1
|
Fabbrizio P, Baindoor S, Margotta C, Su J, Morrissey EP, Woods I, Hogg MC, Vianello S, Venø MT, Kjems J, Sorarù G, Bendotti C, Prehn JHM, Nardo G. Protective role of Angiogenin in muscle regeneration in amyotrophic lateral sclerosis: Diagnostic and therapeutic implications. Brain Pathol 2025; 35:e13328. [PMID: 39731449 PMCID: PMC12145901 DOI: 10.1111/bpa.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease with no effective treatments, in part caused by variations in progression and the absence of biomarkers. Mice carrying the SOD1G93A transgene with different genetic backgrounds show variable disease rates, reflecting the diversity of patients. While extensive research has been done on the involvement of the central nervous system, the role of skeletal muscle remains underexplored. We examined the impact of angiogenin, including its RNase activity, in skeletal muscles of ALS mouse models and in biopsies from ALS patients. Elevated levels of angiogenin were found in slowly progressing mice but not in rapidly progressing mice, correlating with increased muscle regeneration and vascularisation. In patients, higher levels of angiogenin in skeletal muscles correlated with milder disease. Mechanistically, angiogenin promotes muscle regeneration and vascularisation through satellite cell-endothelial interactions during myogenesis and angiogenesis. Furthermore, specific angiogenin-derived tiRNAs were upregulated in slowly progressing mice, suggesting their role in mediating the effects of angiogenin. These findings highlight angiogenin and its tiRNAs as potential prognostic markers and therapeutic targets for ALS, offering avenues for patient stratification and interventions to mitigate disease progression by promoting muscle regeneration.
Collapse
Affiliation(s)
- Paola Fabbrizio
- Laboratory of Neurobiology and Molecular Therapeutics, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanoItaly
| | - Sharada Baindoor
- Department of Physiology and Medical Physics and SFI FutureNeuro CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Cassandra Margotta
- Laboratory of Neurobiology and Molecular Therapeutics, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanoItaly
| | - Junyi Su
- Omiics ApSAarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Elena P. Morrissey
- Department of Physiology and Medical Physics and SFI FutureNeuro CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Ina Woods
- Department of Physiology and Medical Physics and SFI FutureNeuro CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Marion C. Hogg
- Department of Physiology and Medical Physics and SFI FutureNeuro CentreRoyal College of Surgeons in IrelandDublinIreland
- School of Science and TechnologyNottingham Trent UniversityUK
| | - Sara Vianello
- Department of NeuroscienceAzienda Ospedaliera di PadovaPaduaItaly
| | | | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Gianni Sorarù
- Department of NeuroscienceAzienda Ospedaliera di PadovaPaduaItaly
| | - Caterina Bendotti
- Laboratory of Neurobiology and Molecular Therapeutics, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanoItaly
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics and SFI FutureNeuro CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Giovanni Nardo
- Laboratory of Neurobiology and Molecular Therapeutics, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanoItaly
| |
Collapse
|
2
|
Collao N, Johannsen EB, Just J, De Lisio M. Single-cell transcriptomic analysis reveals alterations to cellular dynamics and paracrine signaling in radiation-induced muscle pathology. Am J Physiol Cell Physiol 2025; 328:C1995-C2012. [PMID: 40316295 DOI: 10.1152/ajpcell.00115.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/27/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
Radiation therapy causes long-term skeletal muscle atrophy and fibrosis in juvenile cancer survivors. The mechanisms responsible for the skeletal muscle late effects of radiation therapy are not well-understood and have prevented the development of effective treatments. Using single-cell RNA sequencing (scRNA-seq), we characterize cellular dynamics and communication in a murine model of therapeutic radiation at 24 h and 56 days post-irradiation (post-IR). We detected changes in muscle stem (satellite) cells (MuSCs) characterized by an acute preservation of committed MuSCs and long-term relative depletion of deep quiescent MuSCs. A conserved senescence Cdkn1a signature was observed in all muscle-resident cells post-IR. Genes related to fibroblast proliferation were upregulated and a fibrotic and senescent transcriptome persisted in fibro-adipogenic progenitors (FAPs) post-IR. Intercellular communication analysis revealed FAPs as the primary contributor of extracellular matrix (ECM) and target of monocyte/macrophage-derived transforming growth factor (TGF)-β signaling post-IR through TGF-βR2 on FAPs. Together, our findings provide insights into the potential mechanisms and intercellular communication responsible for radiation-induced muscle atrophy and fibrosis.NEW & NOTEWORTHY This work describes, for the first time, the transcriptional changes occurring following radiation exposure in the skeletal muscle microenvironment using scRNA-seq technology. We revelated that FAPs exhibited a profibrotic and senescent transcriptome. Radiation exposure led to a conserved and persistent Cdkn1a gene signature and impairs intercellular communication, increasing TGF-βR2 signaling in FAPs. These findings uncover potential mechanisms and intercellular communication responsible for long-term muscle impairments post-radiation, offering new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nicolás Collao
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, Ontario, Canada
- Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Regenerative Medicine Program, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael De Lisio
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, Ontario, Canada
- Éric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Regenerative Medicine Program, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Cordelle MZ, Snelling SJB, Mouthuy PA. Skeletal Muscle Tissue Engineering: From Tissue Regeneration to Biorobotics. CYBORG AND BIONIC SYSTEMS 2025; 6:0279. [PMID: 40376483 PMCID: PMC12079140 DOI: 10.34133/cbsystems.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025] Open
Abstract
With its remarkable adaptability, energy efficiency, and mechanical compliance, skeletal muscle is a powerful source of inspiration for innovations in engineering and robotics. Originally driven by the clinical need to address large irreparable muscle defects, skeletal muscle tissue engineering (SMTE) has evolved into a versatile strategy reaching beyond medical applications into the field of biorobotics. This review highlights recent advancements in SMTE, including innovations in scaffold design, cell sourcing, usage of external physicochemical cues, and bioreactor technologies. Furthermore, this article explores the emerging synergies between SMTE and robotics, focusing on the use of robotic systems to enhance bioreactor performance and the development of biohybrid devices integrating engineered muscle tissue. These interdisciplinary approaches aim to improve functional recovery outcomes while inspiring novel biohybrid technologies at the intersection of engineering and regenerative medicine.
Collapse
Affiliation(s)
- Maira Z. Cordelle
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences,
University of Oxford, Oxford OX3 7LD, UK
| | - Sarah J. B. Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences,
University of Oxford, Oxford OX3 7LD, UK
| | - Pierre-Alexis Mouthuy
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences,
University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
4
|
Wang Z, Liang W, Ao R, An Y. Adipose Decellularized Matrix: A Promising Skeletal Muscle Tissue Engineering Material for Volume Muscle Loss. Biomater Res 2025; 29:0174. [PMID: 40248249 PMCID: PMC12003953 DOI: 10.34133/bmr.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 03/07/2025] [Indexed: 04/19/2025] Open
Abstract
Volume muscle loss is a severe injury often caused by trauma, fracture, tumor resection, or degenerative disease, leading to long-term dysfunction or disability. The current gold-standard treatment is autologous muscle tissue transplantation, with limitations due to donor site restrictions, complications, and low regeneration efficiency. Tissue engineering shows potential to overcome these challenges and achieve optimal muscle regeneration, vascularization, nerve repair, and immunomodulation. In the field of muscle tissue engineering, skeletal muscle decellularized matrices are regarded as an ideal material due to their similarity to the defect site environment, yet they suffer from difficulties in preparation, severe fibrosis, and inconsistent experimental findings. Adipose decellularized matrices (AdECMs) have demonstrated consistent efficacy in promoting muscle regeneration, and their ease of preparation and abundant availability make them even more attractive. The full potential of AdECMs for muscle regeneration remains to be explored. The aim of this review is to summarize the relevant studies on using AdECMs to promote muscle regeneration, to summarize the preparation methods of various applied forms, and to analyze their advantages and shortcomings, as well as to further explore their mechanisms and to propose possible improvements, so as to provide new ideas for the clinical solution of the problem of volume muscle loss.
Collapse
Affiliation(s)
| | - Wei Liang
- Address correspondence to: (W.L.); (Y.A.)
| | - Rigele Ao
- Department of Plastic Surgery,
Peking University Third Hospital, Beijing 100191, China
| | - Yang An
- Department of Plastic Surgery,
Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
5
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
6
|
D'Lugos AC, Ducharme JB, Callaway CS, Trevino JG, Atkinson C, Judge SM, Judge AR. Complement pathway activation mediates pancreatic cancer-induced muscle wasting and pathological remodeling. J Clin Invest 2025; 135:e178806. [PMID: 40198138 DOI: 10.1172/jci178806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Cancer cachexia is a multifactorial condition characterized by skeletal muscle wasting that impairs quality of life and longevity for many cancer patients. A greater understanding of the molecular etiology of this condition is needed for effective therapies to be developed. We performed a quantitative proteomic analysis of skeletal muscle from cachectic pancreatic ductal adenocarcinoma (PDAC) patients and non-cancer controls, followed by immunohistochemical analyses of muscle cross-sections. These data provide evidence of a local inflammatory response in muscles of cachectic PDAC patients, including an accumulation of plasma proteins and recruitment of immune cells into muscle that may promote the pathological remodeling of muscle. Our data further support the complement system as a potential mediator of these processes, which we tested by injecting murine pancreatic cancer cells into wild type (WT) mice, or mice with genetic deletion of the central complement component 3 (C3-/- mice). Compared to WT mice, C3-/- mice showed attenuated tumor-induced muscle wasting and dysfunction and reduced immune cell recruitment and fibrotic remodeling of muscle. These studies demonstrate that complement activation is contributory to the skeletal muscle pathology and dysfunction in PDAC, suggesting that the complement system may possess therapeutic potential in preserving skeletal muscle mass and function.
