1
|
Pinto J, Balarezo-Cisneros LN, Delneri D. Exploring adaptation routes to cold temperatures in the Saccharomyces genus. PLoS Genet 2025; 21:e1011199. [PMID: 39970180 PMCID: PMC11875353 DOI: 10.1371/journal.pgen.1011199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/03/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
The identification of traits that affect adaptation of microbial species to external abiotic factors, such as temperature, is key for our understanding of how biodiversity originates and can be maintained in a constantly changing environment. The Saccharomyces genus, which includes eight species with different thermotolerant profiles, represent an ideal experimental platform to study the impact of adaptive alleles in different genetic backgrounds. Previous studies identified a group of adaptive genes for maintenance of growth at lower temperatures. Here, we carried out a genus-wide assessment of the role of genes partially responsible for cold-adaptation in all eight Saccharomyces species for six candidate genes. We showed that the cold tolerance trait of S. kudriavzevii and S. eubayanus is likely to have evolved from different routes, involving genes important for the conservation of redox-balance, and for the long-chain fatty acid metabolism, respectively. For several loci, temperature- and species-dependent epistasis was detected, underscoring the plasticity and complexity of the genetic interactions. The natural isolates of S. kudriavzevii, S. jurei and S. mikatae had a significantly higher expression of the genes involved in the redox balance compared to S. cerevisiae, suggesting a role at transcriptional level. To distinguish the effects of gene expression from allelic variation, we independently replaced either the promoters or the coding sequences (CDS) of two genes in four yeast species with those derived from S. kudriavzevii. Our data consistently showed a significant fitness improvement at cold temperatures in the strains carrying the S. kudriavzevii promoter, while growth was lower upon CDS swapping. These results suggest that transcriptional strength plays a bigger role in growth maintenance at cold temperatures over the CDS and supports a model of adaptation centred on stochastic tuning of the expression network.
Collapse
Affiliation(s)
- Javier Pinto
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Laura Natalia Balarezo-Cisneros
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Boban A, Vrhovsek U, Masuero D, Milanović V, Budić-Leto I. Effect of Indigenous Non- Saccharomyces Yeasts on Lipid Compositions of Maraština Wine. Foods 2025; 14:269. [PMID: 39856934 PMCID: PMC11765114 DOI: 10.3390/foods14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
This study is the first to investigate the impact of indigenous non-Saccharomyces yeasts, including Hypopichia pseudoburtonii, Metschnikowia sinensis/shanxiensis, Metschnikowia chrysoperlae, Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum, Hanseniaspora guilliermondii, Hanseniaspora pseudoguilliermondii, Pichia kluyveri, and Starmerella apicola on the lipid composition of sterile Maraština grape juice and wines using the UHPLC-MS/MS method. Yeasts were tested in monoculture and sequential fermentations alongside commercial Saccharomyces cerevisiae. Indigenous non-Saccharomyces yeasts showed the potential to improve fermentation performance and enable the development of new wine styles through the biosynthesis of an unsaturated fatty acid pathway, which was identified as the most significant pathway. In monoculture fermentations, L. thermotolerans, H. uvarum, H. guilliermondii, H. pseudoguilliermondii, and P. kluyveri significantly reduced lignoceric acid, potentially influencing wine aroma through the formation of esters and higher alcohols. Hyp. pseudoburtonii, M. chrysoperlae, M. pulcherrima, P. kluyveri, and S. apicola increased the demand for lipids, such as stearic acid, which may help preserve membrane permeability by integrating into the membrane in response to ethanol shock. The most significant impact on free fatty esters was observed in fermentations with H. pseudoguilliermondii. Furthermore, L. thermotolerans in sequential fermentations significantly reduced arachidic, stearic, and palmitic acid. P. kluyveri reduced the content of erucic and linoleic acid.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Domenico Masuero
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Vesna Milanović
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| |
Collapse
|
3
|
Qiu Q, Li H, Sun X, Zhang L, Tian K, Chang M, Li S, Zhou D, Huo H. Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. CHEMOSPHERE 2024; 358:142146. [PMID: 38677604 DOI: 10.1016/j.chemosphere.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Lili Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Shuaiguo Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
4
|
Qin L, Ma D, Lin G, Sun W, Li C. Low temperature promotes the production and efflux of terpenoids in yeast. BIORESOURCE TECHNOLOGY 2024; 395:130376. [PMID: 38278452 DOI: 10.1016/j.biortech.2024.130376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Altering the fermentation environment provides an effective approach to optimizing the production efficiency of microbial cell factories globally. Here, lower fermentation temperatures of yeast were found to significantly improve the synthesis and efflux of terpenoids, including glycyrrhetinic acid (GA), β-caryophyllene, and α-amyrin. The production of GA at 22°C increased by 5.5 times compared to 30°C. Yeast subjected to lower temperature showed substantial changes at various omics levels. Certain genes involved in maintaining cellular homeostasis that were upregulated under the low temperature conditions, leading to enhanced GA production. Substituting Mvd1, a thermo-unstable enzyme in mevalonate pathway identified by transcriptome and proteome, with a thermo-tolerant isoenzyme effectively increased GA production. The lower temperature altered the composition of phospholipids and increased the unsaturation of fatty acid chains, which may influence GA efflux. This study presents a strategy for optimizing the fermentation process and identifying key targets of cell factories for terpenoid production.
Collapse
Affiliation(s)
- Lei Qin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Dongshi Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Guangyuan Lin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Wentao Sun
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Chun Li
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
5
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
6
|
So KK, Le NMT, Nguyen NL, Kim DH. Improving expression and assembly of difficult-to-express heterologous proteins in Saccharomyces cerevisiae by culturing at a sub-physiological temperature. Microb Cell Fact 2023; 22:55. [PMID: 36959657 PMCID: PMC10035479 DOI: 10.1186/s12934-023-02065-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Escherichia coli heat labile toxin B subunit (LTB) is one of the most popular oral vaccine adjuvants and intestine adsorption enhancers. It is often expressed as a fusion partner with target antigens to enhance their immunogenicity as well as gut absorbability. However, high expression levels of a fusion protein are critical to the outcome of immunization experiments and the success of subsequent vaccine development efforts. In order to improve the expression and functional assembly of LTB-fusion proteins using Saccharomyces cerevisiae, we compared their expression under culture conditions at a sub-physiological temperature 20 °C with their expression under a standard 30 °C. RESULTS The assembled expression of LTB-EDIII2 (LTB fused to the envelope domain III (EDIII) of Dengue virus serotype 2), which was expressed at the level of 20 µg/L in our previous study, was higher when the expression temperature was 20 °C as opposed to 30 °C. We also tested whether the expression and functional assembly of a difficult-to-express LTB fusion protein could be increased. The assembled expression of the difficult-to-express LTB-VP1 fusion protein (LTB fused to VP1 antigen of Foot-and-Mouth Disease Virus) dramatically increased, although the total amount of expressed protein was still lower than that of LTB-EDIII2. Slight but significant increase in the expression of well-known reporter protein eGFP, which has previously been shown to be increased by cultivation at 20 °C, was also observed in our expression system. As no significant changes in corresponding transcripts levels and cell growth were observed between 20 °C and 30 °C, we infer that translation and post-translational assembly are responsible for these enhancements. CONCLUSIONS The effects of lowering the expression temperature from 30 °C to 20 °C on protein expression and folding levels in S. cerevisiae, using several proteins as models, are reported. When heterologous proteins are expressed at 20 °C, a greater amount of (specially, more assembled) functional proteins accumulated than at 30 °C. Although further studies are required to understand the molecular mechanisms, our results suggest that lowering the expression temperature is a convenient strategy for improving the expression of relatively complexly structured and difficult-to-express proteins in S. cerevisiae.
