1
|
Vu HH, Moellmer SA, McCarty OJ, Puy C. New mechanisms and therapeutic approaches to regulate vascular permeability in systemic inflammation. Curr Opin Hematol 2025; 32:130-137. [PMID: 40063579 PMCID: PMC11949701 DOI: 10.1097/moh.0000000000000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW This review summarizes mechanisms that regulate endothelial vascular permeability in health and disease. In systemic inflammation, the endothelial barrier integrity is disrupted, which exacerbates vascular permeability, leading to organ failure and death. Herein we provide an overview of emerging therapeutic targets to reverse barrier dysfunction and preserve vascular permeability in inflammatory diseases like sepsis. RECENT FINDINGS Endothelial barrier function is regulated in part by the endothelial cell-specific protein, Roundabout 4 (ROBO4), and vascular endothelial (VE)-cadherin, a critical adherens junction protein, which act in concert to suppresses vascular permeability by stabilizing endothelial cell-cell interactions. We recently discovered a pathway by which activation of coagulation factor XI (FXI) enhances the cleavage of VE-cadherin by the metalloproteinase ADAM10, contributing to sepsis-related endothelial damage and loss of barrier function. Targeting FXI improved survival and reduced sVE-cadherin levels in a baboon model of sepsis while enhancing Robo4 expression decreased mortality in LPS-treated mice. SUMMARY Endothelial cell barrier dysfunction is a hallmark of excessive immune responses characteristic of systemic inflammatory diseases such as sepsis. Advances in understanding the molecular mechanisms regulating vascular permeability, for instance the newly discovered roles of FXI or ROBO4, may help identify novel therapeutic targets for mitigating vascular hyperpermeability in septic patients.
Collapse
Affiliation(s)
- Helen H. Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Samantha A. Moellmer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Mekata M, Yoshida K, Takai A, Hiroshima Y, Ikuta A, Seyama M, Yoshida K, Ozaki K. Porphyromonas gingivalis outer membrane vesicles increase vascular permeability by inducing stress fiber formation and degrading vascular endothelial-cadherin in endothelial cells. FEBS J 2025; 292:1696-1709. [PMID: 39690116 PMCID: PMC11970716 DOI: 10.1111/febs.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 12/19/2024]
Abstract
Porphyromonas gingivalis (Pg) is a keystone bacterium associated with systemic diseases, such as diabetes mellitus and Alzheimer's disease. Outer membrane vesicles (OMVs) released from Pg have been implicated in systemic diseases by delivering Pg virulence factors to host cells in distant organs and inducing cellular dysfunction. Pg OMVs also have the potential to enter distant organs via the bloodstream. However, the effects of Pg OMVs on the vascular function are poorly understood. Here, we showed that Pg OMVs increase vascular permeability by promoting stress fiber formation and lysosome/endosome-mediated vascular endothelial-cadherin (VEc) degradation in human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs). F-actin, visualized via fluorescein isothiocyanate-phalloidin, became thicker and longer, leading to the formation of radical stress fibers in response to Pg OMVs in HUVECs and HPMECs. Western blotting and quantitative real-time polymerase chain reaction analyses revealed that Pg OMVs decreased VEc protein levels in a gene-independent manner. Pg OMVs enhanced vesicular VEc accumulation in the cytoplasm around lysosome-associated membrane protein 1-positive structures during pretreatment with the lysosomal inhibitor chloroquine. This suggests that Pg OMVs decrease VEc protein levels by accelerating their internalization and degradation via lysosomes and endosomes. A27632 inhibition of Rho kinases impaired the Pg OMV-induced stress fiber formation and VEc degradation, resulting in the recovery of hyperpermeability. These findings provide new insights into the pathogenesis of systemic diseases that are associated with periodontal diseases.
Collapse
Affiliation(s)
- Mana Mekata
- Department of Oral Healthcare Promotion, Graduate School of Biomedical SciencesTokushima UniversityJapan
| | - Kaya Yoshida
- Department of Oral Healthcare Promotion, Graduate School of Biomedical SciencesTokushima UniversityJapan
| | - Ayu Takai
- Department of Oral Healthcare Promotion, Graduate School of Biomedical SciencesTokushima UniversityJapan
| | - Yuka Hiroshima
- Department of Oral Microbiology, Graduate School of Biomedical SciencesTokushima UniversityJapan
| | - Ayu Ikuta
- Department of Oral Healthcare Promotion, Graduate School of Biomedical SciencesTokushima UniversityJapan
| | - Mariko Seyama
- Department of Oral Healthcare Promotion, Graduate School of Biomedical SciencesTokushima UniversityJapan
| | - Kayo Yoshida
- Department of Oral Healthcare Promotion, Graduate School of Biomedical SciencesTokushima UniversityJapan
| | - Kazumi Ozaki
- Department of Oral Healthcare Promotion, Graduate School of Biomedical SciencesTokushima UniversityJapan
| |
Collapse
|
3
|
Guillaumin S, Rossoni A, Zeugolis D. State-of the-art and future perspective in co-culture systems for tendon engineering. BIOMATERIALS AND BIOSYSTEMS 2025; 17:100110. [PMID: 40130022 PMCID: PMC11932666 DOI: 10.1016/j.bbiosy.2025.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
Tendon is a connective tissue that links bone to muscle, allowing for maintenance of skeleton posture, joint movement, energy storage and transmission of muscle force to bone. Tendon is a hypocellular and hypovascular tissue of poor self-regeneration capacity. Current surgical treatments are of limited success, frequently resulting in reinjury. Upcoming cell therapies are primarily based on tenocytes, a cell population of limited self-renewal capacity in vitro or mesenchymal stromal cells, a cell population prone to ectopic bone formation in vivo. Over the years mono- or multi- factorial cell culture technologies have failed to effectively maintain tenocyte phenotype in culture during expansion or to prime mesenchymal stromal cells towards tenogenic lineage prior to implantation. Upon these limitations the concept of co-culture was conceived. Here, we comprehensively review and discuss tenogenic differentiation of mesenchymal stromal cells through direct or indirect culture with tenocytes in an attempt to generate a tenocyte or a tendon-like cell population for regenerative medicine purposes.
Collapse
Affiliation(s)
- Salomé Guillaumin
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
4
|
Deng X, Chen Y, Duan Q, Ding J, Wang Z, Wang J, Chen X, Zhou L, Zhao L. Genetic and molecular mechanisms of hydrocephalus. Front Mol Neurosci 2025; 17:1512455. [PMID: 39839745 PMCID: PMC11746911 DOI: 10.3389/fnmol.2024.1512455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yiqian Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Junchi Wang
- School of Dentistry, North Sichuan Medical College, Nanchong, China
| | - Xinlong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Millar MW, Najar RA, Slavin SA, Shadab M, Tahir I, Mahamed Z, Lin X, Abe JI, Wright TW, Dean DA, Fazal F, Rahman A. MTOR maintains endothelial cell integrity to limit lung vascular injury. J Biol Chem 2024; 300:107952. [PMID: 39510184 PMCID: PMC11664419 DOI: 10.1016/j.jbc.2024.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
The functional and structural integrity of the endothelium is essential for vascular homeostasis. Loss of barrier function in quiescent and migratory capacity in proliferative endothelium causes exuberant vascular permeability, a cardinal feature of many inflammatory diseases including acute lung injury (ALI). However, the signals governing these fundamental endothelial cell (EC) functions are poorly understood. Here, we identify mechanistic target of rapamycin (MTOR) as an important link in preserving the barrier integrity and migratory/angiogenic responses in EC and preventing lung vascular injury and mortality in mice. Knockdown of MTOR in EC altered cell morphology, impaired proliferation and migration, and increased endocytosis of cell surface vascular endothelial (VE)-cadherin leading to disrupted barrier function. MTOR-depleted EC also exhibited reduced VE-cadherin and vascular endothelial growth factor receptor-2 (VEGFR2) levels mediated in part by autophagy. Similarly, lungs from mice with EC-specific MTOR deficiency displayed spontaneous vascular leakage marked by decreased VE-cadherin and VEGFR2 levels, indicating that MTOR deficiency in EC is sufficient to disrupt lung vascular integrity and may be a key pathogenic mechanism of ALI. Indeed, MTOR as well as VEGFR2 and VE-cadherin levels were markedly reduced in injured mouse lungs or EC. Importantly, EC-targeted gene transfer of MTOR complementary DNA, either prophylactically or therapeutically, mitigated inflammatory lung injury, and improved lung function and survival in mouse models of ALI. These findings reveal an essential role of MTOR in maintaining EC function, identify loss of endothelial MTOR as a key mechanism of lung vascular injury, and show the therapeutic potential of EC-targeted MTOR expression in combating ALI and mortality in mice.
Collapse
Affiliation(s)
- Michelle Warren Millar
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rauf A Najar
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Spencer A Slavin
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mohammad Shadab
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Imran Tahir
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Zahra Mahamed
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Xin Lin
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Terry W Wright
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - David A Dean
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Fabeha Fazal
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Arshad Rahman
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
6
|
Cauchois R, Lagarde M, Muller R, Faccini J, Leroyer A, Arnaud L, Poullin P, Dignat-George F, Kaplanski G, Tellier E. Vascular endothelial-cadherin is involved in endothelial cell detachment during thrombotic thrombocytopenic purpura. J Thromb Haemost 2024; 22:2879-2888. [PMID: 38950779 DOI: 10.1016/j.jtha.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Immune thrombotic thrombocytopenic purpura (i-TTP) is a life-threatening thrombotic microangiopathy linked to ADAMTS-13 deficiency. It has long been assumed that the activation of endothelial cells is the triggering factor for the thrombotic thrombocytopenic purpura crisis. Circulating endothelial cells (CECs) have been shown to be a biomarker of vascular damage and are associated with the clinical severity of i-TTP. However, the mechanisms leading to endothelial cell detachment remain unclear. OBJECTIVES We investigated junctional destabilization the mechanisms underlying cell detachment in thrombotic thrombocytopenic purpura. METHODS We quantified CECs in i-TTP patients and investigated the effect of plasmas in vitro by measuring phosphorylation and internalization of vascular endothelial (VE)-Cadherin and in vivo in a vascular permeability model. RESULTS In plasma from i-TTP patients, we show that CEC count is associated with severity and correlated to intracellular calcium influx (P < .01). In vitro, serum from i-TTP patients induced stronger detachment of human umbilical vein endothelial cells than serum from control patients (P < .001). Plasma from i-TTP patients induced a higher calcium-dependent phosphorylation (P < .05) and internalization (P < .05) of VE-cadherin compared with plasma from control patients. This effect could be reproduced by immunoglobulin (Ig)G fraction isolated from patient plasma and, in particular, by the F(ab)'2 fragments of the corresponding IgG. In addition, subcutaneous injection of i-TTP plasma into mice resulted in higher vascular permeability than plasma from control patients. An inhibitor of endothelial calcium influx, ITF1697, normalized this increase in permeability. CONCLUSION Our results suggest that plasma-induced endothelial activation also leads to an increase in vascular permeability. They contribute to the understanding of the mechanisms behind the presence of elevated CECs in patients' blood by linking endothelial activation to endothelial injury.
