1
|
Liu LZ, Wang B, Zhang R, Wu Z, Huang Y, Zhang X, Zhou J, Yi J, Shen J, Li MY, Dong M. The activated CD36-Src axis promotes lung adenocarcinoma cell proliferation and actin remodeling-involved metastasis in high-fat environment. Cell Death Dis 2023; 14:548. [PMID: 37612265 PMCID: PMC10447533 DOI: 10.1038/s41419-023-06078-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Obesity/overweight and lipid metabolism disorders have become increased risk factors for lung cancer. Fatty acid translocase CD36 promotes cellular uptake of fatty acids. Whether and how CD36 facilitates lung adenocarcinoma (LUAD) growth in high-fat environment is unknown. Here, we demonstrated that palmitic acid (PA) or high-fat diet (HFD) promoted LUAD cell proliferation and metastasis in a CD36-dependent manner. Mechanistically, CD36 translocated from cytoplasm to cell membrane and interacted with Src kinase upon PA stimulation in human LUAD cells. Akt and ERK, downstream of Src, were then activated to mediate LUAD cell proliferation and metastasis. Furthermore, PA treatment promoted CD36 sarcolemmal translocation, where it activated Rac1 and upregulated MMP-9 through Src-Akt/ERK pathway, resulting in redistribution of cortactin, N-WASP and Arp2/3, and finally led to occurrence of finger-like protrusions of actin on cell surface to enhance cell metastasis. Compared with normal-chew diet (NCD) mice, the HFD group exhibited higher level of blood free fatty acid (FFA) and cholesterol (TC), developed larger xenograft LUAD tumors and enhanced tumor cell metastatic potential, which were accompanied by obvious sarcolemmal actin remodeling and were blocked by simultaneous CD36 knockdown in LUAD cells. Consistently, xenografted and tail vein-injected scramble-RNA-A549 cells but not CD36-shRNA-A549 in HFD mice formed metastatic LUAD tumors on the lung. CD36 inhibitor SSO significantly inhibited LUAD cell metastasis to the lung. Collectively, CD36 initiates Src signaling to promote LUAD cell proliferation and actin remodeling-involved metastasis under high-fat environment. Our study provides the new insights that CD36 is a valid target for LUAD therapy.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Bowen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Guangdong Medical Academic Exchange Center, Yuexiu District, Guangzhou, Guangdong, China
| | - Rui Zhang
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Zangshu Wu
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Yuxi Huang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiaoyang Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jiaying Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Junbo Yi
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jian Shen
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Ming-Yue Li
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming Dong
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
2
|
Kislev N, Mor-Yossef Moldovan L, Barak R, Egozi M, Benayahu D. MYH10 Governs Adipocyte Function and Adipogenesis through Its Interaction with GLUT4. Int J Mol Sci 2022; 23:ijms23042367. [PMID: 35216482 PMCID: PMC8875441 DOI: 10.3390/ijms23042367] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Adipogenesis is dependent on cytoskeletal remodeling that determines and maintains cellular shape and function. Cytoskeletal proteins contribute to the filament-based network responsible for controlling the shape of adipocytes and promoting the intracellular trafficking of cellular components. Currently, the understanding of these mechanisms and their effect on differentiation and adipocyte function remains incomplete. In this study, we identified the non-muscle myosin 10 (MYH10) as a novel regulator of adipogenesis and adipocyte function through its interaction with the insulin-dependent glucose transporter 4 (GLUT4). MYH10 depletion in preadipocytes resulted in impaired adipogenesis, with knockdown cells exhibiting an absence of morphological alteration and molecular signals. MYH10 was shown in a complex with GLUT4 in adipocytes, an interaction regulated by insulin induction. The missing adipogenic capacity of MYH10 knockdown cells was restored when the cells took up GLUT4 vesicles from neighbor wildtype cells in a co-culture system. This signaling cascade is regulated by the protein kinase C ζ (PKCζ), which interacts with MYH10 to modify the localization and interaction of both GLUT4 and MYH10 in adipocytes. Overall, our study establishes MYH10 as an essential regulator of GLUT4 translocation, affecting both adipogenesis and adipocyte function, highlighting its importance in future cytoskeleton-based studies in adipocytes.
Collapse
|
3
|
Zhu B, Li MY, Lin Q, Liang Z, Xin Q, Wang M, He Z, Wang X, Wu X, Chen GG, Tong PCY, Zhang W, Liu LZ. Lipid oversupply induces CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1: an early event prior to insulin resistance. Theranostics 2020; 10:1332-1354. [PMID: 31938068 PMCID: PMC6956797 DOI: 10.7150/thno.40021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid oversupply may induce CD36 sarcolemmal translocation to facilitate fatty acid transport, which in turn causes dyslipidemia and type 2 diabetes. However, the underlying mechanisms of CD36 redistribution are still yet to be unraveled. Methods: High fat diet fed mice and palmitate/oleic acid-treated L6 cells were used to investigate the initial events of subcellular CD36 recycling prior to insulin resistance. The regulation of CD36 sarcolemmal translocation by lipid oversupply was assessed by insulin tolerance test (ITT), oral glucose tolerance test (OGTT), glucose/fatty acid uptake assay, surface CD36 and GLUT4 detection, and ELISA assays. To elucidate the underlying mechanisms, specific gene knockout, gene overexpression and/or gene inhibition were employed, followed by Western blot, co-immunoprecipitation, immunostaining, and kinase activity assay. Results: Upon lipid/fatty acid overload, PKCζ activity and TBC1D1 phosphorylation were enhanced along with increased sarcolemmal CD36. The inhibition of PKCζ or TBC1D1 was shown to block fatty acid-induced CD36 translocation and was synergistic in impairing CD36 redistribution. Mechanically, we revealed that AMPK was located upstream of PKCζ to control its activity whereas Rac1 facilitated PKCζ translocation to the dorsal surface of the cell to cause actin remodeling. Furthermore, AMPK phosphorylated TBC1D1 to release retained cytosolic CD36. The activated PKCζ and phosphorylated TBC1D1 resulted in a positive feedback regulation of CD36 sarcolemmal translocation. Conclusion: Collectively, our study demonstrated exclusively that lipid oversupply induced CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1, which was as an early event prior to insulin resistance. The acquired data may provide potential therapy targets to prevent lipid oversupply-induced insulin resistance.
Collapse
|
4
|
Lu H, Bogdanovic E, Yu Z, Cho C, Liu L, Ho K, Guo J, Yeung LSN, Lehmann R, Hundal HS, Giacca A, Fantus IG. Combined Hyperglycemia- and Hyperinsulinemia-Induced Insulin Resistance in Adipocytes Is Associated With Dual Signaling Defects Mediated by PKC-ζ. Endocrinology 2018; 159:1658-1677. [PMID: 29370351 PMCID: PMC5939637 DOI: 10.1210/en.2017-00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
A hyperglycemic and hyperinsulinemic environment characteristic of type 2 diabetes causes insulin resistance. In adipocytes, defects in both insulin sensitivity and maximum response of glucose transport have been demonstrated. To investigate the molecular mechanisms, freshly isolated rat adipocytes were incubated in control (5.6 mM glucose, no insulin) and high glucose (20 mM)/high insulin (100 nM) (HG/HI) for 18 hours to induce insulin resistance. Insulin-resistant adipocytes manifested decreased sensitivity of glucose uptake associated with defects in insulin receptor substrate (IRS)-1 Tyr phosphorylation, association of p85 subunit of phosphatidylinositol-3-kinase, Akt Ser473 and Thr308 phosphorylation, accompanied by impaired glucose transporter 4 translocation. In contrast, protein kinase C (PKC)-ζ activity was augmented by chronic HG/HI. Inhibition of PKC-ζ with a specific cell-permeable peptide reversed the signaling defects and insulin sensitivity of glucose uptake. Transfection of dominant-negative, kinase-inactive PKC-ζ blocked insulin resistance, whereas constitutively active PKC-ζ recapitulated the defects. The HG/HI incubation was associated with stimulation of IRS-1 Ser318 and Akt Thr34 phosphorylation, targets of PKC-ζ. Transfection of IRS-1 S318A and Akt T34A each partially corrected insulin signaling, whereas combined transfection of both completely normalized insulin signaling. In vivo hyperglycemia/hyperinsulinemia in rats for 48 hours similarly resulted in activation of PKC-ζ and increased phosphorylation of IRS-1 Ser318 and Akt Thr34. These data indicate that impairment of insulin signaling by chronic HG/HI is mediated by dual defects at IRS-1 and Akt mediated by PKC-ζ.