Collapse
Affiliation(s)
- Kum-Kang So
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeollabuk-Do, 54896, Republic of Korea
| | - Ngoc My Tieu Le
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeollabuk-Do, 54896, Republic of Korea
| | - Ngoc-Luong Nguyen
- Department of Biology, College of Sciences, Hue University, Hue, 530000, Vietnam.
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeollabuk-Do, 54896, Republic of Korea.
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeollabuk-Do, 54896, Republic of Korea.
| |
Collapse
|
7
|
Effect of low temperature on the shaping of yeast-derived metabolite compositions during wine fermentation. Food Res Int 2022; 162:112016. [DOI: 10.1016/j.foodres.2022.112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
|
8
|
Low-Frequency Magnetic Field Exposure System for Cells Electromagnetic Biocompatibility Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The advancement in science and technology has resulted in the invention and widespread usage of many electrical devices in the daily lives of humans. The exponential use of modern electronic facilities has increased electromagnetic field exposure in the current population. Therefore, the presented article deals with designing, constructing, and testing a new applicator system developed for cells electromagnetic biocompatibility studies. The applicator system is intended for studying the non-thermal impacts of low-frequency magnetic field on cell cultures growth. Main attention is focused on increasing the capacity of the applicator and effectivity of the experiments. The key idea is to reach high level of the magnetic field homogeneity in an area of interest and the temperature stability during the biocompatibility studies. The applicator system is designed based on numerical simulations and its construction, measurements, and properties evaluation are also reported for proving the applicator’s functionality. The new applicator allows performing five parallel experiments at the same time under the same conditions. The simulation together with the experimental results confirm that the magnetic field homogeneity reaches 99% in the area of interest and the maximum temperature instability is lower than 2% during the experiments. The effectiveness of new applicator is tested and proved during preliminary experiments with Saccharomyces Cerevisiae cells. The observed effects of MF exposure represent maximal stimulation of 74% and maximal inhibition of 49%. The reason why MF with the same parameters induces inhibition in one sample and stimulation in the other will be the subject of further research.
Collapse
|
9
|
Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 2022; 114:110386. [PMID: 35569731 DOI: 10.1016/j.ygeno.2022.110386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
|
10
|
Touchette D, Altshuler I, Gostinčar C, Zalar P, Raymond-Bouchard I, Zajc J, McKay CP, Gunde-Cimerman N, Whyte LG. Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis. THE ISME JOURNAL 2022; 16:221-232. [PMID: 34294882 PMCID: PMC8692454 DOI: 10.1038/s41396-021-01030-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
The novel extremophilic yeast Rhodotorula frigidialcoholis, formerly R. JG1b, was isolated from ice-cemented permafrost in University Valley (Antarctic), one of coldest and driest environments on Earth. Phenotypic and phylogenetic analyses classified R. frigidialcoholis as a novel species. To characterize its cold-adaptive strategies, we performed mRNA and sRNA transcriptomic analyses, phenotypic profiling, and assessed ethanol production at 0 and 23 °C. Downregulation of the ETC and citrate cycle genes, overexpression of fermentation and pentose phosphate pathways genes, growth without reduction of tetrazolium dye, and our discovery of ethanol production at 0 °C indicate that R. frigidialcoholis induces a metabolic switch from respiration to ethanol fermentation as adaptation in Antarctic permafrost. This is the first report of microbial ethanol fermentation utilized as the major energy pathway in response to cold and the coldest temperature reported for natural ethanol production. R. frigidialcoholis increased its diversity and abundance of sRNAs when grown at 0 versus 23 °C. This was consistent with increase in transcription of Dicer, a key protein for sRNA processing. Our results strongly imply that post-transcriptional regulation of gene expression and mRNA silencing may be a novel evolutionary fungal adaptation in the cryosphere.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China
| | - P Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - I Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - J Zajc
- Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - C P McKay
- NASA Ames Research Center, Moffett Field, CA, USA
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
11
|
Tian Z, Du Y, Yang F, Zhao J, Liu S, Zhang D, Long CA. Chromosome Genome Sequencing and Comparative Transcriptome-Based Analyses of Kloeckera apiculata 34-9 Unveil the Potential Biocontrol Mechanisms Against Citrus Green Mold. Front Microbiol 2021; 12:752529. [PMID: 34858366 PMCID: PMC8631199 DOI: 10.3389/fmicb.2021.752529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Biological control is an environmentally friendly, safe, and replaceable strategy for disease management. Genome sequences of a certain biocontrol agent could lay a solid foundation for the research of molecular biology, and the more refined the reference genome, the more information it provides. In the present study, a higher resolution genome of Kloeckera apiculata 34-9 was assembled using high-throughput chromosome conformation capture (Hi-C) technology. A total of 8.07 M sequences of K. apiculata 34-9 genome was anchored onto 7 pesudochromosomes, which accounting for about 99.51% of the whole assembled sequences, and 4,014 protein-coding genes were annotated. Meanwhile, the detailed gene expression changes of K. apiculata 34-9 were obtained under low temperature and co-incubation with Penicillium digitatum treatments, respectively. Totally 254 differentially expressed genes (DEGs) were detected with low temperature treatment, of which 184 and 70 genes were upregulated and downregulated, respectively. Some candidate genes were significantly enriched in ribosome biosynthesis in eukaryotes and ABC transporters. The expression of gene Kap003732 and Kap001595 remained upregulated and downregulated through the entire time-points, respectively, indicating that they might be core genes for positive and negative response to low temperature stress. When co-incubation with P. digitatum, a total of 2,364 DEGs were found, and there were 1,247 upregulated and 1,117 downregulated genes, respectively. Biosynthesis of lysine and arginine, and phenylalanine metabolism were the highest enrichment of the cluster and KEGG analyses of the co-DEGs, the results showed that they might be involved in the positive regulation of K. apiculata 34-9 response to P. digitatum. The completeness of K. apiculata 34-9 genome and the transcriptome data presented here are essential for providing a high-quality genomic resource and it might serve as valuable molecular properties for further studies on yeast genome, expression pattern of biocontrol system, and postharvest citrus storage and preservation.
Collapse
Affiliation(s)
- Zhonghuan Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, China.,National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Yujie Du
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, China.,National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Fan Yang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, China.,National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Juan Zhao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, China.,National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Shuqi Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, China.,National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Deyao Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, China.,National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Chao-An Long
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, China.,National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Mahanty S, Tudu P, Ghosh S, Chatterjee S, Das P, Bhattacharyya S, Das S, Acharya K, Chaudhuri P. Chemometric study on the biochemical marker of the manglicolous fungi to illustrate its potentiality as a bio indicator for heavy metal pollution in Indian Sundarbans. MARINE POLLUTION BULLETIN 2021; 173:113017. [PMID: 34872165 DOI: 10.1016/j.marpolbul.2021.113017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The study represents in vitro chemometric approach for assessing the heavy metal pollution in Indian Sundarbans. Physio-chemical and elemental characterisation of the sediment samples of Indian Sundarbans had shown high enrichments of toxic metal ions. It was characterised by elevated enrichment factors (2.16-10.12), geo-accumulation indices (0.03 -1.21), contamination factors (0.7-3.43) and pollution load indices (1.0-1.25) which showed progressive sediment quality deterioration and ecotoxicological risk due to metal ions contamination. The physio-chemical parameters of the sediments were replicated and computational chemometric modeling was utilized to assess fungal metabolic growth. All the fungi isolates had shown maximum metabolic activity in high temperature, alkaline pH, and high salinity. Further, the fungal metabolic activity was assessed in different gradient of heavy metal concentration. The significant deterioration of biochemical marker with increasing concentration of heavy metal indicates the status of the microbial health due to toxic metal pollution in the mangrove habitat.