Collapse
Affiliation(s)
- Raphael Cauchois
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service de médecine interne et d'immunologie clinique, Marseille, France.
| | - Marie Lagarde
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Romain Muller
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service de médecine interne et d'immunologie clinique, Marseille, France
| | - Julien Faccini
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Aurélie Leroyer
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France
| | - Laurent Arnaud
- Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Département d'hématologie et de biologie vasculaire, Marseille, France
| | - Pascale Poullin
- French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service d'Hémaphérèse, Marseille, France
| | - Françoise Dignat-George
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Département d'hématologie et de biologie vasculaire, Marseille, France
| | - Gilles Kaplanski
- Institut national de la santé et de la recherche médicale (INSERM), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France; French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service de médecine interne et d'immunologie clinique, Marseille, France
| | - Edwige Tellier
- French Reference Center for Thrombotic Microangiopathies, Paris, France; Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) Conception, Service de médecine interne et d'immunologie clinique, Marseille, France
| |
Collapse
|
7
|
He H, Zhang W, Jiang L, Tong X, Zheng Y, Xia Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024; 14:980. [PMID: 39199368 PMCID: PMC11352357 DOI: 10.3390/biom14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is recognized as a syndrome of systemic inflammatory reaction induced by dysregulation of the body's immunity against infection. The multiple organ dysfunction associated with sepsis is a serious threat to the patient's life. Endothelial cell dysfunction has been extensively studied in sepsis. However, the role of macrophages in sepsis is not well understood and the intrinsic link between the two cells has not been elucidated. Macrophages are first-line cells of the immune response, whereas endothelial cells are a class of cells that are highly altered in function and morphology. In sepsis, various cytokines secreted by macrophages and endothelial cell dysfunction are inextricably linked. Therefore, investigating how macrophages affect endothelial cells could offer a theoretical foundation for the treatment of sepsis. This review links molecules (TNF-α, CCL2, ROS, VEGF, MMP-9, and NO) secreted by macrophages under inflammatory conditions to endothelial cell dysfunction (adhesion, permeability, and coagulability), refining the pathophysiologic mechanisms of sepsis. At the same time, multiple approaches (a variety of miRNA and medicines) regulating macrophage polarization are also summarized, providing new insights into reversing endothelial cell dysfunction and improving the outcome of sepsis treatment.
Collapse
Affiliation(s)
- Heng He
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
8
|
Wakasugi R, Suzuki K, Kaneko-Kawano T. Molecular Mechanisms Regulating Vascular Endothelial Permeability. Int J Mol Sci 2024; 25:6415. [PMID: 38928121 PMCID: PMC11203514 DOI: 10.3390/ijms25126415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular endothelial cells form a monolayer in the vascular lumen and act as a selective barrier to control the permeability between blood and tissues. To maintain homeostasis, the endothelial barrier function must be strictly integrated. During acute inflammation, vascular permeability temporarily increases, allowing intravascular fluid, cells, and other components to permeate tissues. Moreover, it has been suggested that the dysregulation of endothelial cell permeability may cause several diseases, including edema, cancer, and atherosclerosis. Here, we reviewed the molecular mechanisms by which endothelial cells regulate the barrier function and physiological permeability.
Collapse
Affiliation(s)
| | | | - Takako Kaneko-Kawano
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan; (R.W.); (K.S.)
| |
Collapse
|
9
|
Burg N, Malpass R, Alex L, Tran M, Englebrecht E, Kuo A, Pannelini T, Minett M, Athukorala K, Worgall T, Faust HJ, Goodman S, Mehta B, Brenner M, Vestweber D, Wei K, Blobel C, Hla T, Salmon JE. Endothelial cell sphingosine 1-phosphate receptor 1 restrains VE-cadherin cleavage and attenuates experimental inflammatory arthritis. JCI Insight 2024; 9:e171467. [PMID: 38855867 PMCID: PMC11382883 DOI: 10.1172/jci.insight.171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.
Collapse
Affiliation(s)
- Nathalie Burg
- Hospital for Special Surgery, New York, New York, USA
| | - Ryan Malpass
- Hospital for Special Surgery, New York, New York, USA
| | - Linda Alex
- Hospital for Special Surgery, New York, New York, USA
| | - Miles Tran
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Englebrecht
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Tilla Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Heather J. Faust
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Goodman
- Hospital for Special Surgery, New York, New York, USA
| | - Bella Mehta
- Hospital for Special Surgery, New York, New York, USA
| | - Michael Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carl Blobel
- Hospital for Special Surgery, New York, New York, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
10
|
Seo T, Lowery AM, Xu H, Giang W, Troyanovsky SM, Vincent PA, Kowalczyk AP. MARCH family E3 ubiquitin ligases selectively target and degrade cadherin family proteins. PLoS One 2024; 19:e0290485. [PMID: 38722959 PMCID: PMC11081302 DOI: 10.1371/journal.pone.0290485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.
Collapse
Affiliation(s)
- Tadahiko Seo
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Anthony M. Lowery
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Haifang Xu
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Sergey M. Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Andrew P. Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| |
Collapse
|
11
|
Todorov-Völgyi K, González-Gallego J, Müller SA, Beaufort N, Malik R, Schifferer M, Todorov MI, Crusius D, Robinson S, Schmidt A, Körbelin J, Bareyre F, Ertürk A, Haass C, Simons M, Paquet D, Lichtenthaler SF, Dichgans M. Proteomics of mouse brain endothelium uncovers dysregulation of vesicular transport pathways during aging. NATURE AGING 2024; 4:595-612. [PMID: 38519806 DOI: 10.1038/s43587-024-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.
Collapse
Affiliation(s)
- Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Judit González-Gallego
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), University Hospital, LMU Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mihail Ivilinov Todorov
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Dennis Crusius
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Sophie Robinson
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neuroscience (GSN), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florence Bareyre
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Division of Metabolic Biochemistry, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
12
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
13
|
Chikh A, Raimondi C. Endothelial Neuropilin-1: a multifaced signal transducer with an emerging role in inflammation and atherosclerosis beyond angiogenesis. Biochem Soc Trans 2024; 52:137-150. [PMID: 38323651 PMCID: PMC10903451 DOI: 10.1042/bst20230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Neuropilin-1 (NRP1) is a transmembrane glycoprotein expressed by several cell types including, neurons, endothelial cells (ECs), smooth muscle cells, cardiomyocytes and immune cells comprising macrophages, dendritic cells and T cell subsets. Since NRP1 discovery in 1987 as an adhesion molecule in the frog nervous system, more than 2300 publications on PubMed investigated the function of NRP1 in physiological and pathological contexts. NRP1 has been characterised as a coreceptor for class 3 semaphorins and several members of the vascular endothelial growth factor (VEGF) family. Because the VEGF family is the main regulator of blood and lymphatic vessel growth in addition to promoting neurogenesis, neuronal patterning, neuroprotection and glial growth, the role of NRP1 in these biological processes has been extensively investigated. It is now established that NRP1 promotes the physiological growth of new vessels from pre-existing ones in the process of angiogenesis. Furthermore, several studies have shown that NRP1 mediates signalling pathways regulating pathological vascular growth in ocular neovascular diseases and tumour development. Less defined are the roles of NRP1 in maintaining the function of the quiescent established vasculature in an adult organism. This review will focus on the opposite roles of NRP1 in regulating transforming growth factor β signalling pathways in different cell types, and on the emerging role of endothelial NRP1 as an atheroprotective, anti-inflammatory factor involved in the response of ECs to shear stress.
Collapse
Affiliation(s)
- Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, U.K
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K
| |
Collapse
|
14
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
15
|
Seo T, Lowery AM, Xu H, Giang W, Troyanovsky SM, Vincent PA, Kowalczyk AP. MARCH family E3 ubiquitin ligases selectively target and degrade cadherin family proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552739. [PMID: 37609155 PMCID: PMC10441400 DOI: 10.1101/2023.08.10.552739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.