Collapse
Affiliation(s)
- Andrew C D'Lugos
- Department of Physical Therapy, University of Florida, Gainesville, United States of America
| | - Jeremy B Ducharme
- Department of Physical Therapy, University of Florida, Gainesville, United States of America
| | - Chandler S Callaway
- Department of Physical Therapy, University of Florida, Gainesville, United States of America
| | - Jose G Trevino
- Department of Surgery, University of Florida, Gainesville, United States of America
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, United States of America
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida, Gainesville, United States of America
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida, Gainesville, United States of America
| |
Collapse
|
7
|
Barajaa MA, Ghosh D, Laurencin CT. Decellularized Extracellular Matrix-Derived Hydrogels: a Powerful Class of Biomaterials for Skeletal Muscle Regenerative Engineering Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2025; 11:39-63. [PMID: 40201194 PMCID: PMC11978403 DOI: 10.1007/s40883-023-00328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 04/10/2025]
Abstract
Purpose The extracellular matrix (ECM) is a complicated milieu consisting of structural and functional molecules secreted by the resident cells that provides an optimal microenvironmental niche for enhanced cell adhesion, growth, differentiation, and tissue formation and maturation. For decades, ECM bio-scaffolds prepared from decellularized tissues have been used to promote skeletal muscle regeneration; however, it was recently discovered that these decellularized ECM (dECM) materials can be further processed into hydrogels, thus expanding the potential applications of dECM materials in skeletal muscle regenerative engineerisng (SMRE). This review article highlights the recent advances in dECM-derived hydrogels toward skeletal muscle regeneration and repair. Method We screened articles in PubMed and bibliographic search using a combination of keywords. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results Here, we discuss the skeletal muscle ECM's structure, function, and biochemical composition with emphasis on the role of the ECM during skeletal muscle embryogenesis, growth, development, and repair. Furthermore, we review various hydrogels used to promote skeletal muscle regeneration. We also review the current applications of dECM-derived hydrogels toward SMRE. Finally, we discuss the clinical translation potential of dECM-derived hydrogels for skeletal muscle regeneration and repair and their potential clinical considerations in the future. Conclusion Although much progress has been made in the field of dECM-derived hydrogels toward SMRE, it is still in its nascent stage. We believe improving and standardizing the methods of decellularization, lowering the immunogenicity of dECMs, and carrying out in vivo investigations in large animal models would advance their future clinical applications. Lay Summary Researchers have discovered an effective way to turn tissue materials into jelly-like substances known as extracellular matrix (ECM)-derived hydrogels. These ECM-derived hydrogels can help muscles heal better after serious injuries. They can be injected into gaps or used to guide muscle growth in the lab or body. This review article explains how these ECM-derived hydrogels are made and how they can be used to improve muscle healing. It also discusses their possible use in clinics and what needs to be considered before using them for medical treatments.
Collapse
Affiliation(s)
- Mohammed A. Barajaa
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, 34212 Dammam, Saudi Arabia
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
8
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2025; 227:52-63. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
10
|
Horwath O, Moberg M, Edman S, Philp A, Apró W. Ageing leads to selective type II myofibre deterioration and denervation independent of reinnervative capacity in human skeletal muscle. Exp Physiol 2025; 110:277-292. [PMID: 39466960 PMCID: PMC11782179 DOI: 10.1113/ep092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Age-related loss of muscle mass and function is underpinned by changes at the myocellular level. However, our understanding of the aged muscle phenotype might be confounded by factors secondary to ageing per se, such as inactivity and adiposity. Here, using healthy, lean, recreationally active, older men, we investigated the impact of ageing on myocellular properties in skeletal muscle. Muscle biopsies were obtained from young men (22 ± 3 years, n = 10) and older men (69 ± 3 years, n = 11) matched for health status, activity level and body mass index. Immunofluorescence was used to assess myofibre composition, morphology (size and shape), capillarization, the content of satellite cells and myonuclei, the spatial relationship between satellite cells and capillaries, denervation and myofibre grouping. Compared with young muscle, aged muscle contained 53% more type I myofibres, in addition to smaller (-32%) and misshapen (3%) type II myofibres (P < 0.05). Aged muscle manifested fewer capillaries (-29%) and satellite cells (-38%) surrounding type II myofibres (P < 0.05); however, the spatial relationship between these two remained intact. The proportion of denervated myofibres was ∼2.6-fold higher in old than young muscle (P < 0.05). Aged muscle had more grouped type I myofibres (∼18-fold), primarily driven by increased size of existing groups rather than increased group frequency (P < 0.05). Aged muscle displayed selective deterioration of type II myofibres alongside increased denervation and myofibre grouping. These data are key to understanding the cellular basis of age-related muscle decline and reveal a pressing need to fine-tune strategies to preserve type II myofibres and innervation status in ageing populations.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and BiomechanicsThe Swedish School of Sport and Health SciencesStockholmSweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and BiomechanicsThe Swedish School of Sport and Health SciencesStockholmSweden
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Sebastian Edman
- Department of Physiology, Nutrition and BiomechanicsThe Swedish School of Sport and Health SciencesStockholmSweden
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Andrew Philp
- Centre for Healthy AgeingCentenary InstituteSydneyNSWAustralia
- School of Sport, Exercise and Rehabilitation SciencesUniversity of Technology SydneySydneyNSWAustralia
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - William Apró
- Department of Physiology, Nutrition and BiomechanicsThe Swedish School of Sport and Health SciencesStockholmSweden
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- Department of Clinical Science, Intervention and TechnologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
11
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
12
|
Aussieker T, Fuchs CJ, Zorenc AH, Verdijk LB, van Loon LJC, Snijders T. Daily blood flow restriction does not affect muscle fiber capillarization and satellite cell content during 2 wk of bed rest in healthy young men. J Appl Physiol (1985) 2025; 138:89-98. [PMID: 39625459 DOI: 10.1152/japplphysiol.00461.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
The present study assessed whether single-leg daily blood flow restriction (BFR) treatment attenuates the decline in muscle fiber size, capillarization, and satellite cell (SC) content during 2 wk of bed rest in healthy, young men. Twelve healthy, young men (age: 24 ± 3 yr; BMI: 23.7 ± 3.1 kg/m2) were subjected to 2 wk of bed rest, during which one leg was exposed to three times daily 5 min of BFR, whereas the contralateral leg received sham treatment [control (CON)]. Muscle biopsies were obtained from the m. vastus lateralis from both the BFR and CON legs before and immediately after 2 wk of bed rest. Types I and II muscle fiber size, myonuclear content, capillarization, and SC content were assessed by immunohistochemistry. No significant decline in either type I or type II muscle fiber size was observed following bed rest, with no differences between the CON and BFR legs (P > 0.05). Type I muscle fiber capillary density increased in response to bed rest in both legs (P < 0.05), whereas other muscle fiber capillarization measures remained unaltered. SC content decreased in both type I (from 7.4 ± 3.2 to 5.9 ± 2.7 per 100 fibers) and type II (from 7.2 ± 3.4 to 6.5 ± 3.2 per 100 fibers) muscle fibers (main effect of time P = 0.018), with no significant differences between the BFR and CON legs (P > 0.05). In conclusion, 2 wk of bed rest has no effect on muscle capillarization and decreases the SC content, and daily BFR treatment does not affect skeletal muscle fiber size and SC content in healthy, young men.NEW & NOTEWORTHY We recently reported that the application of daily blood flow restriction (BFR) treatment does not preserve muscle mass or strength and does not modulate daily muscle protein synthesis rates during 2 wk of bed rest. Here, we show that 2 wk of bed rest resulted in a decrease in satellite cell (SC) content. In addition, the BFR treatment did not affect muscle fiber size, capillarization, and SC content during 2 wk of bed rest.