Collapse
Affiliation(s)
- Shouvik Mahanty
- Department of Environmental Science, University of Calcutta, India
| | - Praveen Tudu
- Department of Environmental Science, University of Calcutta, India
| | - Somdeep Ghosh
- Department of Environmental Science, University of Calcutta, India
| | | | - Papita Das
- Department of Chemical Engineering, Jadavpur University, India
| | | | - Surajit Das
- Department of Life Science, NIT Rourkela, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, India
| | | |
Collapse
|
13
|
Dave N, Varadavenkatesan T, Selvaraj R, Vinayagam R. Modelling of fermentative bioethanol production from indigenous Ulva prolifera biomass by Saccharomyces cerevisiae NFCCI1248 using an integrated ANN-GA approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148429. [PMID: 34412402 DOI: 10.1016/j.scitotenv.2021.148429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Third generation biomass (marine macroalgae) has been projected as a promising alternative energy resource for bioethanol production due to its high carbon and no lignin composition. However, the major challenge in the technologies of production lies in the fermentative bioconversion process. Therefore, in the present study the predictive ability of an integrated artificial neural network with genetic algorithm (ANN-GA) in the modelling of bioethanol production was investigated for an indigenous marine macroalgal biomass (Ulva prolifera) by a novel yeast strain, Saccharomyces cerevisiae NFCCI1248 using six fermentative parameters, viz., substrate concentration, fermentation time, inoculum size, temperature, agitation speed and pH. The experimental model was developed using one-variable-at-a-time (OVAT) method to analyze the effects of the fermentative parameters on bioethanol production and the obtained regression equation was used as a fitness function for the ANN-GA modelling. The ANN-GA model predicted a maximum bioethanol production at 30 g/L substrate, 48 h fermentation time, 10% (v/v) inoculum, 30 °C temperature, 50 rpm agitation speed and pH 6. The maximum experimental bioethanol yield obtained after applying ANN-GA was 0.242 ± 0.002 g/g RS, which was in close proximity with the predicted value (0.239 g/g RS). Hence, the developed ANN-GA model can be applied as an efficient approach for predicting the fermentative bioethanol production from macroalgal biomass.
Collapse
Affiliation(s)
- Niyam Dave
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
14
|
Tarkington J, Zufall RA. Temperature affects the repeatability of evolution in the microbial eukaryote Tetrahymena thermophila. Ecol Evol 2021; 11:13139-13152. [PMID: 34646458 PMCID: PMC8495795 DOI: 10.1002/ece3.8036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
Evolutionary biologists have long sought to understand what factors affect the repeatability of adaptive outcomes. To better understand the role of temperature in determining the repeatability of adaptive trajectories, we evolved populations of different genotypes of the ciliate Tetrahymena thermophila at low and high temperatures and followed changes in growth rate over 6,500 generations. As expected, growth rate increased with a decelerating rate for all populations; however, there were differences in the patterns of evolution at the two temperatures. The growth rates of the different genotypes tended to converge as evolution proceeded at both temperatures, but this convergence was quicker and more pronounced at the higher temperature. Additionally, over the first 4,000 generations we found greater repeatability of evolution, in terms of change in growth rate, among replicates of the same genotype at the higher temperature. Finally, we found limited evidence of trade-offs in fitness between temperatures, and an asymmetry in the correlated responses, whereby evolution in a high temperature increases growth rate at the lower temperature significantly more than the reverse. These results demonstrate the importance of temperature in determining the repeatability of evolutionary trajectories for the eukaryotic microbe Tetrahymena thermophila and may provide clues to how temperature affects evolution more generally.
Collapse
Affiliation(s)
- Jason Tarkington
- Department of Biology and BiochemistryUniversity of HoustonHoustonTXUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Rebecca A. Zufall
- Department of Biology and BiochemistryUniversity of HoustonHoustonTXUSA
| |
Collapse
|
15
|
Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds. Molecules 2021; 26:molecules26041035. [PMID: 33669237 PMCID: PMC7919833 DOI: 10.3390/molecules26041035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast plays a key role in the production of fermented foods and beverages, such as bread, wine, and other alcoholic beverages. They are able to produce and release from the fermentation environment large numbers of volatile organic compounds (VOCs). This is the reason for the great interest in the possibility of adapting these microorganisms to fermentation at reduced temperatures. By doing this, it would be possible to obtain better sensory profiles of the final products. It can reduce the addition of artificial flavors and enhancements to food products and influence other important factors of fermented food production. Here, we reviewed the genetic and physiological mechanisms by which yeasts adapt to low temperatures. Next, we discussed the importance of VOCs for the food industry, their biosynthesis, and the most common volatiles in fermented foods and described the beneficial impact of decreased temperature as a factor that contributes to improving the composition of the sensory profiles of fermented foods.
Collapse
|
16
|
Pinheiro T, Lip KYF, García-Ríos E, Querol A, Teixeira J, van Gulik W, Guillamón JM, Domingues L. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci Rep 2020; 10:22329. [PMID: 33339840 PMCID: PMC7749138 DOI: 10.1038/s41598-020-77846-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
Elucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
Affiliation(s)
- Tânia Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Amparo Querol
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
17
|
Persson LB, Ambati VS, Brandman O. Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability. Cell 2020; 183:1572-1585.e16. [PMID: 33157040 DOI: 10.1016/j.cell.2020.10.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/26/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022]
Abstract
Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.
Collapse
Affiliation(s)
- Laura B Persson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Vardhaan S Ambati
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Mao Y, Chen Z, Lu L, Jin B, Ma H, Pan Y, Chen T. Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae. J Biotechnol 2020; 322:29-32. [PMID: 32653638 DOI: 10.1016/j.jbiotec.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Over the past decade, 5-aminolevulinic acid (5-ALA) has been highlighted as a promising functional feed additive and immunomodulator for improving the general health, immune response, and resistance to disease of livestock and poultry. However, it is very costly to produce 5-ALA using conventional chemical synthesis methods. Classical microbial fermentation fulfills the criteria of environmental friendliness, but the unsatisfactory titers still hinder actual industrial production. This study aimed to develop a solid-state fermentation (SSF) process that can be used to efficiently enrich feed with 5-ALA at a low cost. First, the endogenous 5-ALA synthase was overexpressed in Saccharomyces cerevisiae via integrating a copy of HEM1 gene into the chromosome and introducing a multi-copy plasmid pRS416-HEM1 which constitutively overexpresses HEM1 gene. The resulting strain ScA3 was able to produce 63.82 mg/L 5-ALA in shake-flask fermentation. After process optimization, a titer of 225.63 mg/kg dry materials, exceeding the usual effective dosage reported in animal trials, was achieved within 48 h through SSF of 20 kg feed in a 90-L steel drum. To our knowledge, this is the first report on combining microbial 5-ALA production with SSF in feed processing, which will hopefully promote the application and popularization of 5-ALA in the feed industry.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zetian Chen
- Henan Yihongshancheng Bio-Tech Co. Ltd., Yihongshancheng Park, South Gongye Road, Wuzhi, Henan 454950, China
| | - Lingxue Lu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Biao Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yun Pan
- Henan Yihongshancheng Bio-Tech Co. Ltd., Yihongshancheng Park, South Gongye Road, Wuzhi, Henan 454950, China.
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
19
|
Lip KYF, García-Ríos E, Costa CE, Guillamón JM, Domingues L, Teixeira J, van Gulik WM. Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00462. [PMID: 32477898 PMCID: PMC7251540 DOI: 10.1016/j.btre.2020.e00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/04/2022]
Abstract
A phenotypic screening of 12 industrial yeast strains and the well-studied laboratory strain CEN.PK113-7D at cultivation temperatures between 12 °C and 40 °C revealed significant differences in maximum growth rates and temperature tolerance. From those 12, two strains, one performing best at 12 °C and the other at 40 °C, plus the laboratory strain, were selected for further physiological characterization in well-controlled bioreactors. The strains were grown in anaerobic chemostats, at a fixed specific growth rate of 0.03 h-1 and sequential batch cultures at 12 °C, 30 °C, and 39 °C. We observed significant differences in biomass and ethanol yields on glucose, biomass protein and storage carbohydrate contents, and biomass yields on ATP between strains and cultivation temperatures. Increased temperature tolerance coincided with higher energetic efficiency of cell growth, indicating that temperature intolerance is a result of energy wasting processes, such as increased turnover of cellular components (e.g. proteins) due to temperature induced damage.
