1
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
2
|
Posont RJ, Most MS, Cadaret CN, Marks-Nelson ES, Beede KA, Limesand SW, Schmidt TB, Petersen JL, Yates DT. Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways. J Anim Sci 2022; 100:6652330. [PMID: 35908792 PMCID: PMC9339287 DOI: 10.1093/jas/skac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P < 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P < 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P < 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P < 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P < 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P < 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P < 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P < 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P < 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P < 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P < 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P < 0.05) TNFR1 and IL6 gene expression, greater (P < 0.05) c-Fos protein, and less (P < 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P < 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P < 0.05) β-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Micah S Most
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S Marks-Nelson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 65721, USA
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
The Role of Satellite Cells in Skeletal Muscle Regeneration-The Effect of Exercise and Age. BIOLOGY 2021; 10:biology10101056. [PMID: 34681155 PMCID: PMC8533525 DOI: 10.3390/biology10101056] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Studies describing the effects of various forms of exercise and age on muscle regeneration were reviewed. Satellite cells are a heterogeneous group of cells that includes stem cells and skeletal muscle progenitor cells. Each skeletal muscle fiber has its own pool of satellite cells that remain inactive until the muscle is damaged. Minor damage within the cell membrane of muscle fibers is patched by fusing intracellular vesicles with the damaged sarcolemma. More severe muscle damage initiates a multistep regeneration process in which satellite cells play an essential role. The condition that initiates the cascade of reactions is the formation of inflammation at the structural discontinuity site, resulting in satellite cell activation. The multitude of reactions and pathways occurring during this process means that many different substances are involved in it and control it. Not all of them are well-understood yet. In parallel, the body’s own population of satellite cells is being rebuilt so that more fibers can be regenerated in the future. Athletes and the elderly are primarily at risk for muscle damage, and pathologies in muscle fiber regeneration cause serious diseases. Abstract The population of satellite cells (mSCs) is highly diversified. The cells comprising it differ in their ability to regenerate their own population and differentiate, as well as in the properties they exhibit. The heterogeneity of this group of cells is evidenced by multiple differentiating markers that enable their recognition, classification, labeling, and characterization. One of the main tasks of satellite cells is skeletal muscle regeneration. Myofibers are often damaged during vigorous exercise in people who participate in sports activities. The number of satellite cells and the speed of the regeneration processes that depend on them affect the time structure of an athlete’s training. This process depends on inflammatory cells. The multitude of reactions and pathways that occur during the regeneration process results in the participation and control of many factors that are activated and secreted during muscle fiber damage and at different stages of its regeneration. However, not all of them are well understood yet. This paper presents the current state of knowledge on satellite cell-dependent skeletal muscle regeneration. Studies describing the effects of various forms of exercise and age on this process were reviewed.
Collapse
|
4
|
Singh V. Intracellular metabolic reprogramming mediated by micro-RNAs in differentiating and proliferating cells under non-diseased conditions. Mol Biol Rep 2021; 48:8123-8140. [PMID: 34643930 DOI: 10.1007/s11033-021-06769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Intracellular metabolic reprogramming is a critical process the cells carry out to increase biomass, energy fulfillment and genome replication. Cells reprogram their demands from internal catabolic or anabolic activities in coordination with multiple genes and microRNAs which further control the critical processes of differentiation and proliferation. The microRNAs reprogram the metabolism involving mitochondria, the nucleus and the biochemical processes utilizing glucose, amino acids, lipids, and nucleic acids resulting in ATP production. The processes of glycolysis, tricarboxylic acid cycle, or oxidative phosphorylation are also mediated by micro-RNAs maintaining cells and organs in a non-diseased state. Several reports have shown practical applications of metabolic reprogramming for clinical utility to assess various diseases, mostly studying cancer and immune-related disorders. Cells under diseased conditions utilize glycolysis for abnormal growth or proliferation, respectively, affecting mitochondrial paucity and biogenesis. Similar metabolic processes also affect gene expressions and transcriptional regulation for carrying out biochemical reactions. Metabolic reprogramming is equally vital for regulating cell environment to maintain organs and tissues in non-diseased states. This review offers in depth insights and analysis of how miRNAs regulate metabolic reprogramming in four major types of cells undergoing differentiation and proliferation, i.e., immune cells, neuronal cells, skeletal satellite cells, and cardiomyocytes under a non-diseased state. Further, the work systematically summarizes and elaborates regulation of genetic switches by microRNAs through predominantly through cellular reprogramming and metabolic processes for the first time. The observations will lead to a better understanding of disease initiation during the differentiation and proliferation stages of cells, as well as fresh approaches to studying clinical onset of linked metabolic diseases targeting metabolic processes.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
5
|
Chen M, Zhang L, Guo Y, Liu X, Song Y, Li X, Ding X, Guo H. A novel lncRNA promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1. J Cell Mol Med 2021; 25:5988-6005. [PMID: 33942976 PMCID: PMC8256363 DOI: 10.1111/jcmm.16427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myogenesis, the process of skeletal muscle formation, is a highly coordinated multistep biological process. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are emerging as a gatekeeper in myogenesis. Up to now, most studies on muscle development-related lncRNAs are mainly focussed on humans and mice. In this study, a novel muscle highly expressed lncRNA, named lnc23, localized in nucleus, was found differentially expressed in different stages of embryonic development and myogenic differentiation. The knockdown and over-expression experiments showed that lnc23 positively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Then, TMT 10-plex labelling quantitative proteomics was performed to screen the potentially regulatory proteins of lnc23. Results indicated that lnc23 was involved in the key processes of myogenic differentiation such as cell fusion, further demonstrated that down-regulation of lnc23 may inhibit myogenic differentiation by reducing signal transduction and cell fusion among cells. Furthermore, RNA pulldown/LC-MS and RIP experiment illustrated that PFN1 was a binding protein of lnc23. Further, we also found that lnc23 positively regulated the protein expression of RhoA and Rac1, and PFN1 may negatively regulate myogenic differentiation and the expression of its interacting proteins RhoA and Rac1. Hence, we support that lnc23 may reduce the inhibiting effect of PFN1 on RhoA and Rac1 by binding to PFN1, thereby promoting myogenic differentiation. In short, the novel identified lnc23 promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1.