Collapse
Affiliation(s)
- Thorben Aussieker
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Antoine H Zorenc
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, NUTRIM, Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Habing KM, Alcazar CA, Dobson N, Tan YH, Huang NF, Nakayama KH. Temporal Tissue Remodeling in Volumetric Muscle Injury with Endothelial Cell-Laden Patterned Nanofibrillar Constructs. Bioengineering (Basel) 2024; 11:1269. [PMID: 39768087 PMCID: PMC11673213 DOI: 10.3390/bioengineering11121269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
A primary challenge following severe musculoskeletal trauma is incomplete muscle regeneration. Current therapies often fail to heal damaged muscle due to dysregulated healing programs and insufficient revascularization early in the repair process. There is a limited understanding of the temporal changes that occur during the early stages of muscle remodeling in response to engineered therapies. Previous work demonstrated that nanotopographically patterned scaffolds provide cytoskeletal guidance and direct endothelial angiogenic and anti-inflammatory phenotypes. The aim of this study was to evaluate how endothelial cell (EC) patterning guides temporal and histomorphological muscle remodeling after muscle injury. In the current study, mice were treated with EC-laden engineered constructs that exhibited either aligned or random patterning of collagen nanofibrils, following a volumetric muscle loss injury (VML). Remodeling was evaluated at 2, 7, and 21 days post injury. Over the 21-day study, all groups (Acellular Aligned, EC Aligned, EC Random) demonstrated similar significant increases in vascular density and myogenesis. Animals treated with acellular controls demonstrated a two-fold decrease in muscle cross-sectional area between days 2 and 21 post injury, consistent with VML-induced muscle atrophy; however, animals treated with patterned EC-laden constructs exhibited preservation of muscle mass. The implantation of an EC-laden construct led to a 50% increase in the number of animals exhibiting areas of fibrous remodeling adjacent to the construct, along with greater collagen deposition (p < 0.01) compared to acellular controls 21 days post injury. These findings suggest that nanotopographically patterned EC-laden constructs may guide early muscle-protective programs that support muscle mass retention through myo-vascular independent pathways.
Collapse
Affiliation(s)
- Krista M. Habing
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.H.); (C.A.A.); (N.D.); (Y.H.T.)
| | - Cynthia A. Alcazar
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.H.); (C.A.A.); (N.D.); (Y.H.T.)
| | - Nathaniel Dobson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.H.); (C.A.A.); (N.D.); (Y.H.T.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yong How Tan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.H.); (C.A.A.); (N.D.); (Y.H.T.)
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA 94304, USA;
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94303, USA
| | - Karina H. Nakayama
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.H.); (C.A.A.); (N.D.); (Y.H.T.)
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
14
|
Yin K, Zhang C, Deng Z, Wei X, Xiang T, Yang C, Chen C, Chen Y, Luo F. FAPs orchestrate homeostasis of muscle physiology and pathophysiology. FASEB J 2024; 38:e70234. [PMID: 39676717 PMCID: PMC11647758 DOI: 10.1096/fj.202400381r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
As a common clinical manifestation, muscle weakness is prevalent in people with mobility disorders. Further studies of muscle weakness have found that patients with muscle weakness present with persistent muscle inflammation, loss of muscle fibers, fat infiltration, and interstitial fibrosis. Therefore, we propose the concept of muscle microenvironment homeostasis, which explains the abnormal pathological changes in muscles through the imbalance of muscle microenvironment homeostasis. And we identified an interstitial progenitor cell FAP during the transition from normal muscle microenvironment homeostasis to muscle microenvironment imbalance caused by muscle damage diseases. As a kind of pluripotent stem cell, FAPs do not participate in myogenic differentiation, but can differentiate into fibroblasts, adipocytes, osteoblasts, and chondrocytes. As a kind of mesenchymal progenitor cell, it is involved in the generation of extracellular matrix, regulate muscle regeneration, and maintain neuromuscular junction. However, the muscle microenvironment is disrupted by the causative factors, and the abnormal activities of FAPs eventually contribute to the complex pathological changes in muscles. Targeting the mechanisms of these muscle pathological changes, we have identified appropriate signaling targets for FAPs to improve and even treat muscle damage diseases. In this review, we propose the construction of muscle microenvironmental homeostasis and find the key cells that cause pathological changes in muscle after homeostasis is broken. By studying the mechanism of abnormal differentiation and apoptosis of FAPs, we found a strategy to inhibit the abnormal pathological changes in muscle damage diseases and improve muscle regeneration.
Collapse
Affiliation(s)
- Kai Yin
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chengmin Zhang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Zihan Deng
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Xiaoyu Wei
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Tingwen Xiang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials ScienceThird Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Can Chen
- Department for Combat Casualty Care TrainingTraining Base for Army Health Care, Army Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Yueqi Chen
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Fei Luo
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| |
Collapse
|
15
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Zhao D, Song Z, Shen L, Xia T, Ouyang Q, Zhang H, He X, Kang K. Single-cell transcriptomics and tissue metabolomics uncover mechanisms underlying wooden breast disease in broilers. Poult Sci 2024; 103:104433. [PMID: 39489032 PMCID: PMC11566330 DOI: 10.1016/j.psj.2024.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024] Open
Abstract
Accompanied by the accelerated growth rate of chickens, the quality of chicken meat has deteriorated in recent years. Wooden breast (WB) is a severe myopathy affecting meat quality, and its pathophysiology depends on gene expression and intercellular interactions of various cell types, which are not yet fully understood. We have performed a comprehensive transcriptomic and metabolomic atlas of chicken WB muscle. Our data showed a significant increase in the number of immune cells, WB muscle displayed a unique cluster of macrophages (cluster 11), distinct from the M1 and M2 macrophages. Regarding the myocytes, the most significant differences were the decrease in cell number and the intensification of fatty deposits. Satellite cells were involved in muscle repair and regeneration producing more collagen. Interestingly, the interaction network in the WB group was weaker compared to that in normal breast muscle. Additionally, we found six key differential metabolites across 22 pathways. When WB occurs, myocytes and endothelial cells undergo apoptosis, macrophages are activated and exert immune functions, satellite cells participate in muscle rebuilding and repair, and the content of metabolites undergoes significant changes. This cell transcriptome profile provides an essential reference for future studies on the development and remodeling of WB.
Collapse
Affiliation(s)
- Di Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Li Shen
- Shanghai Personal Biotechnology Co., Ltd, Shanghai 200030, China
| | - Tian Xia
- Shanghai Personal Biotechnology Co., Ltd, Shanghai 200030, China
| | - Qingyuan Ouyang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Kelang Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Hunan Academy of Agricultural Sciences, Changsha 410128, China.
| |
Collapse
|
17
|
Leng B, Huang H, Zhang C. Effects of coffee intake on skeletal muscle microvascular reactivity at rest and oxygen extraction during exercise: a randomized cross-over trial. J Int Soc Sports Nutr 2024; 21:2409673. [PMID: 39351657 PMCID: PMC11445882 DOI: 10.1080/15502783.2024.2409673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE The effects of coffee ingestion on skeletal muscle microvascular function are not well understood. This study aimed to investigate the acute effects of coffee intake with varying levels of caffeine on skeletal muscle microvascular reactivity at rest and oxygen extraction during maximal incremental exercise in physically active individuals. METHODS Twenty healthy young male participants were administered coffee with low caffeine (3 mg/kg body weight; LC), high caffeine (6 mg/kg body weight; HC), and placebo (decaf) in different sessions. Skeletal muscle reactivity indexes, including tissue saturation index 10s slope (TSI10) and TSI half time recovery (TSI ½) following 5-minute ischemia were measured at rest and were measured at baseline and post-coffee consumption using near-infrared spectroscopy (NIRS). Post-coffee intake, NIRS was also used to measure microvascular oxygen extraction during exercise via maximal incremental exercise. Peak oxygen consumption and peak power output (Wpeak) were simultaneously evaluated. RESULTS Post-coffee consumption, TSI10 was significantly higher in the LC condition compared to placebo (p = 0.001) and significantly higher in the HC condition compared to placebo (p < 0.001). However, no difference was detected between LC and HC conditions (p = 0.527). HC condition also showed significant less TSI ½ compared to placebo (p = 0.005). However, no difference was detected for microvascular oxygen extraction during exercise, despite the greater Wpeak found for HC condition (p < 0.001) compared to placebo. CONCLUSION Coffee ingestion with high caffeine level (6 mg/kg body weight) significantly enhanced skeletal muscle reactivity at rest. However, the improvement of exercise performance with coffee intake is not accompanied by alterations in muscle oxygen extraction.