Collapse
Affiliation(s)
- Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carlos E. Costa
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - José Teixeira
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Walter M. van Gulik
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, the Netherlands
| |
Collapse
|
20
|
Time-Course Transcriptome of Parageobacillus thermoglucosidasius DSM 6285 Grown in the Presence of Carbon Monoxide and Air. Int J Mol Sci 2020; 21:ijms21113870. [PMID: 32485888 PMCID: PMC7312162 DOI: 10.3390/ijms21113870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Parageobacillus thermoglucosidasius is a metabolically versatile, facultatively anaerobic thermophile belonging to the family Bacillaceae. Previous studies have shown that this bacterium harbours co-localised genes coding for a carbon monoxide (CO) dehydrogenase (CODH) and Ni-Fe hydrogenase (Phc) complex and oxidises CO and produces hydrogen (H2) gas via the water-gas shift (WGS) reaction. To elucidate the genetic events culminating in the WGS reaction, P. thermoglucosidasius DSM 6285 was cultivated under an initial gas atmosphere of 50% CO and 50% air and total RNA was extracted at ~8 (aerobic phase), 20 (anaerobic phase), 27 and 44 (early and late hydrogenogenic phases) hours post inoculation. The rRNA-depleted fraction was sequenced using Illumina NextSeq, v2.5, 1x75bp chemistry. Differential expression revealed that at 8 vs.. 20, 20 vs.. 27 and 27 vs.. 44 h post inoculation, 2190, 2118 and 231 transcripts were differentially (FDR < 0.05) expressed. Cluster analysis revealed 26 distinct gene expression trajectories across the four time points. Of these, two similar clusters, showing overexpression at 20 relative to 8 h and depletion at 27 and 44 h, harboured the CODH and Phc transcripts, suggesting possible regulation by O2. The transition between aerobic respiration and anaerobic growth was marked by initial metabolic deterioration, as reflected by up-regulation of transcripts linked to sporulation and down-regulation of transcripts linked to flagellar assembly and metabolism. However, the transcriptome and growth profiles revealed the reversal of this trend during the hydrogenogenic phase.
Collapse
|
21
|
Smukowski Heil CS, Large CRL, Patterson K, Hickey ASM, Yeh CLC, Dunham MJ. Temperature preference can bias parental genome retention during hybrid evolution. PLoS Genet 2019; 15:e1008383. [PMID: 31525194 PMCID: PMC6762194 DOI: 10.1371/journal.pgen.1008383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 09/26/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.
Collapse
Affiliation(s)
- Caiti S. Smukowski Heil
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Christopher R. L. Large
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Kira Patterson
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Angela Shang-Mei Hickey
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Chiann-Ling C. Yeh
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
22
|
Diboune N, Nancib A, Nancib N, Aníbal J, Boudrant J. Utilization of prickly pear waste for baker's yeast production. Biotechnol Appl Biochem 2019; 66:744-754. [DOI: 10.1002/bab.1753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Naàssa Diboune
- Laboratory of Applied Microbiology Ferhat Abbas University, Setif Algeria
- Characterization and Valorization Laboratory of Natural Resources Bordj Bou Arreridj University Algeria
| | - Aicha Nancib
- Laboratory of Applied Microbiology Ferhat Abbas University, Setif Algeria
| | - Nabil Nancib
- Laboratory of Applied Microbiology Ferhat Abbas University, Setif Algeria
| | - Jaime Aníbal
- Department of Food Engineering Institute of Engineering University of Algarve Faro Portugal
- CIMA‐Centre of Marine and Environmental Research University of Algarve Faro Portugal
| | - Joseph Boudrant
- Laboratory Reactions and Process Engineering (LRPE), UMR CNRS 7224 University of Lorraine, ENSAIA Vandoeuvre Cedex France
| |
Collapse
|
23
|
Somani A, Box WG, Smart KA, Powell CD. Physiological and transcriptomic response of Saccharomyces pastorianus to cold storage. FEMS Yeast Res 2019; 19:5420514. [PMID: 31073596 DOI: 10.1093/femsyr/foz025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Abstract
Removal of yeast biomass at the end of fermentation, followed by a period of storage before re-inoculation into a subsequent fermentation, is common in the brewing industry. Storage is typically conducted at cold temperatures to preserve yeast quality, a practice which has unfavourable cost and environmental implications. To determine the potential for alleviating these effects, the transcriptomic and physiological response of Saccharomyces pastorianus strain W34/70 to standard (4°C) and elevated (10°C) storage temperatures was explored. Higher temperatures resulted in increased expression of genes associated with the production and mobilisation of intracellular glycogen, trehalose, glycerol and fatty acids, although these observations were limited to early stages of storage. Intracellular trehalose and glycerol concentrations were higher at 4°C than at 10°C, as a consequence of the cellular response to cold stress. However, significant changes in glycogen degradation or cellular fatty acid composition did not occur between the two sets of populations, ensuring that cell viability remained consistent. It is anticipated that this data may lead to changes in standard practice for handling yeast cultures, without compromising yeast quality. This work has significance not only for the brewing industry, but also for food and biofuel sectors requiring short-term storage of liquid yeast.
Collapse
Affiliation(s)
- Abhishek Somani
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Gogerddan Campus, University of Aberystwyth, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - Wendy G Box
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Katherine A Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcet Drive, Cambridge, Cambridgeshire, CB3 0AS, United Kingdom
| | - Chris D Powell
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
24
|
Rossoni AW, Schï Nknecht G, Lee HJ, Rupp RL, Flachbart S, Mettler-Altmann T, Weber APM, Eisenhut M. Cold Acclimation of the Thermoacidophilic Red Alga Galdieria sulphuraria: Changes in Gene Expression and Involvement of Horizontally Acquired Genes. PLANT & CELL PHYSIOLOGY 2019; 60:702-712. [PMID: 30590832 DOI: 10.1093/pcp/pcy240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Galdieria sulphuraria is a unicellular red alga that lives in hot, acidic, toxic metal-rich, volcanic environments, where few other organisms survive. Its genome harbors up to 5% of genes that were most likely acquired through horizontal gene transfer. These genes probably contributed to G.sulphuraria's adaptation to its extreme habitats, resulting in today's polyextremophilic traits. Here, we applied RNA-sequencing to obtain insights into the acclimation of a thermophilic organism towards temperatures below its growth optimum and to study how horizontally acquired genes contribute to cold acclimation. A decrease in growth temperature from 42�C/46�C to 28�C resulted in an upregulation of ribosome biosynthesis, while excreted proteins, probably components of the cell wall, were downregulated. Photosynthesis was suppressed at cold temperatures, and transcript abundances indicated that C-metabolism switched from gluconeogenesis to glycogen degradation. Folate cycle and S-adenosylmethionine cycle (one-carbon metabolism) were transcriptionally upregulated, probably to drive the biosynthesis of betaine. All these cold-induced changes in gene expression were reversible upon return to optimal growth temperature. Numerous genes acquired by horizontal gene transfer displayed temperature-dependent expression changes, indicating that these genes contributed to adaptive evolution in G.sulphuraria.
