1
|
Olabode AS, Mumby MJ, Wild TA, Muñoz-Baena L, Dikeakos JD, Poon AFY. Phylogenetic Reconstruction and Functional Characterization of the Ancestral Nef Protein of Primate Lentiviruses. Mol Biol Evol 2023; 40:msad164. [PMID: 37463439 PMCID: PMC10400143 DOI: 10.1093/molbev/msad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Nef is an accessory protein unique to the primate HIV-1, HIV-2, and SIV lentiviruses. During infection, Nef functions by interacting with multiple host proteins within infected cells to evade the immune response and enhance virion infectivity. Notably, Nef can counter immune regulators such as CD4 and MHC-I, as well as the SERINC5 restriction factor in infected cells. In this study, we generated a posterior sample of time-scaled phylogenies relating SIV and HIV Nef sequences, followed by reconstruction of ancestral sequences at the root and internal nodes of the sampled trees up to the HIV-1 Group M ancestor. Upon expression of the ancestral primate lentivirus Nef protein within CD4+ HeLa cells, flow cytometry analysis revealed that the primate lentivirus Nef ancestor robustly downregulated cell-surface SERINC5, yet only partially downregulated CD4 from the cell surface. Further analysis revealed that the Nef-mediated CD4 downregulation ability evolved gradually, while Nef-mediated SERINC5 downregulation was recovered abruptly in the HIV-1/M ancestor. Overall, this study provides a framework to reconstruct ancestral viral proteins and enable the functional characterization of these proteins to delineate how functions could have changed throughout evolutionary history.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Department of Pathology & Laboratory Medicine, Western University, London, Canada
| | - Mitchell J Mumby
- Department of Microbiology & Immunology, Western University, London, Canada
| | - Tristan A Wild
- Department of Microbiology & Immunology, Western University, London, Canada
| | - Laura Muñoz-Baena
- Department of Microbiology & Immunology, Western University, London, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology & Immunology, Western University, London, Canada
| | - Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, London, Canada
- Department of Microbiology & Immunology, Western University, London, Canada
- Department of Computer Science, Western University, London, Canada
| |
Collapse
|
2
|
Heinrich F, Thomas CE, Alvarado JJ, Eells R, Thomas A, Doucet M, Whitlatch KN, Aryal M, Lösche M, Smithgall TE. Neutron Reflectometry and Molecular Simulations Demonstrate HIV-1 Nef Homodimer Formation on Model Lipid Bilayers. J Mol Biol 2023; 435:168009. [PMID: 36773691 PMCID: PMC10079580 DOI: 10.1016/j.jmb.2023.168009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The HIV-1 Nef protein plays a critical role in viral infectivity, high-titer replication in vivo, and immune escape of HIV-infected cells. Nef lacks intrinsic biochemical activity, functioning instead through interactions with diverse host cell signaling proteins and intracellular trafficking pathways. Previous studies have established an essential role for Nef homodimer formation at the plasma membrane for most if not all its functions. Here we combined neutron reflectometry of full-length myristoylated Nef bound to model lipid bilayers with molecular simulations based on previous X-ray crystal structures of Nef homodimers. This integrated approach provides direct evidence that Nef associates with the membrane as a homodimer with its structured core region displaced from the membrane for partner protein engagement. Parallel studies of a dimerization-defective mutant, Nef-L112D, demonstrate that the helical dimerization interface present in previous crystal structures stabilizes the membrane-bound dimer. X-ray crystallography of the Nef-L112D mutant in complex with the SH3 domain of the Nef-associated host cell kinase Hck revealed a monomeric 1:1 complex instead of the 2:2 dimer complex formed with wild-type Nef. Importantly, the crystal structure of the Nef-L112D core and SH3 interface are virtually identical to the wild-type complex, indicating that this mutation does not affect the overall Nef fold. These findings support the intrinsic capacity of Nef to homodimerize at lipid bilayers using structural features present in X-ray crystal structures of dimeric complexes.