Collapse
Affiliation(s)
- Bin Leng
- Central China Normal University, School of Physical Education and Sport, Wuhan, Hubei, China
| | - Haizhen Huang
- Central China Normal University, School of Physical Education and Sport, Wuhan, Hubei, China
| | - Chuan Zhang
- Central China Normal University, School of Physical Education and Sport, Wuhan, Hubei, China
| |
Collapse
|
18
|
Zhang J, Sjøberg KA, Gong S, Wang T, Li F, Kuo A, Durot S, Majcher A, Ardicoglu R, Desgeorges T, Mann CG, Soro Arnáiz I, Fitzgerald G, Gilardoni P, Abel ED, Kon S, Olivares-Villagómez D, Zamboni N, Wolfrum C, Hornemann T, Morscher R, Tisch N, Ghesquière B, Kopf M, Richter EA, De Bock K. Endothelial metabolic control of insulin sensitivity through resident macrophages. Cell Metab 2024; 36:2383-2401.e9. [PMID: 39270655 DOI: 10.1016/j.cmet.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Kim Anker Sjøberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Songlin Gong
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Tongtong Wang
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Fengqi Li
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, Hefei, China
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Stephan Durot
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Thibaut Desgeorges
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Charlotte Greta Mann
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Ines Soro Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphael Morscher
- Pediatric Cancer Metabolism Laboratory, Children`s Research Center, University of Zürich, 8032 Zürich, Switzerland
| | - Nathalie Tisch
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
19
|
Broer T, Tsintolas N, Purkey K, Hammond S, DeLuca S, Wu T, Gupta I, Khodabukus A, Bursac N. Engineered myovascular tissues for studies of endothelial/satellite cell interactions. Acta Biomater 2024; 188:65-78. [PMID: 39299621 PMCID: PMC11486565 DOI: 10.1016/j.actbio.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In native skeletal muscle, capillaries reside in close proximity to muscle stem cells (satellite cells, SCs) and regulate SC numbers and quiescence through partially understood mechanisms that are difficult to study in vivo. This challenge could be addressed by the development of a 3-dimensional (3D) in vitro model of vascularized skeletal muscle harboring both a pool of quiescent SCs and a robust network of capillaries. Still, studying interactions between SCs and endothelial cells (ECs) within a tissue-engineered muscle environment has been hampered by the incompatibility of commercially available EC media with skeletal muscle differentiation. In this study, we first optimized co-culture media and cellular ratios to generate highly functional vascularized human skeletal muscle tissues ("myovascular bundles") with contractile properties (∼10 mN/mm2) equaling those of avascular, muscle-only tissues ("myobundles"). Within one week of muscle differentiation, ECs in these tissues formed a dense network of capillaries that co-aligned with muscle fibers and underwent initial lumenization. Incorporating vasculature within myobundles increased the total SC number by 82%, with SC density and quiescent signature being increased proximal (≤20μm) to EC networks. In vivo, at two weeks post-implantation into dorsal window chambers in nude mice, vascularized myobundles exhibited improved calcium handling compared to avascular implants. In summary, we engineered highly functional myovascular tissues that enable studies of the roles of EC-SC crosstalk in human muscle development, physiology, and disease. STATEMENT OF SIGNIFICANCE: In native skeletal muscle, intricate relationships between vascular cells and muscle stem cells ("satellite cells") play critical roles in muscle growth and regeneration. Current methods for in vitro engineering of contractile skeletal muscle do not recreate capillary networks present in vivo. Our study for the first time generates in vitro robustly vascularized, highly functional engineered human skeletal muscle tissues. Within these tissues, satellite cells are more abundant and, similar to in vivo, they are more dense and less proliferative proximal to endothelial cells. Upon implantation in mice, vascularized engineered muscles show improved calcium handling compared to muscle-only implants. We expect that this versatile in vitro system will enable studies of muscle-vasculature crosstalk in human development and disease.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC 27708, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Ishika Gupta
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
20
|
de Souza C, de Souza C, Campos FP, Savaris VDL, Wachholz L, Kaufmann C, Broch J, Comin GN, Calderano AA, Tesser GLS, Starkey JD, Eyng C, Nunes RV. Effect of arginine, glycine + serine concentrations, and guanidinoacetic acid supplementation in vegetable-based diets for chickens. Poult Sci 2024; 103:104105. [PMID: 39153445 PMCID: PMC11378898 DOI: 10.1016/j.psj.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/19/2024] Open
Abstract
The study investigated guanidinoacetic acid (GAA) supplementation with varying dietary digestible arginine (Arg) and glycine+serine (Gly+Ser) concentrations in the starter phase, exploring respective carry-over effects on growth performance, blood chemistry, incidence of pectoral myopathies and proximate composition in broilers. A total of 2,800 one-day-old male broiler chicks were distributed in a central composite design with 2 factors and double experimental mesh, represented by supplementation or omission of 0.6 g per kg of GAA, with a central point represented by 107% of Arg and 147% of Gly+Ser, 4 factorial points (combinations of Arg/Gly+Ser concentrations: 96.4/132.5%; 117.6/132.5%; 96.4/161.5%, and 117.6/132.5%), and 4 axial points (combinations of axial points estimated for Arg and Gly+Ser, with the central points of 92/147%; 122/147%; 107/126.5, and 107/167.5%), totaling 18 treatments, 4 repetitions to factorial and axial points, 24 replicates to the central point, and 25 birds per pen. Feed conversion ratio (FCR) from d 1 to 10 had a linear response (P = 0.009) for the decreasing Arg content and a quadratic response (P = 0.047) for Gly+Ser concentrations. Broilers supplemented GAA had lower FCR compared with nonsupplemented groups from d 1 to 10 (P = 0.048) and d 1 to 42 (P = 0.026). Aspartate aminotransferase (AST) exhibited increasing and decreasing linear effects as a function of Arg (P = 0.008) and Gly+Ser (P = 0.020) concentrations, respectively. Guanidinoacetic acid decreased serum AST (P = 0.028). Guanidinoacetic acid reduced moderate + severe (P = 0.039) and mild (P = 0.015) Wooden Breast scores. The occurrence of normal White Striping increased (P = 0.002), while severe score was reduced (P = 0.029) with GAA supplementation. In conclusion, increased digestible Arg:Lys and 14% and 6% above the recommendations (107% and 147%), respectively, provided improved FCR during the starter phase. Dietary GAA supplementation (0.6 g per kg) improved FCR, reduced severity of breast myopathies and appears to have reduced muscle damage in broilers fed plant-based diets.
Collapse
Affiliation(s)
- Cleison de Souza
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Cleverson de Souza
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Felipe P Campos
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Vaneila D L Savaris
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Lucas Wachholz
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Cristine Kaufmann
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Jomara Broch
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Gabriel N Comin
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Arele A Calderano
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | | | - Jessica D Starkey
- Department of Poultry Science, Auburn University, Auburn, AL 36849, US
| | - Cinthia Eyng
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Ricardo V Nunes
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil.
| |
Collapse
|
21
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
22
|
Betz MW, De Brandt J, Aussieker T, Monsegue AP, Houtvast DCJ, Gehlert S, Verdijk LB, van Loon LJC, Gosker HR, Langen RJC, Derave W, Burtin C, Spruit MA, Snijders T. Muscle fibre satellite cells are located at a greater distance from capillaries in patients with COPD compared with healthy controls. ERJ Open Res 2024; 10:00203-2024. [PMID: 39351378 PMCID: PMC11440426 DOI: 10.1183/23120541.00203-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 10/04/2024] Open
Abstract
Background COPD is a disease characterised by skeletal muscle dysfunction. A spatial relationship exists between satellite cells and muscle fibre capillaries, which has been suggested to be of major importance for satellite cell function. In the present study we compared the spatial relationship between satellite cells and capillaries in patients with COPD and age-matched healthy older adults. Methods Muscle biopsies were obtained from the vastus lateralis of n=18 patients with COPD (8 female, 10 male; age 66±5 years, mild-to-severe airflow obstruction) and n=18 age-, sex- and body mass index-matched healthy control adults (8 female, 10 male; age 68±5 years). Immunohistochemistry was used to assess type I/II muscle fibre size, distribution, myonuclear content, satellite cell number and fibre capillarisation. In addition, type I/II muscle fibre satellite cell distance to its nearest capillary was assessed. Results The percentage of type II muscle fibres was significantly greater in patients with COPD (62±10%) compared with controls (50±12%, p<0.05). Muscle fibre capillarisation was significantly lower in patients with COPD compared with controls (p<0.05). While satellite cell content was not different between groups, type I and type II satellite cell distance to its nearest capillary was significantly greater in patients with COPD (type I: 21.3±4.8 µm; type II: 26.7±9.3 µm) compared with controls (type I: 16.1±3.5 µm; type II: 22.7±5.8 µm; p<0.05). Conclusion Satellite cells are located at a greater distance from their nearest capillary in patients with COPD compared with age-matched controls. This increased distance could play a role in impaired satellite cell function in patients with COPD.
Collapse
Affiliation(s)
- Milan W Betz
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Jana De Brandt
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Thorben Aussieker
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Alejandra P Monsegue
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Dion C J Houtvast
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute for Sport Science, University of Hildesheim, Hildesheim, Germany
| | - Lex B Verdijk
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Harry R Gosker
- NUTRIM, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Ramon J C Langen
- NUTRIM, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Chris Burtin
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Martijn A Spruit
- NUTRIM, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, The Netherlands
- Department of Research and Education, CIRO+, Horn, The Netherlands
| | - Tim Snijders
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| |
Collapse
|
23
|
Fefeu M, Blatzer M, Kneppers A, Briand D, Rocheteau P, Haroche A, Hardy D, Juchet-Martin M, Danckaert A, Coudoré F, Tutakhail A, Huchet C, Lafoux A, Mounier R, Mir O, Gaillard R, Chrétien F. Serotonin reuptake inhibitors improve muscle stem cell function and muscle regeneration in male mice. Nat Commun 2024; 15:6457. [PMID: 39085209 PMCID: PMC11291725 DOI: 10.1038/s41467-024-50220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Serotonin reuptake inhibitor antidepressants such as fluoxetine are widely used to treat mood disorders. The mechanisms of action include an increase in extracellular level of serotonin, neurogenesis, and growth of vessels in the brain. We investigated whether fluoxetine could have broader peripheral regenerative properties. Following prolonged administration of fluoxetine in male mice, we showed that fluoxetine increases the number of muscle stem cells and muscle angiogenesis, associated with positive changes in skeletal muscle function. Fluoxetine also improved skeletal muscle regeneration after single and multiples injuries with an increased muscle stem cells pool and vessel density associated with reduced fibrotic lesions and inflammation. Mice devoid of peripheral serotonin treated with fluoxetine did not exhibit beneficial effects during muscle regeneration. Specifically, pharmacological, and genetic inactivation of the 5-HT1B subtype serotonin receptor also abolished the enhanced regenerative process induced by fluoxetine. We highlight here a regenerative property of serotonin on skeletal muscle.