Collapse
Affiliation(s)
- Alessandro W Rossoni
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| | - Gerald Schï Nknecht
- Department of Plant Biology, Ecology & Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Hyun Jeong Lee
- Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, South Korea
| | - Ryan L Rupp
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Samantha Flachbart
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D�sseldorf, Germany
| |
Collapse
|
25
|
Mechanisms of Yeast Adaptation to Wine Fermentations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:37-59. [PMID: 30911888 DOI: 10.1007/978-3-030-13035-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells face genetic and/or environmental changes in order to outlast and proliferate. Characterization of changes after stress at different "omics" levels is crucial to understand the adaptation of yeast to changing conditions. Wine fermentation is a stressful situation which yeast cells have to cope with. Genome-wide analyses extend our cellular physiology knowledge by pointing out the mechanisms that contribute to sense the stress caused by these perturbations (temperature, ethanol, sulfites, nitrogen, etc.) and related signaling pathways. The model organism, Saccharomyces cerevisiae, was studied in response to industrial stresses and changes at different cellular levels (transcriptomic, proteomic, and metabolomics), which were followed statically and/or dynamically in the short and long terms. This chapter focuses on the response of yeast cells to the diverse stress situations that occur during wine fermentations, which induce perturbations, including nutritional changes, ethanol stress, temperature stress, oxidative stress, etc.
Collapse
|
26
|
Feng L, Jia H, Qin Y, Song Y, Tao S, Liu Y. Rapid Identification of Major QTL S Associated With Near- Freezing Temperature Tolerance in Saccharomyces cerevisiae. Front Microbiol 2018; 9:2110. [PMID: 30254614 PMCID: PMC6141824 DOI: 10.3389/fmicb.2018.02110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Temperatures had a strong effect on many life history traits, including growth, development and reproduction. At near-freezing temperatures (0–4°C), yeast cells could trigger series of biochemical reactions to respond and adapt to the stress, protect them against sever cold and freeze injury. Different Saccharomyces cerevisiae strains vary greatly in their ability to grow at near-freezing temperatures. However, the molecular mechanisms that allow yeast cells to sustain this response are not yet fully understood and the genetic basis of tolerance and sensitivity to near-freeze stress remains unclear. Uncovering the genetic determinants of this trait is, therefore, of is of significant interest. In order to investigate the genetic basis that underlies near-freezing temperature tolerance in S. cerevisiae, we mapped the major quantitative trait loci (QTLs) using bulk segregant analysis (BSA) in the F2 segregant population of two Chinese indigenous S. cerevisiae strains with divergent tolerance capability at 4°C. By genome-wide comparison of single-nucleotide polymorphism (SNP) profiles between two bulks of segregants with high and low tolerance to near-freezing temperature, a hot region located on chromosome IV was identified tightly associated with the near-freezing temperature tolerance. The Reciprocal hemizygosity analysis (RHA) and gene deletion was used to validate the genes involved in the trait, showed that the gene NAT1 plays a role in the near-freezing temperature tolerance. This study improved our understanding of the genetic basis of the variability of near-freezing temperature tolerance in yeasts. The superior allele identified could be used to genetically improve the near-freezing stress adaptation of industrial yeast strains.
Collapse
Affiliation(s)
- Li Feng
- College of Enology, Northwest A&F University, Yangling, China
| | - He Jia
- College of Enology, Northwest A&F University, Yangling, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Lopandic K. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments. Yeast 2018; 35:21-38. [PMID: 29131388 DOI: 10.1002/yea.3294] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ksenija Lopandic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11/3, A-1190, Vienna, Austria
| |
Collapse
|
28
|
|
29
|
Influence of Ripe Persimmon on Quality Characteristics and Antioxidant Potential of Sparkling Wine. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.4.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Benet M, Miguel A, Carrasco F, Li T, Planells J, Alepuz P, Tordera V, Pérez-Ortín JE. Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:794-802. [PMID: 28461260 DOI: 10.1016/j.bbagrm.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 02/03/2023]
Abstract
To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to the constraints imposed by kinetics in order to minimize energy costs. Even though the transcriptional machinery is subjected to the same constraints, we observed interesting differences between transcription and translation, which may be related to the different energy costs of the two processes as well as the differential functions of mRNAs and proteins.
Collapse
Affiliation(s)
- Marta Benet
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Ana Miguel
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Fany Carrasco
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Tianlu Li
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Jordi Planells
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - Vicente Tordera
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| |
Collapse
|
31
|
Krogerus K, Seppänen-Laakso T, Castillo S, Gibson B. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. Microb Cell Fact 2017; 16:66. [PMID: 28431563 PMCID: PMC5399851 DOI: 10.1186/s12934-017-0679-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/09/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Interspecific hybridization has proven to be a potentially valuable technique for generating de novo lager yeast strains that possess diverse and improved traits compared to their parent strains. To further enhance the value of hybridization for strain development, it would be desirable to combine phenotypic traits from more than two parent strains, as well as remove unwanted traits from hybrids. One such trait, that has limited the industrial use of de novo lager yeast hybrids, is their inherent tendency to produce phenolic off-flavours; an undesirable trait inherited from the Saccharomyces eubayanus parent. Trait removal and the addition of traits from a third strain could be achieved through sporulation and meiotic recombination or further mating. However, interspecies hybrids tend to be sterile, which impedes this opportunity. RESULTS Here we generated a set of five hybrids from three different parent strains, two of which contained DNA from all three parent strains. These hybrids were constructed with fertile allotetraploid intermediates, which were capable of efficient sporulation. We used these eight brewing strains to examine two brewing-relevant phenotypes: stress tolerance and phenolic off-flavour formation. Lipidomics and multivariate analysis revealed links between several lipid species and the ability to ferment in low temperatures and high ethanol concentrations. Unsaturated fatty acids, such as oleic acid, and ergosterol were shown to positively influence growth at high ethanol concentrations. The ability to produce phenolic off-flavours was also successfully removed from one of the hybrids, Hybrid T2, through meiotic segregation. The potential application of these strains in industrial fermentations was demonstrated in wort fermentations, which revealed that the meiotic segregant Hybrid T2 not only didn't produce any phenolic off-flavours, but also reached the highest ethanol concentration and consumed the most maltotriose. CONCLUSIONS Our study demonstrates the possibility of constructing complex yeast hybrids that possess traits that are relevant to industrial lager beer fermentation and that are derived from several parent strains. Yeast lipid composition was also shown to have a central role in determining ethanol and cold tolerance in brewing strains.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, 00076 Espoo, Finland
| | | | - Sandra Castillo
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
| |
Collapse
|
32
|
Deed RC, Fedrizzi B, Gardner RC. Saccharomyces cerevisiae FLO1 Gene Demonstrates Genetic Linkage to Increased Fermentation Rate at Low Temperatures. G3 (BETHESDA, MD.) 2017; 7:1039-1048. [PMID: 28143947 PMCID: PMC5345705 DOI: 10.1534/g3.116.037630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/25/2017] [Indexed: 01/14/2023]
Abstract
Low fermentation temperatures are of importance to food and beverage industries working with Saccharomyces cerevisiae Therefore, the identification of genes demonstrating a positive impact on fermentation kinetics is of significant interest. A set of 121 mapped F1 progeny, derived from a cross between haploid strains BY4716 (a derivative of the laboratory yeast S288C) and wine yeast RM11-1a, were fermented in New Zealand Sauvignon Blanc grape juice at 12.5°. Analyses of five key fermentation kinetic parameters among the F1 progeny identified a quantitative trait locus (QTL) on chromosome I with a significant degree of linkage to maximal fermentation rate (Vmax) at low temperature. Independent deletions of two candidate genes within the region, FLO1 and SWH1, were constructed in the parental strains (with S288C representing BY4716). Fermentation of wild-type and deletion strains at 12.5 and 25° confirmed that the genetic linkage to Vmax corresponds to the S288C version of the FLO1 allele, as the absence of this allele reduced Vmax by ∼50% at 12.5°, but not at 25°. Reciprocal hemizygosity analysis (RHA) between S288C and RM11-1a FLO1 alleles did not confirm the prediction that the S288C version of FLO1 was promoting more rapid fermentation in the opposing strain background, suggesting that the positive effect on Vmax derived from S288C FLO1 may only provide an advantage in haploids, or is dependent on strain-specific cis or trans effects. This research adds to the growing body of evidence demonstrating the role of FLO1 in providing stress tolerance to S. cerevisiae during fermentation.