Collapse
Affiliation(s)
- Mingming Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xinfeng Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Yingshen Song
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| |
Collapse
|
6
|
Rugowska A, Starosta A, Konieczny P. Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clin Epigenetics 2021; 13:13. [PMID: 33468200 PMCID: PMC7814631 DOI: 10.1186/s13148-021-01001-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a multisystemic disorder that affects 1:5000 boys. The severity of the phenotype varies dependent on the mutation site in the DMD gene and the resultant dystrophin expression profile. In skeletal muscle, dystrophin loss is associated with the disintegration of myofibers and their ineffective regeneration due to defective expansion and differentiation of the muscle stem cell pool. Some of these phenotypic alterations stem from the dystrophin absence-mediated serine-threonine protein kinase 2 (MARK2) misplacement/downregulation in activated muscle stem (satellite) cells and neuronal nitric oxide synthase loss in cells committed to myogenesis. Here, we trace changes in DNA methylation, histone modifications, and expression of regulatory noncoding RNAs during muscle regeneration, from the stage of satellite cells to myofibers. Furthermore, we describe the abrogation of these epigenetic regulatory processes due to changes in signal transduction in DMD and point to therapeutic treatments increasing the regenerative potential of diseased muscles based on this acquired knowledge.
Collapse
Affiliation(s)
- Anna Rugowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Alicja Starosta
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
7
|
Ross JA, Barrett B, Bensimon V, Shukla G, Weyman CM. Basal Signalling Through Death Receptor 5 and Caspase 3 Activates p38 Kinase to Regulate Serum Response Factor (SRF)-Mediated MyoD Transcription. J Mol Signal 2020; 14:1. [PMID: 32405318 PMCID: PMC7207250 DOI: 10.5334/1750-2187-14-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that stable expression of a dominant negative Death Receptor 5 (dnDR5) in skeletal myoblasts results in decreased basal caspase activity and decreased mRNA and protein expression of the muscle regulatory transcription factor MyoD in growth medium (GM), resulting in inhibited differentation when myoblasts are then cultured in differentiation media (DM). Further, this decreased level of MyoD mRNA was not a consequence of altered message stability, but rather correlated with decreased acetylation of histones in the distal regulatory region (DRR) of the MyoD extended promoter known to control MyoD transcription. As serum response factor (SRF) is the transcription factor known to be responsible for basal MyoD expression in GM, we compared the level of SRF binding to the non-canonical serum response element (SRE) within the DRR in parental and dnDR5 expressing myoblasts. Herein, we report that stable expression of dnDR5 resulted in decreased levels of serum response factor (SRF) binding to the CArG box in the SRE of the DRR. Total SRF expression levels were not affected, but phosphorylation indicative of SRF activation was impaired. This decreased SRF phosphorylation correlated with decreased phosphorylation-induced activation of p38 kinase. Moreover, the aforementioned signaling events affected by expression of dnDR5 could be appropriately recapitulated using either a pharmacological inhibitor of caspase 3 or p38 kinase. Thus, our results have established a signaling pathway from DR5 through caspases to p38 kinase activation, to SRF activation and the basal expression of MyoD.
Collapse
Affiliation(s)
- Jason A. Ross
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Brianna Barrett
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Victoria Bensimon
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Girish Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| | - Crystal M. Weyman
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, US
| |
Collapse
|
8
|
Behrmann A, Zhong D, Li L, Cheng SL, Mead M, Ramachandran B, Sabaeifard P, Goodarzi M, Lemoff A, Kronenberg HM, Towler DA. PTH/PTHrP Receptor Signaling Restricts Arterial Fibrosis in Diabetic LDLR -/- Mice by Inhibiting Myocardin-Related Transcription Factor Relays. Circ Res 2020; 126:1363-1378. [PMID: 32160132 PMCID: PMC7524585 DOI: 10.1161/circresaha.119.316141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
RATIONALE The PTH1R (PTH [parathyroid hormone]/PTHrP [PTH-related protein] receptor) is expressed in vascular smooth muscle (VSM) and increased VSM PTH1R signaling mitigates diet-induced arteriosclerosis in LDLR-/- mice. OBJECTIVE To study the impact of VSM PTH1R deficiency, we generated mice SM22-Cre:PTH1R(fl/fl);LDLR-/- mice (PTH1R-VKO) and Cre-negative controls. METHODS AND RESULTS Immunofluorescence and Western blot confirmed PTH1R expression in arterial VSM that was reduced by Cre-mediated knockout. PTH1R-VKO cohorts exhibited increased aortic collagen accumulation in vivo, and VSM cultures from PTH1R-VKO mice elaborated more collagen (2.5-fold; P=0.01) with elevated Col3a1 and Col1a1 expression. To better understand these profibrotic responses, we performed mass spectrometry on nuclear proteins extracted from Cre-negative controls and PTH1R-VKO VSM. PTH1R deficiency reduced Gata6 but upregulated the MADS (MCM1, Agamous, Deficiens, and Srf DNA-binding domain)-box transcriptional co-regulator, Mkl-1 (megakaryoblastic leukemia [translocation] 1). Co-transfection assays (Col3a1 promoter-luciferase reporter) confirmed PTH1R-mediated inhibition and Mkl-1-mediated activation of Col3a1 transcription. Regulation mapped to a conserved hybrid CT(A/T)6GG MADS-box cognate in the Col3a1 promoter. Mutations of C/G in this motif markedly reduced Col3a1 transcriptional regulation by PTH1R and Mkl-1. Upregulation of Col3a1 and Col1a1 in PTH1R-VKO VSM was inhibited by small interfering RNA targeting Mkl1 and by treatment with the Mkl-1 antagonist CCG1423 or the Rock (Rho-associated coiled-coil containing protein kinase)-2 inhibitor KD025. Chromatin precipitation demonstrated that VSM PTH1R deficiency increased Mkl-1 binding to Col3a1 and Col1a1, but not TNF, promoters. Proteomic studies of plasma extracellular vesicles and VSM from PTH1R-VKO mice identified C1r (complement component 1, r) and C1s (complement component 1, s), complement proteins involved in vascular collagen metabolism, as potential biomarkers. VSM C1r protein and C1r message were increased with PTH1R deficiency, mediated by Mkl-1-dependent transcription and inhibited by CCG1423 or KD025. CONCLUSIONS PTH1R signaling restricts collagen production in the VSM lineage, in part, via Mkl-1 regulatory circuits that control collagen gene transcription. Strategies that maintain homeostatic VSM PTH1R signaling, as reflected in extracellular vesicle biomarkers of VSM PTH1R/Mkl-1 action, may help mitigate arteriosclerosis and vascular fibrosis.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Diet, High-Fat
- Disease Models, Animal
- Fibrosis
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Parathyroid Hormone/metabolism
- Rats
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Remodeling
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Dalian Zhong
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Li Li
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Su-Li Cheng
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Megan Mead
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Bindu Ramachandran
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Parastoo Sabaeifard
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114
| | - Dwight A. Towler
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
9
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
10
|
Zhang X, Nie Y, Cai S, Ding S, Fu B, Wei H, Chen L, Liu X, Liu M, Yuan R, Qiu B, He Z, Cong P, Chen Y, Mo D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs. FASEB J 2019; 33:9638-9655. [PMID: 31145867 DOI: 10.1096/fj.201900388r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we performed whole-genome bisulfite sequencing of longissimus dorsi muscle from Landrace and Wuzhishan (WZS) miniature pigs during 18, 21, and 28 d postcoitum. It was uncovered that in regulatory regions only around transcription start sites (TSSs), gene expression and methylation showed negative correlation, whereas in gene bodies, positive correlation occurred. Furthermore, earlier myogenic gene demethylation around TSSs and earlier hypermethylation of myogenic genes in gene bodies were considered to trigger their earlier expression in miniature pigs. Furthermore, by analyzing the methylation pattern of the myogenic differentiation 1(MyoD) promoter and distal enhancer, we found that earlier demethylation of the MyoD distal enhancer in WZSs contributes to its earlier expression. Moreover, DNA demethylase Tet1 was found to be involved in the demethylation of the myogenin promoter and promoted immortalized mouse myoblast cell line (C2C12) and porcine embryonic myogenic cell differentiation. This study reveals that earlier demethylation of myogenic genes contributes to precocious terminal differentiation of myoblasts in miniature pigs.-Zhang, X., Nie, Y., Cai, S., Ding, S., Fu, B., Wei, H., Chen, L., Liu, X., Liu, M., Yuan, R., Qiu, B., He, Z., Cong, P., Chen, Y., Mo, D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs.