Collapse
Affiliation(s)
- Tadahiko Seo
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Anthony M. Lowery
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Haifang Xu
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sergey M. Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Andrew P. Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
16
|
Zhang X, Duan Y, Zhang X, Jiang M, Man W, Zhang Y, Wu D, Zhang J, Song X, Li C, Lin J, Sun D. Adipsin alleviates cardiac microvascular injury in diabetic cardiomyopathy through Csk-dependent signaling mechanism. BMC Med 2023; 21:197. [PMID: 37237266 DOI: 10.1186/s12916-023-02887-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Microvascular complications are associated with an overtly increased risk of adverse outcomes in patients with diabetes including coronary microvascular injury which manifested as disruption of adherens junctions between cardiac microvascular endothelial cells (CMECs). However, particular mechanism leading to diabetic coronary microvascular hyperpermeability remains elusive. METHODS Experimental diabetes was induced in mice with adipose tissue-specific Adipsin overexpression (AdipsinLSL/LSL-Cre) and their respective control (AdipsinLSL/LSL). In addition, cultured CMECs were subjected to high glucose/palmitic acid (HG + PA) treatment to simulate diabetes for a mechanistic approach. RESULTS The results showed that Adipsin overexpression significantly reduced cardiac microvascular permeability, preserved coronary microvascular integrity, and increased coronary microvascular density. Adipsin overexpression also attenuated cardiac dysfunction in diabetic mice. E/A ratio, an indicator of cardiac diastolic function, was improved by Adipsin. Adipsin overexpression retarded left ventricular adverse remodeling, enhanced LVEF, and improved cardiac systolic function. Adipsin-enriched exosomes were taken up by CMECs, inhibited CMECs apoptosis, and increased CMECs proliferation under HG + PA treatment. Adipsin-enriched exosomes also accelerated wound healing, rescued cell migration defects, and promoted tube formation in response to HG + PA challenge. Furthermore, Adipsin-enriched exosomes maintained adherens junctions at endothelial cell borders and reversed endothelial hyperpermeability disrupted by HG + PA insult. Mechanistically, Adipsin blocked HG + PA-induced Src phosphorylation (Tyr416), VE-cadherin phosphorylation (Tyr685 and Tyr731), and VE-cadherin internalization, thus maintaining CMECs adherens junctions integrity. LC-MS/MS analysis and co-immunoprecipitation analysis (Co-IP) unveiled Csk as a direct downstream regulator of Adipsin. Csk knockdown increased Src phosphorylation (Tyr416) and VE-cadherin phosphorylation (Tyr685 and Tyr731), while abolishing Adipsin-induced inhibition of VE-cadherin internalization. Furthermore, Csk knockdown counteracted Adipsin-induced protective effects on endothelial hyperpermeability in vitro and endothelial barrier integrity of coronary microvessels in vivo. CONCLUSIONS Together, these findings favor the vital role of Adipsin in the regulation of CMECs adherens junctions integrity, revealing its promises as a treatment target against diabetic coronary microvascular dysfunction. Graphical abstract depicting the mechanisms of action behind Adipsin-induced regulation of diabetic coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dexi Wu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xinglong Song
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Bosseboeuf E, Chikh A, Chaker AB, Mitchell TP, Vignaraja D, Rajendrakumar R, Khambata RS, Nightingale TD, Mason JC, Randi AM, Ahluwalia A, Raimondi C. Neuropilin-1 interacts with VE-cadherin and TGFBR2 to stabilize adherens junctions and prevent activation of endothelium under flow. Sci Signal 2023; 16:eabo4863. [PMID: 37220183 PMCID: PMC7614756 DOI: 10.1126/scisignal.abo4863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Linear and disturbed flow differentially regulate gene expression, with disturbed flow priming endothelial cells (ECs) for a proinflammatory, atheroprone expression profile and phenotype. Here, we investigated the role of the transmembrane protein neuropilin-1 (NRP1) in ECs exposed to flow using cultured ECs, mice with an endothelium-specific knockout of NRP1, and a mouse model of atherosclerosis. We demonstrated that NRP1 was a constituent of adherens junctions that interacted with VE-cadherin and promoted its association with p120 catenin, stabilizing adherens junctions and inducing cytoskeletal remodeling in alignment with the direction of flow. We also showed that NRP1 interacted with transforming growth factor-β (TGF-β) receptor II (TGFBR2) and reduced the plasma membrane localization of TGFBR2 and TGF-β signaling. NRP1 knockdown increased the abundance of proinflammatory cytokines and adhesion molecules, resulting in increased leukocyte rolling and atherosclerotic plaque size. These findings describe a role for NRP1 in promoting endothelial function and reveal a mechanism by which NRP1 reduction in ECs may contribute to vascular disease by modulating adherens junction signaling and promoting TGF-β signaling and inflammation.
Collapse
Affiliation(s)
- Emy Bosseboeuf
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London SW17 0RE, UK
| | - Ahmed Bey Chaker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tom P. Mitchell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Dhilakshani Vignaraja
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Ridhi Rajendrakumar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rayomand S. Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Thomas D. Nightingale
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Justin C. Mason
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Anna M. Randi
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
18
|
Low-Dose X-Ray Increases Paracellular Permeability of Human Renal Glomerular Endothelial Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5382420. [PMID: 36267304 PMCID: PMC9578893 DOI: 10.1155/2022/5382420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Objective Glomerular endothelium functions as a filtration barrier of metabolites in the kidney. Although X-ray irradiation modulated the permeability of the vascular endothelium, the response of human renal glomerular endothelial cells (HRGECs) to low-dose X-ray irradiation has not been investigated. We evaluated the impacts of low-dose X-ray irradiation on HRGECs and revealed the underlying mechanism. Methods HRGECs were exposed to X-ray with doses of 0, 0.1, 0.5, 1.0, and 2.0 Gy. The proliferation, viability, and apoptosis of HRGECs were examined by MTT assay, trypan blue staining assay, and TUNEL staining, respectively. The paracellular permeability was assessed by paracellular permeability assay. The expression of VE-cadherin was investigated via immunofluorescence assay. Western blot and qRT-PCR detected the expression levels of VE-cadherin and CLDN5. Besides, the expression levels of pVE-cadherin (pY658), TGF-β, TGF-βRI, Src, p-Src, Smad2, p-Smad2, Smad3, p-Smad3, SNAIL, SLUG, and apoptosis-related proteins were tested by Western blot. Results The proliferation, viability, and apoptosis of HRGECs were not affected by low-dose (<2.0 Gy) X-ray irradiation. X-ray irradiation dose-dependently reduced the level of VE-cadherin, and VE-cadherin and CLDN5 levels were reduced with X-ray irradiation. The levels of pY658, p-Src, p-Smad2, and p-Smad3 were upregulated with the increase in X-ray dose. Besides, the paracellular permeability of HRGECs was increased by even low-dose (<2.0 Gy) X-ray irradiation. Therefore, low-dose X-ray irradiation reduced the cumulative content of VE-cadherin and increased the level of pY658 via activation of the TGF-β signaling pathway. Conclusion Even though low-dose X-ray exposure had no impact on proliferation, viability, and apoptosis of HRGECs, it increased the paracellular permeability by deterioration and downregulation of VE-cadherin through stimulating the TGF-β signaling pathway. This study built the framework for kidney response to low-dose irradiation exposure.
Collapse
|
19
|
Shen D, Ye X, Li J, Hao X, Jin L, Jin Y, Tong L, Gao F. Metformin Preserves VE–Cadherin in Choroid Plexus and Attenuates Hydrocephalus via VEGF/VEGFR2/p-Src in an Intraventricular Hemorrhage Rat Model. Int J Mol Sci 2022; 23:ijms23158552. [PMID: 35955686 PMCID: PMC9369137 DOI: 10.3390/ijms23158552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrocephalus induced by intraventricular hemorrhage (IVH) is associated with unfavorable prognosis. The increased permeability of choroid plexus and breakdown of the blood–brain barrier (BBB) was reported as a prominent mechanism of IVH-induced hydrocephalus, and vascular endothelial–cadherin (VE–cadherin) was demonstrated to be relevant. Metformin was reported to protect endothelial junction and preserve permeability widely; however, its role in hydrocephalus remains unclear. In this study, the decreased expression of VE–cadherin in the choroid plexus, accompanied with ventricle dilation, was investigated in an IVH rat model induced by intraventricular injection of autologous blood. Metformin treatment ameliorated hydrocephalus and upregulated VE–cadherin expression in choroid plexus meanwhile. We then observed that the internalization of VE–cadherin caused by the activation of vascular endothelial growth factor (VEGF) signaling after IVH was related to the occurrence of hydrocephalus, whereas it can be reversed by metformin treatment. Restraining VEGF signaling by antagonizing VEGFR2 or inhibiting Src phosphorylation increased the expression of VE–cadherin and decreased the severity of hydrocephalus after IVH. Our study demonstrated that the internalization of VE–cadherin via the activation of VEGF signaling may contribute to IVH-induced hydrocephalus, and metformin may be a potential protector via suppressing this pathway.
Collapse
Affiliation(s)
- Dan Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Xianghua Ye
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Jiawen Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Xiaodi Hao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Department of Neurology, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Luhang Jin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Yujia Jin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Lusha Tong
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Correspondence: (L.T.); (F.G.)
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Correspondence: (L.T.); (F.G.)
| |
Collapse
|
20
|
Al-Attar R, Storey KB. RAGE management: ETS1- EGR1 mediated transcriptional networks regulate angiogenic factors in wood frogs. Cell Signal 2022; 98:110408. [PMID: 35842171 DOI: 10.1016/j.cellsig.2022.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Freeze-tolerant species, such as wood frogs (Rana sylvatica), are susceptible to multiple co-occurring stresses that they must overcome to survive. Freezing is accompanied by mechanical stress and dehydration due to ice crystal formation in the extracellular space, ischemia/anoxia due to interruption in blood flood, and hyperglycemia due to cryoprotective measures. Wood frogs can survive dehydration, anoxia, and high glucose stress independently of freezing, thereby creating a multifactorial model for studying freeze-tolerance. Oxidative stress and high glucose levels favors the production of pro-oxidant molecules and advanced glycation end product (AGE) adducts that could cause substantial cellular damage. In this study, the involvement of the high mobility group box 1 (HMGB1)-AGE/RAGE (receptor for AGE) axis and the regulation of ETS1 and EGR1-mediated angiogenic responses were investigated in liver of wood frogs expose to freeze/thaw, anoxia/reoxygenation and dehydration/rehydration treatments. HMGB1 and not AGE-adducts are likely to induce the activation of ETS1 and EGR1 via the RAGE pathway. The increase in nuclear localization of both ETS1 and EGR1, but not DNA binding activity in response to stress hints to a potential spatial and temporal regulation in inducing angiogenic factors. Freeze/thaw and dehydration/rehydration treatments increase the levels of both pro- and anti-angiogenic factors, perhaps to prepare for the distribution of cryoprotectants or enable the repair of damaged capillaries and wounds when needed. Overall, wood frogs appear to anticipate the need for angiogenesis in response to freezing and dehydration but not anoxic treatments, probably due to mechanical stress associated with the two former conditions.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada.