Collapse
Affiliation(s)
- Rebecca C Deed
- School of Chemical Sciences, University of Auckland, 1010, New Zealand
- School of Biological Sciences, University of Auckland, 1010, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, 1010, New Zealand
| | - Richard C Gardner
- School of Biological Sciences, University of Auckland, 1010, New Zealand
| |
Collapse
|
33
|
Krogerus K, Magalhães F, Vidgren V, Gibson B. Novel brewing yeast hybrids: creation and application. Appl Microbiol Biotechnol 2016; 101:65-78. [PMID: 27885413 PMCID: PMC5203825 DOI: 10.1007/s00253-016-8007-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland. .,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
34
|
Ballester-Tomás L, Prieto JA, Alepuz P, González A, Garre E, Randez-Gil F. Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:314-323. [PMID: 27864078 DOI: 10.1016/j.bbamcr.2016.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
Abstract
In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-dependent polysome disassembly and overactivity of Gcn4, which result in cold-sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, mutation of several Gcn2-regulators and effectors results in cold-growth effects. Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the regulatory mechanism of Gcn2-eIF2α. Finally, we demonstrated that P-body formation responds to a downshift in temperature in a TRP1-dependent manner and is required for cold tolerance.
Collapse
Affiliation(s)
- Lidia Ballester-Tomás
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Paula Alepuz
- Departament of Biochemistry and Molecular Biology, ERI Biotecmed, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | | | - Elena Garre
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain.
| |
Collapse
|
35
|
Genomic, Transcriptomic, and Proteomic Analysis Provide Insights Into the Cold Adaptation Mechanism of the Obligate Psychrophilic Fungus Mrakia psychrophila. G3-GENES GENOMES GENETICS 2016; 6:3603-3613. [PMID: 27633791 PMCID: PMC5100859 DOI: 10.1534/g3.116.033308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mrakia psychrophila is an obligate psychrophilic fungus. The cold adaptation mechanism of psychrophilic fungi remains unknown. Comparative genomics analysis indicated that M. psychrophila had a specific codon usage preference, especially for codons of Gly and Arg and its major facilitator superfamily (MFS) transporter gene family was expanded. Transcriptomic analysis revealed that genes involved in ribosome and energy metabolism were upregulated at 4°, while genes involved in unfolded protein binding, protein processing in the endoplasmic reticulum, proteasome, spliceosome, and mRNA surveillance were upregulated at 20°. In addition, genes related to unfolded protein binding were alternatively spliced. Consistent with other psychrophiles, desaturase and glycerol 3-phosphate dehydrogenase, which are involved in biosynthesis of unsaturated fatty acid and glycerol respectively, were upregulated at 4°. Cold adaptation of M. psychrophila is mediated by synthesizing unsaturated fatty acids to maintain membrane fluidity and accumulating glycerol as a cryoprotectant. The proteomic analysis indicated that the correlations between the dynamic patterns between transcript level changes and protein level changes for some pathways were positive at 4°, but negative at 20°. The death of M. psychrophila above 20° might be caused by an unfolded protein response.
Collapse
|
36
|
Salvadó Z, Ramos-Alonso L, Tronchoni J, Penacho V, García-Ríos E, Morales P, Gonzalez R, Guillamón JM. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. Int J Food Microbiol 2016; 236:38-46. [PMID: 27442849 DOI: 10.1016/j.ijfoodmicro.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/23/2016] [Accepted: 07/09/2016] [Indexed: 01/17/2023]
Abstract
Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature.
Collapse
Affiliation(s)
- Zoel Salvadó
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain; Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Lucía Ramos-Alonso
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Vanessa Penacho
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Estéfani García-Ríos
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
37
|
García-Ríos E, Querol A, Guillamón JM. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation. J Proteomics 2016; 146:70-9. [PMID: 27343759 DOI: 10.1016/j.jprot.2016.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED Temperature is one of the most important parameters to affect the duration and rate of alcoholic fermentation and final wine quality. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae, which was the case of cryotolerant yeasts Saccharomyces uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the proteomic landscape of these cryotolerant species grown at 12°C and 28°C, which we compared with the proteome of S. cerevisiae (poorly adapted at low temperature). Our results showed that the main differences among the proteomic profiling of the three Saccharomyces strains grown at 12°C and 28°C lay in translation, glycolysis and amino acid metabolism. Our data corroborate previous transcriptomic results, which suggest that S. kudriavzevii is better adapted to grow at low temperature as a result of enhanced more efficient translation. Fitter amino acid biosynthetic pathways can also be mechanisms that better explain biomass yield in cryotolerant strains. Yet even at low temperature, S. cerevisiae is the most fermentative competitive species. A higher concentration of glycolytic and alcoholic fermentation enzymes in the S. cerevisiae strain might explain such greater fermentation activity. BIOLOGICAL SIGNIFICANCE Temperature is one of the main relevant environmental variables that microorganisms have to cope with and it is also a key factor in some industrial processes that involve microorganisms. However, we are still far from understanding the molecular and physiological mechanisms of adaptation at low temperatures. The results obtained in this study provided a global atlas of the proteome changes triggered by temperature in three different species of the genus Saccharomyces with different degree of cryotolerance. These results would facilitate a better understanding of mechanisms for how yeast could adapt at the low temperature of growth.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980 Paterna, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980 Paterna, Valencia, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
38
|
Borrull A, López-Martínez G, Miró-Abella E, Salvadó Z, Poblet M, Cordero-Otero R, Rozès N. New insights into the physiological state of Saccharomyces cerevisiae during ethanol acclimation for producing sparkling wines. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Ballester-Tomás L, Pérez-Torrado R, Rodríguez-Vargas S, Prieto JA, Randez-Gil F. Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae. J Biotechnol 2016; 221:70-7. [DOI: 10.1016/j.jbiotec.2016.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 11/28/2022]
|
40
|
Taymaz-Nikerel H, Cankorur-Cetinkaya A, Kirdar B. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations. Front Bioeng Biotechnol 2016; 4:17. [PMID: 26925399 PMCID: PMC4757645 DOI: 10.3389/fbioe.2016.00017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to the changing conditions. Genome-wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors, such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short and long term. This review focuses on response of yeast cells to diverse stress inducing perturbations, including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, and to genetic interventions such as deletion and overexpression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.
Collapse
Affiliation(s)
| | | | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University , Istanbul , Turkey
| |
Collapse
|
41
|
Isasa M, Suñer C, Díaz M, Puig-Sàrries P, Zuin A, Bichman A, Gygi SP, Rebollo E, Crosas B. Cold Temperature Induces the Reprogramming of Proteolytic Pathways in Yeast. J Biol Chem 2015; 291:1664-1675. [PMID: 26601941 DOI: 10.1074/jbc.m115.698662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
Despite much evidence of the involvement of the proteasome-ubiquitin signaling system in temperature stress response, the dynamics of the ubiquitylome during cold response has not yet been studied. Here, we have compared quantitative ubiquitylomes from a strain deficient in proteasome substrate recruitment and a reference strain during cold response. We have observed that a large group of proteins showing increased ubiquitylation in the proteasome mutant at low temperature is comprised by reverses suppressor of Ty-phenotype 5 (Rsp5)-regulated plasma membrane proteins. Analysis of internalization and degradation of plasma membrane proteins at low temperature showed that the proteasome becomes determinant for this process, whereas, at 30 °C, the proteasome is dispensable. Moreover, our observations indicate that proteasomes have increased capacity to interact with lysine 63-polyubiquitylated proteins during low temperature in vivo. These unanticipated observations indicate that, during cold response, there is a proteolytic cellular reprogramming in which the proteasome acquires a role in the endocytic-vacuolar pathway.