Collapse
Affiliation(s)
- Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, Gaithersburg, MD 20899, USA
| | - Catherine E Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Rebecca Eells
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alyssa Thomas
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kindra N Whitlatch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Manish Aryal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, Gaithersburg, MD 20899, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
3
|
Lubow J, Virgilio MC, Merlino M, Collins DR, Mashiba M, Peterson BG, Lukic Z, Painter MM, Gomez-Rivera F, Terry V, Zimmerman G, Collins KL. Mannose receptor is an HIV restriction factor counteracted by Vpr in macrophages. eLife 2020; 9:e51035. [PMID: 32119644 PMCID: PMC7051176 DOI: 10.7554/elife.51035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 Vpr is necessary for maximal HIV infection and spread in macrophages. Evolutionary conservation of Vpr suggests an important yet poorly understood role for macrophages in HIV pathogenesis. Vpr counteracts a previously unknown macrophage-specific restriction factor that targets and reduces the expression of HIV Env. Here, we report that the macrophage mannose receptor (MR), is a restriction factor targeting Env in primary human monocyte-derived macrophages. Vpr acts synergistically with HIV Nef to target distinct stages of the MR biosynthetic pathway and dramatically reduce MR expression. Silencing MR or deleting mannose residues on Env rescues Env expression in HIV-1-infected macrophages lacking Vpr. However, we also show that disrupting interactions between Env and MR reduces initial infection of macrophages by cell-free virus. Together these results reveal a Vpr-Nef-Env axis that hijacks a host mannose-MR response system to facilitate infection while evading MR's normal role, which is to trap and destroy mannose-expressing pathogens.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Maria C Virgilio
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
| | - Madeline Merlino
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - David R Collins
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Michael Mashiba
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | - Brian G Peterson
- Department of Biological ChemistryUniversity of MichiganAnn ArborUnited States
| | - Zana Lukic
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Mark M Painter
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | | | - Valeri Terry
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Gretchen Zimmerman
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| |
Collapse
|
4
|
Abstract
The accessory protein Nef of human immunodeficiency virus (HIV) is a primary determinant of viral pathogenesis. Nef is abundantly expressed during infection and reroutes a variety of cell surface proteins to disrupt host immunity and promote the viral replication cycle. Nef counteracts host defenses by sequestering and/or degrading its targets via the endocytic and secretory pathways. Nef does this by physically engaging a number of host trafficking proteins. Substantial progress has been achieved in identifying the targets of Nef, and a structural and mechanistic understanding of Nef's ability to command the protein trafficking machinery has recently started to coalesce. Comparative analysis of HIV and simian immunodeficiency virus (SIV) Nef proteins in the context of recent structural advances sheds further light on both viral evolution and the mechanisms whereby trafficking is hijacked. This review describes how advances in cell and structural biology are uncovering in growing detail how Nef subverts the host immune system, facilitates virus release, and enhances viral infectivity.
Collapse
|
5
|
Usmani SM, Murooka TT, Deruaz M, Koh WH, Sharaf RR, Di Pilato M, Power KA, Lopez P, Hnatiuk R, Vrbanac VD, Tager AM, Allen TM, Luster AD, Mempel TR. HIV-1 Balances the Fitness Costs and Benefits of Disrupting the Host Cell Actin Cytoskeleton Early after Mucosal Transmission. Cell Host Microbe 2019; 25:73-86.e5. [PMID: 30629922 DOI: 10.1016/j.chom.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/11/2018] [Accepted: 12/11/2018] [Indexed: 01/23/2023]
Abstract
HIV-1 primarily infects T lymphocytes and uses these motile cells as migratory vehicles for effective dissemination in the host. Paradoxically, the virus at the same time disrupts multiple cellular processes underlying lymphocyte motility, seemingly counterproductive to rapid systemic infection. Here we show by intravital microscopy in humanized mice that perturbation of the actin cytoskeleton via the lentiviral protein Nef, and not changes to chemokine receptor expression or function, is the dominant cause of dysregulated infected T cell motility in lymphoid tissue by preventing stable cellular polarization required for fast migration. Accordingly, disrupting the Nef hydrophobic patch that facilitates actin cytoskeletal perturbation initially accelerates systemic viral dissemination after female genital transmission. However, the same feature of Nef was subsequently critical for viral persistence in immune-competent hosts. Therefore, a highly conserved activity of lentiviral Nef proteins has dual effects and imposes both fitness costs and benefits on the virus at different stages of infection.
Collapse
Affiliation(s)
- Shariq M Usmani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thomas T Murooka
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Maud Deruaz
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Wan Hon Koh
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Radwa R Sharaf
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen A Power
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Paul Lopez
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Ryan Hnatiuk
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Vladimir D Vrbanac
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Todd M Allen
- Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Pereira EA, daSilva LLP. HIV-1 Nef: Taking Control of Protein Trafficking. Traffic 2016; 17:976-96. [PMID: 27161574 DOI: 10.1111/tra.12412] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/25/2022]
Abstract
The Nef protein of the human immunodeficiency virus is a crucial determinant of viral pathogenesis and disease progression. Nef is abundantly expressed early in infection and is thought to optimize the cellular environment for viral replication. Nef controls expression levels of various cell surface molecules that play important roles in immunity and virus life cycle, by directly interfering with the itinerary of these proteins within the endocytic and late secretory pathways. To exert these functions, Nef physically interacts with host proteins that regulate protein trafficking. In recent years, considerable progress was made in identifying host-cell-interacting partners for Nef, and the molecular machinery used by Nef to interfere with protein trafficking has started to be unraveled. Here, we briefly review the knowledge gained and discuss new findings regarding the mechanisms by which Nef modifies the intracellular trafficking pathways to prevent antigen presentation, facilitate viral particle release and enhance the infectivity of HIV-1 virions.