| |
Collapse
|
21
|
Martin JB, Herman K, Houssin NS, Rich W, Reilly MA, Plageman TF. Arvcf Dependent Adherens Junction Stability is Required to Prevent Age-Related Cortical Cataracts. Front Cell Dev Biol 2022; 10:840129. [PMID: 35874813 PMCID: PMC9297370 DOI: 10.3389/fcell.2022.840129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The etiology of age-related cortical cataracts is not well understood but is speculated to be related to alterations in cell adhesion and/or the changing mechanical stresses occurring in the lens with time. The role of cell adhesion in maintaining lens transparency with age is difficult to assess because of the developmental and physiological roles that well-characterized adhesion proteins have in the lens. This report demonstrates that Arvcf, a member of the p120-catenin subfamily of catenins that bind to the juxtamembrane domain of cadherins, is an essential fiber cell protein that preserves lens transparency with age in mice. No major developmental defects are observed in the absence of Arvcf, however, cortical cataracts emerge in all animals examined older than 6-months of age. While opacities are not obvious in young animals, histological anomalies are observed in lenses at 4-weeks that include fiber cell separations, regions of hexagonal lattice disorganization, and absence of immunolabeled membranes. Compression analysis of whole lenses also revealed that Arvcf is required for their normal biomechanical properties. Immunofluorescent labeling of control and Arvcf-deficient lens fiber cells revealed a reduction in membrane localization of N-cadherin, β-catenin, and αN-catenin. Furthermore, super-resolution imaging demonstrated that the reduction in protein membrane localization is correlated with smaller cadherin nanoclusters. Additional characterization of lens fiber cell morphology with electron microscopy and high resolution fluorescent imaging also showed that the cellular protrusions of fiber cells are abnormally elongated with a reduction and disorganization of cadherin complex protein localization. Together, these data demonstrate that Arvcf is required to maintain transparency with age by mediating the stability of the N-cadherin protein complex in adherens junctions.
Collapse
Affiliation(s)
- Jessica B. Martin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Kenneth Herman
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Nathalie S. Houssin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Wade Rich
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matthew A. Reilly
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Science, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Timothy F. Plageman
- College of Optometry, The Ohio State University, Columbus, OH, United States
- *Correspondence: Timothy F. Plageman Jr.,
| |
Collapse
|
22
|
Zhang J, Pan Z, Zhou J, Zhang L, Tang J, Gong S, Li F, Yu B, Zhang Y, Kou J. The myosin II inhibitor, blebbistatin, ameliorates pulmonary endothelial barrier dysfunction in acute lung injury inducedB19 by LPS via NMMHC IIA/Wnt5a/β-catenin pathway. Toxicol Appl Pharmacol 2022; 450:116132. [PMID: 35716767 PMCID: PMC9527152 DOI: 10.1016/j.taap.2022.116132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS), is a severe inflammatory pulmonary process triggered by varieties of pathophysiological factors, among which endothelial barrier disruption plays a critical role in the progression of ALI/ARDS. As an inhibitor of myosin II, blebbistatin inhibits endothelial barrier damage. This study aimed to investigate the effect of blebbistatin on lung endothelial barrier dysfunction in LPS induced acute lung injury and its potential mechanism. Mice were challenged with LPS (5 mg/kg) by intratracheal instillation for 6 h to disrupt the pulmonary endothelial barrier in the model group. Blebbistatin (5 mg/kg, ip) was administrated 1 h before LPS challenge. The results showed that blebbistatin could significantly attenuate LPS-induced lung injury and pulmonary endothelial barrier dysfunction. And we observed that blebbistatin inhibited the activation of NMMHC IIA/Wnt5a/β-catenin pathway in pulmonary endothelium after LPS treatment. In murine lung vascular endothelial cells (MLECs) and human umbilical vein endothelial cells (HUVECs), we further confirmed that Blebbistatin (1 μmol/L) markedly ameliorated endothelial barrier dysfunction in MLECs and HUVECs by modulating NMMHC IIA/Wnt5a/β-catenin pathway. Our data demonstrated that blebbistatin could inhibit the development of pulmonary endothelial barrier dysfunction and ALI via NMMHC IIA/Wnt5a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiazhi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziqian Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianhao Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
23
|
Yang M, Li S, Huang L, Zhao R, Dai E, Jiang X, He Y, Lu J, Peng L, Liu W, Zhang Z, Jiang D, Zhang Y, Jiang Z, Yang Y, Zhao P, Zhu X, Ding X, Yang Z. CTNND1 variants cause familial exudative vitreoretinopathy through Wnt/Cadherin axis. JCI Insight 2022; 7:158428. [PMID: 35700046 PMCID: PMC9431724 DOI: 10.1172/jci.insight.158428] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder that can cause vision loss. The CTNND1 gene encodes a cellular adhesion protein p120-catenin (p120), which is essential for vascularization, yet the function of p120 in postnatal physiological angiogenesis remains unclear. Here, we applied whole-exome sequencing (WES) on 140 probands of FEVR families and identified three candidate variants in the human CTNND1 gene. We performed inducible deletion of Ctnnd1 in the postnatal mouse endothelial cells (ECs) and observed typical phenotypes of FEVR. Immunofluorescence of retina flat mounts also revealed immune responses, including reactive astrogliosis and microgliosis accompanied by abnormal Vegfa expression. Using an unbiased proteomics analysis in combination with in vivo or in vitro approaches, we propose that p120 is critical for the integrity of cadherin/catenin complex, and that p120 activates Wnt signaling activity by protecting β-catenin from Gsk3β-ubiquitin-guided degradation. Treatment of CTNND1-depleted HRECs with Gsk3β inhibitors LiCl or CHIR-99021 successfully enhanced cell proliferation by preventing β-catenin from degradation. Moreover, LiCl treatment increased vessel density in Ctnnd1-deficient mouse retinas. Functional analysis also revealed that variants in CTNND1 cause FEVR by compromising the expression of adherens junctions (AJs) and Wnt signaling activity. Additionally, genetic interactions between p120 and β-catenin or α-catenin revealed by double heterozygous deletion in mice further confirmed that p120 regulates vascular development through the Wnt/Cadherin axis. Together, we propose that CTNND1 is a novel candidate gene associated with FEVR, and that variants in CTNND1 can cause FEVR through the Wnt/Cadherin axis.
Collapse
Affiliation(s)
- Mu Yang
- Prenatal Diagnosis Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujin Li
- Prenatal Diagnosis Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rulian Zhao
- Prenatal Diagnosis Center, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Chengdu, China
| | - Xiaoyan Jiang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqi He
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinglin Lu
- Prenatal Diagnosis Center, Sun Yat-sen University, Guangzhou, China
| | - Li Peng
- Center for Human Molecular Genetics, Sun Yat-sen University, Chengdu, China
| | - Wenjing Liu
- Center for Human Molecular Genetics, Sun Yat-sen University, Chengdu, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Jiang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichua, Chengdu, China
| | - Yi Zhang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yeming Yang
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Chengdu, China
| | - Xianjun Zhu
- Center for Human Molecular Genetics, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenglin Yang
- Department of Medical Genetics, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Brabenec L, Müller M, Hellenthal KE, Karsten OS, Pryvalov H, Otto M, Holthenrich A, Matos ALL, Weiss R, Kintrup S, Hessler M, Dell'Aquila A, Thomas K, Naß J, Margraf A, Nottebaum AF, Rossaint J, Zarbock A, Vestweber D, Gerke V, Wagner NM. Targeting Procalcitonin Protects Vascular Barrier Integrity. Am J Respir Crit Care Med 2022; 206:488-500. [PMID: 35699655 DOI: 10.1164/rccm.202201-0054oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Capillary leakage frequently occurs during sepsis and after major surgery and is associated with microvascular dysfunction and adverse outcome. Procalcitonin is a well-established biomarker in inflammation without known impact on vascular integrity. OBJECTIVE We determined how procalcitonin induces endothelial hyperpermeability and how targeting procalcitonin protects vascular barrier integrity. METHODS In a prospective observational clinical study, procalcitonin levels were assessed in 50 cardiac surgery patients and correlated to postoperative fluid and vasopressor requirements along with sublingual microvascular functionality. Effects of the procalcitonin signaling pathway on endothelial barrier and adherens junctional integrity were characterized in vitro and verified in mice. Inhibition of procalcitonin activation by dipeptidyl-peptidase 4 (DPP4) was evaluated in murine polymicrobial sepsis and clinically verified in cardiac surgery patients chronically taking the DPP4 inhibitor sitagliptin. MEASUREMENTS AND MAIN RESULTS Elevated postoperative procalcitonin levels identified patients with 2-fold increased fluid requirements (P<0.01), 1.8-fold higher vasopressor demand (P<0.05) and compromised microcirculation (reduction to 63.5±2.8% of perfused vessels, P<0.05). Procalcitonin induced 1.4-fold endothelial and 2.3-fold pulmonary capillary permeability (both P<0.001) by destabilizing VE-cadherin. Procalcitonin effects were dependent on activation by DPP4 and targeting the procalcitonin receptor or DPP4 during sepsis-induced hyperprocalcitonemia reduced capillary leakage by 54±10.1% and 60.4±6.9% (both P<0.01), respectively. Sitagliptin prior to cardiac surgery was associated with augmented microcirculation (74.1±1.7% vs. 68.6±1.9% perfused vessels in sitagliptin non-medicated patients, P<0.05) and 2.3-fold decreased fluid (P<0.05) and 1.8-fold reduced vasopressor demand postoperatively (P<0.05). CONCLUSION Targeting procalcitonin's action on the endothelium is a feasible means to preserve vascular integrity during systemic inflammation associated with hyperprocalcitonemia.