Collapse
Affiliation(s)
- Marta Isasa
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Clara Suñer
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Miguel Díaz
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Pilar Puig-Sàrries
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Alice Zuin
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Anne Bichman
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Elena Rebollo
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Bernat Crosas
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and.
| |
Collapse
|
42
|
Dahlquist KD, Fitzpatrick BG, Camacho ET, Entzminger SD, Wanner NC. Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae. Bull Math Biol 2015; 77:1457-92. [PMID: 26420504 PMCID: PMC4636536 DOI: 10.1007/s11538-015-0092-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/16/2015] [Indexed: 11/10/2022]
Abstract
We investigated the dynamics of a gene regulatory network controlling the cold shock response in budding yeast, Saccharomyces cerevisiae. The medium-scale network, derived from published genome-wide location data, consists of 21 transcription factors that regulate one another through 31 directed edges. The expression levels of the individual transcription factors were modeled using mass balance ordinary differential equations with a sigmoidal production function. Each equation includes a production rate, a degradation rate, weights that denote the magnitude and type of influence of the connected transcription factors (activation or repression), and a threshold of expression. The inverse problem of determining model parameters from observed data is our primary interest. We fit the differential equation model to published microarray data using a penalized nonlinear least squares approach. Model predictions fit the experimental data well, within the 95 % confidence interval. Tests of the model using randomized initial guesses and model-generated data also lend confidence to the fit. The results have revealed activation and repression relationships between the transcription factors. Sensitivity analysis indicates that the model is most sensitive to changes in the production rate parameters, weights, and thresholds of Yap1, Rox1, and Yap6, which form a densely connected core in the network. The modeling results newly suggest that Rap1, Fhl1, Msn4, Rph1, and Hsf1 play an important role in regulating the early response to cold shock in yeast. Our results demonstrate that estimation for a large number of parameters can be successfully performed for nonlinear dynamic gene regulatory networks using sparse, noisy microarray data.
Collapse
Affiliation(s)
- Kam D Dahlquist
- Department of Biology, Loyola Marymount University, 1 LMU Drive, MS 8888, Los Angeles, CA, 90045, USA.
| | - Ben G Fitzpatrick
- Department of Mathematics, Loyola Marymount University, 1 LMU Drive, UH 2700, Los Angeles, CA, 90045, USA
| | - Erika T Camacho
- School of Mathematical and Natural Sciences, Arizona State University, Mail Code 2352, P.O. Box 37100, Phoenix, AZ, 85069-7100, USA
| | - Stephanie D Entzminger
- Department of Mathematics, Loyola Marymount University, 1 LMU Drive, UH 2700, Los Angeles, CA, 90045, USA
| | - Nathan C Wanner
- Department of Mathematics, Loyola Marymount University, 1 LMU Drive, UH 2700, Los Angeles, CA, 90045, USA
| |
Collapse
|
43
|
Munna MS, Humayun S, Noor R. Influence of heat shock and osmotic stresses on the growth and viability of Saccharomyces cerevisiae SUBSC01. BMC Res Notes 2015; 8:369. [PMID: 26298101 PMCID: PMC4546815 DOI: 10.1186/s13104-015-1355-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/17/2015] [Indexed: 01/11/2023] Open
Abstract
Background With a preceding scrutiny of bacterial cellular responses against heat shock and oxidative stresses, current research further investigated such impact on yeast cell. Present study attempted to observe the influence of high temperature (44–46 °C) on the growth and budding pattern of Saccharomyces cerevisiae SUBSC01. Effect of elevated sugar concentrations as another stress stimulant was also observed. Cell growth was measured through the estimation of the optical density at 600 nm (OD600) and by the enumeration of colony forming units on the agar plates up to 450 min. Results Subsequent transformation in the yeast morphology and the cellular arrangement were noticed. A delayed and lengthy lag phase was observed when yeast strain was grown at 30, 37, and 40 °C, while at 32.5 °C, optimal growth pattern was noticed. Cells were found to lose culturability completely at 46 °C whereby cells without the cytoplasmic contents were also observed under the light microscope. Thus the critical growth temperature was recorded as 45 °C which was the highest temperature at which S. cerevisiae SUBSC01 could grow. However, a complete growth retardation was observed at 45 °C with the high concentrations of dextrose (0.36 g/l) and sucrose (0.18 g/l). Notably, yeast budding was found at 44 and 45 °C up to 270 min of incubation, which was further noticed to be suppressed at 46 °C. Conclusions Present study revealed that the optimal and the critical growth temperatures of S. cerevisiae SUBSC01 were 32.5 and 45 °C, respectively; and also projected on the inhibitory concentrations of sugars on yeast growth at that temperature.
Collapse
Affiliation(s)
- Md Sakil Munna
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Sanjida Humayun
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| | - Rashed Noor
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh.
| |
Collapse
|
44
|
Guyot S, Gervais P, Young M, Winckler P, Dumont J, Davey HM. Surviving the heat: heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ Microbiol 2015; 17:2982-92. [PMID: 25845620 PMCID: PMC4676927 DOI: 10.1111/1462-2920.12866] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/30/2015] [Indexed: 01/03/2023]
Abstract
Environmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains. Using single-cell methods, we demonstrate the extent of heterogeneity of the heat-stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for recovery of entire populations once stresses are removed. The results show that plasma membrane permeability and potential are key factors involved in cell survival, but thermal resistance is not related to homeoviscous adaptation of the plasma membrane. These results have implications for growth and regrowth of populations experiencing environmental heat stress and our understanding of impacts at the level of the single cell. Given the important role of microbes in biofuel production and bioremediation, a thorough understanding of the impact of stress responses of populations and individuals is highly desirable.