Collapse
Affiliation(s)
- Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Shenzhen Kingsino Technology Company Limited, Shenzhen, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suying Ding
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bingqiang Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Shenzhen Kingsino Technology Company Limited, Shenzhen, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Minggui Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boqin Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Chen Y, Zhu H, McCauley SR, Zhao L, Johnson SE, Rhoads RP, El-Kadi SW. Diminished satellite cell fusion and S6K1 expression in myotubes derived from skeletal muscle of low birth weight neonatal pigs. Physiol Rep 2018; 5:5/3/e13075. [PMID: 28183860 PMCID: PMC5309570 DOI: 10.14814/phy2.13075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/15/2016] [Accepted: 11/19/2016] [Indexed: 12/13/2022] Open
Abstract
Low birth weight (LBWT) is consistently associated with impaired postnatal muscle growth in mammals. Satellite cell (SC)-mediated myonuclear incorporation precedes protein accumulation in the early stages of postnatal muscle development and growth. The objective of this study was to investigate proliferation and differentiation of SCs and the regulation of protein synthesis signaling in response to insulin-like growth factor (IGF)-I stimulation in SC-derived myotubes of LBWT neonatal pigs. SCs isolated from Longissimus dorsi muscle of LBWT and NBWT pigs (3-d-old, n = 8) were cultured and induced to proliferate and differentiate to myotubes in vitro. On day 3 of differentiation, myotubes were fasted in serum-free media for 3 h and treated with human recombinant R3-insulin-like growth factor-I (rh IGF-I) at 0, 25, and 50 ng × mL-1 for 30 min. There was no difference in proliferation rates of SCs from LBWT and NBWT pigs. However, LBWT SC fusion was 15% lower (P ≤ 0.05) without a difference in MyoD or myogenin mRNA expression in comparison with NBWT pigs, suggesting SCs are not intrinsically different between the two groups. IGF-Ι stimulation at physiological concentrations activated downstream effectors of mTOR similarly in myotubes from LBWT and NBWT pigs. However, abundance of ribosomal protein S6 kinase 1(S6K1) was lower in myotubes of LBWT compared to their NBWT siblings (P ≤ 0.05). These results indicate that the modest reduction in SC fusion and S6K1 expression are not the major contributors to the impaired postnatal muscle growth of LBWT pigs.
Collapse
Affiliation(s)
- Ying Chen
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | - Haibo Zhu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | - Sydney R McCauley
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | - Lidan Zhao
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| | - Samer W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| |
Collapse
|
12
|
Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A 2017; 114:E3071-E3080. [PMID: 28351977 DOI: 10.1073/pnas.1613592114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The myogenic regulatory factor MyoD has been implicated as a key regulator of myogenesis, and yet there is little information regarding its upstream regulators. We found that Deltex2 inhibits myogenic differentiation in vitro, and that skeletal muscle stem cells from Deltex2 knockout mice exhibit precocious myogenic differentiation and accelerated regeneration in response to injury. Intriguingly, Deltex2 inhibits myogenesis by suppressing MyoD transcription, and the Deltex2 knockout phenotype can be rescued by a loss-of-function allele for MyoD In addition, we obtained evidence that Deltex2 regulates MyoD expression by promoting the enrichment of histone 3 modified by dimethylation at lysine 9 at a key regulatory region of the MyoD locus. The enrichment is attributed to a Deltex2 interacting protein, Jmjd1c, whose activity is directly inhibited by Deltex2 and whose expression is required for MyoD expression in vivo and in vitro. Finally, we find that Deltex2 causes Jmjd1c monoubiquitination and inhibits its demethylase activity. Mutation of the monoubiquitination site in Jmjd1c abolishes the inhibitory effect of Deltex2 on Jmjd1c demethylase activity. These results reveal a mechanism by which a member of the Deltex family of proteins can inhibit cellular differentiation, and demonstrate a role of Deltex in the epigenetic regulation of myogenesis.
Collapse
|
13
|
Liu L, Yuan Y, He X, Xia X, Mo X. MicroRNA-1 upregulation promotes myocardiocyte proliferation and suppresses apoptosis during heart development. Mol Med Rep 2017; 15:2837-2842. [PMID: 28260051 DOI: 10.3892/mmr.2017.6282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/10/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have investigated the role of microRNAs (miRs) in heart development to reveal the miRNA mechanism of action in congenital heart disease (CHD) in children. The present study aimed to investigate the role of miR‑1 in heart development in P19 cells. The mRNA level for miR‑1 in P19 cells was detected before or after cardiomyocyte differentiation, using reverse transcription‑quantitative polymerase chain reaction analysis. Expression of cardiomyocyte differentiation markers was also analyzed. The effect of miR‑1 overexpression on the viability and apoptosis of differentiated P19 cells was assessed using MTT and Annexin V‑FITC assays, respectively. Furthermore, the effects of miR-1 on expression of markers of cell proliferation and apoptosis were also analyzed in differentiated P19 cells using western blotting. The results demonstrated that P19 cells were successfully differentiated into cardiomyocytes, and that endogenous miR‑1 expression was significantly decreased in differentiated P19 cells compared with undifferentiated P19 cells. Overexpression of miR‑1 resulted in increased viability in differentiated P19 cells and decreased apoptosis, compared with the normal control. In addition, expression of heart and neural crest derivatives expressed transcript 2 (Hand2) was increased in differentiated cells with miR‑1 overexpressed compared with normal cells, while caspase‑3 cleavage was decreased by miR‑1 overexpression. In conclusion, the present study suggested that miR-1 upregulation may be important in regulating cell proliferation and apoptosis in P19 differentiated cardiomyocytes by increasing Hand2 expression and suppressing caspase‑3 cleavage. The present study aimed to provide a theoretical basis for the explanation of the mechanism of CHD and investigate miR‑1 as a potential therapeutic target for its clinical treatment.