Collapse
Affiliation(s)
- Laura Brabenec
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Melanie Müller
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Katharina Em Hellenthal
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Ole S Karsten
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Heorhii Pryvalov
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Mandy Otto
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Anna Holthenrich
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | | | - Raphael Weiss
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Sebastian Kintrup
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Michael Hessler
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Angelo Dell'Aquila
- University Hospital Münster, Department of Cardiac and Thoracic Surgery, Münster, Germany
| | - Katharina Thomas
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Johannes Naß
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | - Andreas Margraf
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | | | - Jan Rossaint
- Universitätsklinikum Münster, 39069, Department of Anesthesiology, Intensive Care and Pain Medicine, Münster, Germany
| | - Alexander Zarbock
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | | | - Volker Gerke
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | - Nana-Maria Wagner
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany;
| |
Collapse
|
25
|
Min J, Zeng T, Roux M, Lazar D, Chen L, Tudzarova S. The Role of HIF1α-PFKFB3 Pathway in Diabetic Retinopathy. J Clin Endocrinol Metab 2021; 106:2505-2519. [PMID: 34019671 PMCID: PMC8372643 DOI: 10.1210/clinem/dgab362] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness for adults in developed countries. Both microvasculopathy and neurodegeneration are implicated in mechanisms of DR development, with neuronal impairment preceding microvascular abnormalities, which is often underappreciated in the clinic. Most current therapeutic strategies, including anti-vascular endothelial growth factor (anti-VEGF)-antibodies, aim at treating the advanced stages (diabetic macular edema and proliferative diabetic retinopathy) and fail to target the neuronal deterioration. Hence, new therapeutic approach(es) intended to address both vascular and neuronal impairment are urgently needed. The hypoxia-inducible factor 1α (HIF1α)-6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) pathway is critically implicated in the islet pathology of diabetes. Recent evidence highlighted the pathway relevance for pathologic angiogenesis and neurodegeneration, two key aspects in DR. PFKFB3 is key to the sprouting angiogenesis, along with VEGF, by determining the endothelial tip-cell competition. Also, PFKFB3-driven glycolysis compromises the antioxidative capacity of neurons leading to neuronal loss and reactive gliosis. Therefore, the HIF1α-PFKFB3 signaling pathway is unique as being a pervasive pathological component across multiple cell types in the retina in the early as well as late stages of DR. A metabolic point-of-intervention based on HIF1α-PFKFB3 targeting thus deserves further consideration in DR.
Collapse
Affiliation(s)
- Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Margaretha Roux
- Groote Schuur and Red Cross Children’s Hospital, University of Cape Town, South Africa
| | - David Lazar
- Lazar Retina Ophthalmology, Los Angeles, CA, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Lulu Chen, PhD, Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, Hubei, 430022, China.
| | - Slavica Tudzarova
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Correspondence: Slavica Tudzarova, PhD, Larry Hillblom Islet Research Center, University of California Los Angeles, 10833 Le Conte Ave, CHS 33-165, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Wang Y, Xue L, Wu Y, Zhang J, Dai Y, Li F, Kou J, Zhang Y. Ruscogenin attenuates sepsis-induced acute lung injury and pulmonary endothelial barrier dysfunction via TLR4/Src/p120-catenin/VE-cadherin signalling pathway. J Pharm Pharmacol 2021; 73:893-900. [PMID: 33769524 DOI: 10.1093/jpp/rgaa039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Sepsis-associated acute lung injury (ALI) occurs with the highest morbidity and carries the highest mortality rates among the pathogenies of ALI. Ruscogenin (RUS) has been found to exhibit anti-inflammation property and rescue lipopolysaccharide-induced ALI, but little is known about its role in sepsis-triggered ALI. The aim of this study was to investigate the potential role of RUS in sepsis-induced ALI and the probable mechanism. METHODS Mice model of cecal ligation and puncture (CLP) was replicated, and three doses of RUS (0.01, 0.03 and 0.1 mg/kg) were administrated 1 h before CLP surgeries. KEY FINDINGS RUS significantly extended the survival time and attenuated the lung pathological injury, oedema and vascular leakage in sepsis-induced ALI mice. RUS efficiently decreased the level of MPO in lung tissue and the WBC, NEU counts in BALF. In addition, RUS rescued the expression of VE-cadherin and p120-catenin and suppressed the TLR4/Src signalling in lung tissue. CONCLUSIONS RUS attenuated sepsis-induced ALI via protecting pulmonary endothelial barrier and regulating TLR4/Src/p120-catenin/VE-cadherin signalling pathway.
Collapse
Affiliation(s)
- Yuwei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Lixuan Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yunhao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Jiazhi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yujie Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
27
|
Xu S, Jiang N, Nawaz W, Liu B, Zhang F, Liu Y, Wu X, Wu Z. Infection of humanized mice with a novel phlebovirus presented pathogenic features of severe fever with thrombocytopenia syndrome. PLoS Pathog 2021; 17:e1009587. [PMID: 33974679 PMCID: PMC8139491 DOI: 10.1371/journal.ppat.1009587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/21/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne emerging phlebovirus with high mortality rates of 6.0 to 30%. SFTSV infection is characterized by high fever, thrombocytopenia, leukopenia, hemorrhage and multiple organ failures. Currently, specific therapies and vaccines remain elusive. Suitable small animal models are urgently needed to elucidate the pathogenesis and evaluate the potential drug and vaccine for SFTSV infection. Previous models presented only mild or no pathogenesis of SFTS, limiting their applications in SFTSV infection. Therefore, it is an urgent need to develop a small animal model for the investigation of SFTSV pathogenesis and evaluation of therapeutics. In the current report, we developed a SFTSV infection model based on the HuPBL-NCG mice that recapitulates many pathological characteristics of SFTSV infection in humans. Virus-induced histopathological changes were identified in spleen, lung, kidney, and liver. SFTSV was colocalized with macrophages in the spleen and liver, suggesting that the macrophages in the spleen and liver could be the principle target cells of SFTSV. In addition, histological analysis showed that the vascular endothelium integrity was severely disrupted upon viral infection along with depletion of platelets. In vitro cellular assays further revealed that SFTSV infection increased the vascular permeability of endothelial cells by promoting tyrosine phosphorylation and internalization of the adhesion molecule vascular endothelial (VE)–cadherin, a critical component of endothelial integrity. In addition, we found that both virus infection and pathogen-induced exuberant cytokine release dramatically contributed to the vascular endothelial injury. We elucidated the pathogenic mechanisms of hemorrhage syndrome and developed a humanized mouse model for SFTSV infection, which should be helpful for anti-SFTSV therapy and pathogenesis study. SFTSV is a novel bunyavirus that was identified in 2010 and endemic in China, Korea, Japan and Vietnam with expanding spatial incidents. SFTS is characterized by high case-fatality rates and currently has no effective therapeutics or vaccines. In previous study, models presented only mild or no pathogenesis of SFTS, limiting their applications in SFTSV infection. In the current study, we developed a humanized NCG mouse model for the study of SFTSV infection and elucidated the pathogenic mechanisms of hemorrhage syndrome with respect to apoptosis, membrane protein endocytosis and cytokine stimulation. The HuPBL-NCG model presented multiple organ pathologies that resemble those of human infection, which will be helpful for anti-SFTSV therapy and pathogenesis study.
Collapse
Affiliation(s)
- Shijie Xu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Waqas Nawaz
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Fang Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Ye Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- * E-mail: (XW); (ZW)
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, P.R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- * E-mail: (XW); (ZW)
| |
Collapse
|
28
|
Li Y, Suo L, Fu Z, Li G, Zhang J. Pivotal role of endothelial cell autophagy in sepsis. Life Sci 2021; 276:119413. [PMID: 33794256 DOI: 10.1016/j.lfs.2021.119413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a fatal organ dysfunction resulting from a disordered host response to infection. Endothelial cells (ECs) are usually the primary targets of inflammatory mediators in sepsis; damage to ECs plays a pivotal part in vital organ failure. In recent studies, autophagy was suggested to play a critical role in the ECs injury although the mechanisms by which ECs are injured in sepsis are not well elucidated. Autophagy is a highly conserved catabolic process that includes sequestrating plasma contents and transporting cargo to lysosomes for recycling the vital substrates required for metabolism. This pathway also counteracts microbial invasion to balance and retain homeostasis, especially during sepsis. Increasing evidence indicates that autophagy is closely associated with endothelial function. The role of autophagy in sepsis may or may not be favorable depending upon conditions. In the present review, the current knowledge of autophagy in the process of sepsis and its influence on ECs was evaluated. In addition, the potential of targeting EC autophagy for clinical treatment of sepsis was discussed.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shengjing Hospital of China Medical University, No. 44 Xiaoheyan Road, Shengyang, Liaoning 110042, PR China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Guoqing Li
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning 116001, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
29
|
Latreille E, Lee WL. Interactions of Influenza and SARS-CoV-2 with the Lung Endothelium: Similarities, Differences, and Implications for Therapy. Viruses 2021; 13:161. [PMID: 33499234 PMCID: PMC7911974 DOI: 10.3390/v13020161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory viruses such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a constant threat to public health given their ability to cause global pandemics. Infection with either virus may lead to aberrant host responses, such as excessive immune cell recruitment and activation, dysregulated inflammation, and coagulopathy. These may contribute to the development of lung edema and respiratory failure. An increasing amount of evidence suggests that lung endothelial cells play a critical role in the pathogenesis of both viruses. In this review, we discuss how infection with influenza or SARS-CoV-2 may induce endothelial dysfunction. We compare the effects of infection of these two viruses, how they may contribute to pathogenesis, and discuss the implications for potential treatment. Understanding the differences between the effects of these two viruses on lung endothelial cells will provide important insight to guide the development of therapeutics.