Collapse
Affiliation(s)
- Stéphane Guyot
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Patrick Gervais
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Michael Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityPenglais, Aberystwyth, Wales, SY23 3DA, UK
| | - Pascale Winckler
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| | - Jennifer Dumont
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Hazel Marie Davey
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| |
Collapse
|
45
|
Ballester-Tomás L, Randez-Gil F, Pérez-Torrado R, Prieto JA. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Microb Cell Fact 2015; 14:100. [PMID: 26156706 PMCID: PMC4496827 DOI: 10.1186/s12934-015-0289-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
Abstract
Background Cold stress reduces microbial growth and metabolism being relevant in industrial processes like wine making and brewing. Knowledge on the cold transcriptional response of Saccharomyces cerevisiae suggests the need of a proper redox balance. Nevertheless, there are no direct evidence of the links between NAD(P) levels and cold growth and how engineering of enzymatic reactions requiring NAD(P) may be used to modify the performance of industrial strains at low temperature. Results Recombinant strains of S. cerevisiae modified for increased NADPH- and NADH-dependent Gdh1 and Gdh2 activity were tested for growth at low temperature. A high-copy number of the GDH2-encoded glutamate dehydrogenase gene stimulated growth at 15°C, while overexpression of GDH1 had detrimental effects, a difference likely caused by cofactor preferences. Indeed, neither the Trp− character of the tested strains, which could affect the synthesis of NAD(P), nor changes in oxidative stress susceptibility by overexpression of GDH1 and GDH2 account for the observed phenotypes. However, increased or reduced NADPH availability by knock-out or overexpression of GRE3, the NADPH-dependent aldose reductase gene, eliminated or exacerbated the cold-growth defect observed in YEpGDH1 cells. We also demonstrated that decreased capacity of glycerol production impairs growth at 15 but not at 30°C and that 15°C-grown baker’s yeast cells display higher fermentative capacity than those cultivated at 30°C. Thus, increasing NADH oxidation by overexpression of GDH2 would help to avoid perturbations in the redox metabolism induced by a higher fermentative/oxidative balance at low temperature. Finally, it is shown that overexpression of GDH2 increases notably the cold growth in the wine yeast strain QA23 in both standard growth medium and synthetic grape must. Conclusions Redox constraints limit the growth of S. cerevisiae at temperatures below the optimal. An adequate supply of NAD(P) precursors as well as a proper level of reducing equivalents in the form of NADPH are required for cold growth. However, a major limitation is the increased need of oxidation of NADH to NAD+ at low temperature. In this scenario, our results identify the ammonium assimilation pathway as a target for the genetic improvement of cold growth in industrial strains. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lidia Ballester-Tomás
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Roberto Pérez-Torrado
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Jose Antonio Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
46
|
Zakhartsev M, Yang X, Reuss M, Pörtner HO. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield. J Therm Biol 2015; 52:117-29. [PMID: 26267506 DOI: 10.1016/j.jtherbio.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 11/16/2022]
Abstract
Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin of metabolic efficiency. We hypothesize that a temperature increase above Topt (e.g. >31°C) triggers both an increment in mglc and suppression of μmax, which together contribute to an upshift of Yatp/glc from the lower limit and thus compensate for the loss of the safety margin. This trade-off allows adding 10 more degrees to Topt and extends the thermal window up to 40°C, sustaining survival and reproduction in supraoptimal temperatures. Deeper understanding of the limits of thermal tolerance can be practically exploited in biotechnological applications.
Collapse
Affiliation(s)
- Maksim Zakhartsev
- Alfred Wegener Institute for Marine and Polar Research (AWI), Bremerhaven, Germany; Institute of Biochemical Engineering (IBVT), University of Stuttgart, Stuttgart, Germany; Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany.
| | - Xuelian Yang
- Institute of Biochemical Engineering (IBVT), University of Stuttgart, Stuttgart, Germany; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Matthias Reuss
- Institute of Biochemical Engineering (IBVT), University of Stuttgart, Stuttgart, Germany
| | - Hans Otto Pörtner
- Alfred Wegener Institute for Marine and Polar Research (AWI), Bremerhaven, Germany
| |
Collapse
|
47
|
Goel A, Eckhardt TH, Puri P, de Jong A, Branco Dos Santos F, Giera M, Fusetti F, de Vos WM, Kok J, Poolman B, Molenaar D, Kuipers OP, Teusink B. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial Crabtree effect? Mol Microbiol 2015; 97:77-92. [PMID: 25828364 DOI: 10.1111/mmi.13012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 01/21/2023]
Abstract
Protein investment costs are considered a major driver for the choice of alternative metabolic strategies. We tested this premise in Lactococcus lactis, a bacterium that exhibits a distinct, anaerobic version of the bacterial Crabtree/Warburg effect; with increasing growth rates it shifts from a high yield metabolic mode [mixed-acid fermentation; 3 adenosine triphosphate (ATP) per glucose] to a low yield metabolic mode (homolactic fermentation; 2 ATP per glucose). We studied growth rate-dependent relative transcription and protein ratios, enzyme activities, and fluxes of L. lactis in glucose-limited chemostats, providing a high-quality and comprehensive data set. A three- to fourfold higher growth rate rerouted metabolism from acetate to lactate as the main fermentation product. However, we observed hardly any changes in transcription, protein levels and enzyme activities. Even levels of ribosomal proteins, constituting a major investment in cellular machinery, changed only slightly. Thus, contrary to the original hypothesis, central metabolism in this organism appears to be hardly regulated at the level of gene expression, but rather at the metabolic level. We conclude that L. lactis is either poorly adapted to growth at low and constant glucose concentrations, or that protein costs play a less important role in fitness than hitherto assumed.
Collapse
Affiliation(s)
- Anisha Goel
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Thomas H Eckhardt
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Pranav Puri
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Anne de Jong
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Filipe Branco Dos Santos
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Martin Giera
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Fabrizia Fusetti
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | - Jan Kok
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Oscar P Kuipers
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| |
Collapse
|
48
|
Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation. Antonie van Leeuwenhoek 2015; 107:1029-48. [DOI: 10.1007/s10482-015-0395-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023]
|
49
|
New insights into the capacity of commercial wine yeasts to grow on sparkling wine media. Factor screening for improving wine yeast selection. Food Microbiol 2014; 48:41-8. [PMID: 25790990 DOI: 10.1016/j.fm.2014.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022]
Abstract
During the production of sparkling wine, wine yeasts are subjected to many stress factors apart from ethanol, which lead to the need to achieve their acclimation in line with various industrial protocols. In the present work, 44 commercial wine Saccharomyces cerevisiae strains and one laboratory strain (BY4742) were firstly subjected to the influence of increasing concentrations of ethanol to cluster the yeasts using discriminant function analysis. Afterwards, non-inhibitory concentration (NIC) and minimum inhibitory concentration (MIC) were estimated, revealing some differences between 24 of these strains. Meanwhile, this study confirms the negative synergistic effect of low pH with ethanol on the maximum specific growth rate (μmax) and lag phase time. Moreover, a negative effect of increasing levels of glycerol in the growth medium was observed. Interestingly enough, an interactive positive effect was found between cysteine and medium-chain fatty acids (MCFA). While cysteine did not have a really significant effect in comparison to the control, it was able to restore the damage caused by MCFA, making the growth rate of cells recover and even reducing the formation of reactive oxygen species. Adequate culture aeration is also crucial for the composition of the cell fatty acid. The final results showed that few differences were observed between NIC and MIC estimations with respect to cells pre-cultured in the presence or absence of oxygen.
Collapse
|
50
|
García-Ríos E, López-Malo M, Guillamón JM. Global phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations. BMC Genomics 2014; 15:1059. [PMID: 25471357 PMCID: PMC4265444 DOI: 10.1186/1471-2164-15-1059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/26/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The wine industry needs better-adapted yeasts to grow at low temperature because it is interested in fermenting at low temperature to improve wine aroma. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. RESULTS We followed a global approach by comparing transcriptomic, proteomic and genomic changes in two commercial wine strains, which showed clear differences in their growth and fermentation capacity at low temperature. These strains were selected according to the maximum growth rate in a synthetic grape must during miniaturized batch cultures at different temperatures. The fitness differences of the selected strains were corroborated by directly competing during fermentations at optimum and low temperatures. The up-regulation of the genes of the sulfur assimilation pathway and glutathione biosynthesis suggested a crucial role in better performance at low temperature. The presence of some metabolites of these pathways, such as S-Adenosilmethionine (SAM) and glutathione, counteracted the differences in growth rate at low temperature in both strains. Generally, the proteomic and genomic changes observed in both strains also supported the importance of these metabolic pathways in adaptation at low temperature. CONCLUSIONS This work reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature. We propose that a greater activation of this metabolic route enhances the synthesis of key metabolites, such as glutathione, whose protective effects can contribute to improve the fermentation process.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- />Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, Po Box 73E-46100, Paterna Valencia, Spain
| | - María López-Malo
- />Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, Po Box 73E-46100, Paterna Valencia, Spain
- />Biotecnologia Enològica. Departament de Bioquímica i Biotecnologia, Facultat de Enologia, Universitat Rovira i Virgili, Marcel•li Domingo s/n, 43007 Tarragona, Spain
| | - José Manuel Guillamón
- />Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, Po Box 73E-46100, Paterna Valencia, Spain
| |
Collapse
|