Collapse
Affiliation(s)
- Huogen Lu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elena Bogdanovic
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhiwen Yu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Charles Cho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lijiang Liu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Karen Ho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - June Guo
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lucy S N Yeung
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Reiner Lehmann
- Department of Internal Medicine IV, Endocrinology, Metabolism, Pathobiochemistry and Clinical Chemistry, University Hospital Tuebingen, Tuebingen, Germany
| | - Harinder S Hundal
- Division of Molecular Physiology Unit, Faculty of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Adria Giacca
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - I George Fantus
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Correspondence: I. George Fantus, MD, Departments of Medicine and Physiology, Mount Sinai Hospital, Joseph and Wolfe Lebovic Building, 60 Murray Street, 5th Floor, Room 5028, Toronto, Ontario M5T 3L9, Canada. E-mail:
| |
Collapse
|
5
|
Ueda-Wakagi M, Hayashibara K, Nagano T, Ikeda M, Yuan S, Ueda S, Shirai Y, Yoshida KI, Ashida H. Epigallocatechin gallate induces GLUT4 translocation in skeletal muscle through both PI3K- and AMPK-dependent pathways. Food Funct 2018; 9:4223-4233. [DOI: 10.1039/c8fo00807h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
EGCg promotes GLUT4 translocation through both PI3K- and AMPK-dependent pathways and then promotes glycogen accumulation in soleus muscle.
Collapse
Affiliation(s)
- Manabu Ueda-Wakagi
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| | - Kaori Hayashibara
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| | - Tomoya Nagano
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| | - Masaki Ikeda
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| | - Sihao Yuan
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| | - Shuji Ueda
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| | - Yasuhito Shirai
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| | - Ken-ichi Yoshida
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| | - Hitoshi Ashida
- Department of Agrobioscience
- Graduate School of Agricultural Science
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
6
|
Yingying X, Caijuan W, Yenan Y, Yuqin T, Xueqin C, Zhongming W. The Effect of SIN1 and Microtubules on Insulin Induced PKC ζ Activation. Med Sci Monit 2017; 23:3666-3672. [PMID: 28751630 PMCID: PMC5545627 DOI: 10.12659/msm.905555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Protein kinase C zeta (PKC ζ) plays an important role in insulin induced glycometabolism and insulin receptor (IR) associated signaling pathways. The full activation of PKC ζ depends on its translocation from cytosol to membrane and phosphorylation at Thr410. However, the mechanism of PKC ζ activation remains elusive. In this study, the effect of SIN1 and microtubules on insulin-induced PKC ζ activation was investigated. Material/Methods HepG2 cells were stimulated with insulin for co-immunoprecipitation (co-IP) assay. The immunocomplex was captured by using anti-PKC ζ, anti-SIN1 or anti-FLAG antibodies and was subjected to western blotting analysis for detecting PKC ζ, SIN1, and β-tubulin protein expression level. The cells were intervened by small interfering RNA (siRNA) that targeted exon regions of SIN1. Then the glucose uptake ratio after cells were stimulated by insulin was measured. The PKC ζ insulin receptor levels in the membranes were analyzed. Cells stained with anti-PKC ζ, anti-SIN1 antibodies and probed with molecular probes were observed by immunofluorescence confocal microscopy. Results SIN1 interacted and co-located with PKC ζ by pleckstrin homology (PH) domain. Downregulation of SIN1 severely impaired PKC ζ translocation and phosphorylation induced by insulin. PKC ζ co-immunoprecipitated with β-tubulin at different intervals upon insulin stimulus, and the activation of PKC ζ was affected by paclitaxel and nocodazole. Conclusions PKC ζ translocated from cytosol to membrane depending on SIN1, which suggested that PKC ζ may be activated directly by PI3K and the reaction probably carried out on microtubules in HepG2 cells.
Collapse
Affiliation(s)
- Xiang Yingying
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Wang Caijuan
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yue Yenan
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Tang Yuqin
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Cai Xueqin
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Wu Zhongming
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
7
|
Deshmukh AS. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle. Horm Mol Biol Clin Investig 2017; 26:13-24. [PMID: 26485752 DOI: 10.1515/hmbci-2015-0041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 11/15/2022]
Abstract
Skeletal muscle is the largest tissues in the human body and is considered the primary target for insulin-stimulated glucose disposal. In skeletal muscle, binding of the insulin to insulin receptor (IR) initiates a signaling cascade that results in the translocation of the insulin-sensitive glucose transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle.
Collapse
|
8
|
Zhou X, Shentu P, Xu Y. Spatiotemporal Regulators for Insulin-Stimulated GLUT4 Vesicle Exocytosis. J Diabetes Res 2017; 2017:1683678. [PMID: 28529958 PMCID: PMC5424486 DOI: 10.1155/2017/1683678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 11/30/2022] Open
Abstract
Insulin increases glucose uptake and storage in muscle and adipose cells, which is accomplished through the mobilization of intracellular GLUT4 storage vesicles (GSVs) to the cell surface upon stimulation. Importantly, the dysfunction of insulin-regulated GLUT4 trafficking is strongly linked with peripheral insulin resistance and type 2 diabetes in human. The insulin signaling pathway, key signaling molecules involved, and precise trafficking itinerary of GSVs are largely identified. Understanding the interaction between insulin signaling molecules and key regulatory proteins that are involved in spatiotemporal regulation of GLUT4 vesicle exocytosis is of great importance to explain the pathogenesis of diabetes and may provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ping Shentu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
- *Yingke Xu:
| |
Collapse
|
9
|
Carnagarin R, Dharmarajan AM, Dass CR. Molecular aspects of glucose homeostasis in skeletal muscle--A focus on the molecular mechanisms of insulin resistance. Mol Cell Endocrinol 2015; 417:52-62. [PMID: 26362689 DOI: 10.1016/j.mce.2015.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/02/2015] [Indexed: 01/14/2023]
Abstract
Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia
| | - Arun M Dharmarajan
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Biomedical Science, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Biosciences Research Precinct, Bentley 6102, Australia; School of Pharmacy, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
10
|
Zhu H, Moriasi CM, Zhang M, Zhao Y, Zou MH. Phosphorylation of serine 399 in LKB1 protein short form by protein kinase Cζ is required for its nucleocytoplasmic transport and consequent AMP-activated protein kinase (AMPK) activation. J Biol Chem 2013; 288:16495-16505. [PMID: 23612973 PMCID: PMC3675585 DOI: 10.1074/jbc.m112.443580] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/21/2013] [Indexed: 11/06/2022] Open
Abstract
Two splice variants of LKB1 exist: LKB1 long form (LKB1(L)) and LKB1 short form (LKB1(S)). In a previous study, we demonstrated that phosphorylation of Ser-428/431 (in LKB1(L)) by protein kinase Cζ (PKCζ) was essential for LKB1-mediated activation of AMP-activated protein kinase (AMPK) in response to oxidants or metformin. Paradoxically, LKB1S also activates AMPK although it lacks Ser-428/431. Thus, we hypothesized that LKB1(S) contained additional phosphorylation sites important in AMPK activation. Truncation analysis and site-directed mutagenesis were used to identify putative PKCζ phosphorylation sites in LKB1(S). Substitution of Ser-399 to alanine did not alter the activity of LKB1(S), but abolished peroxynitrite- and metformin-induced activation of AMPK. Furthermore, the phosphomimetic mutation (S399D) increased the phosphorylation of AMPK and its downstream target phospho-acetyl-coenzyme A carboxylase (ACC). PKCζ-dependent phosphorylation of Ser-399 triggered nucleocytoplasmic translocation of LKB1(S) in response to metformin or peroxynitrite treatment. This effect was ablated by pharmacological and genetic inhibition of PKCζ, by inhibition of CRM1 activity and by substituting Ser-399 with alanine (S399A). Overexpression of PKCζ up-regulated metformin-mediated phosphorylation of both AMPK (Thr-172) and ACC (Ser-79), but the effect was ablated in the S399A mutant. We conclude that, similar to Ser-428/431 (in LKB1(L)), Ser-399 (in LKB1(S)) is a PKCζ-dependent phosphorylation site essential for nucleocytoplasmic export of LKB1(S) and consequent AMPK activation.