Collapse
Affiliation(s)
- Mylène Fefeu
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
- Université de Paris Cité, Paris, France
| | - Michael Blatzer
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Anita Kneppers
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - David Briand
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Pierre Rocheteau
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Alexandre Haroche
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Mélanie Juchet-Martin
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | | | - François Coudoré
- CESP, MOODS Team, Inserm, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Abdulkarim Tutakhail
- CESP, MOODS Team, Inserm, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Corinne Huchet
- TaRGeT, INSERM UMR 1089, Nantes Université, CHU Nantes, Nantes, France
| | - Aude Lafoux
- Therassay Platform, Capacités, Université de Nantes, IRS 2 Nantes Biotech, Nantes, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Olivier Mir
- Sarcoma Group, Gustave Roussy, Villejuif, France
| | - Raphaël Gaillard
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France.
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France.
- Université de Paris Cité, Paris, France.
| | - Fabrice Chrétien
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France.
- Université de Paris Cité, Paris, France.
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de neuropathologie, Paris, France.
| |
Collapse
|
24
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
25
|
Verma M, Asakura Y, Wang X, Zhou K, Ünverdi M, Kann AP, Krauss RS, Asakura A. Endothelial cell signature in muscle stem cells validated by VEGFA-FLT1-AKT1 axis promoting survival of muscle stem cell. eLife 2024; 13:e73592. [PMID: 38842166 PMCID: PMC11216748 DOI: 10.7554/elife.73592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.
Collapse
Affiliation(s)
- Mayank Verma
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical CenterDallasUnited States
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Xuerui Wang
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Kasey Zhou
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Mahmut Ünverdi
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| |
Collapse
|
26
|
Collins BC, Shapiro JB, Scheib MM, Musci RV, Verma M, Kardon G. Three-dimensional imaging studies in mice identify cellular dynamics of skeletal muscle regeneration. Dev Cell 2024; 59:1457-1474.e5. [PMID: 38569550 PMCID: PMC11153043 DOI: 10.1016/j.devcel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The function of many organs, including skeletal muscle, depends on their three-dimensional structure. Muscle regeneration therefore requires not only reestablishment of myofibers but also restoration of tissue architecture. Resident muscle stem cells (SCs) are essential for regeneration, but how SCs regenerate muscle architecture is largely unknown. We address this problem using genetic labeling of mouse SCs and whole-mount imaging to reconstruct, in three dimensions, muscle regeneration. Unexpectedly, we found that myofibers form via two distinct phases of fusion and the residual basement membrane of necrotic myofibers is critical for promoting fusion and orienting regenerated myofibers. Furthermore, the centralized myonuclei characteristic of regenerated myofibers are associated with myofibrillogenesis and endure months post injury. Finally, we elucidate two cellular mechanisms for the formation of branched myofibers, a pathology characteristic of diseased muscle. We provide a synthesis of the cellular events of regeneration and show that these differ from those used during development.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jacob B Shapiro
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mya M Scheib
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Robert V Musci
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mayank Verma
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
28
|
Rodríguez C, Timóteo-Ferreira F, Minchiotti G, Brunelli S, Guardiola O. Cellular interactions and microenvironment dynamics in skeletal muscle regeneration and disease. Front Cell Dev Biol 2024; 12:1385399. [PMID: 38840849 PMCID: PMC11150574 DOI: 10.3389/fcell.2024.1385399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle regeneration relies on the intricate interplay of various cell populations within the muscle niche-an environment crucial for regulating the behavior of muscle stem cells (MuSCs) and ensuring postnatal tissue maintenance and regeneration. This review delves into the dynamic interactions among key players of this process, including MuSCs, macrophages (MPs), fibro-adipogenic progenitors (FAPs), endothelial cells (ECs), and pericytes (PCs), each assuming pivotal roles in orchestrating homeostasis and regeneration. Dysfunctions in these interactions can lead not only to pathological conditions but also exacerbate muscular dystrophies. The exploration of cellular and molecular crosstalk among these populations in both physiological and dystrophic conditions provides insights into the multifaceted communication networks governing muscle regeneration. Furthermore, this review discusses emerging strategies to modulate the muscle-regenerating niche, presenting a comprehensive overview of current understanding and innovative approaches.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
29
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
30
|
Karthikeyan S, Asakura A. Imaging analysis for muscle stem cells and regeneration. Front Cell Dev Biol 2024; 12:1411401. [PMID: 38774645 PMCID: PMC11106391 DOI: 10.3389/fcell.2024.1411401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Composed of a diverse variety of cells, the skeletal muscle is one of the body's tissues with the remarkable ability to regenerate after injury. One of the key players in the regeneration process is the muscle satellite cell (MuSC), a stem cell population for skeletal muscle, as it is the source of new myofibers. Maintaining MuSC quiescence during homeostasis involves complex interactions between MuSCs and other cells in their corresponding niche in adult skeletal muscle. After the injury, MuSCs are activated to enter the cell cycle for cell proliferation and differentiate into myotubes, followed by mature myofibers to regenerate muscle. Despite decades of research, the exact mechanisms underlying MuSC maintenance and activation remain elusive. Traditional methods of analyzing MuSCs, including cell cultures, animal models, and gene expression analyses, provide some insight into MuSC biology but lack the ability to replicate the 3-dimensional (3-D) in vivo muscle environment and capture dynamic processes comprehensively. Recent advancements in imaging technology, including confocal, intra-vital, and multi-photon microscopies, provide promising avenues for dynamic MuSC morphology and behavior to be observed and characterized. This chapter aims to review 3-D and live-imaging methods that have contributed to uncovering insights into MuSC behavior, morphology changes, interactions within the muscle niche, and internal signaling pathways during the quiescence to activation (Q-A) transition. Integrating advanced imaging modalities and computational tools provides a new avenue for studying complex biological processes in skeletal muscle regeneration and muscle degenerative diseases such as sarcopenia and Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Smrithi Karthikeyan
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
31
|
Dewi L, Liao YC, Jean WH, Huang KC, Huang CY, Chen LK, Nicholls A, Lai LF, Kuo CH. Cordyceps sinensis accelerates stem cell recruitment to human skeletal muscle after exercise. Food Funct 2024; 15:4010-4020. [PMID: 38501161 DOI: 10.1039/d3fo03770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Cordyceps sinensis is a parasitic fungus known to induce immune responses. The impact of Cordyceps supplementation on stem cell homing and expansion to human skeletal muscle after exercise remains unexplored. In this study, we examined how pre-exercise Cordyceps supplementation influences cell infiltration, CD34+ cell recruitment, and Pax7+ cell expansion in human skeletal muscle after high-intensity interval exercise (HIIE) on a cycloergometer. A randomized, double-blind, placebo-controlled crossover study was conducted with 14 young adults (age: 24 ± 0.8 years). A placebo (1 g cornstarch) and Cordyceps (1 g Cordyceps sinensis) were administered before exercise (at 120% maximal aerobic power). Multiple biopsies were taken from the vastus lateralis for muscle tissue analysis before and after HIIE. This exercise regimen doubled the VEGF mRNA in the muscle at 3 h post-exercise (P = 0.006). A significant necrotic cell infiltration (+284%, P = 0.05) was observed 3 h after HIIE and resolved within 24 h. This response was substantially attenuated by Cordyceps supplementation. Moreover, we observed increases in CD34+ cells at 24 h post-exercise, notably accelerated by Cordyceps supplementation to 3 h (+51%, P = 0.002). This earlier response contributed to a four-fold expansion in Pax7+ cell count, as demonstrated by immunofluorescence double staining (CD34+/Pax7+) (P = 0.01). In conclusion, our results provide the first human evidence demonstrating the accelerated resolution of exercise-induced muscle damage by Cordyceps supplementation. This effect is associated with earlier stem cell recruitment into the damaged sites for muscle regeneration.
Collapse
Affiliation(s)
- Luthfia Dewi
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan.
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Yu-Chieh Liao
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan.
| | - Wei-Horng Jean
- Department of Anaesthesiology, Far East Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd, Banciao Dist., New Taipei, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Andrew Nicholls
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan.
| | - Li-Fan Lai
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan.
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan.