Collapse
Affiliation(s)
- Elyse Latreille
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Warren L. Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Keenan Centre for Biomedical Research, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Interdepartmental Division of Critical Care and the Department of Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
30
|
Etienne-Manneville S. P120catenin tuning of VE-cadherin endocytosis controls collective cell behavior during angiogenesis. J Cell Biol 2020; 219:e202003005. [PMID: 32339217 PMCID: PMC7199857 DOI: 10.1083/jcb.202003005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
How cells can stick together while moving through a complex environment is not fully understood. In this issue, Grimsley-Myers et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.201909081) demonstrate that, in the case of blood vessel formation, the balance between the maintenance of endothelial integrity and the dynamics of cell-cell contacts required for collective migration relies on VE-cadherin endocytosis.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 Centre National de la Recherche Scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
31
|
Fu P, Ramchandran R, Shaaya M, Huang L, Ebenezer DL, Jiang Y, Komarova Y, Vogel SM, Malik AB, Minshall RD, Du G, Tonks NK, Natarajan V. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem 2020; 295:7669-7685. [PMID: 32327488 DOI: 10.1074/jbc.ra119.011801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | | | - Mark Shaaya
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Ying Jiang
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois .,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
32
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
33
|
Zhao YY, Huang SX, Hao Z, Zhu HX, Xing ZL, Li MH. Fluid Shear Stress Induces Endothelial Cell Injury via Protein Kinase C Alpha-Mediated Repression of p120-Catenin and Vascular Endothelial Cadherin In Vitro. World Neurosurg 2020; 136:e469-e475. [PMID: 31953100 DOI: 10.1016/j.wneu.2020.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The present study aimed to characterize the mechanism of fluid shear stress (FSS)-induced endothelial cell (EC) injury via protein kinase C alpha (PKCα)-mediated vascular endothelial cadherin (VE-cadherin) and p120-catenin (p120ctn) expression. METHODS We designed a T chamber system that produced stable FSS on ECs in vitro. Human umbilical vein endothelial cells (HUVECs) in which PKCα was knocked down and normal HUVECs were cultured on the coverslips. FSS was impinged on these 2 types of ECs for 0 hours and 6 hours. The morphology and density of HUVECs were evaluated, and expression levels of phosphorylated PKCα, p120-catenin (p120ctn), VE-cadherin, phosphorylated p120ctn at S879 (p-S879p120ctn), and nuclear factor kappa B (NF-κB) were analyzed by Western blot. RESULTS HUVECs exposed to FSS were characterized by a polygonal shape and decreased cell density. The phosphorylated PKCα level was increased under FSS at 6 hours (P < 0.05). In normal HUVECs during FSS, p120ctn and VE-cadherin were decreased, whereas p-S879p120ctn and NF-κB were increased, at 6 hours (P < 0.05). In HUVECs after PKCα knockdown, p120ctn and VE-cadherin were not significantly changed (P > 0.05), p-S879p120ctn was undetectable, but NF-κB was decreased (P < 0.05) at 6 hours. CONCLUSIONS The possible mechanism of FSS-induced EC injury may be as follows: 1) PKCα induces low expression of p120ctn, which leads to activation of NF-κB and degradation of VE-cadherin; 2) PKCα-mediated phosphorylation of p120ctn at S879 disrupts p120ctn binding to VE-cadherin.
Collapse
Affiliation(s)
- Ye-Yu Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shao-Xin Huang
- College of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Zheng Hao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua-Xin Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Long Xing
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei-Hua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
34
|
Kostelnik KB, Barker A, Schultz C, Mitchell TP, Rajeeve V, White IJ, Aurrand-Lions M, Nourshargh S, Cutillas P, Nightingale TD. Dynamic trafficking and turnover of JAM-C is essential for endothelial cell migration. PLoS Biol 2019; 17:e3000554. [PMID: 31790392 PMCID: PMC6907879 DOI: 10.1371/journal.pbio.3000554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
Junctional complexes between endothelial cells form a dynamic barrier that hinders passive diffusion of blood constituents into interstitial tissues. Remodelling of junctions is an essential process during leukocyte trafficking, vascular permeability, and angiogenesis. However, for many junctional proteins, the mechanisms of junctional remodelling have yet to be determined. Here, we used receptor mutagenesis, horseradish peroxidase (HRP), and ascorbate peroxidase 2 (APEX-2) proximity labelling, alongside light and electron microscopy (EM), to map the intracellular trafficking routes of junctional adhesion molecule-C (JAM-C). We found that JAM-C cotraffics with receptors associated with changes in permeability such as vascular endothelial cadherin (VE-Cadherin) and neuropilin (NRP)-1 and 2, but not with junctional proteins associated with the transmigration of leukocytes. Dynamic JAM-C trafficking and degradation are necessary for junctional remodelling during cell migration and angiogenesis. By identifying new potential trafficking machinery, we show that a key point of regulation is the ubiquitylation of JAM-C by the E3 ligase Casitas B-lineage lymphoma (CBL), which controls the rate of trafficking versus lysosomal degradation.
Collapse
Affiliation(s)
- Katja B. Kostelnik
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Amy Barker
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Christopher Schultz
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Tom P. Mitchell
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Vinothini Rajeeve
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Ian J. White
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Michel Aurrand-Lions
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Thomas D. Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Gómez-Escudero J, Clemente C, García-Weber D, Acín-Pérez R, Millán J, Enríquez JA, Bentley K, Carmeliet P, Arroyo AG. PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Sci Rep 2019; 9:15022. [PMID: 31636306 PMCID: PMC6803685 DOI: 10.1038/s41598-019-50866-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, occurs in pathophysiological contexts such as wound healing, cancer, and chronic inflammatory disease. During sprouting angiogenesis, endothelial tip and stalk cells coordinately remodel their cell-cell junctions to allow collective migration and extension of the sprout while maintaining barrier integrity. All these processes require energy, and the predominant ATP generation route in endothelial cells is glycolysis. However, it remains unclear how ATP reaches the plasma membrane and intercellular junctions. In this study, we demonstrate that the glycolytic enzyme pyruvate kinase 2 (PKM2) is required for sprouting angiogenesis in vitro and in vivo through the regulation of endothelial cell-junction dynamics and collective migration. We show that PKM2-silencing decreases ATP required for proper VE-cadherin internalization/traffic at endothelial cell-cell junctions. Our study provides fresh insight into the role of ATP subcellular compartmentalization in endothelial cells during angiogenesis. Since manipulation of EC glycolysis constitutes a potential therapeutic intervention route, particularly in tumors and chronic inflammatory disease, these findings may help to refine the targeting of endothelial glycolytic activity in disease.
Collapse
Affiliation(s)
- Jesús Gómez-Escudero
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Tumour Biology Department, Barts Cancer Institute, John´s Vane Centre, Queen Mary´s University of London. Charterhouse Sq, EC1M 6BQ, London, UK
| | - Cristina Clemente
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Centro de Investigaciones Biológicas (CIB-CSIC). Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Diego García-Weber
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rebeca Acín-Pérez
- Myocardial Pathology Areas, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José A Enríquez
- Myocardial Pathology Areas, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Katie Bentley
- Computational Biology Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cellular Adaptive Behaviour Laboratory, Rudbeck Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology, University of Leuven, B-3000, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongsan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Alicia G Arroyo
- Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- Centro de Investigaciones Biológicas (CIB-CSIC). Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
36
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
37
|
Majolée J, Kovačević I, Hordijk PL. Ubiquitin-based modifications in endothelial cell-cell contact and inflammation. J Cell Sci 2019; 132:132/17/jcs227728. [PMID: 31488505 DOI: 10.1242/jcs.227728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-cell contacts are essential for vascular integrity and physiology, protecting tissues and organs from edema and uncontrolled invasion of inflammatory cells. The vascular endothelial barrier is dynamic, but its integrity is preserved through a tight control at different levels. Inflammatory cytokines and G-protein-coupled receptor agonists, such as histamine, reduce endothelial integrity and increase vascular leakage. This is due to elevated myosin-based contractility, in conjunction with phosphorylation of proteins at cell-cell contacts. Conversely, reducing contractility stabilizes or even increases endothelial junctional integrity. Rho GTPases are key regulators of such cytoskeletal dynamics and endothelial cell-cell contacts. In addition to signaling-induced regulation, the expression of junctional proteins, such as occludin, claudins and vascular endothelial cadherin, also controls endothelial barrier function. There is increasing evidence that, in addition to protein phosphorylation, ubiquitylation (also known as ubiquitination) is an important and dynamic post-translational modification that regulates Rho GTPases, junctional proteins and, consequently, endothelial barrier function. In this Review, we discuss the emerging role of ubiquitylation and deubiquitylation events in endothelial integrity and inflammation. The picture that emerges is one of increasing complexity, which is both fascinating and promising given the clinical relevance of vascular integrity in the control of inflammation, and of tissue and organ damage.
Collapse
Affiliation(s)
- Jisca Majolée
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Igor Kovačević
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
38
|
Xiao ZP, Zhao JL, Rong WL, Jiang JW, Li MH. Role of Vascular Endothelial-Cadherin and p120-Catenin in the Formation of Experimental Intracranial Aneurysm in Animals. World Neurosurg 2019; 128:e177-e184. [PMID: 30995547 DOI: 10.1016/j.wneu.2019.04.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Dysfunction of endothelial cells (ECs) constitutes a critical factor in the formation of intracranial aneurysms (IAs). However, little is known about the response of ECs to hemodynamic insults and its contribution to IA formation. METHODS IAs models were constructed in both adult female New Zealand white rabbits and male Sprague-Dawley rats. Morphologic changes of vessel wall were detected by hematoxylin and eosin staining. Molecular and cellular changes, including p120-catenin (p120ctn) and vascular endothelial-cadherin, in the median sagittal section of the artery bifurcation were analyzed by fluorescent staining. RESULTS Destructive aneurysmal remodeling and the formation of morphologic IAs were observed at the basilar termini of experimental rabbits and the anterior cerebral artery-olfactory artery bifurcation of rats. The expression of p120ctn colocalized with vascular endothelial-cadherin in ECs decreased. Moreover, the expression of p120ctn colocalized with nucleus of ECs increased. These events suggested that p120ctn was transported from the membrane to the nucleus of ECs. CONCLUSIONS The potential mechanism, that IAs are always localizing in the bifurcation apices, may be that the endothelium injury of vessel wall can be induced by different hemodynamic conditions. Hemodynamic changes in artery bifurcation may initiate the formation of IAs.