Collapse
Affiliation(s)
- Huaiping Zhu
- Section of Molecular Medicine, Department of Medicine, Oklahoma City, Oklahoma 73013
| | - Cate M Moriasi
- Section of Molecular Medicine, Department of Medicine, Oklahoma City, Oklahoma 73013
| | - Miao Zhang
- Section of Molecular Medicine, Department of Medicine, Oklahoma City, Oklahoma 73013
| | - Yu Zhao
- Section of Molecular Medicine, Department of Medicine, Oklahoma City, Oklahoma 73013
| | - Ming-Hui Zou
- Section of Molecular Medicine, Department of Medicine, Oklahoma City, Oklahoma 73013; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73013.
| |
Collapse
|
11
|
Ruan HB, Singh JP, Li MD, Wu J, Yang X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab 2013; 24:301-9. [PMID: 23647930 PMCID: PMC3783028 DOI: 10.1016/j.tem.2013.02.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/16/2013] [Accepted: 02/17/2013] [Indexed: 12/15/2022]
Abstract
Nuclear, cytoplasmic, and mitochondrial proteins are extensively modified by O-linked β-N-acetylglucosamine (O-GlcNAc) moieties. This sugar modification regulates fundamental cellular processes in response to diverse nutritional and hormonal cues. The enzymes O-GlcNAc transferase (OGT) and O-linked β-N-acetylglucosaminase (O-GlcNAcase) mediate the addition and removal of O-GlcNAc, respectively. Aberrant O-GlcNAcylation has been implicated in a plethora of human diseases, including diabetes, cancer, aging, cardiovascular disease, and neurodegenerative disease. Because metabolic dysregulation is a vital component of these diseases, unraveling the roles of O-GlcNAc in metabolism is of emerging importance. Here, we review the current understanding of the functions of O-GlcNAc in cell signaling and gene transcription involved in metabolism, and focus on its relevance to diabetes, cancer, circadian rhythm, and mitochondrial function.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- School of Life Science and Technology, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| |
Collapse
|
12
|
Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 2013; 62:1865-75. [PMID: 23423567 PMCID: PMC3661612 DOI: 10.2337/db12-1148] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The actin cytoskeleton-regulating GTPase Rac1 is required for insulin-stimulated GLUT4 translocation in cultured muscle cells. However, involvement of Rac1 and its downstream signaling in glucose transport in insulin-sensitive and insulin-resistant mature skeletal muscle has not previously been investigated. We hypothesized that Rac1 and its downstream target, p21-activated kinase (PAK), are regulators of insulin-stimulated glucose uptake in mouse and human skeletal muscle and are dysregulated in insulin-resistant states. Muscle-specific inducible Rac1 knockout (KO) mice and pharmacological inhibition of Rac1 were used to determine whether Rac1 regulates insulin-stimulated glucose transport in mature skeletal muscle. Furthermore, Rac1 and PAK1 expression and signaling were investigated in muscle of insulin-resistant mice and humans. Inhibition and KO of Rac1 decreased insulin-stimulated glucose transport in mouse soleus and extensor digitorum longus muscles ex vivo. Rac1 KO mice showed decreased insulin and glucose tolerance and trended toward higher plasma insulin concentrations after intraperitoneal glucose injection. Rac1 protein expression and insulin-stimulated PAK(Thr423) phosphorylation were decreased in muscles of high fat-fed mice. In humans, insulin-stimulated PAK activation was decreased in both acute insulin-resistant (intralipid infusion) and chronic insulin-resistant states (obesity and diabetes). These findings show that Rac1 is a regulator of insulin-stimulated glucose uptake and a novel candidate involved in skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E. Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Diabetes Research Center, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Bente Kiens
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Wojtaszewski
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Department of Biomedical Sciences, Center of Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A. Richter
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
- Corresponding author: Erik A. Richter,
| |
Collapse
|
13
|
Liu LZ, Cheung SCK, Lan LL, Ho SKS, Chan JCN, Tong PCY. Microtubule network is required for insulin-induced signal transduction and actin remodeling. Mol Cell Endocrinol 2013; 365:64-74. [PMID: 22996137 DOI: 10.1016/j.mce.2012.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/14/2012] [Accepted: 09/08/2012] [Indexed: 02/02/2023]
Abstract
Both microtubule and actin are required for insulin-induced glucose uptake. However, the roles of these two cytoskeletons and their relationship in insulin action still remain unclear. In this work, we examined the morphological change of microtubule/actin and their involvement in insulin signal transduction using rat skeletal muscle cells. Insulin rapidly led to microtubule clustering from ventral to dorsal surface of the cell. Microtubule filaments were rearranged to create space where new actin structures formed. Disruption of microtubule prevented insulin-induced actin remodeling and distal insulin signal transduction, with reduction in surface glucose transporter isoform 4 (GLUT4) and glucose uptake. Though microtubule mediated actin remodeling through PKCζ, reorganization of microtubule depended on tyrosine phosphorylation of insulin receptor, the mechanism is different from insulin-induced actin remodeling, which relied on the activity of PI3-kinase and PKCζ. We propose that microtubule network is required for insulin-induced signal transduction and actin remodeling in skeletal muscle cells.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Li Ka Shing Institute of Health, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
14
|
Raychaudhuri S. MicroRNAs overexpressed in growth-restricted rat skeletal muscles regulate the glucose transport in cell culture targeting central TGF-β factor SMAD4. PLoS One 2012; 7:e34596. [PMID: 22506032 PMCID: PMC3323545 DOI: 10.1371/journal.pone.0034596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/07/2012] [Indexed: 12/27/2022] Open
Abstract
The micro-array profiling of micro-RNA has been performed in rat skeletal muscle tissues, isolated from male adult offspring of intrauterine plus postnatal growth restricted model (IPGR). Apparently, the GLUT4 mRNA expression in male sk. muscle was found to be unaltered in contrast to females. The over-expression of miR-29a and miR-23a in the experimental group of SMSP (Starved Mother Starved Pups) have been found to regulate the glucose transport activity with respect to their control counterparts CMCP (Control Mother Control Pups) as confirmed in rat L6 myoblast-myocyte cell culture system. The ex-vivo experimentation demonstrates an aberration in insulin signaling pathway in male sk. muscle that leads to the localization of the membrane-bound Glut4 protein. We have identified through a series of experiments one important protein factor SMAD4, a co-SMAD critical to the TGF-beta signaling pathway. This factor is targeted by miR-29a, as identified in an in vitro reporter-assay system in cell-culture experiment. The other micro-RNA, miR-23a, targets SMAD4 indirectly that seems to be critical in regulating insulin-dependent glucose transport activity. MicroRNA mimics, inhibitors and siRNA studies indicate the role of SMAD4 as inhibitory for glucose transport activities in normal physiological condition. The data demonstrate for the first time a critical function of microRNAs in fine-tuning the regulation of glucose transport in skeletal muscle. Chronic starved conditions (IPGR) in sk. muscle up-regulates microRNA changing the target protein expression patterns, such as SMAD4, to alter the glucose transport pathways for the survival. The innovative outcome of this paper identifies a critical pathway (TGF-beta) that may act negatively for the mammalian glucose transport machinery.
Collapse
Affiliation(s)
- Santanu Raychaudhuri
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| |
Collapse
|
15
|
Rivero R, Garin CA, Ormazabal P, Silva A, Carvajal R, Gabler F, Romero C, Vega M. Protein expression of PKCZ (Protein Kinase C Zeta), Munc18c, and Syntaxin-4 in the insulin pathway in endometria of patients with polycystic ovary syndrome (PCOS). Reprod Biol Endocrinol 2012; 10:17. [PMID: 22390153 PMCID: PMC3317829 DOI: 10.1186/1477-7827-10-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/05/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is an endocrine-metabolic disorder commonly associated with insulin resistance (IR). Previous studies indicate about the expression of molecules involved in the insulin pathway in endometria of women with PCOS-IR. Therefore, the aim of the present study was to evaluate the effect of insulin and testosterone in the expression of these proteins in the endometria and immortal endometrial stromal cell line (T-HESCs). METHODS We examined the protein levels of Munc18c, PKC zeta, phospho-PKC Zeta, and Syntaxin-4. Protein levels were assessed by Western Blot and/or immunohistochemistry in proliferative endometria (NPE = 6) and in PCOS endometria with insulin resistance (PCOSE-IR = 6). We also evaluated whether high concentrations of insulin (100 nM) and/or testosterone (100 nM), during a 24 h stimulatory period, affected the expression of these proteins in an immortal endometrial stromal cell line (T-HESCs). Once stimulated, proteins were extracted from cells and were assessed by Western Blot analysis. Immunocytochemistry was performed to detect AR in T-HESC cells. RESULTS Western Blot data showed decreased expression (p < 0,05) of Munc18c and phospho-PKC Zeta in PCOS-IR endometria (PCOSE-IR) with respect to the control (NPE). In the in vitro study, Western Blot analysis showed decreased levels of Munc18c, PKC Zeta and phospho-PKC Zeta with the different hormonal treatments when compared to the control condition (no hormonal stimulation) (p < 0,05). The AR was present in the endometrial stromal cell line (T-HESC). CONCLUSION The conditions of hyperinsulinism and hyperandrogenism present in PCOS-IR patients modulate the expression and/or phosphorylation of the proteins involved in the insulin pathway at the endometrial level. These data extend to the T-HESCs cells results, where insulin and testosterone exert an effect on both the expression and phosphorylation of proteins present in the pathway.