Collapse
Affiliation(s)
- Estela A Pereira
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Pawlak EN, Dikeakos JD. HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion. Biochim Biophys Acta Gen Subj 2015; 1850:733-41. [PMID: 25585010 DOI: 10.1016/j.bbagen.2015.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 01/06/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Many viral genomes encode a limited number of proteins, illustrating their innate efficiency in bypassing host immune surveillance. This concept of genomic efficiency is exemplified by the 9 kb RNA genome of human immunodeficiency virus 1 (HIV-1), encoding 15 proteins sub-divided according to function. The enzymatic group includes proteins such as the drug targets reverse transcriptase and protease. In contrast, the accessory proteins lack any known enzymatic or structural function, yet are essential for viral fitness and HIV-1 pathogenesis. Of these, the HIV-1 accessory protein Nef is a master manipulator of host cellular processes, ensuring efficient counterattack against the host immune response, as well as long-term evasion of immune surveillance. In particular, the ability of Nef to downmodulate major histocompatibility complex class I (MHC-I) is a key cellular event that enables HIV-1 to bypass the host's defenses by evading the adaptive immune response. SCOPE OF REVIEW In this article, we briefly review how various pathogenic viruses control cell-surface MHC-I, and then focus on the mechanisms and implications of HIV-1 Nef-mediated MHC-I downregulation via modulation of the host membrane trafficking machinery. CONCLUSION The extensive interaction network formed between Nef and numerous membrane trafficking regulators suggests that Nef's role in evading the immune surveillance system intersects multiple host membrane trafficking pathways. SIGNIFICANCE Nef's ability to evade the immune surveillance system is linked to AIDS pathogenesis. Thus, a complete understanding of the molecular pathways that are subverted by Nef in order to downregulate MHC-I will enhance our understanding of HIV-1's progression to AIDS.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.
| |
Collapse
|
8
|
HIV-1 Nef and Vpu are functionally redundant broad-spectrum modulators of cell surface receptors, including tetraspanins. J Virol 2014; 88:14241-57. [PMID: 25275127 DOI: 10.1128/jvi.02333-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED HIV-1 Nef and Vpu are thought to optimize virus replication in the infected host, at least in part via their ability to interfere with vesicular host cell trafficking. Despite the use of distinct molecular mechanisms, Nef and Vpu share specificity for some molecules such as CD4 and major histocompatibility complex class I (MHC-I), while disruption of intracellular transport of the host cell restriction factor CD317/tetherin represents a specialized activity of Vpu not exerted by HIV-1 Nef. To establish a profile of host cell receptors whose intracellular transport is affected by Nef, Vpu, or both, we comprehensively analyzed the effect of these accessory viral proteins on cell surface receptor levels on A3.01 T lymphocytes. Thirty-six out of 105 detectable receptors were significantly downregulated by HIV-1 Nef, revealing a previously unappreciated scope with which HIV-1 Nef remodels the cell surface of infected cells. Remarkably, the effects of HIV-1 Vpu on host cell receptor exposure largely matched those of HIV-1 Nef in breadth and specificity (32 of 105, all also targeted by Nef), even though the magnitude was generally less pronounced. Of particular note, cell surface exposure of all members of the tetraspanin (TSPAN) protein family analyzed was reduced by both Nef and Vpu, and the viral proteins triggered the enrichment of TSPANs in a perinuclear area of the cell. While Vpu displayed significant colocalization and physical association with TSPANs, interactions of Nef with TSPANs were less robust. TSPANs thus emerge as a major target of deregulation in host cell vesicular transport by HIV-1 Nef and Vpu. The conservation of this activity in two independent accessory proteins suggests its importance for the spread of HIV-1 in the infected host. IMPORTANCE In this paper, we define that HIV-1 Nef and Vpu display a surprising functional overlap and affect the cell surface exposure of a previously unexpected breadth of cellular receptors. Our analyses furthermore identify the tetraspanin protein family as a previously unrecognized target of Nef and Vpu activity. These findings have implications for the interpretation of effects detected for these accessory gene products on individual host cell receptors and illustrate the coevolution of Nef and Vpu function.
Collapse
|
9
|
Sopper S, Mätz-Rensing K, Mühl T, Heeney J, Stahl-Hennig C, Sauermann U. Host factors determine differential disease progression after infection with nef-deleted simian immunodeficiency virus. J Gen Virol 2014; 95:2273-2284. [PMID: 24928910 PMCID: PMC4165933 DOI: 10.1099/vir.0.066563-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Infection of macaques with live attenuated simian immunodeficiency virus (SIV) usually results in long-lasting efficient protection against infection with pathogenic immunodeficiency viruses. However, attenuation by deletion of regulatory genes such as nef is not complete, leading to a high viral load and fatal disease in some animals. To characterize immunological parameters and polymorphic host factors, we studied 17 rhesus macaques infected with attenuated SIVmac239ΔNU. Eight animals were able to control viral replication, whereas the remaining animals (non-controllers) displayed variable set-point viral loads. Peak viral load at 2 weeks post-infection (p.i.) correlated significantly with set-point viral load (P<0.0001). CD4(+) T-cell frequencies differed significantly soon after infection between controllers and non-controllers. Abnormal B-cell activation previously ascribed to Nef function could already be observed in non-controllers 8 weeks after infection despite the absence of Nef. Two non-controllers developed an AIDS-like disease within 102 weeks p.i. Virus from these animals transmitted to naïve animals replicated at low levels and the recipients did not develop immunodeficiency. This suggested that host factors determined differential viral load and subsequent disease course. Known Mhc class I alleles associated with disease progression in SIV WT infection only marginally influenced the viral load in Δnef-infected animals. Protection from SIVmac251 was associated with homozygosity for MHC class II in conjunction with a TLR7 polymorphism and showed a trend with initial viral replication. We speculated that host factors whose effects were usually masked by Nef were responsible for the different disease courses in individual animals upon infection with nef-deleted viruses.