Collapse
Affiliation(s)
- Liping Liu
- Department of Pediatrics, Children's Medical Center, People's Hospital of Hunan, Changsha, Hunan 410005, P.R. China
| | - Yonghua Yuan
- Department of Pediatrics, Children's Medical Center, People's Hospital of Hunan, Changsha, Hunan 410005, P.R. China
| | - Xuehua He
- Department of Pediatrics, Children's Medical Center, People's Hospital of Hunan, Changsha, Hunan 410005, P.R. China
| | - Xiaohui Xia
- Department of Ultrasonography, People's Hospital of Hunan, Changsha, Hunan 410005, P.R. China
| | - Xiaoyang Mo
- Faculty of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
14
|
Juszczuk-Kubiak E, Bujko K, Grześ M, Cymer M, Wicińska K, Szostak A, Pierzchała M. Study of bovine gene: the temporal-spatial expression patterns, polymorphism and association analysis with meat production traits. J Anim Sci 2016; 94:4536-4548. [PMID: 27898947 DOI: 10.2527/jas.2016-0741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gene () encodes a transcription factor belonging to the MEF2 family that plays an important role in myogenesis by transcriptional regulation of genes involved in skeletal muscle growth and development. Despite the established importance of the factors in the muscular growth and development, the temporal-spatial expression and biological function of have not been reported in cattle. The aim of this study was to analyze the level of expression in the developing longissimus dorsi muscle (LM) of 4 cattle breeds (Polish Holstein-Friesian [HF], Limousine [LIM], Hereford [HER], Polish Red [PR]), differing in terms of meat production and utility type, at 6, 9, and 12 mo of age. The genetic polymorphism and expression patterns in 6 tissues (heart, spleen, liver, semitendinosus muscle [ST], gluteus medius muscle [GM], and LM) were also investigated. The results showed that mRNA was expressed at a high level in adult skeletal and cardiac muscles. Moreover, expression was markedly greater in the GM than in the LM ( 0.05) and ST ( 0.01). An age-dependent and breed-specific comparison of mRNA level in skeletal muscle of HF, LIM, HER, and PR bulls showed that age was significant differentiating factor of transcript/protein abundance in the LM of HER and LIM ( 0.001) compared to HF and PR, for which the differences in mRNA level were not significant ( > 0.05). Regarding the breed effect on the expression, significantly greater mRNA/protein level was noticed in the LM of 9 and 12 mo-old HER than of LIM ( 0.01), HF ( 0.001), and PR ( 0.001). Four novel SNP, namely, (promoter), (exon 7), (exon 8), and (3'UTR), were identified. We found that 3'UTR variant, situated within the seed region of the miR-5187-3p and miR-6931-5p binding sites, was associated with the level of mRNA/protein in LM of 12-mo-old HF bulls. In addition, we observed a significant association between some carcass quality traits, including meat and carcass fatness quality traits, and various 3'UTR genotypes in the investigated population of HF cattle. Our finding provides new evidence of the significant role in the postnatal muscle growth and development in cattle, and indicates that can be a promising molecular marker for carcass quality-related traits in adult cattle.
Collapse
|
15
|
Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer. Biosci Rep 2015; 35:BSR20140177. [PMID: 25651906 PMCID: PMC4370097 DOI: 10.1042/bsr20140177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Wnt proteins are secreted cytokines and several Wnts are expressed in the developing somites and surrounding tissues. Without proper Wnt stimulation, the organization of the dermomyotome and myotome can become defective. These Wnt signals received by somitic cells can lead to activation of Pax3/Pax7 and myogenic regulatory factors (MRFs), especially Myf5 and MyoD. However, it is currently unknown whether Wnts activate Myf5 and MyoD through direct targeting of their cis-regulatory elements or via indirect pathways. To clarify this issue, in the present study, we tested the regulation of MyoD cis-regulatory elements by Wnt3a secreted from human embryonic kidney (HEK)-293T cells. We found that Wnt3a activated the MyoD proximal 6.0k promoter (P6P) only marginally, but highly enhanced the activity of the composite P6P plus distal enhancer (DE) reporter through canonical and non-canonical pathways. Further screening of the intervening fragments between the DE and the P6P identified a strong Wnt-response element (WRE) in the upstream −8 to −9k region (L fragment) that acted independently of the DE, but was dependent on the P6P. Deletion of a Pax3/Pax7-targeted site in the L fragment significantly reduced its response to Wnt3a, implying that Wnt3a activates the L fragment partially through Pax3/Pax7 action. Binding of β-catenin and Pax7 to their target sites in the DE and the L fragment respectively was also demonstrated by ChIP. These observations demonstrated the first time that Wnt3a can directly activate MyoD expression through targeting cis-elements in the DE and the L fragment. We found that Wnt3a can directly activate MyoD expression through targeting cis-elements in the distal enhancer and in the upstream −8 to −9k region. A novel Pax3/Pax7-involved pathway and both canonical and non-canonical Wnt pathways are involved in this activation.