Collapse
Affiliation(s)
- Rodrigo Rivero
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
| | - Claire-Alix Garin
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
| | - Paulina Ormazabal
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
| | - Andrea Silva
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
| | - Rodrigo Carvajal
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
- Department of Obstetrics and Gynaecology, School of Medicine, University of Chile, Santiago, Chile
| | - Fernando Gabler
- Department of Pathology, School of Medicine, University of Chile, Santiago, Chile
| | - Carmen Romero
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
- Department of Obstetrics and Gynaecology, School of Medicine, University of Chile, Santiago, Chile
| | - Margarita Vega
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
- Department of Obstetrics and Gynaecology, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
16
|
Identification of components of the host type IA phosphoinositide 3-kinase pathway that promote internalization of Listeria monocytogenes. Infect Immun 2011; 80:1252-66. [PMID: 22158742 DOI: 10.1128/iai.06082-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogen Listeria monocytogenes causes food-borne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria promotes its internalization into some human cells through binding of the bacterial surface protein InlB to the host receptor tyrosine kinase Met. The interaction of InlB with the Met receptor stimulates host signaling pathways that promote cell surface changes driving bacterial uptake. One human signaling protein that plays a critical role in Listeria entry is type IA phosphoinositide 3-kinase (PI 3-kinase). The molecular mechanism by which PI 3-kinase promotes bacterial internalization is not understood. Here we perform an RNA interference (RNAi)-based screen to identify components of the type IA PI 3-kinase pathway that control the entry of Listeria into the human cell line HeLa. The 64 genes targeted encode known upstream regulators or downstream effectors of type IA PI 3-kinase. The results of this screen indicate that at least 9 members of the PI 3-kinase pathway play important roles in Listeria uptake. These 9 human proteins include a Rab5 GTPase, several regulators of Arf or Rac1 GTPases, and the serine/threonine kinases phosphoinositide-dependent kinase 1 (PDK1), mammalian target of rapamycin (mTor), and protein kinase C-ζ. These findings represent a key first step toward understanding the mechanism by which type IA PI 3-kinase controls bacterial internalization.
Collapse
|
17
|
Inhibiting PI3K reduces mammary tumor growth and induces hyperglycemia in a mouse model of insulin resistance and hyperinsulinemia. Oncogene 2011; 31:3213-22. [PMID: 22037215 PMCID: PMC3275680 DOI: 10.1038/onc.2011.495] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Women with type 2 diabetes (T2DM) are at greater risk of developing and dying from breast cancer than women without T2DM. Insulin resistance and hyperinsulinemia underlie the pathogenesis of T2DM. In the MKR mouse model of insulin resistance, we have previously shown increased activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway in association with accelerated mammary tumor growth. In this study, we demonstrate that inhibiting PI3K with the oral pan-class I PI3K inhibitor, NVP-BKM120 reduced the growth of Met-1 and MCNeuA mammary tumor orthografts in the MKR mouse. NVP-BKM120 treatment decreased phosphorylation of Akt and S6 ribosomal protein (S6rp); no change in Erk1/2 phosphorylation was seen. Hyperglycemia, hypertriglyceridemia and greater hyperinsulinemia developed in the MKR mice treated with NVP-BKM120. We previously reported reduced tumor growth using intraperitoneal rapamycin in the MKR mouse, with the development of hyperglycemia and hypertriglyceridemia. Therefore, we examined whether the oral PI3K/mTOR inhibitor NVP-BEZ235 augmented the tumor suppressing effects of PI3K inhibition. We also investigated the effect of targeted PI3K/mTOR inhibition on PI3K/Akt/mTOR and Erk1/2 signaling, and the potential effects on glycemia. NVP-BEZ235 suppressed the growth of Met-1 and MCNeuA tumor orthografts, and decreased Akt and S6rp phosphorylation, despite increased Erk1/2 phosphorylation in Met-1 orthografts of MKR mice. Less marked hyperglycemia and hyperinsulinemia developed with NVP-BEZ235 than NVP-BKM120. Overall, the results of this study demonstrated that inhibiting PI3K/Akt/mTOR signaling with the oral agents NVP-BKM120 and NVP-BEZ235 decreased mammary tumor growth in the hyperinsulinemic MKR mouse. Inhibiting PI3K alone led to more severe metabolic derangement than inhibiting both PI3K and mTOR. Therefore, PI3K may be an important target for the treatment of breast cancer in women with insulin resistance. Monitoring for hyperglycemia and dyslipidemia should be considered when using these agents in humans, given the metabolic changes detected in this study.
Collapse
|
18
|
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 2011; 23:1546-54. [DOI: 10.1016/j.cellsig.2011.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022]
|
19
|
Cheung SC, Liu LZ, Lan LL, Liu QQ, Sun SS, Chan JC, Tong PC. Glucose lowering effect of transgenic human insulin-like growth factor-I from rice: in vitro and in vivo studies. BMC Biotechnol 2011; 11:37. [PMID: 21486461 PMCID: PMC3098155 DOI: 10.1186/1472-6750-11-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 04/12/2011] [Indexed: 12/13/2022] Open
Abstract
Background Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains. Results The plant-codon-optimized hIGF-I was introduced into rice via Agrobacterium-mediated transformation. To enhance the stability and yield of rhIGF-I, the endoplasmic reticulum-retention signal and glutelin signal peptide were used to deliver rhIGF-I to endoplasmic reticulum for stable accumulation. We found that only glutelin signal peptide could lead to successful expression of hIGF-I and one gram of hIGF-I rice grain possessed the maximum activity level equivalent to 3.2 micro molar of commercial rhIGF-I. In vitro functional analysis showed that the rice-derived rhIGF-I was effective in inducing membrane ruffling and glucose uptake on rat skeletal muscle cells. Oral meal test with rice-containing rhIGF-I acutely reduced blood glucose levels in streptozotocin-induced and Zucker diabetic rats, whereas it had no effect in normal rats. Conclusion Our findings provided an alternative expression system to produce large quantities of biologically active rhIGF-I. The provision of large quantity of recombinant proteins will promote further research on the therapeutic potential of rhIGF-I.
Collapse
Affiliation(s)
- Stanley Ck Cheung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
20
|
Huang YC, Chang WL, Huang SF, Lin CY, Lin HC, Chang TC. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur J Pharmacol 2010; 648:39-49. [PMID: 20816811 DOI: 10.1016/j.ejphar.2010.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 07/14/2010] [Accepted: 08/24/2010] [Indexed: 12/28/2022]
Abstract
In an effort to investigate the effect and mechanism of Poria cocos on glucose uptake, six lanostane-type triterpenoids were isolated and analyzed. Among them, pachymic acid displayed the most significant stimulating activity on glucose uptake in 3T3-L1 adipocytes. The effect of pachymic acid on the expression profile of glucose transporters in differentiated 3T3-L1 adipocytes was also analyzed. Our results demonstrated that pachymic acid induced an increase in GLUT4, but not GLUT1, expression at both the mRNA and protein levels. The role of GLUT4 was further confirmed using the lentiviral vector-derived GLUT4 short hairpin RNA (shRNA). The stimulating activity of pachymic acid on glucose uptake was abolished when the endogenous GLUT4 expression was suppressed in 3T3-L1 adipocytes. In addition to increased GLUT4 expression, pachymic acid stimulated GLUT4 redistribution from intracellular vesicles to the plasma membrane in adipocytes. Exposure of the differentiated adipocytes to pachymic acid increased the phosphorylation of insulin receptor substrate (IRS)-1, AKT and AMP-activated kinase (AMPK). The involvement of PI3K and AMPK in the action of pachymic acid was further confirmed as PI3K and AMPK inhibitors completely blocked the pachymic acid-mediated activities in adipocytes. In addition, pachymic acid was shown to induce triglyceride accumulation and inhibit lipolysis in differentiated adipocytes. Taken together, we demonstrated the insulin-like activities of this compound in stimulating glucose uptake, GLUT4 gene expression and translocation, and promoting triglyceride accumulation in adipocytes. Our study provides important insights into the underlying mechanism of hypoglycemic activity of P. cocos.