Collapse
Affiliation(s)
- Sieghart Sopper
- Tumor Immunology Lab, Hematology and Oncology, Medical University Innsbruck and Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Thorsten Mühl
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| | - Jonathan Heeney
- Department of Veterinary Medicine, The University of Cambridge, Cambridge, UK
| | - Christiane Stahl-Hennig
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| |
Collapse
|
10
|
Chandrasekaran P, Moore V, Buckley M, Spurrier J, Kehrl JH, Venkatesan S. HIV-1 Nef down-modulates C-C and C-X-C chemokine receptors via ubiquitin and ubiquitin-independent mechanism. PLoS One 2014; 9:e86998. [PMID: 24489825 PMCID: PMC3906104 DOI: 10.1371/journal.pone.0086998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/16/2013] [Indexed: 12/29/2022] Open
Abstract
Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV) encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs). Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1) degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.
Collapse
Affiliation(s)
- Prabha Chandrasekaran
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Victoria Moore
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Monica Buckley
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Spurrier
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John H. Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sundararajan Venkatesan
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chandrasekaran P, Buckley M, Moore V, Wang LQ, Kehrl JH, Venkatesan S. HIV-1 Nef impairs heterotrimeric G-protein signaling by targeting Gα(i2) for degradation through ubiquitination. J Biol Chem 2012; 287:41481-98. [PMID: 23071112 DOI: 10.1074/jbc.m112.361782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV Nef protein is an important pathogenic factor that modulates cell surface receptor trafficking and impairs cell motility, presumably by interfering at multiple steps with chemotactic receptor signaling. Here, we report that a dominant effect of Nef is to trigger AIP4 E3 ligase-mediated Gα(i2) ubiquitination, which leads to Gα(i2) endolysosomal sequestration and destruction. The loss of the Gα(i2) subunit was demonstrable in many cell types in the context of gene transfection, HIV infection, or Nef protein transduction. Nef directly interacts with Gα(i2) and ternary complexes containing AIP4, Nef, and Gα(i2) form. A substantial reversal of Gα(i2) loss and a partial recovery of impaired chemotaxis occurred following siRNA knockdown of AIP4 or NEDD4 or by inhibiting dynamin. The N-terminal myristoyl group, (62)EEEE(65) motif, and (72)PXXP(75) motif of Nef are critical for this effect to occur. Nef expression does not affect a Gq(i5) chimera where the five C-terminal residues of Gq are replaced with those of Gα(i2). Lysine at position 296 of Gα(i2) was identified as the critical determinant of Nef-induced degradation. By specifically degrading Gα(i2), Nef directly subverts leukocyte migration and homing. Impaired trafficking and homing of HIV Nef-expressing lymphocytes probably contributes to early immune dysfunction following HIV infection.
Collapse
Affiliation(s)
- Prabha Chandrasekaran
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
12
|
Meuwissen PJ, Stolp B, Iannucci V, Vermeire J, Naessens E, Saksela K, Geyer M, Vanham G, Arien KK, Fackler OT, Verhasselt B. Identification of a highly conserved valine-glycine-phenylalanine amino acid triplet required for HIV-1 Nef function. Retrovirology 2012; 9:34. [PMID: 22537596 PMCID: PMC3476393 DOI: 10.1186/1742-4690-9-34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/27/2012] [Indexed: 12/02/2022] Open
Abstract
Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.
Collapse
Affiliation(s)
- Pieter J Meuwissen
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, Ghent, (B-9000), Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Landi A, Iannucci V, Nuffel AV, Meuwissen P, Verhasselt B. One protein to rule them all: modulation of cell surface receptors and molecules by HIV Nef. Curr HIV Res 2012; 9:496-504. [PMID: 22103833 PMCID: PMC3290772 DOI: 10.2174/157016211798842116] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/02/2011] [Accepted: 09/17/2011] [Indexed: 01/30/2023]
Abstract
The HIV-1, HIV-2 and SIV Nef protein are known to modulate the expression of several cell surface receptors and molecules to escape the immune system, to alter T cell activation, to enhance viral replication, infectivity and transmission and overall to ensure the optimal environment for infection outcome. Consistent and continuous efforts have been made over the years to characterize the modulation of expression of each of these molecules, in the hope that a better understanding of these processes essential for HIV infection and/or pathogenesis will eventually highlight new therapeutic targets. In this article we provide an extensive review of the knowledge gained so far on this important and evolving topic.