Collapse
|
16
|
Yates DT, Clarke DS, Macko AR, Anderson MJ, Shelton LA, Nearing M, Allen RE, Rhoads RP, Limesand SW. Myoblasts from intrauterine growth-restricted sheep fetuses exhibit intrinsic deficiencies in proliferation that contribute to smaller semitendinosus myofibres. J Physiol 2014; 592:3113-25. [PMID: 24860171 PMCID: PMC4214663 DOI: 10.1113/jphysiol.2014.272591] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022] Open
Abstract
Intrauterine growth restriction (IUGR) reduces skeletal muscle mass in fetuses and offspring. Our objective was to determine whether myoblast dysfunction due to intrinsic cellular deficiencies or serum factors reduces myofibre hypertrophy in IUGR fetal sheep. At 134 days, IUGR fetuses weighed 67% less (P < 0.05) than controls and had smaller (P < 0.05) carcasses and semitendinosus myofibre areas. IUGR semitendinosus muscles had similar percentages of pax7-positive nuclei and pax7 mRNA but lower (P < 0.05) percentages of myogenin-positive nuclei (7 ± 2% and 13 ± 2%), less myoD and myogenin mRNA, and fewer (P < 0.05) proliferating myoblasts (PNCA-positive-pax7-positive) than controls (44 ± 2% vs. 52 ± 1%). Primary myoblasts were isolated from hindlimb muscles, and after 3 days in growth media (20% fetal bovine serum, FBS), myoblasts from IUGR fetuses had 34% fewer (P < 0.05) myoD-positive cells than controls and replicated 20% less (P < 0.05) during a 2 h BrdU pulse. IUGR myoblasts also replicated less (P < 0.05) than controls during a BrdU pulse after 3 days in media containing 10% control or IUGR fetal sheep serum (FSS). Both myoblast types replicated less (P < 0.05) with IUGR FSS-supplemented media compared to control FSS-supplemented media. In differentiation-promoting media (2% FBS), IUGR and control myoblasts had similar percentages of myogenin-positive nuclei after 5 days and formed similar-sized myotubes after 7 days. We conclude that intrinsic cellular deficiencies in IUGR myoblasts and factors in IUGR serum diminish myoblast proliferation and myofibre size in IUGR fetuses, but intrinsic myoblast deficiencies do not affect differentiation. Furthermore, the persistent reduction in IUGR myoblast replication shows adaptive deficiencies that explain poor muscle growth in IUGR newborn offspring.
Collapse
Affiliation(s)
- Dustin T Yates
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Derek S Clarke
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Leslie A Shelton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Marie Nearing
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Ronald E Allen
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Six1 regulates MyoD expression in adult muscle progenitor cells. PLoS One 2013; 8:e67762. [PMID: 23840772 PMCID: PMC3695946 DOI: 10.1371/journal.pone.0067762] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/22/2013] [Indexed: 12/21/2022] Open
Abstract
Quiescent satellite cells are myogenic progenitors that enable regeneration of skeletal muscle. One of the early events of satellite cell activation following myotrauma is the induction of the myogenic regulatory factor MyoD, which eventually induces terminal differentiation and muscle function gene expression. The purpose of this study was to elucidate the mechanism by which MyoD is induced during activation of satellite cells in mouse muscle undergoing regeneration. We show that Six1, a transcription factor essential for embryonic myogenesis, also regulates MyoD expression in muscle progenitor cells. Six1 knock-down by RNA interference leads to decreased expression of MyoD in myoblasts. Chromatin immunoprecipitation assays reveal that Six1 binds the Core Enhancer Region of MyoD. Further, transcriptional reporter assays demonstrate that Core Enhancer Region reporter gene activity in myoblasts and in regenerating muscle depends on the expression of Six1 and on Six1 binding sites. Finally, we provide evidence indicating that Six1 is required for the proper chromatin structure at the Core Enhancer Region, as well as for MyoD binding at its own enhancer. Together, our results reveal that MyoD expression in satellite cells depends on Six1, supporting the idea that Six1 plays an important role in adult myogenesis, in addition to its role in embryonic muscle formation.
Collapse
|
18
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
19
|
Rathore MG, Saumet A, Rossi JF, de Bettignies C, Tempé D, Lecellier CH, Villalba M. The NF-κB member p65 controls glutamine metabolism through miR-23a. Int J Biochem Cell Biol 2012; 44:1448-56. [DOI: 10.1016/j.biocel.2012.05.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/24/2012] [Accepted: 05/15/2012] [Indexed: 12/21/2022]
|
20
|
Calhabeu F, Hayashi S, Morgan JE, Relaix F, Zammit PS. Alveolar rhabdomyosarcoma-associated proteins PAX3/FOXO1A and PAX7/FOXO1A suppress the transcriptional activity of MyoD-target genes in muscle stem cells. Oncogene 2012; 32:651-62. [DOI: 10.1038/onc.2012.73] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Mokalled MH, Johnson AN, Creemers EE, Olson EN. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 2012; 26:190-202. [PMID: 22279050 DOI: 10.1101/gad.179663.111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
22
|
Alter J, Bengal E. Stress-induced C/EBP homology protein (CHOP) represses MyoD transcription to delay myoblast differentiation. PLoS One 2011; 6:e29498. [PMID: 22242125 PMCID: PMC3248460 DOI: 10.1371/journal.pone.0029498] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022] Open
Abstract
When mouse myoblasts or satellite cells differentiate in culture, the expression of myogenic regulatory factor, MyoD, is downregulated in a subset of cells that do not differentiate. The mechanism involved in the repression of MyoD expression remains largely unknown. Here we report that a stress-response pathway repressing MyoD transcription is transiently activated in mouse-derived C2C12 myoblasts growing under differentiation-promoting conditions. We show that phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) is followed by expression of C/EBP homology protein (CHOP) in some myoblasts. ShRNA-driven knockdown of CHOP expression caused earlier and more robust differentiation, whereas its constitutive expression delayed differentiation relative to wild type myoblasts. Cells expressing CHOP did not express the myogenic regulatory factors MyoD and myogenin. These results indicated that CHOP directly repressed the transcription of the MyoD gene. In support of this view, CHOP associated with upstream regulatory region of the MyoD gene and its activity reduced histone acetylation at the enhancer region of MyoD. CHOP interacted with histone deacetylase 1 (HDAC1) in cells. This protein complex may reduce histone acetylation when bound to MyoD regulatory regions. Overall, our results suggest that the activation of a stress pathway in myoblasts transiently downregulate the myogenic program.