Collapse
Affiliation(s)
- Yu-Chuan Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
21
|
The pivotal role of protein kinase C zeta (PKCzeta) in insulin- and AMP-activated protein kinase (AMPK)-mediated glucose uptake in muscle cells. Cell Signal 2010; 22:1513-22. [PMID: 20570724 DOI: 10.1016/j.cellsig.2010.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/28/2010] [Accepted: 05/29/2010] [Indexed: 11/20/2022]
Abstract
Insulin and AMP-activated protein kinase (AMPK) signal pathways are involved in the regulation of glucose uptake. The integration of signals between these two pathways to maintain glucose homeostasis remains elusive. In this work, stimulation of insulin and berberine conferred a glucose uptake or surface glucose transporter 4 (GLUT4) translocation that was less than simple summation of their effects in insulin-sensitive muscle cells. Using specific inhibitors to key kinases of both pathways and PKCzeta small interference RNA, protein kinase C zeta (PKCzeta) was found to regulate insulin-stimulated protein kinase B (PKB) activation and inhibit AMPK activity on dorsal cell surface. In the presence of berberine, PKCzeta controlled AMPK activation and AMPK blocked PKB activity in perinuclear region. The inhibition effect of PKCzeta on AMPK activation or the arrestment of PKB activity by AMPK still existed in basal condition. These results suggest that there is antagonistic regulation between insulin and AMPK signal pathways, which is mediated by the switch roles of PKCzeta.
Collapse
|
22
|
Farese RV, Sajan MP. Metabolic functions of atypical protein kinase C: "good" and "bad" as defined by nutritional status. Am J Physiol Endocrinol Metab 2010; 298:E385-94. [PMID: 19996389 PMCID: PMC3774273 DOI: 10.1152/ajpendo.00608.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atypical protein kinase C (aPKC) isoforms mediate insulin effects on glucose transport in muscle and adipose tissues and lipid synthesis in liver and support other metabolic processes, expression of enzymes needed for islet insulin secretion and hepatic glucose production/release, CNS appetite suppression, and inflammatory responses. In muscle, selective aPKC deficiency impairs glucose uptake and produces insulin resistance and hyperinsulinemia, which, by activating hepatic aPKC, provokes inordinate increases in lipid synthesis and produces typical "metabolic syndrome" features. In contrast, hepatic aPKC deficiency diminishes lipid synthesis and protects against metabolic syndrome features. Unfortunately, aPKC is deficient in muscle but paradoxically conserved in liver in obesity and type 2 diabetes mellitus; this combination is particularly problematic because it promotes lipid and carbohydrate abnormalities. Accordingly, metabolic effects of aPKCs can be "good" or "bad," depending upon nutritional status; thus, muscle glucose uptake, islet insulin secretion, hepatic glucose and lipid production/release, and adipose fat synthesis/storage would be important for survival during periods of limited food availability and therefore be "good." However, during times of food surfeit, excessive activation of hepatic aPKC, whether caused by overnutrition or impairments in extrahepatic effects of insulin, would lead to inordinate increases in hepatic lipid synthesis and metabolic syndrome features and therefore be "bad." In keeping with these ideas, the inhibition of hepatic aPKC markedly ameliorates lipid and carbohydrate abnormalities in experimental models of obesity and type 2 diabetes. We postulate that a similar approach may be useful for treating humans.
Collapse
Affiliation(s)
- Robert V Farese
- James A. Haley Veteran's Administration Medical Center, Tampa, FL 33612, USA.
| | | |
Collapse
|
23
|
Khodosevich K, Monyer H. Signaling involved in neurite outgrowth of postnatally born subventricular zone neurons in vitro. BMC Neurosci 2010; 11:18. [PMID: 20146799 PMCID: PMC2831042 DOI: 10.1186/1471-2202-11-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/10/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neurite outgrowth is a key process during neuronal migration and differentiation. Complex intracellular signaling is involved in the initiation of neurite protrusion and subsequent elongation. Although, in general many constituents of the machinery involved in this multi-stage process are common for neurons in distinct brain areas, there are notable differences between specific neuronal subtypes. RESULTS We analyzed key intracellular components of neurite outgrowth signaling in postnatally born subventricular zone (SVZ) neurons in vitro. We showed that inhibitors of PI3K, Akt1, PKCzeta and small GTPases significantly reduced neurite outgrowth. Transfection of SVZ-derived neurons with inactive forms of Rac1 or Cdc42 also decreased neurite length whereas transfection with constitutively active forms of Rac1, Cdc42 or Akt1 as well as with full-length PI3K or PKCzeta increased neurite length. PI3K, Akt1 and PKCzeta acted upstream of the small GTPases Rac1 and Cdc42, which in turn modulate lamellipodia formation of SVZ-derived neurons. CONCLUSION We showed the involvement of PI3K/Akt1/PKCzeta/Rac1/Cdc42 pathway in neurite outgrowth of postnatally born SVZ neurons.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Department of Clinical Neurobiology, Interdisciplinary Center for Neuroscience, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | | |
Collapse
|
24
|
Prasad CNV, Anjana T, Banerji A, Gopalakrishnapillai A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett 2009; 584:531-6. [PMID: 19962377 DOI: 10.1016/j.febslet.2009.11.092] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/16/2009] [Accepted: 11/28/2009] [Indexed: 01/15/2023]
Abstract
GLUT4, a 12 transmembrane protein, plays a major role in insulin mediated glucose transport in muscle and adipocytes. For glucose transport, the GLUT4 protein needs to be translocated to the plasma membrane from the intracellular pool and it is possible that certain compounds may be able to enhance this process. In the present work, we have shown that gallic acid can increase GLUT4 translocation and glucose uptake activity in an Akt-independent but wortmannin-sensitive manner. Further analysis suggested the role of atypical protein kinase Czeta/lambda in gallic acid mediated GLUT4 translocation and glucose uptake.
Collapse
Affiliation(s)
- C N Vishnu Prasad
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | | | | | | |
Collapse
|
25
|
Oak S, Tran C, Castillo MO, Thamotharan S, Thamotharan M, Devaskar SU. Peroxisome proliferator-activated receptor-gamma agonist improves skeletal muscle insulin signaling in the pregestational intrauterine growth-restricted rat offspring. Am J Physiol Endocrinol Metab 2009; 297:E514-24. [PMID: 19491300 PMCID: PMC2724105 DOI: 10.1152/ajpendo.00008.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effect of early intervention with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on skeletal muscle GLUT4 translocation and insulin signaling was examined in intrauterine (IUGR) and postnatal (PNGR) growth-restricted pregestational female rat offspring. Rosiglitazone [11 mumol/day provided from postnatal day (PN)21 to PN60] improved skeletal muscle insulin sensitivity and GLUT4 translocation in prenatal nutrient restriction [50% calories from embryonic day (e)11 to e21; IUGR] with (IUGR+PNGR) and without (IUGR) postnatal nutrient restriction (50% calories from PN1 to PN21; PNGR) similar to that of control (ad libitum feeds throughout; Con) (n = 6 each). This was accomplished by diminished basal and improved insulin-responsive GLUT4 association with the plasma membrane in IUGR, IUGR+PNGR, and PNGR mimicking that in Con (P < 0.005). While no change in p85-phosphatidylinositol 3-kinase (PI3-K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was observed, a decrease in protein tyrosine phosphatase 1B (PTP1B; P < 0.0002) and SH2-containing protein tyrosine phosphatase 2 (SHP2; P < 0.05) contributing to the rosiglitazone-induced insulin sensitivity was seen only in IUGR+PNGR. In contrast, an increase in phosphorylated 5'-adenosine monophosphate kinase (pAMPK; P < 0.04) and insulin responsiveness of phosphorylated phosphoinositide-dependent protein kinase-1 (pPDK1; P < 0.05), pAkt (P < 0.01), and particularly pPKCzeta (P < 0.0001) and its corresponding enzyme activity (P < 0.005) were observed in all four experimental groups. We conclude that early introduction of PPARgamma agonist improved skeletal muscle activation of AMPK and insulin signaling, resulting in insulin-independent AMPK and insulin-responsive GLUT4 association with plasma membranes in IUGR, IUGR+PNGR, and PNGR adult offspring, similar to that of Con. These findings support a role for insulin sensitizers in preventing the subsequent development of gestational or type 2 diabetes mellitus in intrauterine and postnatal growth-restricted offspring.