Collapse
Affiliation(s)
- Zhi-Peng Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, P.R. China; Department of Neurosurgery, Renji Hospital, School of Medicine of Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jian-Lan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, P.R. China; Department of Neurosurgery, Fudan University Huashan Hospital, Shanghai, P.R. China
| | - Wei-Lin Rong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Jin-Wen Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Mei-Hua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, P.R. China.
| |
Collapse
|
39
|
Juettner VV, Kruse K, Dan A, Vu VH, Khan Y, Le J, Leckband D, Komarova Y, Malik AB. VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism. J Cell Biol 2019; 218:1725-1742. [PMID: 30948425 PMCID: PMC6504901 DOI: 10.1083/jcb.201807210] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Juettner et al. describe a novel phosphatase-activity–independent mechanism by which the phosphatase VE-PTP restricts endothelial permeability. VE-PTP functions as a scaffold that binds and inhibits the RhoGEF GEF-H1, limiting RhoA-dependent tension across VE-cadherin junctions and decreasing VE-cadherin internalization to stabilize adherens junctions and reduce endothelial permeability. Vascular endothelial (VE) protein tyrosine phosphatase (PTP) is an endothelial-specific phosphatase that stabilizes VE-cadherin junctions. Although studies have focused on the role of VE-PTP in dephosphorylating VE-cadherin in the activated endothelium, little is known of VE-PTP’s role in the quiescent endothelial monolayer. Here, we used the photoconvertible fluorescent protein VE-cadherin-Dendra2 to monitor VE-cadherin dynamics at adherens junctions (AJs) in confluent endothelial monolayers. We discovered that VE-PTP stabilizes VE-cadherin junctions by reducing the rate of VE-cadherin internalization independently of its phosphatase activity. VE-PTP serves as an adaptor protein that through binding and inhibiting the RhoGEF GEF-H1 modulates RhoA activity and tension across VE-cadherin junctions. Overexpression of the VE-PTP cytosolic domain mutant interacting with GEF-H1 in VE-PTP–depleted endothelial cells reduced GEF-H1 activity and restored VE-cadherin dynamics at AJs. Thus, VE-PTP stabilizes VE-cadherin junctions and restricts endothelial permeability by inhibiting GEF-H1, thereby limiting RhoA signaling at AJs and reducing the VE-cadherin internalization rate.
Collapse
Affiliation(s)
- Vanessa V Juettner
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Kevin Kruse
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Arkaprava Dan
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Vinh H Vu
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Yousaf Khan
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Jonathan Le
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Yulia Komarova
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Asrar B Malik
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
40
|
SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc Natl Acad Sci U S A 2018; 116:546-555. [PMID: 30584103 DOI: 10.1073/pnas.1810729116] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SENCR is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of SENCR in these and other cell types is unknown. Here, levels of SENCR RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress. Increases in SENCR RNA are also observed in the laminar shear stress region of the adult aorta of humanized SENCR-expressing mice, but not in disturbed shear stress regions. SENCR loss-of-function studies disclose perturbations in EC membrane integrity resulting in increased EC permeability. Biotinylated RNA pull-down and mass spectrometry establish an abundant SENCR-binding protein, cytoskeletal-associated protein 4 (CKAP4); this ribonucleoprotein complex was further confirmed in an RNA immunoprecipitation experiment using an antibody to CKAP4. Structure-function studies demonstrate a noncanonical RNA-binding domain in CKAP4 that binds SENCR Upon SENCR knockdown, increasing levels of CKAP4 protein are detected in the EC surface fraction. Furthermore, an interaction between CKAP4 and CDH5 is enhanced in SENCR-depleted EC. This heightened association appears to destabilize the CDH5/CTNND1 complex and augment CDH5 internalization, resulting in impaired adherens junctions. These findings support SENCR as a flow-responsive lncRNA that promotes EC adherens junction integrity through physical association with CKAP4, thereby stabilizing cell membrane-bound CDH5.
Collapse
|
41
|
Han YW, Liu XJ, Zhao Y, Li XM. Role of Oleanolic acid in maintaining BBB integrity by targeting p38MAPK/VEGF/Src signaling pathway in rat model of subarachnoid hemorrhage. Eur J Pharmacol 2018; 839:12-20. [PMID: 30240794 DOI: 10.1016/j.ejphar.2018.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
Abstract
Vasogenic brain edema after subarachnoid hemorrhage (SAH) is an independent risk factor for death and poor prognosis. Disruption of the blood-brain barrier (BBB) is the main cause of vasogenic brain edema induced by SAH. Oleanolic acid (OA) is a natural pentacyclic triterpenoid with various biological functions. Previous studies have shown that prophylactic administration of OA could prevent the BBB disruption in autoimmune encephalomyelitis mice. In this context, we speculate that OA may play a neuroprotective role by protecting the integrity of the BBB and reducing vasogenic cerebral edema after SAH. To validate this hypothesis, a SAH model was established on Sprague Dawley rats using a standard intravascular puncture model. The effects of OA on various physiological indexes were observed, including SAH grades, mortality, neurological function score, brain edema and BBB permeability. Related proteins of the brain endothelial cell junction complex were also detected, including tight junctions (TJs) and adherent junctions (AJs). Results showed that OA significantly reduced the permeability of BBB and relieved brain edema by increasing protein expression of TJs and AJs, and decreased the SAH grades by increasing the protein expression of heme oxygenase-1 (HO-1) in SAH rats. Additionally, we found OA could inhibit up-regulation of VEGF and the phosphorylation of p38 mitogen-activated protein kinase (MAPK), and suppress p38MAPK/VEGF/Src signaling pathway which involved in BBB disruption following SAH. From the experimental results, we speculate that OA effectively alleviated SAH-induced vasogenic edema by targeting p38 MAPK/VEGF/Src axis.
Collapse
Affiliation(s)
- Yu-Wei Han
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China.
| | - Xiu-Juan Liu
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China.
| | - Ying Zhao
- Physical Examination Center, Shenyang Red Cross Hospital, Shenyang, Liaoning 110013, China.
| | - Xiao-Ming Li
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
42
|
CMTM4 regulates angiogenesis by promoting cell surface recycling of VE-cadherin to endothelial adherens junctions. Angiogenesis 2018; 22:75-93. [PMID: 30097810 PMCID: PMC6510885 DOI: 10.1007/s10456-018-9638-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023]
Abstract
Vascular endothelial (VE) cadherin is a key component of endothelial adherens junctions (AJs) and plays an important role in maintaining vascular integrity. Endocytosis of VE-cadherin regulates junctional strength and a decrease of surface VE-cadherin reduces vascular stability. However, disruption of AJs is also a requirement for vascular sprouting. Identifying novel regulators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we evaluated the angiogenic potential of (CKLF-like MARVEL transmembrane domain 4) CMTM4 and assessed in which molecular pathway CMTM4 is involved during angiogenesis. Using a 3D vascular assay composed of GFP-labeled HUVECs and dsRED-labeled pericytes, we demonstrated in vitro that siRNA-mediated CMTM4 silencing impairs vascular sprouting. In vivo, CMTM4 silencing by morpholino injection in zebrafish larvae inhibits intersomitic vessel growth. Intracellular staining revealed that CMTM4 colocalizes with Rab4+ and Rab7+ vesicles, both markers of the endocytic trafficking pathway. CMTM4 colocalizes with both membrane-bound and internalized VE-cadherin. Adenovirus-mediated CMTM4 overexpression enhances the endothelial endocytic pathway, in particular the rapid recycling pathway, shown by an increase in early endosomal antigen-1 positive (EEA1+), Rab4+, Rab11+ , and Rab7+ vesicles. CMTM4 overexpression enhances membrane-bound VE-cadherin internalization, whereas CMTM4 knockdown decreases internalization of VE-cadherin. CMTM4 overexpression promotes endothelial barrier function, shown by an increase in recovery of transendothelial electrical resistance (TEER) after thrombin stimulation. We have identified in this study a novel regulatory function for CMTM4 in angiogenesis. CMTM4 plays an important role in the turnover of membrane-bound VE-cadherin at AJs, mediating endothelial barrier function and controlling vascular sprouting.
Collapse
|
43
|
Dynamic of VE-cadherin-mediated spermatid-Sertoli cell contacts in the mouse seminiferous epithelium. Histochem Cell Biol 2018; 150:173-185. [PMID: 29797291 DOI: 10.1007/s00418-018-1682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
Abstract
Spermatids are haploid differentiating cells that, in the meantime they differentiate, translocate along the seminiferous epithelium towards the tubule lumen to be just released as spermatozoa. The success of such a migration depends on dynamic of spermatid-Sertoli cell contacts, the molecular nature of which has not been well defined yet. It was demonstrated that the vascular endothelial cadherin (VEC) is expressed transitorily in the mouse seminiferous epithelium. Here, we evaluated the pattern of VEC expression by immunohistochemistry first in seminiferous tubules at different stages of the epithelial cycle when only unique types of germ cell associations are present. Changes in the pattern of VEC localization according to the step of spermatid differentiation were analysed in detail using testis fragments and spontaneously released germ cells. Utilizing the first wave of spermatogenesis as an in vivo model to have at disposal spermatids at progressive steps of differentiation, we checked for level of looser VEC association with the membrane by performing protein solubilisation under mild detergent conditions and assays through VEC-immunoblotting. Being changes in VEC solubilisation paralleled in changes in phosphotyrosine (pY) content, we evaluated if spermatid VEC undergoes Y658 phosphorylation and if this correlates with VEC solubilisation and spermatid progression in differentiation. Altogether, our study shows a temporally restricted pattern of VEC expression that culminates with the presence of round spermatids to progressively decrease starting from spermatid elongation. Conversely, pY658-VEC signs elongating spermatids; its intracellular polarized compartmentalization suggests a possible involvement of pY658-VEC in the acquisition of spermatid cell polarity.