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
- Department of Kinesiology and Health, College of William and Mary, Williamsburg VA, USA
| |
Collapse
|
32
|
Marzetti E, Lozanoska-Ochser B, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Restoring Mitochondrial Function and Muscle Satellite Cell Signaling: Remedies against Age-Related Sarcopenia. Biomolecules 2024; 14:415. [PMID: 38672432 PMCID: PMC11048011 DOI: 10.3390/biom14040415] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia has a complex pathophysiology that encompasses metabolic dysregulation and muscle ultrastructural changes. Among the drivers of intracellular and ultrastructural changes of muscle fibers in sarcopenia, mitochondria and their quality control pathways play relevant roles. Mononucleated muscle stem cells/satellite cells (MSCs) have been attributed a critical role in muscle repair after an injury. The involvement of mitochondria in supporting MSC-directed muscle repair is unclear. There is evidence that a reduction in mitochondrial biogenesis blunts muscle repair, thus indicating that the delivery of functional mitochondria to injured muscles can be harnessed to limit muscle fibrosis and enhance restoration of muscle function. Injection of autologous respiration-competent mitochondria from uninjured sites to damaged tissue has been shown to reduce infarct size and enhance cell survival in preclinical models of ischemia-reperfusion. Furthermore, the incorporation of donor mitochondria into MSCs enhances lung and cardiac tissue repair. This strategy has also been tested for regeneration purposes in traumatic muscle injuries. Indeed, the systemic delivery of mitochondria promotes muscle regeneration and restores muscle mass and function while reducing fibrosis during recovery after an injury. In this review, we discuss the contribution of altered MSC function to sarcopenia and illustrate the prospect of harnessing mitochondrial delivery and restoration of MSCs as a therapeutic strategy against age-related sarcopenia.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Biliana Lozanoska-Ochser
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
- DAHFMO Unit of Histology and Medical Embryology, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
| |
Collapse
|
33
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
34
|
Le Moal E, Liu Y, Collerette-Tremblay J, Dumontier S, Fabre P, Molina T, Dort J, Orfi Z, Denault N, Boutin J, Michaud J, Giguère H, Desroches A, Trân K, Ellezam B, Vézina F, Bedard S, Raynaud C, Balg F, Sarret P, Boudreault PL, Scott MS, Denault JB, Marsault E, Feige JN, Auger-Messier M, Dumont NA, Bentzinger CF. Apelin stimulation of the vascular skeletal muscle stem cell niche enhances endogenous repair in dystrophic mice. Sci Transl Med 2024; 16:eabn8529. [PMID: 38507466 DOI: 10.1126/scitranslmed.abn8529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jasmin Collerette-Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nicolas Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Hugo Giguère
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Desroches
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Kien Trân
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Benjamin Ellezam
- CHU Sainte-Justine Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - François Vézina
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sonia Bedard
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Catherine Raynaud
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frederic Balg
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Eric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mannix Auger-Messier
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - C Florian Bentzinger
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
35
|
Nejad FM, Mohammadabadi M, Roudbari Z, Gorji AE, Sadkowski T. Network visualization of genes involved in skeletal muscle myogenesis in livestock animals. BMC Genomics 2024; 25:294. [PMID: 38504177 PMCID: PMC10953195 DOI: 10.1186/s12864-024-10196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Muscle growth post-birth relies on muscle fiber number and size. Myofibre number, metabolic and contractile capacities are established pre-birth during prenatal myogenesis. The aim of this study was to identify genes involved in skeletal muscle development in cattle, sheep, and pigs - livestock. RESULTS The cattle analysis showed significant differences in 5043 genes during the 135-280 dpc period. In sheep, 444 genes differed significantly during the 70-120 dpc period. Pigs had 905 significantly different genes for the 63-91 dpc period.The biological processes and KEGG pathway enrichment results in each species individually indicated that DEGs in cattle were significantly enriched in regulation of cell proliferation, cell division, focal adhesion, ECM-receptor interaction, and signaling pathways (PI3K-Akt, PPAR, MAPK, AMPK, Ras, Rap1); in sheep - positive regulation of fibroblast proliferation, negative regulation of endothelial cell proliferation, focal adhesion, ECM-receptor interaction, insulin resistance, and signaling pathways (PI3K-Akt, HIF-1, prolactin, Rap1, PPAR); in pigs - regulation of striated muscle tissue development, collagen fibril organization, positive regulation of insulin secretion, focal adhesion, ECM-receptor interaction, and signaling pathways (PPAR, FoxO, HIF-1, AMPK). Among the DEGs common for studied animal species, 45 common genes were identified. Based on these, a protein-protein interaction network was created and three significant modules critical for skeletal muscle myogenesis were found, with the most significant module A containing four recognized hub genes - EGFR, VEGFA, CDH1, and CAV1. Using the miRWALK and TF2DNA databases, miRNAs (bta-miR-2374 and bta-miR-744) and transcription factors (CEBPB, KLF15, RELA, ZNF143, ZBTB48, and REST) associated with hub genes were detected. Analysis of GO term and KEGG pathways showed that such processes are related to myogenesis and associated with module A: positive regulation of MAP kinase activity, vascular endothelial growth factor receptor, insulin-like growth factor binding, focal adhesion, and signaling pathways (PI3K-Akt, HIF-1, Rap1, Ras, MAPK). CONCLUSIONS The identified genes, common to the prenatal developmental period of skeletal muscle in livestock, are critical for later muscle development, including its growth by hypertrophy. They regulate valuable economic characteristics. Enhancing and breeding animals according to the recognized genes seems essential for breeders to achieve superior gains in high-quality muscle mass.
Collapse
Affiliation(s)
- Fatemeh Mohammadi Nejad
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammadreza Mohammadabadi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
36
|
Das S, Hilman MC, Yang F, Mourkioti F, Yang W, Cullen DK. Motor neurons and endothelial cells additively promote development and fusion of human iPSC-derived skeletal myocytes. Skelet Muscle 2024; 14:5. [PMID: 38454511 PMCID: PMC10921694 DOI: 10.1186/s13395-024-00336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Neurovascular cells have wide-ranging implications on skeletal muscle biology regulating myogenesis, maturation, and regeneration. Although several in vitro studies have investigated how motor neurons and endothelial cells interact with skeletal myocytes independently, there is limited knowledge about the combined effect of neural and vascular cells on muscle maturation and development. METHODS Here, we report a triculture system comprising human-induced pluripotent stem cell (iPSC)-derived skeletal myocytes, human iPSC-derived motor neurons, and primary human endothelial cells maintained under controlled media conditions. Briefly, iPSCs were differentiated to generate skeletal muscle progenitor cells (SMPCs). These SMPCs were seeded at a density of 5 × 104 cells/well in 12-well plates and allowed to differentiate for 7 days before adding iPSC-derived motor neurons at a concentration of 0.5 × 104 cells/well. The neuromuscular coculture was maintained for another 7 days in coculture media before addition of primary human umbilical vein endothelial cells (HUVEC) also at 0.5 × 104 cells/well. The triculture was maintained for another 7 days in triculture media comprising equal portions of muscle differentiation media, coculture media, and vascular media. Extensive morphological, genetic, and molecular characterization was performed to understand the combined and individual effects of neural and vascular cells on skeletal muscle maturation. RESULTS We observed that motor neurons independently promoted myofiber fusion, upregulated neuromuscular junction genes, and maintained a molecular niche supportive of muscle maturation. Endothelial cells independently did not support myofiber fusion and downregulated expression of LRP4 but did promote expression of type II specific myosin isoforms. However, neurovascular cells in combination exhibited additive increases in myofiber fusion and length, enhanced production of Agrin, along with upregulation of several key genes like MUSK, RAPSYN, DOK-7, and SLC2A4. Interestingly, more divergent effects were observed in expression of genes like MYH8, MYH1, MYH2, MYH4, and LRP4 and secretion of key molecular factors like amphiregulin and IGFBP-4. CONCLUSIONS Neurovascular cells when cultured in combination with skeletal myocytes promoted myocyte fusion with concomitant increase in expression of various neuromuscular genes. This triculture system may be used to gain a deeper understanding of the effects of the neurovascular niche on skeletal muscle biology and pathophysiology.
Collapse
Affiliation(s)
- Suradip Das
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA.
| | - Melanie C Hilman
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Feikun Yang
- Department of Medicine, Penn Institute for Regenerative Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Musculoskeletal Program, Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenli Yang
- Department of Medicine, Penn Institute for Regenerative Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Musculoskeletal Program, Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
37
|
Piñol-Jurado P, Verdú-Díaz J, Fernández-Simón E, Domínguez-González C, Hernández-Lain A, Lawless C, Vincent A, González-Chamorro A, Villalobos E, Monceau A, Laidler Z, Mehra P, Clark J, Filby A, McDonald D, Rushton P, Bowey A, Alonso Pérez J, Tasca G, Marini-Bettolo C, Guglieri M, Straub V, Suárez-Calvet X, Díaz-Manera J. Imaging mass cytometry analysis of Becker muscular dystrophy muscle samples reveals different stages of muscle degeneration. Sci Rep 2024; 14:3365. [PMID: 38336890 PMCID: PMC10858026 DOI: 10.1038/s41598-024-51906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.