Collapse
Affiliation(s)
- Shilpa Oak
- Department of Pediatrics, Division of Neonatology, Neonatal Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
26
|
Xie Z, Dong Y, Zhang J, Scholz R, Neumann D, Zou MH. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol 2009; 29:3582-96. [PMID: 19414597 PMCID: PMC2698771 DOI: 10.1128/mcb.01417-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/17/2008] [Accepted: 04/26/2009] [Indexed: 11/20/2022] Open
Abstract
LKB1, a master kinase that controls at least 13 downstream protein kinases including the AMP-activated protein kinase (AMPK), resides mainly in the nucleus. A key step in LKB1 activation is its export from the nucleus to the cytoplasm. Here, we identified S307 of LKB1 as a putative novel phosphorylation site which is essential for its nucleocytoplasmic transport. In a cell-free system, recombinant PKC-zeta phosphorylates LKB1 at S307. AMPK-activating agents stimulate PKC-zeta activity and LKB1 phosphorylation at S307 in endothelial cells, hepatocytes, skeletal muscle cells, and vascular smooth muscle cells. Like the kinase-dead LKB1 D194A mutant (mutation of Asp194 to Ala), the constitutively nucleus-localized LKB1 SL26 mutant and the LKB1 S307A mutant (Ser307 to Ala) exhibit a decreased association with STRAD alpha. Interestingly, the PKC-zeta consensus sequence surrounding LKB1 S307 is disrupted in the LKB1 SL26 mutant, thus providing a likely molecular explanation for this mutation causing LKB1 dysfunction. In addition, LKB1 nucleocytoplasmic transport and AMPK activation in response to peroxynitrite are markedly reduced by pharmacological inhibition of CRM1, which normally facilitates nuclear export of LKB1-STRAD complexes. In comparison to the LKB1 wild type, the S307A mutant complexes show reduced association with CRM1. Finally, adenoviral overexpression of wild-type LKB1 suppresses, while the LKB1 S307A mutant increases, tube formation and hydrogen peroxide-enhanced apoptosis in cultured endothelial cells. Taken together, our results suggest that, in multiple cell types the signaling pathways engaged by several physiological stimuli converge upon PKC-zeta-dependent LKB1 phosphorylation at S307, which directs the nucleocytoplasmic transport of LKB1 and consequent AMPK activation.
Collapse
Affiliation(s)
- Zhonglin Xie
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
27
|
Huentelman MJ, Stephan DA, Talboom J, Corneveaux JJ, Reiman DM, Gerber JD, Barnes CA, Alexander GE, Reiman EM, Bimonte-Nelson HA. Peripheral delivery of a ROCK inhibitor improves learning and working memory. Behav Neurosci 2009; 123:218-23. [PMID: 19170447 DOI: 10.1037/a0014260] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previously, utilizing a series of genome-wide association, brain imaging, and gene expression studies we implicated the KIBRA gene and the RhoA/ROCK pathway in hippocampal-mediated human memory. Here we show that peripheral administration of the ROCK inhibitor hydroxyfasudil improves spatial learning and working memory in the rodent model. This study supports the action of ROCK on learning and memory, suggests the potential value of ROCK inhibition for the promotion of cognition in humans, and highlights the powerful potential of unbiased genome-wide association studies to inform potential novel uses for existing pharmaceuticals.
Collapse
Affiliation(s)
- Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Insulin signaling at target tissues is essential for growth and development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative feedback control mechanism whereby downstream components inhibit upstream elements along the insulin-signaling pathway (autoregulation) or by signals from apparently unrelated pathways that inhibit insulin signaling thus leading to insulin resistance. Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues has emerged as a key step in these control processes under both physiological and pathological conditions. The list of IRS kinases implicated in the development of insulin resistance is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here, we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on "hot spot" domains. The flexibility vs. specificity features of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin signaling, insulin resistance and type 2 diabetes, an emerging epidemic of the 21st century are outlined.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
29
|
Boura-Halfon S, Zick Y. Serine kinases of insulin receptor substrate proteins. VITAMINS AND HORMONES 2009; 80:313-49. [PMID: 19251043 DOI: 10.1016/s0083-6729(08)00612-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling of insulin and insulin-like growth factor-I (IGF-1) at target tissues is essential for growth, development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative-feedback control mechanism, whereby downstream components inhibit upstream elements along the insulin and IGF-1 signaling pathway or by signals from other pathways that inhibit insulin/IGF-1 signaling thus leading to insulin/IGF-1 resistance. Phosphorylation of insulin receptor substrates (IRS) proteins on serine residues has emerged as a key step in these control processes both under physiological and pathological conditions. The list of IRS kinases is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on selected domains. The specificity of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin/IGF-1 signaling, insulin/IGF-1 resistance and diabetes, an emerging epidemic of the twenty-first century are outlined.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
30
|
Carranza A, Musolino PL, Villar M, Nowicki S. Signaling cascade of insulin-induced stimulation of L-dopa uptake in renal proximal tubule cells. Am J Physiol Cell Physiol 2008; 295:C1602-9. [PMID: 18842830 DOI: 10.1152/ajpcell.00090.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The inward l-dihydroxyphenylalanine (L-dopa) transport supplies renal proximal tubule cells (PTCs) with the precursor for dopamine synthesis. We have previously described insulin-induced stimulation of L-dopa uptake into PTCs. In the present paper we examined insulin-related signaling pathways involved in the increase of l-dopa transport into isolated rat PTCs. Insulin (50-500 microU/ml) increased L-dopa uptake by PTCs, reaching the maximal increment (60% over the control) at 200 microU/ml. At this concentration, insulin also increased insulin receptor tyrosine phosphorylation. Both effects were abrogated by the tyrosine kinase inhibitor genistein (5 microM). In line, inhibition of the protein tyrosine phosphatase by pervanadate (0.2-100 microM) caused a concentration-dependent increase in both the uptake of L-dopa (up to 400%) and protein tyrosine phosphorylation. A synergistic effect between pervanadate and insulin on L-dopa uptake was observed only when threshold (0.2 microM), but not maximal (5 microM), concentrations of pervanadate were assayed. Insulin-induced stimulation of L-dopa uptake was also abolished by inhibition of phosphatidylinositol 3-kinase (PI3K; 100 nM wortmannin, and 25 microM LY-294002) and protein kinase C (PKC; 1 microM RO-318220). Insulin-induced activation of PKC-zeta was confirmed in vitro by its translocation from the cytosol to the membrane fraction, and in vivo by immunohistochemistry studies. Insulin caused a wortmannin-sensitive increase in Akt/protein kinase B (Akt/PKB) phosphorylation and a dose-dependent translocation of Akt/PKB to the membrane fraction. Our findings suggest that insulin activates PKC-zeta, and Akt/PKB downstream of PI3K, and that these pathways contribute to the insulin-induced increase of L-dopa uptake into PTCs.
Collapse
Affiliation(s)
- Andrea Carranza
- Centro de Investigaciones Endocrinológicas, Consejos Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
31
|
Bisht B, Dey CS. Focal Adhesion Kinase contributes to insulin-induced actin reorganization into a mesh harboring Glucose transporter-4 in insulin resistant skeletal muscle cells. BMC Cell Biol 2008; 9:48. [PMID: 18771597 PMCID: PMC2551595 DOI: 10.1186/1471-2121-9-48] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 09/04/2008] [Indexed: 01/04/2023] Open
Abstract
Background Focal Adhesion Kinase (FAK) is recently reported to regulate insulin resistance by regulating glucose uptake in C2C12 skeletal muscle cells. However, the underlying mechanism for FAK-mediated glucose transporter-4 translocation (Glut-4), responsible for glucose uptake, remains unknown. Recently actin remodeling was reported to be essential for Glut-4 translocation. Therefore, we investigated whether FAK contributes to insulin-induced actin remodeling and harbor Glut-4 for glucose transport and whether downregulation of FAK affects the remodeling and causes insulin resistance. Results To address the issue we employed two approaches: gain of function by overexpressing FAK and loss of function by siRNA-mediated silencing of FAK. We observed that overexpression of FAK induces actin remodeling in skeletal muscle cells in presence of insulin. Concomitant to this Glut-4 molecules were also observed to be present in the vicinity of remodeled actin, as indicated by the colocalization studies. FAK-mediated actin remodeling resulted into subsequent glucose uptake via PI3K-dependent pathway. On the other hand FAK silencing reduced actin remodeling affecting Glut-4 translocation resulting into insulin resistance. Conclusion The data confirms that FAK regulates glucose uptake through actin reorganization in skeletal muscle. FAK overexpression supports actin remodeling and subsequent glucose uptake in a PI3K dependent manner. Inhibition of FAK prevents insulin-stimulated remodeling of actin filaments resulting into decreased Glut-4 translocation and glucose uptake generating insulin resistance. To our knowledge this is the first study relating FAK, actin remodeling, Glut-4 translocation and glucose uptake and their interrelationship in generating insulin resistance.