Collapse
Affiliation(s)
- Alessia Landi
- Department of Clinical Biology, Immunology and Microbiology, Ghent University, Gent, Belgium
| | | | | | | | | |
Collapse
|
14
|
Baur AS. HIV-Nef and AIDS pathogenesis: are we barking up the wrong tree? Trends Microbiol 2011; 19:435-40. [PMID: 21795047 DOI: 10.1016/j.tim.2011.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/15/2011] [Accepted: 06/07/2011] [Indexed: 12/25/2022]
Abstract
After two decades of research the Nef protein of human immunodeficiency virus (HIV) remains a mysterious protein with an indisputable role in HIV pathogenesis. The ability to downregulate CD4 and major histocompatibility complex class I (MHC-I) was the first ascribed function of Nef and, whereas the number of downmodulated receptors by Nef is rising, so are the explanations for how their downregulation could contribute to HIV pathogenesis. At the same time there is increasing evidence that Nef not only induces endocytosis but also exocytosis, namely of cytokines and microvesicles that contain Nef itself. Because endocytosis and exocytosis are connected events, this is not surprising - and raises the intriguing possibility that HIV aims at secretion rather than ingestion. Have we therefore barked up the wrong tree over the past two decades? In this opinion article I argue that Nef-induced secretion is most probably the pathogenesis-relevant function behind this elusive viral effector.
Collapse
Affiliation(s)
- Andreas S Baur
- Department of Dermatology, University of Erlangen/Nürnberg, D-91052 Erlangen, Germany.
| |
Collapse
|
15
|
Laguette N, Brégnard C, Benichou S, Basmaciogullari S. Human immunodeficiency virus (HIV) type-1, HIV-2 and simian immunodeficiency virus Nef proteins. Mol Aspects Med 2010; 31:418-33. [PMID: 20594957 DOI: 10.1016/j.mam.2010.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022]
Abstract
The genomes of all retroviruses encode the Gag Pol and Env structural proteins. Human and simian lentiviruses have acquired non-structural proteins among which Nef plays a major role in the evolution of viral infection towards an immunodeficiency syndrome. Indeed, in the absence of a functional nef gene, primate lentiviruses are far less pathogenic than their wild type counterparts. The multiple protein-protein interactions in which Nef is involved all contribute to explain the role played by Nef in HIV- and SIV-associated disease progression. This review summarizes common and distinct features among Nef proteins and how they contribute to increasing HIV and SIV fitness towards their respective hosts.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
16
|
González N, Bermejo M, Calonge E, Jolly C, Arenzana-Seisdedos F, Pablos JL, Sattentau QJ, Alcamí J. SDF-1/CXCL12 production by mature dendritic cells inhibits the propagation of X4-tropic HIV-1 isolates at the dendritic cell-T-cell infectious synapse. J Virol 2010; 84:4341-51. [PMID: 20181695 PMCID: PMC2863755 DOI: 10.1128/jvi.02449-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/15/2010] [Indexed: 11/20/2022] Open
Abstract
An efficient mode of HIV-1 infection of CD4 lymphocytes occurs in the context of infectious synapses, where dendritic cells (DCs) enhance HIV-1 transmission to lymphocytes. Emergence of CXCR4-using (X4) HIV-1 strains occurs late in the course of HIV-1 infection, suggesting that a selective pressure suppresses the switch from CCR5 (R5) to X4 tropism. We postulated that SDF-1/CXCL12 chemokine production by DCs could be involved in this process. We observed CXCL12 expression by DCs in vivo in the parafollicular compartment of lymph nodes. The role of mature monocyte-derived dendritic cells (mMDDCs) in transmitting R5 and X4 HIV-1 strains to autologous lymphocytes was studied using an in vitro infection system. Using this model, we observed a strong enhancement of lymphocyte infection with R5, but not with X4, viruses. This lack of DC-mediated enhancement in the propagation of X4 viruses was proportional to CXCL12 production by mMDDCs. When CXCL12 activity was inhibited with specific neutralizing antibodies or small interfering RNAs (siRNAs), the block to mMDDC transfer of X4 viruses to lymphocytes was removed. These results suggest that CXCL12 production by DCs resident in lymph nodes represents an antiviral mechanism in the context of the infectious synapse that could account for the delayed appearance of X4 viruses.
Collapse
Affiliation(s)
- Nuria González
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Mercedes Bermejo
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Esther Calonge
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Clare Jolly
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Fernando Arenzana-Seisdedos
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - José L. Pablos
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Quentin J. Sattentau
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
17
|
Lentiviral Nef proteins utilize PAK2-mediated deregulation of cofilin as a general strategy to interfere with actin remodeling. J Virol 2010; 84:3935-48. [PMID: 20147394 DOI: 10.1128/jvi.02467-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nef is an accessory protein and pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) which elevates virus replication in vivo. We recently described for HIV type 1(SF2) (HIV-1(SF2)) the potent interference of Nef with T-lymphocyte chemotaxis via its association with the cellular kinase PAK2. Mechanistic analysis revealed that this interaction results in deregulation of the actin-severing factor cofilin and thus blocks the chemokine-mediated actin remodeling required for cell motility. However, the efficiency of PAK2 association is highly variable among Nef proteins from different lentiviruses, prompting us to evaluate the conservation of this actin-remodeling/cofilin-deregulating mechanism. Based on the analysis of a total of 17 HIV-1, HIV-2, and SIV Nef proteins, we report here that inhibition of chemokine-induced actin remodeling as well as inactivation of cofilin are strongly conserved activities of lentiviral Nef proteins. Of note, even for Nef variants that display only marginal PAK2 association in vitro, these activities require the integrity of a PAK2 recruitment motif and the presence of endogenous PAK2. Thus, reduced in vitro affinity to PAK2 does not indicate limited functionality of Nef-PAK2 complexes in intact HIV-1 host cells. These results establish hijacking of PAK2 for deregulation of cofilin and inhibition of triggered actin remodeling as a highly conserved function of lentiviral Nef proteins, supporting the notion that PAK2 association may be critical for Nef's activity in vivo.
