogenesis. This includes a role in coordinating cell signaling, cholesterol homeostasis, and mitochondrial biology pertaining to steroidogenesis. The implications of our finding are broad as the initial stages of steroidogenesis are indistinguishable across steroidogenic cells. Tyr114Phe-PHB-1 transgenic male mice reveal PHB-1’s role in testosterone production PHB-1 coordinates steroidogenic signaling and events in testosterone biosynthesis Tyr114 residue in PHB-1 plays a regulatory role in testosterone production
Collapse
|