Collapse
Affiliation(s)
- Joel Alter
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Bengal
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
23
|
Han JW, Lee HJ, Bae GU, Kang JS. Promyogenic function of Integrin/FAK signaling is mediated by Cdo, Cdc42 and MyoD. Cell Signal 2011; 23:1162-9. [DOI: 10.1016/j.cellsig.2011.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/03/2011] [Indexed: 12/11/2022]
|
24
|
Dedeic Z, Cetera M, Cohen TV, Holaska JM. Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. J Cell Sci 2011; 124:1691-702. [DOI: 10.1242/jcs.080259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
X-linked Emery–Dreifuss muscular dystrophy (X-EDMD) is caused by mutations in the inner nuclear membrane protein emerin. Previous studies have shown that emerin binds to and inhibits the activity of LIM domain only 7 (Lmo7), a transcription factor that regulates the expression of genes implicated in X-EDMD. Here, we analyzed Lmo7 function in C2C12 myoblast differentiation and its regulation by emerin. We found that Lmo7 was required for proper myoblast differentiation. Lmo7-downregulated myoblasts exhibited reduced expression of Pax3, Pax7, Myf5 and MyoD, whereas overexpression of GFP–Lmo7 increased the expression of MyoD and Myf5. Upon myotube formation, Lmo7 shuttled from the nucleus to the cytoplasm, concomitant with reduced expression of MyoD, Pax3 and Myf5. Importantly, we show that Lmo7 bound the Pax3, MyoD and Myf5 promoters both in C2C12 myoblasts and in vitro. Because emerin inhibited Lmo7 activity, we tested whether emerin competed with the MyoD promoter for binding to Lmo7 or whether emerin sequestered promoter-bound Lmo7 to the nuclear periphery. Supporting the competition model, emerin binding to Lmo7 inhibited Lmo7 binding to and activation of the MyoD and Pax3 promoters. These findings support the hypothesis that the functional interaction between emerin and Lmo7 is crucial for temporally regulating the expression of key myogenic differentiation genes.
Collapse
Affiliation(s)
- Zinaida Dedeic
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
| | - Maureen Cetera
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
| | - Tatiana V. Cohen
- Children's National Medical Center, Center for Genetic Medicine, 111 Michigan Avenue, Washington DC 20010-2970, USA
| | - James M. Holaska
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
- Department of Medicine, Section of Cardiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA
- Committee on Genetics, Genomics and Systems Biology, 5812 S. Ellis Street, Chicago IL 60637, USA
| |
Collapse
|
25
|
Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, Lira SA, Farioli-Vecchioli S, Caruso M, Tirone F. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. J Biol Chem 2010; 286:5691-707. [PMID: 21127072 PMCID: PMC3037682 DOI: 10.1074/jbc.m110.162842] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes delayed exit from the cell cycle, accompanied by delayed differentiation, and we show that such an effect is MyoD-dependent. We provide evidence revealing a novel mechanism underlying the promyogenic actions of PC4, by which PC4 functions as a negative regulator of NF-κB, known to inhibit MyoD expression post-transcriptionally. In fact, up-regulation of PC4 in primary myoblasts induces the deacetylation, and hence the inactivation and nuclear export of NF-κB p65, in concomitance with induction of MyoD expression. On the contrary, PC4 silencing in myoblasts induces the acetylation and nuclear import of p65, in parallel with a decrease of MyoD levels. We also observe that PC4 potentiates the inhibition of NF-κB transcriptional activity mediated by histone deacetylases and that PC4 is able to form trimolecular complexes with p65 and HDAC3. This suggests that PC4 stimulates deacetylation of p65 by favoring the recruitment of HDAC3 to p65. As a whole, these results indicate that PC4 plays a role in muscle differentiation by controlling the MyoD pathway through multiple mechanisms, and as such, it positively regulates regenerative myogenesis.
Collapse
Affiliation(s)
- Laura Micheli
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, Fondazione S Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pöllänen E, Fey V, Törmäkangas T, Ronkainen PHA, Taaffe DR, Takala T, Koskinen S, Cheng S, Puolakka J, Kujala UM, Suominen H, Sipilä S, Kovanen V. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2010; 32:347-363. [PMID: 20640546 PMCID: PMC2926854 DOI: 10.1007/s11357-010-9140-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50-57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in "response to contraction"-category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria.
Collapse
Affiliation(s)
- Eija Pöllänen
- Gerontology Research Centre, University Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Macharia R, Otto A, Valasek P, Patel K. Neuromuscular junction morphology, fiber-type proportions, and satellite-cell proliferation rates are altered in MyoD(-/-) mice. Muscle Nerve 2010; 42:38-52. [PMID: 20544915 DOI: 10.1002/mus.21637] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene compensation by members of the myogenic regulatory factor (MRF) family has been proposed to explain the apparent normal adult phenotype of MyoD(-/-) mice. Nerve and field stimulation were used to investigate contraction properties of muscle from MyoD(-/-) mice, and molecular approaches were used to investigate satellite-cell behavior. We demonstrate that MyoD deletion results in major alterations in the organization of the neuromuscular junction, which have a dramatic influence on the physiological contractile properties of skeletal muscle. Second, we show that the lineage progression of satellite cells (especially initial proliferation) in the absence of MyoD is abnormal and linked to perturbations in the nuclear localization of beta-catenin, a key readout of canonical Wnt signaling. These results show that MyoD has unique functions in both developing and adult skeletal muscle that are not carried out by other members of the MRF family.
Collapse
Affiliation(s)
- Raymond Macharia
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | | | | | | |
Collapse
|
28
|
Zhou Y, Liu Y, Jiang X, Du H, Li X, Zhu Q. Polymorphism of chicken myocyte-specific enhancer-binding factor 2A gene and its association with chicken carcass traits. Mol Biol Rep 2010; 37:587-94. [PMID: 19774488 DOI: 10.1007/s11033-009-9838-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 09/15/2009] [Indexed: 01/04/2023]
Abstract
Myocyte-specific enhancer-binding factor 2A (MEF2A) gene is a member of the myocyte-specific enhancer-binding factor 2 (MEF2) protein family which involved in vertebrate skeletal muscle development and differentiation. The aim of the current study is to investigate the potential associations between MEF2A gene SNPs (single nucleotide polymorphisms) and the carcass traits in 471 chicken samples from four populations. Three new SNPs (T46023C, A72626G, and T89232G) were detected in the chicken MEF2A gene. The T46023C genotypes were associated with live body weight (BW), carcass weight (CW), eviscerated weight, semi-eviscerated weight (SEW), and leg muscle weight (LMW) (P < 0.05); the A72626G genotypes were associated with BW, CW, LMW (P < 0.01) and breast muscle weight (BMW), leg muscle percentage (LMP) (P < 0.05); whereas the T89232G genotypes were associated with carcass percentage (CP) and semi-eviscerated percentage (SEP) (P < 0.05). The haplotypes constructed on the three SNPs were associated with BW, CW, LMW (P < 0.01), SEW, BMW, CP (P < 0.05). Significantly and suggestive dominant effects of diplotype H1H2 were observed for BW, CW, SEW, BMW and CP, whereas diplotype H5H5 had a negative effect on BW, CW, SEW, BMW and LMW. Our results suggest that the MEF2A gene may be a potential marker affecting the muscle trait of chickens.