Collapse
Affiliation(s)
- Bharti Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India.
| | | |
Collapse
|
32
|
Saito M, Lessard SJ, Rivas DA, Reeder DW, Hawley JA, Yaspelkis BB. Activation of atypical protein kinase Czeta toward TC10 is regulated by high-fat diet and aerobic exercise in skeletal muscle. Metabolism 2008; 57:1173-80. [PMID: 18702941 PMCID: PMC2597576 DOI: 10.1016/j.metabol.2008.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 03/04/2008] [Indexed: 12/29/2022]
Abstract
We determined whether sustained aerobic exercise reverses high-fat diet-induced impairments in the c-Cbl associated protein (CAP)/Casitas b-lineage lymphoma (c-Cbl) signaling cascade in rodent skeletal muscle. Sprague-Dawley rats were placed into either control (n = 16) or high-fat-fed (n = 32) diet groups for 4 weeks. During a subsequent 4-week experimental period, 16 high-fat-fed rats remained sedentary, 16 high-fat-fed rats completed 4 weeks of exercise training, and control animals were sedentary and remained on the control diet. After the intervention period, animals were subjected to hind limb perfusions in the presence (n = 8 per group) or absence (n = 8 per group) of insulin. In the plasma membrane fractions, neither high-fat feeding nor exercise training altered adaptor protein with PH and SH2 domains, (APS), c-Cbl, or TC10 protein concentrations. In contrast, CAP protein concentration and insulin-stimulated plasma membrane c-Cbl tyrosine phosphorylation were reduced by high-fat feeding; but exercise training reversed these impairments. Of note was that insulin-stimulated atypical protein kinase Czeta kinase activity toward TC10 was reduced by high-fat feeding but normalized by exercise training. We conclude that sustained (4 weeks) exercise training can reverse high-fat diet-induced impairments on the CAP/c-Cbl pathway in high-fat-fed rodent skeletal muscle. We also provide the first evidence that the CAP/c-Cbl insulin signaling cascade in skeletal muscle may directly interact with components of the classic (phosphoinositide 3-kinase dependent) insulin signaling cascade.
Collapse
Affiliation(s)
- Misato Saito
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, CA 91330-8287, USA
| | | | | | | | | | | |
Collapse
|
33
|
Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 2008; 413:201-15. [DOI: 10.1042/bj20080723] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.
Collapse
|
34
|
Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 2008; 29:381-402. [PMID: 18451260 PMCID: PMC2528849 DOI: 10.1210/er.2007-0025] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and dyslipidemia are risk factors for metabolic disorders including diabetes and cardiovascular disease. Sphingolipids such as ceramide and glucosylceramides, while being a relatively minor component of the lipid milieu in most tissues, may be among the most pathogenic lipids in the onset of the sequelae associated with excess adiposity. Circulating factors associated with obesity (e.g., saturated fatty acids, inflammatory cytokines) selectively induce enzymes that promote sphingolipid synthesis, and lipidomic profiling reveals relationships between tissue sphingolipid levels and certain metabolic diseases. Moreover, studies in cultured cells and isolated tissues implicate sphingolipids in certain cellular events associated with diabetes and cardiovascular disease, including insulin resistance, pancreatic beta-cell failure, cardiomyopathy, and vascular dysfunction. However, definitive evidence that sphingolipids contribute to insulin resistance, diabetes, and atherosclerosis has come only recently, as researchers have found that pharmacological inhibition or genetic ablation of enzymes controlling sphingolipid synthesis in rodents ameliorates each of these conditions. Herein we will review the role of ceramide and other sphingolipid metabolites in insulin resistance, beta-cell failure, cardiomyopathy, and vascular dysfunction, focusing on these in vivo studies that identify enzymes controlling sphingolipid metabolism as therapeutic targets for combating metabolic disease.
Collapse
Affiliation(s)
- William L Holland
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
35
|
Song P, Xie Z, Wu Y, Xu J, Dong Y, Zou MH. Protein kinase Czeta-dependent LKB1 serine 428 phosphorylation increases LKB1 nucleus export and apoptosis in endothelial cells. J Biol Chem 2008; 283:12446-55. [PMID: 18321849 DOI: 10.1074/jbc.m708208200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LKB1 is a serine-threonine protein kinase that, when inhibited, may result in unregulated cell growth and tumor formation. However, how LKB1 is regulated remains poorly understood. The aim of the present study was to define the upstream signaling events responsible for peroxynitrite (ONOO(-))-induced LKB1 activation. Exposure of cultured human umbilical vein endothelial cells to a low concentration of ONOO(-) (5 microM) significantly increased the phosphorylation of LKB1 at Ser(428) and protein kinase Czeta (PKCzeta) at Thr(410). These effects were accompanied by increased activity of the lipid phosphatase PTEN, decreased activity and phosphorylation (Ser(473)) of Akt, and induction of apoptosis. ONOO(-) enhanced Akt-Ser(473) phosphorylation in LKB1-deficient HeLa S3 cells or in HeLa S3 cells transfected with kinase-dead LKB1. Conversely, ONOO(-) inhibited Akt Ser(473) phosphorylation when wild type LKB1 were reintroduced in HeLa S3 cells. Further analysis revealed that PKCzeta directly phosphorylated LKB1 at Ser(428) in vitro and in intact cells, resulting in increased PTEN phosphorylation at Ser(380)/Thr(382/383). Finally, ONOO(-) enhanced PKCzeta nuclear import and LKB1 nuclear export. We conclude that PKCzeta mediates LKB1-dependent Akt inhibition in response to ONOO(-), resulting in endothelial apoptosis.
Collapse
Affiliation(s)
- Ping Song
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | | | | | | | | | | |
Collapse
|
36
|
Scott G, Fricke A, Fender A, McClelland L, Jacobs S. Prostaglandin E2 regulates melanocyte dendrite formation through activation of PKCzeta. Exp Cell Res 2007; 313:3840-50. [PMID: 17850789 PMCID: PMC2330264 DOI: 10.1016/j.yexcr.2007.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 07/05/2007] [Accepted: 07/30/2007] [Indexed: 12/11/2022]
Abstract
Prostaglandins are lipid signaling intermediates released by keratinocytes in response to ultraviolet irradiation (UVR) in the skin. The main prostaglandin released following UVR is PGE(2), a ligand for 4 related G-protein-coupled receptors (EP(1), EP(2), EP(3) and EP(4)). Our previous work established that PGE(2) stimulates melanocyte dendrite formation through activation of the EP(1) and EP(3) receptors. The purpose of the present report is to define the signaling intermediates involved in EP(1)- and EP(3)-dependent dendrite formation in human melanocytes. We recently showed that activation of the atypical PKCzeta isoform stimulates melanocyte dendricity in response to treatment with lysophosphatidylcholine. We therefore examined the potential contribution of PKCzeta activation on EP(1)- and EP(3)-dependent dendrite formation in melanocytes. Stimulation of the EP(1) and EP(3) receptors by selective agonists activated PKCzeta, and inhibition of PKCzeta activation abrogated EP(1)- and EP(3)-receptor-mediated melanocyte dendricity. Because of the importance of Rho-GTP binding proteins in the regulation of melanocyte dendricity, we also examined the effect of EP(1) and EP(3) receptor activation on Rac and Rho activity. Neither Rac nor Rho was activated upon treatment with EP(1,3)-receptor agonists. We show that melanocytes express only the EP(3A1) isoform, but not the EP(3B) receptor isoform, previously associated with Rho activation, consistent with a lack of Rho stimulation by EP(3) agonists. Our data suggest that PKCzeta activation plays a predominant role in regulation of PGE(2)-dependent melanocyte dendricity.