Collapse
|
18
|
Mansi R, Wang X, Forrer F, Kneifel S, Tamma ML, Waser B, Cescato R, Reubi JC, Maecke HR. Evaluation of a 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid–Conjugated Bombesin-Based Radioantagonist for the Labeling with Single-Photon Emission Computed Tomography, Positron Emission Tomography, and Therapeutic Radionuclides. Clin Cancer Res 2009; 15:5240-9. [DOI: 10.1158/1078-0432.ccr-08-3145] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Laguette N, Benichou S, Basmaciogullari S. Human immunodeficiency virus type 1 Nef incorporation into virions does not increase infectivity. J Virol 2009; 83:1093-104. [PMID: 18987145 PMCID: PMC2612363 DOI: 10.1128/jvi.01633-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/26/2008] [Indexed: 11/20/2022] Open
Abstract
The viral protein Nef contributes to the optimal infectivity of human and simian immunodeficiency viruses. The requirement for Nef during viral biogenesis particles suggests that Nef might play a role in this process. Alternatively, because Nef is incorporated into viruses, it might play a role when progeny virions reach target cells. We challenged these hypotheses by manipulating the amounts of Nef incorporated in viruses while keeping its expression level constant in producer cells. This was achieved by forcing the incorporation of Nef into viral particles by fusing a Vpr sequence to the C-terminal end of Nef. A cleavage site for the viral protease was introduced between Nef and Vpr to allow the release of Nef fragments from the fusion protein during virus maturation. We show that the resulting Nef-CS-Vpr fusion partially retains the ability of Nef to downregulate cell surface CD4 and that high amounts of Nef-CS-Vpr are incorporated into viral particles compared with what is seen for wild-type Nef. The fusion protein is processed during virion maturation and releases Nef fragments similar to those found in viruses produced in the presence of wild-type Nef. Unlike viruses produced in the presence of wild-type Nef, viruses produced in the presence of Nef-CS-Vpr do not have an increase in infectivity and are as poorly infectious as viruses produced in the absence of Nef. These findings demonstrate that the presence of Nef in viral particles is not sufficient to increase human immunodeficiency virus type 1 infectivity and suggest that Nef plays a role during the biogenesis of viral particles.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
20
|
Human immunodeficiency virus type 1 envelope gp120 induces a stop signal and virological synapse formation in noninfected CD4+ T cells. J Virol 2008; 82:9445-57. [PMID: 18632854 DOI: 10.1128/jvi.00835-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-infected T cells form a virological synapse with noninfected CD4(+) T cells in order to efficiently transfer HIV-1 virions from cell to cell. The virological synapse is a specialized cellular junction that is similar in some respects to the immunological synapse involved in T-cell activation and effector functions mediated by the T-cell antigen receptor. The immunological synapse stops T-cell migration to allow a sustained interaction between T-cells and antigen-presenting cells. Here, we have asked whether HIV-1 envelope gp120 presented on a surface to mimic an HIV-1-infected cell also delivers a stop signal and if this is sufficient to induce a virological synapse. We demonstrate that HIV-1 gp120-presenting surfaces arrested the migration of primary activated CD4 T cells that occurs spontaneously in the presence of ICAM-1 and induced the formation of a virological synapse, which was characterized by segregated supramolecular structures with a central cluster of envelope surrounded by a ring of ICAM-1. The virological synapse was formed transiently, with the initiation of migration within 30 min. Thus, HIV-1 gp120-presenting surfaces induce a transient stop signal and supramolecular segregation in noninfected CD4(+) T cells.