Collapse
Affiliation(s)
- Yan Zhou
- College of Animal Science and Technology, Sichuan Agriculture University, Ya'an, Sichuan, China
| | | | | | | | | | | |
Collapse
|
29
|
Contributions of selective knockout studies to understanding cholinesterase disposition and function. Chem Biol Interact 2010; 187:72-7. [PMID: 20153304 DOI: 10.1016/j.cbi.2010.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/23/2022]
Abstract
The complete knockout of the acetylcholinesterase gene (AChE) in the mouse yielded a surprising phenotype that could not have been predicted from deletion of the cholinesterase genes in Drosophila, that of a living, but functionally compromised animal. The phenotype of this animal showed a sufficient compromise in motor function that precluded precise characterization of central and peripheral nervous functional deficits. Since AChE in mammals is encoded by a single gene with alternative splicing, additional understanding of gene expression might be garnered from selected deletions of the alternatively spliced exons. To this end, transgenic strains were generated that deleted exon 5, exon 6, and the combination of exons 5 and 6. Deletion of exon 6 reduces brain AChE by 93% and muscle AChE by 72%. Deletion of exon 5 eliminates AChE from red cells and the platelet surface. These strains, as well as knockout strains that selectively eliminate the AChE anchoring protein subunits PRiMA or ColQ (which bind to sequences specified by exon 6) enabled us to examine the role of the alternatively spliced exons responsible for the tissue disposition and function of the enzyme. In addition, a knockout mouse was made with a deletion in an upstream intron that had been identified in differentiating cultures of muscle cells to control AChE expression. We found that deletion of the intronic regulatory region in the mouse essentially eliminated AChE in muscle and surprisingly from the surface of platelets. The studies generated by these knockout mouse strains have yielded valuable insights into the function and localization of AChE in mammalian systems that cannot be approached in cell culture or in vitro.
Collapse
|
30
|
Li D, Niu Z, Yu W, Qian Y, Wang Q, Li Q, Yi Z, Luo J, Wu X, Wang Y, Schwartz RJ, Liu M. SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin. Nucleic Acids Res 2010; 37:7059-71. [PMID: 19783823 PMCID: PMC2790895 DOI: 10.1093/nar/gkp773] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SMYD1 is a heart and muscle specific SET-MYND domain containing protein, which functions as a histone methyltransferase and regulates downstream gene transcription. We demonstrated that the expression of SMYD1 is restricted in the heart and skeletal muscle tissues in human. To reveal the regulatory mechanisms of SMYD1 expression during myogenesis and cardiogenesis, we cloned and characterized the human SMYD1 promoter, which contains highly conserved serum response factor (SRF) and myogenin binding sites. Overexpression of SRF and myogenin significantly increased the endogenous expression level of Smyd1 in C2C12 cells, respectively. Deletion of Srf in the heart of mouse embryos dramatically decreased the expression level of Smyd1 mRNA and the expression of Smyd1 can be rescued by exogenous SRF introduction in SRF null ES cells during differentiation. Furthermore, we demonstrated that SRF binds to the CArG site and myogenin binds to the E-box element on Smyd1 promoter region using EMSA and ChIP assays. Moreover, forced expression of SMYD1 accelerates myoblast differentiation and myotube formation in C2C12 cells. Taken together, these studies demonstrated that SMYD1 is a key regulator of myogenic differentiation and acts as a downstream target of muscle regulatory factors, SRF and myogenin.
Collapse
Affiliation(s)
- Dali Li
- The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Otto A, Collins-Hooper H, Patel K. The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 2009; 215:477-97. [PMID: 19702867 DOI: 10.1111/j.1469-7580.2009.01138.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.
Collapse
Affiliation(s)
- A Otto
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, UK
| | | | | |
Collapse
|
32
|
Freer-Prokop M, O'Flaherty J, Ross JA, Weyman CM. Non-canonical role for the TRAIL receptor DR5/FADD/caspase pathway in the regulation of MyoD expression and skeletal myoblast differentiation. Differentiation 2009; 78:205-12. [PMID: 19523746 DOI: 10.1016/j.diff.2009.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/17/2009] [Accepted: 05/13/2009] [Indexed: 12/25/2022]
Abstract
We report herein that the TRAIL receptor DR5/FADD/caspase pathway plays a role in skeletal myoblast differentiation through modulation of the expression of the muscle regulatory transcription factor MyoD. Specifically, treatment with the selective caspase 3 inhibitor DEVD-fmk or the selective caspase 8 inhibitor IETD-fmk in growth media (GM), prior to culture in differentiation media (DM), inhibited differentiation. Further, this treatment resulted in decreased levels of MyoD message and protein. We next explored a role for the TRAIL receptor DR5/FADD pathway. We found that expression of either dominant negative (dn) FADD or dominant negative (dn) DR5 also resulted in decreased levels of MyoD mRNA and protein and blocked differentiation. This decreased level of MyoD mRNA was not a consequence of altered stability. Treatment with TSA, an inhibitor of histone deacetylases (HDACs), allowed MyoD expression in myoblasts expressing dnDR5. Finally, acetylation of histones associated with the distal regulatory region (DRR) enhancer of MyoD was decreased in myoblasts expressing dnDR5. Thus, our data suggests a non-canonical role for the TRAIL receptor/FADD pathway in the regulation of MyoD expression and skeletal myoblast differentiation.
Collapse
Affiliation(s)
- Margot Freer-Prokop
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|
33
|
Camp S, De Jaco A, Zhang L, Marquez M, De La Torre B, Taylor P. Acetylcholinesterase expression in muscle is specifically controlled by a promoter-selective enhancesome in the first intron. J Neurosci 2008; 28:2459-70. [PMID: 18322091 PMCID: PMC2692871 DOI: 10.1523/jneurosci.4600-07.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 01/09/2008] [Accepted: 01/17/2008] [Indexed: 11/21/2022] Open
Abstract
Mammalian acetylcholinesterase (AChE) gene expression is exquisitely regulated in target tissues and cells during differentiation. An intron located between the first and second exons governs a approximately 100-fold increase in AChE expression during myoblast to myotube differentiation in C2C12 cells. Regulation is confined to 255 bp of evolutionarily conserved sequence containing functional transcription factor consensus motifs that indirectly interact with the endogenous promoter. To examine control in vivo, this region was deleted by homologous recombination. The knock-out mouse is virtually devoid of AChE activity and its encoding mRNA in skeletal muscle, yet activities in brain and spinal cord innervating skeletal muscle are unaltered. The transcription factors MyoD and myocyte enhancer factor-2 appear to be responsible for muscle regulation. Selective control of AChE expression by this region is also found in hematopoietic lineages. Expression patterns in muscle and CNS neurons establish that virtually all AChE activity at the mammalian neuromuscular junction arises from skeletal muscle rather than from biosynthesis in the motoneuron cell body and axoplasmic transport.