Collapse
Affiliation(s)
- Patricia Piñol-Jurado
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Esther Fernández-Simón
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Cristina Domínguez-González
- Neuromuscular Disorders Unit, Neurology Department, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Aurelio Hernández-Lain
- Neuropathology Unit, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Conor Lawless
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Amy Vincent
- Faculty of Medical Sciences, Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Alejandro González-Chamorro
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Elisa Villalobos
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Alexandra Monceau
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Zoe Laidler
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Priyanka Mehra
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - James Clark
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Andrew Filby
- Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK
| | - David McDonald
- Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK
| | - Paul Rushton
- Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Andrew Bowey
- Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Jorge Alonso Pérez
- Neuromuscular Disease Unit, Neurology Department, Hospital Universitario Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Tenerife, Spain
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain.
| |
Collapse
|
38
|
Endo Y, Zhu C, Giunta E, Guo C, Koh DJ, Sinha I. The Role of Hypoxia and Hypoxia Signaling in Skeletal Muscle Physiology. Adv Biol (Weinh) 2024; 8:e2200300. [PMID: 37817370 DOI: 10.1002/adbi.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/06/2023] [Indexed: 10/12/2023]
Abstract
Hypoxia and hypoxia signaling play an integral role in regulating skeletal muscle physiology. Environmental hypoxia and tissue hypoxia in muscles cue for their appropriate physiological response and adaptation, and cause an array of cellular and metabolic changes. In addition, muscle stem cells (satellite cells), exist in a hypoxic state, and this intrinsic hypoxic state correlates with their quiescence and stemness. The mechanisms of hypoxia-mediated regulation of satellite cells and myogenesis are yet to be characterized, and their seemingly contradicting effects reported leave their exact roles somewhat perplexing. This review summarizes the recent findings on the effect of hypoxia and hypoxia signaling on the key aspects of muscle physiology, namely, stem cell maintenance and myogenesis with a particular attention given to distinguish the intrinsic versus local hypoxia in an attempt to better understand their respective regulatory roles and how their relationship affects the overall response. This review further describes their mechanistic links and their possible implications on the relevant pathologies and therapeutics.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA
| | - Elena Giunta
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Cynthia Guo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Daniel J Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
39
|
Nelke C, Müntefering T, Cengiz D, Theissen L, Dobelmann V, Schroeter CB, Block H, Preuße C, Michels APE, Lichtenberg S, Pawlitzki M, Pfeuffer S, Huntemann N, Zarbock A, Briese T, Kittl C, Dittmayer C, Budde T, Lundberg IE, Stenzel W, Meuth SG, Ruck T. K 2P2.1 is a regulator of inflammatory cell responses in idiopathic inflammatory myopathies. J Autoimmun 2024; 142:103136. [PMID: 37935063 DOI: 10.1016/j.jaut.2023.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
K2P2.1 (TREK1), a two-pore domain potassium channel, has emerged as regulator of leukocyte transmigration into the central nervous system. In the context of skeletal muscle, immune cell infiltration constitutes the pathogenic hallmark of idiopathic inflammatory myopathies (IIMs). However, the underlying mechanisms remain to be elucidated. In this study, we investigated the role of K2P2.1 in the autoimmune response of IIMs. We detected K2P2.1 expression in primary skeletal muscle and endothelial cells of murine and human origin. We observed an increased pro-inflammatory cell response, adhesion and transmigration by pharmacological blockade or genetic deletion of K2P2.1 in vitro and in in vivo myositis mouse models. Of note, our findings were not restricted to endothelial cells as skeletal muscle cells with impaired K2P2.1 function also demonstrated a strong pro-inflammatory response. Conversely, these features were abrogated by activation of K2P2.1 and improved the disease course of a myositis mouse model. In humans, K2P2.1 expression was diminished in IIM patients compared to non-diseased controls arguing for the translatability of our findings. In summary, K2P2.1 may regulate the inflammatory response of skeletal muscle. Further research is required to understand whether K2P2.1 could serve as novel therapeutic target.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Thomas Müntefering
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Derya Cengiz
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Lukas Theissen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Helena Block
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Muenster, Muenster, Germany
| | - Corinna Preuße
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Alexander P E Michels
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Stefanie Lichtenberg
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | | | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Muenster, Muenster, Germany
| | - Thorben Briese
- Department of Trauma, Hand and Reconstructive Surgery, Westphalian Wilhelms University Muenster, Muenster, Germany
| | - Christoph Kittl
- Department of Trauma, Hand and Reconstructive Surgery, Westphalian Wilhelms University Muenster, Muenster, Germany
| | - Carsten Dittmayer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Muenster, Germany
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Solna (MedS), K2, Karolinska Institutet, Stockholm, Sweden
| | - Werner Stenzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany.
| |
Collapse
|
40
|
Abstract
Skeletal muscle stem cells (MuSCs, also called satellite cells) are the source of the robust regenerative capability of this tissue. The hallmark property of MuSCs at homeostasis is quiescence, a reversible state of cell cycle arrest required for long-term preservation of the stem cell population. MuSCs reside between an individual myofiber and an enwrapping basal lamina, defining the immediate MuSC niche. Additional cell types outside the basal lamina, in the interstitial space, also contribute to niche function. Quiescence is actively maintained by multiple niche-derived signals, including adhesion molecules presented from the myofiber surface and basal lamina, as well as soluble signaling factors produced by myofibers and interstitial cell types. In this Cell Science at a Glance article and accompanying poster, we present the most recent information on how niche signals promote MuSC quiescence and provide perspectives for further research.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace E. L. Jones
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
41
|
Velleman SG. Broiler breast muscle myopathies: association with satellite cells. Poult Sci 2023; 102:102917. [PMID: 37478619 PMCID: PMC10387605 DOI: 10.1016/j.psj.2023.102917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Heavy weight fast-growing meat-type broiler chickens have largely been selected for growth rate, muscle mass yield especially for the breast muscle, and feed conversion. Substantial improvements have been made, but in recent years breast meat quality issues resulting in product downgrades or condemnation have occurred especially from necrotic and fibrotic myopathies like Wooden Breast. In general, the morphological structure of the broiler breast muscle has changed in the modern commercial broiler with muscle fiber diameters increased, circulatory supply decreased, and connective spacing between individual fibers and fiber bundles decreased. Satellite cells are the primary cell type responsible for all posthatch muscle growth, and the repair and regeneration of muscle fibers. Recent evidence is suggestive of changes in the broiler satellite cell populations which will limit the ability of the satellite cells to regenerate damaged muscle fibers back to their original. These changes in the cellular biology of broiler satellite cells are likely associated with the necrosis and fibrosis observed in myopathies like Wooden Breast.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
42
|
Gandolfi S, Pileyre B, Drouot L, Dubus I, Auquit-Auckbur I, Martinet J. Stromal vascular fraction in the treatment of myositis. Cell Death Discov 2023; 9:346. [PMID: 37726262 PMCID: PMC10509179 DOI: 10.1038/s41420-023-01605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Muscle regeneration is a physiological process that converts satellite cells into mature myotubes under the influence of an inflammatory environment progressively replaced by an anti-inflammatory environment, with precise crosstalk between immune and muscular cells. If the succession of these phases is disturbed, the immune system can sometimes become auto-reactive, leading to chronic muscular inflammatory diseases, such as myositis. The triggers of these autoimmune myopathies remain mostly unknown, but the main mechanisms of pathogenesis are partially understood. They involve chronic inflammation, which could be associated with an auto-reactive immune response, and gradually with a decrease in the regenerative capacities of the muscle, leading to its degeneration, fibrosis and vascular architecture deterioration. Immunosuppressive treatments can block the first part of the process, but sometimes muscle remains weakened, or even still deteriorates, due to the exhaustion of its capacities. For patients refractory to immunosuppressive therapies, mesenchymal stem cells have shown interesting effects but their use is limited by their availability. Stromal vascular fraction, which can easily be extracted from adipose tissue, has shown good tolerance and possible therapeutic benefits in several degenerative and autoimmune diseases. However, despite the increasing use of stromal vascular fraction, the therapeutically active components within this heterogeneous cellular product are ill-defined and the mechanisms by which this therapy might be active remain insufficiently understood. We review herein the current knowledge on the mechanisms of action of stromal vascular fraction and hypothesise on how it could potentially respond to some of the unmet treatment needs of refractory myositis.
Collapse
Affiliation(s)
- S Gandolfi
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
- Toulouse University Hospital, Department of Plastic and Reconstructive Surgery, F-31000, Toulouse, France
| | - B Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- Centre Henri Becquerel, Department of Pharmacy, F-76000, Rouen, France.
| | - L Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Dubus
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Auquit-Auckbur
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Plastic, Reconstructive and Hand Surgery, F-76000, Rouen, France
| | - J Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
43
|
Mierzejewski B, Ciemerych MA, Streminska W, Janczyk-Ilach K, Brzoska E. miRNA-126a plays important role in myoblast and endothelial cell interaction. Sci Rep 2023; 13:15046. [PMID: 37699959 PMCID: PMC10497517 DOI: 10.1038/s41598-023-41626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland.
| |
Collapse
|
44
|
Alnahhas N, Pouliot E, Saucier L. The hypoxia-inducible factor 1 pathway plays a critical role in the development of breast muscle myopathies in broiler chickens: a comprehensive review. Front Physiol 2023; 14:1260987. [PMID: 37719466 PMCID: PMC10500075 DOI: 10.3389/fphys.2023.1260987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
In light of the increased worldwide demand for poultry meat, genetic selection efforts have intensified to produce broiler strains that grow at a higher rate, have greater breast meat yield (BMY), and convert feed to meat more efficiently. The increased selection pressure for these traits, BMY in particular, has produced multiple breast meat quality defects collectively known as breast muscle myopathies (BMM). Hypoxia has been proposed as one of the major mechanisms triggering the onset and occurrence of these myopathies. In this review, the relevant literature on the causes and consequences of hypoxia in broiler breast muscles is reviewed and discussed, with a special focus on the hypoxia-inducible factor 1 (HIF-1) pathway. Muscle fiber hypertrophy induced by selective breeding for greater BMY reduces the space available in the perimysium and endomysium for blood vessels and capillaries. The hypoxic state that results from the lack of circulation in muscle tissue activates the HIF-1 pathway. This pathway alters energy metabolism by promoting anaerobic glycolysis, suppressing the tricarboxylic acid cycle and damaging mitochondrial function. These changes lead to oxidative stress that further exacerbate the progression of BMM. In addition, activating the HIF-1 pathway promotes fatty acid synthesis, lipogenesis, and lipid accumulation in myopathic muscle tissue, and interacts with profibrotic growth factors leading to increased deposition of matrix proteins in muscle tissue. By promoting lipidosis and fibrosis, the HIF-1 pathway contributes to the development of the distinctive phenotypes of BMM, including white striations in white striping-affected muscles and the increased hardness of wooden breast-affected muscles.