Collapse
|
44
|
Delgado-Bellido D, Fernández-Cortés M, Rodríguez MI, Serrano-Sáenz S, Carracedo A, Garcia-Diaz A, Oliver FJ. VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression. Cell Death Differ 2018; 26:348-361. [PMID: 29786069 DOI: 10.1038/s41418-018-0125-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022] Open
Abstract
Aberrant extra-vascular expression of VE-cadherin (VEC) has been observed in metastasis associated with vasculogenic mimicry (VM); however, the ultimate reason why non-endothelial VEC favors the acquisition of this phenotype is not established. In this study, we show that human malignant melanoma cells have a constitutively high expression of phoshoVEC (pVEC) at Y658; pVEC is a target of focal adhesion kinase (FAK) and forms a complex with p120-catenin and the transcriptional repressor kaiso in the nucleus. FAK inhibition enabled kaiso to suppress the expression of its target genes and enhanced kaiso recruitment to KBS-containing promoters. Finally we have found that ablation of kaiso-repressed genes WNT11 and CCDN1 abolished VM. Thus, identification of pVEC as a component of the kaiso transcriptional complex establishes a molecular paradigm that links FAK-dependent phosphorylation of VEC as a major mechanism by which ectopical VEC expression exerts its function in VM.
Collapse
Affiliation(s)
- Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Fernández-Cortés
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Rodríguez
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación, Oncológica (GENYO), Granada, Spain
| | - Santiago Serrano-Sáenz
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Arkaitz Carracedo
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,CIC bioGUNE, Derio, Spain
| | - Angel Garcia-Diaz
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain.
| | - F Javier Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
45
|
Curto J, Del Valle-Pérez B, Villarroel A, Fuertes G, Vinyoles M, Peña R, García de Herreros A, Duñach M. CK1ε and p120-catenin control Ror2 function in noncanonical Wnt signaling. Mol Oncol 2018; 12:611-629. [PMID: 29465811 PMCID: PMC5928365 DOI: 10.1002/1878-0261.12184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical and noncanonical Wnt pathways share some common elements but differ in the responses they evoke. Similar to Wnt ligands acting through the canonical pathway, Wnts that activate the noncanonical signaling, such as Wnt5a, promote Disheveled (Dvl) phosphorylation and its binding to the Frizzled (Fz) Wnt receptor complex. The protein kinase CK1ε is required for Dvl/Fz association in both canonical and noncanonical signaling. Here we show that differently to its binding to canonical Wnt receptor complex, CK1ε does not require p120‐catenin for the association with the Wnt5a co‐receptor Ror2. Wnt5a promotes the formation of the Ror2–Fz complex and enables the activation of Ror2‐bound CK1ε by Fz‐associated protein phosphatase 2A. Moreover, CK1ε also regulates Ror2 protein levels; CK1ε association stabilizes Ror2, which undergoes lysosomal‐dependent degradation in the absence of this kinase. Although p120‐catenin is not required for CK1ε association with Ror2, it also participates in this signaling pathway as p120‐catenin binds and maintains Ror2 at the plasma membrane; in p120‐depleted cells, Ror2 is rapidly internalized through a clathrin‐dependent mechanism. Accordingly, downregulation of p120‐catenin or CK1ε affects late responses to Wnt5a that are also sensitive to Ror2, such as SIAH2 transcription, cell invasion, or cortical actin polarization. Our results explain how CK1ε is activated by noncanonical Wnt and identify p120‐catenin and CK1ε as two critical factors controlling Ror2 function.
Collapse
Affiliation(s)
- Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Villarroel
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
46
|
Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature 2017; 552:248-252. [PMID: 29211719 PMCID: PMC5828869 DOI: 10.1038/nature25013] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Diabetic retinopathy is an important cause of blindness in adults, and is characterized by progressive loss of vascular cells and slow dissolution of inter-vascular junctions, which result in vascular leakage and retinal oedema. Later stages of the disease are characterized by inflammatory cell infiltration, tissue destruction and neovascularization. Here we identify soluble epoxide hydrolase (sEH) as a key enzyme that initiates pericyte loss and breakdown of endothelial barrier function by generating the diol 19,20-dihydroxydocosapentaenoic acid, derived from docosahexaenoic acid. The expression of sEH and the accumulation of 19,20-dihydroxydocosapentaenoic acid were increased in diabetic mouse retinas and in the retinas and vitreous humour of patients with diabetes. Mechanistically, the diol targeted the cell membrane to alter the localization of cholesterol-binding proteins, and prevented the association of presenilin 1 with N-cadherin and VE-cadherin, thereby compromising pericyte-endothelial cell interactions and inter-endothelial cell junctions. Treating diabetic mice with a specific sEH inhibitor prevented the pericyte loss and vascular permeability that are characteristic of non-proliferative diabetic retinopathy. Conversely, overexpression of sEH in the retinal Müller glial cells of non-diabetic mice resulted in similar vessel abnormalities to those seen in diabetic mice with retinopathy. Thus, increased expression of sEH is a key determinant in the pathogenesis of diabetic retinopathy, and inhibition of sEH can prevent progression of the disease.
Collapse
|
47
|
Predicting the Functional Impact of CDH1 Missense Mutations in Hereditary Diffuse Gastric Cancer. Int J Mol Sci 2017; 18:ijms18122687. [PMID: 29231860 PMCID: PMC5751289 DOI: 10.3390/ijms18122687] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
The role of E-cadherin in Hereditary Diffuse Gastric Cancer (HDGC) is unequivocal. Germline alterations in its encoding gene (CDH1) are causative of HDGC and occur in about 40% of patients. Importantly, while in most cases CDH1 alterations result in the complete loss of E-cadherin associated with a well-established clinical impact, in about 20% of cases the mutations are of the missense type. The latter are of particular concern in terms of genetic counselling and clinical management, as the effect of the sequence variants in E-cadherin function is not predictable. If a deleterious variant is identified, prophylactic surgery could be recommended. Therefore, over the last few years, intensive research has focused on evaluating the functional consequences of CDH1 missense variants and in assessing E-cadherin pathogenicity. In that context, our group has contributed to better characterize CDH1 germline missense variants and is now considered a worldwide reference centre. In this review, we highlight the state of the art methodologies to categorize CDH1 variants, as neutral or deleterious. This information is subsequently integrated with clinical data for genetic counseling and management of CDH1 variant carriers.
Collapse
|
48
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
49
|
Protein kinase C α enhances migration of breast cancer cells through FOXC2-mediated repression of p120-catenin. BMC Cancer 2017; 17:832. [PMID: 29216867 PMCID: PMC5719564 DOI: 10.1186/s12885-017-3827-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022] Open
Abstract
Background Despite recent advances in the diagnosis and treatment of breast cancer, metastasis remains the main cause of death. Since migration of tumor cells is considered a prerequisite for tumor cell invasion and metastasis, a pressing goal in tumor biology has been to elucidate factors regulating their migratory activity. Protein kinase C alpha (PKCα) is a serine-threonine protein kinase implicated in cancer metastasis and associated with poor prognosis in breast cancer patients. In this study, we set out to define the signaling axis mediated by PKCα to promote breast cancer cell migration. Methods Oncomine™ overexpression analysis was used to probe for PRKCA (PKCα) and FOXC2 expression in mRNA datasets. The heat map of PRKCA, FOXC2, and CTNND1 were obtained from the UC Santa Cruz platform. Survival data were obtained by PROGgene and available at http://www.compbio.iupui.edu/proggene. Markers for EMT and adherens junction were assessed by Western blotting and quantitative polymerase chain reaction. Effects of PKCα and FOXC2 on migration and invasion were assessed in vitro by transwell migration and invasion assays respectively. Cellular localization of E-cadherin and p120-catenin was determined by immunofluorescent staining. Promoter activity of p120-catenin was determined by dual luciferase assay using a previously validated p120-catenin reporter construct. Interaction between FOXC2 and p120-catenin promoter was verified by chromatin immunoprecipitation assay. Results We determined that PKCα expression is necessary to maintain the migratory and invasive phenotype of both endocrine resistant and triple negative breast cancer cell lines. FOXC2 acts as a transcriptional repressor downstream of PKCα, and represses p120-catenin expression. Consequently, loss of p120-catenin leads to destabilization of E-cadherin at the adherens junction. Inhibition of either PKCα or FOXC2 is sufficient to rescue p120-catenin expression and trigger relocalization of p120-catenin and E-cadherin to the cell membrane, resulting in reduced tumor cell migration and invasion. Conclusions Taken together, these results suggest that breast cancer metastasis may partially be controlled through PKCα/FOXC2-dependent repression of p120-catenin and highlight the potential for PKCα signal transduction networks to be targeted for the treatment of endocrine resistant and triple negative breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-017-3827-y) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Rezaei M, Cao J, Friedrich K, Kemper B, Brendel O, Grosser M, Adrian M, Baretton G, Breier G, Schnittler HJ. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions. Histochem Cell Biol 2017; 149:15-30. [PMID: 29143117 DOI: 10.1007/s00418-017-1619-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 01/19/2023]
Abstract
The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.
Collapse
Affiliation(s)
- Maryam Rezaei
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Katrin Friedrich
- Institute of Pathology, Medical Faculty Dresden, Dresden, Germany
| | - Björn Kemper
- Biomedical Technology Center, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Oliver Brendel
- Institute of Pathology, Medical Faculty Dresden, Dresden, Germany
| | - Marianne Grosser
- Institute of Pathology, Medical Faculty Dresden, Dresden, Germany
| | - Manuela Adrian
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Gustavo Baretton
- Institute of Pathology, Medical Faculty Dresden, Dresden, Germany
| | - Georg Breier
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany.
| |
Collapse
|