Collapse
Affiliation(s)
- Shelley Camp
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Antonella De Jaco
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Limin Zhang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Michael Marquez
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Brian De La Torre
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| |
Collapse
|
34
|
Chargé SB, Brack AS, Bayol SA, Hughes SM. MyoD- and nerve-dependent maintenance of MyoD expression in mature muscle fibres acts through the DRR/PRR element. BMC DEVELOPMENTAL BIOLOGY 2008; 8:5. [PMID: 18215268 PMCID: PMC2259323 DOI: 10.1186/1471-213x-8-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 01/23/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND MyoD is a transcription factor implicated in the regulation of adult muscle gene expression. Distinguishing the expression of MyoD in satellite myoblasts and muscle fibres has proved difficult in vivo leading to controversy over the significance of MyoD expression within adult innervated muscle fibres. Here we employ the MD6.0-lacZ transgenic mouse, in which the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD drives lacZ, to show that MyoD is present and transcriptionally active in many adult muscle fibres. RESULTS In culture, MD6.0-lacZ expresses in myotubes but not myogenic cells, unlike endogenous MyoD. Reporter expression in vivo is in muscle fibre nuclei and is reduced in MyoD null mice. The MD6.0-lacZ reporter is down-regulated both in adult muscle fibres by denervation or muscle disuse and in cultured myotubes by inhibition of activity. Activity induces and represses MyoD through the DRR and PRR, respectively. During the postnatal period, accumulation of beta-galactosidase correlates with maturation of innervation. Strikingly, endogenous MyoD expression is up-regulated in fibres by complete denervation, arguing for a separate activity-dependent suppression of MyoD requiring regulatory elements outside the DRR/PRR. CONCLUSION The data show that MyoD regulation is more complex than previously supposed. Two factors, MyoD protein itself and fibre activity are required for essentially all expression of the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD in adult fibres. We propose that modulation of MyoD positive feedback by electrical activity determines the set point of MyoD expression in innervated fibres through the DRR/PRR element.
Collapse
Affiliation(s)
- Sophie B Chargé
- Randall Division for Cell and Molecular Biophysics and the MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | | | | | | |
Collapse
|
35
|
Flanagin S, Nelson JD, Castner DG, Denisenko O, Bomsztyk K. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 2008; 36:e17. [PMID: 18203739 PMCID: PMC2241906 DOI: 10.1093/nar/gkn001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The chromatin immunoprecipitation (ChIP) assay is a major tool in the study of genomic processes in vivo. This and other methods are revealing that control of gene expression, cell division and DNA repair involves multiple proteins and great number of their modifications. ChIP assay is traditionally done in test tubes limiting the ability to study signaling of the complex genomic events. To increase the throughput and to simplify the assay we have developed a microplate-based ChIP (Matrix ChIP) method, where all steps from immunoprecipitation to DNA purification are done in microplate wells without sample transfers. This platform has several important advantages over the tube-based assay including very simple sample handling, high throughput, improved sensitivity and reproducibility, and potential for automation. 96 ChIP measurements including PCR can be done by one researcher in one day. We illustrate the power of Matrix ChIP by parallel profiling 80 different chromatin and transcription time-course events along an inducible gene including transient recruitment of kinases.
Collapse
Affiliation(s)
- Steve Flanagin
- UW Medicine Lake Union, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
36
|
Angelelli C, Magli A, Ferrari D, Ganassi M, Matafora V, Parise F, Razzini G, Bachi A, Ferrari S, Molinari S. Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells. Nucleic Acids Res 2007; 36:915-28. [PMID: 18086704 PMCID: PMC2241889 DOI: 10.1093/nar/gkm1114] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) proteins play a key role in promoting the expression of muscle-specific genes in differentiated muscle cells. MEF2 activity is regulated by the association with several transcriptional co-factors and by post-translational modifications. In the present report, we provide evidence for a novel regulatory mechanism of MEF2C activity, which occurs at the onset of skeletal muscle differentiation and is based on Lys4 acetylation. This covalent modification results in the enhancement of MEF2C binding to DNA and chromatin. In particular, we report that the kinetic parameters of MEF2/DNA association change substantially upon induction of differentiation to give a more stable complex and that this effect is mediated by Lys4 acetylation. We also show that Lys4 acetylation plays a prominent role in the p300-dependent activation of MEF2C.
Collapse
Affiliation(s)
- Cecilia Angelelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yablonka-Reuveni Z, Day K, Vine A, Shefer G. Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci 2007; 86:E207-16. [PMID: 17878281 PMCID: PMC4450102 DOI: 10.2527/jas.2007-0473] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Satellite cells, the main source of myoblasts in postnatal muscle, are located beneath the myofiber basal lamina. The myogenic potential of satellite cells was initially documented based on their capacity to produce progeny that fused into myotubes. More recently, molecular markers of resident satellite cells were identified, further contributing to defining these cells as myogenic stem cells that produce differentiating progeny and self-renew. Herein, we discuss aspects of the satellite cell transcriptional milieu that have been intensively investigated in our research. We elaborate on the expression patterns of the paired box (Pax) transcription factors Pax3 and Pax7, and on the myogenic regulatory factors myogenic factor 5 (Myf5), myogenic determination factor 1 (MyoD), and myogenin. We also introduce original data on MyoD upregulation in newly activated satellite cells, which precedes the first round of cell proliferation. Such MyoD upregulation occurred even when parent myofibers with their associated satellite cells were exposed to pharmacological inhibitors of hepatocyte growth factor and fibroblast growth factor receptors, which are typically involved in promoting satellite cell proliferation. These observations support the hypothesis that most satellite cells in adult muscle are committed to rapidly entering myogenesis. We also detected expression of serum response factor in resident satellite cells prior to MyoD expression, which may facilitate the rapid upregulation of MyoD. Aspects of satellite cell self-renewal based on the reemergence of cells expressing Pax7, but not MyoD, in myogenic cultures are discussed further herein. We conclude by describing our recent studies using transgenic mice in which satellite cells are traced and isolated based on their expression of green fluorescence protein driven by regulatory elements of the nestin promoter (nestin-green fluorescence protein). This feature provides us with a novel means of studying satellite cell transcriptional signatures, heterogeneity among muscle groups, and the role of the myogenic niche in directing satellite cell self-renewal.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|