Collapse
Affiliation(s)
- Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC, Canada
| | | | - Linda Saucier
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, QC, Canada
- Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
45
|
Wirth G, Juusola G, Tarvainen S, Laakkonen JP, Korpisalo P, Ylä-Herttuala S. Capillary Dynamics Regulate Post-Ischemic Muscle Damage and Regeneration in Experimental Hindlimb Ischemia. Cells 2023; 12:2060. [PMID: 37626870 PMCID: PMC10453415 DOI: 10.3390/cells12162060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to show the significance of capillary function in post-ischemic recovery from the perspective of physiological parameters, such as blood flow, hemoglobin oxygenation and tissue regeneration. Muscle-level microvascular alterations of blood flow and hemoglobin oxygenation, and post-ischemic myofiber and capillary responses were analyzed in aged, healthy C57Bl/6J mice (n = 48) and aged, hyperlipidemic LDLR-/-ApoB100/100 mice (n = 69) after the induction of acute hindlimb ischemia using contrast ultrasound, photoacoustic imaging and histological analyses, respectively. The capillary responses that led to successful post-ischemic muscle repair in C57Bl/6J mice included an early capillary dilation phase, preceding the return of arterial driving pressure, followed by an increase in capillary density that further supported satellite cell-induced muscle regeneration. Initial capillary enlargement was absent in the LDLR-/-ApoB100/100 mice with lifelong moderate hypercholesterolemia and led to an inability to recover arterial driving pressure, with a resulting increase in distal necrosis, chronic tissue damage and a delay in the overall recovery after ischemia. To conclude, this manuscript highlights, beyond arterial collateralization, the importance of the proper function of the capillary endothelium in post-ischemic recovery and displays how post-ischemic capillary dynamics associate beyond tissue blood flow to both hemoglobin oxygenation and tissue regeneration.
Collapse
Affiliation(s)
- Galina Wirth
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Greta Juusola
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Santeri Tarvainen
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Petra Korpisalo
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
46
|
Acosta FM, Pacelli S, Rathbone CR. Diabetes diminishes muscle precursor cell-mediated microvascular angiogenesis. PLoS One 2023; 18:e0289477. [PMID: 37540699 PMCID: PMC10403078 DOI: 10.1371/journal.pone.0289477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023] Open
Abstract
The skeletal muscles of Type II diabetic (T2D) patients can be characterized by a reduced vessel density, corresponding to deficiencies in microvascular angiogenesis. Interestingly, T2D also inhibits the function of many myogenic cells resident within skeletal muscle, including satellite cells, which are well-known for the role they play in maintaining homeostasis. The current study was undertaken to gain a better understanding of the mechanisms whereby satellite cell progeny, muscle precursor cells (MPCs), influence microvascular angiogenesis. Network growth and the expression of genes associated with angiogenesis were reduced when microvessels were treated with conditioned media generated by proliferating MPCs isolated from diabetic, as compared to control rat skeletal muscle, a phenomenon that was also observed when myoblasts from control or diabetic human skeletal muscle were used. When only exosomes derived from diabetic or control MPCs were used to treat microvessels, no differences in microvascular growth were observed. An evaluation of the angiogenesis factors in control and diabetic MPCs revealed differences in Leptin, vascular endothelial growth factor (VEGF), IL1-β, interleukin 10, and IP-10, and an evaluation of the MPC secretome revealed differences in interleukin 6, MCP-1, VEGF, and interleukin 4 exist. Angiogenesis was also reduced in tissue-engineered skeletal muscles (TE-SkM) containing microvessels when they were generated from MPCs isolated from diabetic as compared to control skeletal muscle. Lastly, the secretome of injured control, but not diabetic, TE-SkM was able to increase VEGF and increase microvascular angiogenesis. This comprehensive analysis of the interaction between MPCs and microvessels in the context of diabetes points to an area for alleviating the deleterious effects of diabetes on skeletal muscle.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX, United States of America
| | - Settimio Pacelli
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Christopher R. Rathbone
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States of America
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX, United States of America
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
47
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
48
|
Johnson AL, Kamal M, Parise G. The Role of Supporting Cell Populations in Satellite Cell Mediated Muscle Repair. Cells 2023; 12:1968. [PMID: 37566047 PMCID: PMC10417507 DOI: 10.3390/cells12151968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Skeletal muscle has a high capacity to repair and remodel in response to damage, largely through the action of resident muscle stem cells, termed satellite cells. Satellite cells are required for the proper repair of skeletal muscle through a process known as myogenesis. Recent investigations have observed relationships between satellite cells and other cell types and structures within the muscle microenvironment. These findings suggest that the crosstalk between inflammatory cells, fibrogenic cells, bone-marrow-derived cells, satellite cells, and the vasculature is essential for the restoration of muscle homeostasis. This review will discuss the influence of the cells and structures within the muscle microenvironment on satellite cell function and muscle repair.
Collapse
Affiliation(s)
| | | | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
49
|
Hansson KA, Eftestøl E. Scaling of nuclear numbers and their spatial arrangement in skeletal muscle cell size regulation. Mol Biol Cell 2023; 34:pe3. [PMID: 37339435 PMCID: PMC10398882 DOI: 10.1091/mbc.e22-09-0424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 06/22/2023] Open
Abstract
Many cells display considerable functional plasticity and depend on the regulation of numerous organelles and macromolecules for their maintenance. In large cells, organelles also need to be carefully distributed to supply the cell with essential resources and regulate intracellular activities. Having multiple copies of the largest eukaryotic organelle, the nucleus, epitomizes the importance of scaling gene products to large cytoplasmic volumes in skeletal muscle fibers. Scaling of intracellular constituents within mammalian muscle fibers is, however, poorly understood, but according to the myonuclear domain hypothesis, a single nucleus supports a finite amount of cytoplasm and is thus postulated to act autonomously, causing the nuclear number to be commensurate with fiber volume. In addition, the orderly peripheral distribution of myonuclei is a hallmark of normal cell physiology, as nuclear mispositioning is associated with impaired muscle function. Because underlying structures of complex cell behaviors are commonly formalized by scaling laws and thus emphasize emerging principles of size regulation, the work presented herein offers more of a unified conceptual platform based on principles from physics, chemistry, geometry, and biology to explore cell size-dependent correlations of the largest mammalian cell by means of scaling.
Collapse
Affiliation(s)
- Kenth-Arne Hansson
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, 2624 Lillehammer, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
50
|
Picca A, Lozanoska-Ochser B, Calvani R, Coelho-Júnior HJ, Leewenburgh C, Marzetti E. Inflammatory, mitochondrial, and senescence-related markers: Underlying biological pathways of muscle aging and new therapeutic targets. Exp Gerontol 2023; 178:112204. [PMID: 37169101 DOI: 10.1016/j.exger.2023.112204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
The maintenance of functional health is pivotal for achieving independent life in older age. The aged muscle is characterized by ultrastructural changes, including loss of type I and type II myofibers and a greater proportion of cytochrome c oxidase deficient and succinate dehydrogenase positive fibers. Both intrinsic (e.g., altered proteostasis, DNA damage, and mitochondrial dysfunction) and extrinsic factors (e.g., denervation, altered metabolic regulation, declines in satellite cells, and inflammation) contribute to muscle aging. Being a hub for several cellular activities, mitochondria are key to myocyte viability and mitochondrial dysfunction has been implicated in age-associated physical decline. The maintenance of functional organelles via mitochondrial quality control (MQC) processes is, therefore, crucial to skeletal myofiber viability and organismal health. The autophagy-lysosome pathway has emerged as a critical step of MQC in muscle by disposing organelles and proteins via their tagging for autophagosome incorporation and delivery to the lysosome for clearance. This pathway was found to be altered in muscle of physically inactive older adults. A relationship between this pathway and muscle tissue composition of the lower extremities as well as physical performance was also identified. Therefore, integrating muscle structure and myocyte quality control measures in the evaluation of muscle health may be a promising strategy for devising interventions fostering muscle health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy; DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|