Collapse
Affiliation(s)
- Glynis Scott
- Department of Dermatology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
37
|
Moreno L, Frazziano G, Cogolludo A, Cobeño L, Tamargo J, Perez-Vizcaino F. Role of protein kinase Czeta and its adaptor protein p62 in voltage-gated potassium channel modulation in pulmonary arteries. Mol Pharmacol 2007; 72:1301-9. [PMID: 17699685 DOI: 10.1124/mol.107.037002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated potassium (K(V)) channels play an essential role in regulating pulmonary artery function, and they underpin the phenomenon of hypoxic pulmonary vasoconstriction. Pulmonary hypertension is characterized by inappropriate vasoconstriction, vascular remodeling, and dysfunctional K(V) channels. In the current study, we aimed to elucidate the role of PKCzeta and its adaptor protein p62 in the modulation of K(V) channels. We report that the thromboxane A(2) analog 9,11-dideoxy-11alpha,9alpha-epoxymethano-prostaglandin F(2alpha) methyl acetate (U46619) inhibited K(V) currents in isolated mice pulmonary artery myocytes and the K(V) current carried by human cloned K(V)1.5 channels expressed in Ltk(-) cells. Using protein kinase C (PKC)zeta(-/-) and p62(-/-) mice, we demonstrate that these two proteins are involved in the K(V) channel inhibition. PKCzeta coimmunoprecipitated with K(V)1.5, and this interaction was markedly reduced in p62(-/-) mice. Pulmonary arteries from PKCzeta(-/-) mice also showed a diminished [Ca(2+)](i) and contractile response, whereas genetic inactivation of p62(-/-) resulted in an absent [Ca(2+)](i) response, but it preserved contractile response to U46619. These data demonstrate that PKCzeta and its adaptor protein p62 play a key role in the modulation of K(V) channel function in pulmonary arteries. These observations identify PKCzeta and/or p62 as potential therapeutic targets for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Laura Moreno
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Miele C, Paturzo F, Teperino R, Sakane F, Fiory F, Oriente F, Ungaro P, Valentino R, Beguinot F, Formisano P. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization. J Biol Chem 2007; 282:31835-43. [PMID: 17675299 DOI: 10.1074/jbc.m702481200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-alpha (PKCalpha) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms alpha and delta, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKdelta, but not of DGKalpha expression, was sufficient to prevent the effect of high glucose on PKCalpha activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCalpha activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism.
Collapse
Affiliation(s)
- Claudia Miele
- Dipartimento di Biologia e Patologia Cellulare e Molecolare & Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Federico II University of Naples, Via Pansini 5, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hou JC, Pessin JE. Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking. Curr Opin Cell Biol 2007; 19:466-73. [PMID: 17644329 PMCID: PMC2041936 DOI: 10.1016/j.ceb.2007.04.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 12/21/2022]
Abstract
Glucose transporter 4 (GLUT4) is the major insulin-regulated glucose transporter expressed mainly in muscle and adipose tissue. GLUT4 is stored in a poorly characterized intracellular vesicular compartment and translocates to the cell surface in response to insulin stimulation resulting in an increased glucose uptake. This process is essential for the maintenance of normal glucose homeostasis and involves a complex interplay of trafficking events and intracellular signaling cascades. Recent studies have identified sortilin as an essential element for the formation of GLUT4 storage vesicles during adipogenesis and Golgi-localized gamma-ear-containing Arf-binding protein (GGA) as a key coat adaptor for the entry of newly synthesized GLUT4 into the specialized compartment. Insulin-stimulated GLUT4 translocation from this compartment to the plasma membrane appears to require the Akt/protein kinase B substrate termed AS160 (Akt substrate of 160kDa). In addition, the VPS9 domain-containing protein Gapex-5 in complex with CIP4 appears to function as a Rab31 guanylnucleotide exchange factor that is necessary for insulin-stimulated GLUT4 translocation. Here, we attempt to summarize recent advances in GLUT4 vesicle biogenesis, intracellular trafficking and membrane fusion.
Collapse
Affiliation(s)
- June Chunqiu Hou
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
40
|
Liu XJ, Yang C, Gupta N, Zuo J, Chang YS, Fang FD. Protein kinase C-zeta regulation of GLUT4 translocation through actin remodeling in CHO cells. J Mol Med (Berl) 2007; 85:851-61. [PMID: 17619838 DOI: 10.1007/s00109-007-0232-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/25/2007] [Accepted: 05/31/2007] [Indexed: 01/08/2023]
Abstract
Actin remodeling plays a crucial role in insulin-induced translocation of glucose transporter 4 (GLUT4) from the cytoplasm to the plasma membrane and subsequent glucose transport. Protein kinase C (PKC) zeta has been implicated in this translocation process, although the exact mechanism remains unknown. In this study, we investigated the effect of PKCzeta on actin cytoskeleton and translocation of GLUT4 in CHO-K1 cells expressing myc-tagged GLUT4. Insulin stimulated the phosphorylation of PKCzeta at Thr410 with no apparent effect on its protein expression. Moreover, insulin promoted colocalization of PKCzeta and actin that could be abolished by Latrunculin B. The overexpression of PKCzeta mimicked the insulin-induced change in actin cytoskeleton and translocation of GLUT4. These effects were also completely abrogated by Latrunculin B treatment. Using cell-permeable pseudosubstrate (PS) inhibitor of PKCzeta, the response to insulin could be alleviated. Our results strongly suggest that PKCzeta mediates the stimulatory effect of insulin on GLUT4 translocation through its interaction with actin cytoskeleton.
Collapse
Affiliation(s)
- Xiao-Jun Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
41
|
Scott GA, Arioka M, Jacobs SE. Lysophosphatidylcholine mediates melanocyte dendricity through PKCzeta activation. J Invest Dermatol 2006; 127:668-75. [PMID: 17024099 DOI: 10.1038/sj.jid.5700567] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Melanocytes photoprotect the skin through transfer of melanin-containing melanosomes to keratinocytes. Factors that increase melanocyte dendricity increase melanosome transfer, and are important for prevention of skin cancer. Secretory phospholipase-A2 type X (sPLA2-X) is released by epidermal keratinocytes and we have shown that lysophosphatidylcholine (LPC), the main lysophospholipid released in response to sPLA2-X activity, stimulates melanocyte dendricity. LPC activates protein kinase C (PKC) and increases cAMP in other cells. Treatment of melanocytes with sPLA2-X or LPC induced phosphorylation of the zeta isoform of PKC, and inhibition of protein kinase C zeta (PKCzeta) activity abrogated LPC-dependent dendricity. We have shown previously that the guanosine triphosphate-binding proteins Rac and Rho link hormone signaling and dendricity in melanocytes. Treatment of melanocytes with LPC induced rapid activation of Rac that peaked at 30 minutes; Rho was also activated, but peaked earlier and declined faster. Through the use of constitutively active mutants of Rac, we show that PKCzeta activation is downstream of Rac. We conclude that the primary signaling pathway for LPC-dependent dendrite formation in human melanocytes involves the activation of PKCzeta and that PKCzeta phosphorylation is Rac dependent. Downstream mediators of LPC-dependent dendricity include Rac and Rho.
Collapse
Affiliation(s)
- Glynis A Scott
- Department of Dermatology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
42
|
He A, Liu X, Liu L, Chang Y, Fang F. How many signals impinge on GLUT4 activation by insulin? Cell Signal 2006; 19:1-7. [PMID: 16919913 DOI: 10.1016/j.cellsig.2006.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 05/23/2006] [Indexed: 01/26/2023]
Abstract
GLUT4 is the main glucose transporter activated by insulin in skeletal muscle cells and adipocytes. GLUT4 storage vesicles (GSVs) traffic in endocytic and exocytic compartments. In the basal state, GLUT4 compartments are preferentially sequestered in perinuclear deposits wherein stimuli including insulin and non-insulin factors can increase GLUT4 vesicle formation, its exocytosis, and fusion to plasma membrane. In addition to well-established effectors of insulin signaling pathway, such as PKCzeta and Akt, the cytoskeletal network is implicated in GLUT4 translocation. This review will discuss the mechanisms and activation of GLUT4 trafficking and incorporating to PM from three aspects: known molecules of the insulin signaling pathway; Rho and Rab family proteins and cytoskeletal molecules.
Collapse
Affiliation(s)
- Aibin He
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | |
Collapse
|