Collapse
|
21
|
Cescato R, Erchegyi J, Waser B, Piccand V, Maecke HR, Rivier JE, Reubi JC. Design and in vitro characterization of highly sst2-selective somatostatin antagonists suitable for radiotargeting. J Med Chem 2008; 51:4030-7. [PMID: 18543899 DOI: 10.1021/jm701618q] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radiolabeled sst 2 and sst 3 antagonists are better candidates for tumor targeting than agonists with comparable binding characteristics (Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Erchegyi, J.; Rivier, J.; Mäcke, H. R.; Reubi, J. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16436-16441.). Because most of the neuroendocrine tumors express sst 2, we used the known antagonists acetyl- pNO 2Phe (2)- c[ dCys (3)-Tyr (7)- dTrp (8)-Lys (9)-Thr (10)-Cys (14)]- dTyr (15)-NH 2 ( 1) (Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Mol. Pharmacol. 1996, 50, 709-715. Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Mol. Pharmacol. 1997, 51, 170; Erratum.) and H-Cpa (2)- c[ dCys (3)-Tyr (7)- dTrp (8)-Lys (9)-Thr (10)-Cys (14)]-2Nal (15)-NH 2 ( 7) (Hocart, S. J.; Jain, R.; Murphy, W. A.; Taylor, J. E.; Coy, D. H. J. Med. Chem. 1999, 42, 1863-1871.) as leads for analogues with increased sst 2 binding affinity and selectivity. Among the 32 analogues reported here, DOTA- pNO 2Phe (2)- c[ dCys (3)-Tyr (7)- dAph (8)(Cbm)-Lys (9)-Thr (10)-Cys (14)- dTyr (15)-NH 2 ( 3) and DOTA-Cpa (2)- c[ dCys (3)-Aph (7)(Hor)- dAph (8)(Cbm)-Lys (9)-Thr (10)-Cys (14)]- dTyr (15)-NH 2 ( 31) had the highest sst 2 binding affinity and selectivity. All of the analogues tested kept their sst 2 antagonistic properties (i.e., did not affect calcium release in vitro and competitively antagonized the agonistic effect of [Tyr (3)]octreotide). Moreover, in an immunofluorescence-based internalization assay, the new analogues prevented sst 2 internalization induced by the sst 2 agonist [Tyr (3)]octreotide without being active by themselves. In conclusion, several analogues (in particular 3, 31, and 32) have outstanding sst 2 binding and functional antagonistic properties and, because of their DOTA moiety, are excellent candidates for in vivo targeting of sst 2-expressing cancers.
Collapse
Affiliation(s)
- Renzo Cescato
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC. Bombesin Receptor Antagonists May Be Preferable to Agonists for Tumor Targeting. J Nucl Med 2008; 49:318-26. [DOI: 10.2967/jnumed.107.045054] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
24
|
Haller C, Rauch S, Fackler OT. HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS One 2007; 2:e1212. [PMID: 18030346 PMCID: PMC2075162 DOI: 10.1371/journal.pone.0001212] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/17/2007] [Indexed: 01/09/2023] Open
Abstract
The Nef protein acts as critical factor during HIV pathogenesis by increasing HIV replication in vivo via the modulation of host cell vesicle transport and signal transduction processes. Recent studies suggested that Nef alters formation and function of immunological synapses (IS), thereby modulating exogenous T-cell receptor (TCR) stimulation to balance between partial T cell activation required for HIV-1 spread and prevention of activation induced cell death. Alterations of IS function by Nef include interference with cell spreading and actin polymerization upon TCR engagement, a pronounced intracellular accumulation of the Src kinase Lck and its reduced IS recruitment. Here we use a combination of Nef mutagenesis and pharmacological inhibition to analyze the relative contribution of these effects to Nef mediated alterations of IS organization and function on TCR stimulatory surfaces. Inhibition of actin polymerization and IS recruitment of Lck were governed by identical Nef determinants and correlated well with Nef's association with Pak2 kinase activity. In contrast, Nef mediated Lck endosomal accumulation was separable from these effects, occurred independently of Pak2, required integrity of the microtubule rather than the actin filament system and thus represents a distinct Nef activity. Finally, reduction of TCR signal transmission by Nef was linked to altered actin remodeling and Lck IS recruitment but did not require endosomal Lck rerouting. Thus, Nef affects IS function via multiple independent mechanisms to optimize virus replication in the infected host.
Collapse
Affiliation(s)
- Claudia Haller
- Abteilung Virologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Susanne Rauch
- Abteilung Virologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Oliver T. Fackler
- Abteilung Virologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Wolf D, Giese SI, Witte V, Krautkrämer E, Trapp S, Sass G, Haller C, Blume K, Fackler OT, Baur AS. Novel (n)PKC kinases phosphorylate Nef for increased HIV transcription, replication and perinuclear targeting. Virology 2007; 370:45-54. [PMID: 17904606 DOI: 10.1016/j.virol.2007.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 05/28/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
The N-terminus of the human immunodeficiency virus (HIV) pathogenicity factor Nef associates with a protein complex (NAKC for Nef-associated kinase complex) that contains at least two kinases: the tyrosine kinase Lck and a serine kinase activity which was found to phosphorylate Lck and the Nef N-terminus. Here we show that this serine kinase activity is mediated by members of the novel Protein Kinase C (nPKC) subfamily, PKCdelta and theta. Association with the Nef N-terminus was sufficient to activate PKC leading to phosphorylation of Nef in vitro on a conserved serine residue at position 6. Mutation of serine 6 or coexpression of a transdominant negative PKC mutant significantly reduced Nef-stimulated HIV transcription and replication in resting PBMC. When analyzing the molecular mechanisms, we found that mutating serine 6 moderately affected myristoylation of Nef and its association with Pak2 activity, whereas CD4 downmodulation was not inhibited. More interestingly, this mutation abolished the typical perinuclear localization of Nef in T cells. We conclude that the activation of nPKCs by Nef is required to increase viral replication/infectivity and direct the subcellular localization of Nef.
Collapse
Affiliation(s)
- Dietlinde Wolf
- University of Miami, Miller School of Medicine, Department of Microbiology and Immunology, BCRI 739, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Laforge M, Petit F, Estaquier J, Senik A. Commitment to apoptosis in CD4(+) T lymphocytes productively infected with human immunodeficiency virus type 1 is initiated by lysosomal membrane permeabilization, itself induced by the isolated expression of the viral protein Nef. J Virol 2007; 81:11426-40. [PMID: 17670831 PMCID: PMC2045521 DOI: 10.1128/jvi.00597-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary CD4(+) T lymphocytes, supporting in vitro human immunodeficiency virus type 1 (HIV-1) replication, are destined to die by apoptosis. We explored the initial molecular events that act upstream from mitochondrial dysfunction in CD4(+) T lymphocytes exposed to the HIV-1(LAI) strain. We tracked by immunofluorescence the cells expressing the p24 viral antigen and used Percoll density gradients to isolate a nonapoptotic CD4(+) T-cell subset with a high inner mitochondrial transmembrane potential (DeltaPsim) but no outer mitochondrial membrane (OMM) rupture. In most p24(+) (but not bystander p24(-)) cells of this subset, the lysosomes were undergoing limited membrane permeabilization, allowing the lysosomal efflux of cathepsins (Cat) to the cytosol. This was also induced by HIV-1 isolates from infected patients. Using pepstatin A to inhibit Cat-D enzymatic activity and Cat-D small interfering RNA to silence the Cat-D gene, we demonstrate that once released into the cytosol, Cat-D induces the conformational change of Bax and its insertion into the OMM. Inhibition of Cat-D activity/expression also conferred a transient survival advantage upon productively HIV-1-infected cells, indicating that Cat-D is an early death factor. The transfection of activated CD4(+) T lymphocytes with a Nef expression vector rapidly induced the permeabilization of lysosomes and the release of Cat-D, with these two events preceding OMM rupture. These results reveal a previously undocumented mechanism in which Nef acts as an internal cytopathic factor and strongly suggest that this viral protein may behave similarly in the context of productive HIV-1 infection in CD4(+) T lymphocytes.
Collapse
|
27
|
Venzke S, Michel N, Allespach I, Fackler OT, Keppler OT. Expression of Nef downregulates CXCR4, the major coreceptor of human immunodeficiency virus, from the surfaces of target cells and thereby enhances resistance to superinfection. J Virol 2006; 80:11141-52. [PMID: 16928758 PMCID: PMC1642143 DOI: 10.1128/jvi.01556-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1(SF2) Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P(73)P(76)P(79)P(82) and the acidic cluster motif E(66)E(67)E(68)E(69.) Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.
Collapse
Affiliation(s)
- Stephanie Venzke
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Giese SI, Woerz I, Homann S, Tibroni N, Geyer M, Fackler OT. Specific and distinct determinants mediate membrane binding and lipid raft incorporation of HIV-1(SF2) Nef. Virology 2006; 355:175-91. [PMID: 16916529 DOI: 10.1016/j.virol.2006.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/01/2006] [Accepted: 07/06/2006] [Indexed: 11/27/2022]
Abstract
Membrane association is believed to be a prerequisite for the biological activity of the HIV-1 pathogenicity factor Nef. Attachment to cellular membranes as well as incorporation into detergent-insoluble microdomains (lipid rafts) require the N-terminal myristoylation of Nef. However, this modification is not sufficient for sustained membrane association and a specific raft-targeting signal for Nef has not yet been identified. Using live cell confocal microscopy and membrane fractionation analyses, we found that the N-terminal anchor domain (aa 1-61) is necessary and sufficient for efficient membrane binding of Nef from HIV-1(SF2). Within this domain, highly conserved lysine and arginine residues significantly contributed to Nef's membrane association and localization. Plasma membrane localization of Nef was also governed by an additional membrane-targeting motif between residues 40 and 61. Importantly, two lysines at positions 4 and 7 were not essential for the overall membrane association but critically contributed to Nef's incorporation into lipid raft domains. Cell surface receptor downmodulation was largely unaffected by mutations of all N-terminal basic residues, while the association of Nef with Pak2 kinase activity and its ability to augment virion infectivity correlated with its lysine-mediated raft incorporation. In contrast, all basic residues were required for efficient HIV-1 replication in primary human T lymphocytes but did not contribute to the incorporation of Nef into HIV-1 virions. Together, these results unravel that Nef's membrane association is governed by a complex pattern of signature motifs that differentially contribute to individual Nef activities. The identification of a critical raft targeting determinant and the functional characterization of a membrane-bound, non-raft-associated Nef variant indicate raft incorporation as a regulatory mechanism that determines the biological activity of distinct subpopulations of Nef in HIV-infected cells.
Collapse
Affiliation(s)
- Simone I Giese
- Department of Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|