1
|
Sabeh F, Li XY, Olson AW, Botvinick E, Kurup A, Gimenez LE, Cho JS, Weiss SJ. Mmp14-dependent remodeling of the pericellular-dermal collagen interface governs fibroblast survival. J Cell Biol 2024; 223:e202312091. [PMID: 38990714 PMCID: PMC11244150 DOI: 10.1083/jcb.202312091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Dermal fibroblasts deposit type I collagen, the dominant extracellular matrix molecule found in skin, during early postnatal development. Coincident with this biosynthetic program, fibroblasts proteolytically remodel pericellular collagen fibrils by mobilizing the membrane-anchored matrix metalloproteinase, Mmp14. Unexpectedly, dermal fibroblasts in Mmp14-/- mice commit to a large-scale apoptotic program that leaves skin tissues replete with dying cells. A requirement for Mmp14 in dermal fibroblast survival is recapitulated in vitro when cells are embedded within, but not cultured atop, three-dimensional hydrogels of crosslinked type I collagen. In the absence of Mmp14-dependent pericellular proteolysis, dermal fibroblasts fail to trigger β1 integrin activation and instead actuate a TGF-β1/phospho-JNK stress response that leads to apoptotic cell death in vitro as well as in vivo. Taken together, these studies identify Mmp14 as a requisite cell survival factor that maintains dermal fibroblast viability in postnatal dermal tissues.
Collapse
Affiliation(s)
- Farideh Sabeh
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Adam W. Olson
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elliot Botvinick
- The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Abhishek Kurup
- The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Luis E. Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Prunier C, Chavrier P, Boissan M. Mechanisms of action of NME metastasis suppressors - a family affair. Cancer Metastasis Rev 2023; 42:1155-1167. [PMID: 37353690 PMCID: PMC10713741 DOI: 10.1007/s10555-023-10118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to maintain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis suppressor functions of NME proteins.
Collapse
Affiliation(s)
- Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Philippe Chavrier
- Actin and Membrane Dynamics Laboratory, Institut Curie - Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
- Laboratoire de Biochimie Endocrinienne Et Oncologique, Oncobiologie Cellulaire Et Moléculaire, APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Paris, France.
| |
Collapse
|
3
|
Cytoplasmic Tail of MT1-MMP: A Hub of MT1-MMP Regulation and Function. Int J Mol Sci 2023; 24:ijms24065068. [PMID: 36982142 PMCID: PMC10049710 DOI: 10.3390/ijms24065068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.
Collapse
|
4
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
5
|
Metastasis-suppressor NME1 controls the invasive switch of breast cancer by regulating MT1-MMP surface clearance. Oncogene 2021; 40:4019-4032. [PMID: 34012098 PMCID: PMC8195739 DOI: 10.1038/s41388-021-01826-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/04/2023]
Abstract
Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors, particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP, NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to invasive transition during breast cancer progression.
Collapse
|
6
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Wan G, Liu Y, Zhu J, Guo L, Li C, Yang Y, Gu X, Deng LL, Lu C. SLFN5 suppresses cancer cell migration and invasion by inhibiting MT1-MMP expression via AKT/GSK-3β/β-catenin pathway. Cell Signal 2019; 59:1-12. [PMID: 30844429 DOI: 10.1016/j.cellsig.2019.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/17/2019] [Accepted: 03/02/2019] [Indexed: 12/30/2022]
Abstract
Human SLFN5 inhibits invasions of IFNα-sensitive renal clear-cell carcinoma and melanoma cells. However, whether this inhibition is confined to these IFNα-sensitive cancers is unclear. Here we show that SLFN5 expressions on both mRNA and protein levels are significantly higher in non/low-invasive cancer cell lines (breast cancer cell line MCF7, colorectal cancer cell line HCT116 and lung cancer cell line A549) than in highly-invasive cancer cell lines (fibrosarcoma cell line HT1080 and renal clear cell cancer cell line 786-0). SLFN5 knockdown in non/low-invasive cancer cell lines enhanced MT1-MMP expression and increased migration and invasion in vitro, and in vivo. Furthermore, SLFN5 overexpression in HT1080 and 786-0 inhibited MT1-MMP expression and repressed migration and invasion. MT1-MMP is instrumental in SLFN5-controlled inhibition of cancer cell migration and invasion, as shown by MT1-MMP-knockdown and -overexpression analyses. SLFN5 knockdown activated AKT/GSK-3β/β-catenin pathway by promotion AKT phosphorylation and subsequent GSK-3β phosphorylation, further β-catenin translocation into nucleus as un-phosphorylated protein at Ser33, 37 and 45 and Thr41 sites. This is the first study to report that SLFN5 inhibits cancer migration and invasiveness in several common cancer cell lines by repressing MT1-MMP expression via the AKT/GSK-3β/β-catenin signalling pathway, suggesting that SLFN5 plays wide inhibitory roles in various cancers.
Collapse
Affiliation(s)
- Guoqing Wan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yihao Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiang Zhu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lijuan Guo
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chenhong Li
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yue Yang
- Department of Pathology, Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xuefeng Gu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Changlian Lu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
8
|
Laurent V, Toulet A, Attané C, Milhas D, Dauvillier S, Zaidi F, Clement E, Cinato M, Le Gonidec S, Guérard A, Lehuédé C, Garandeau D, Nieto L, Renaud-Gabardos E, Prats AC, Valet P, Malavaud B, Muller C. Periprostatic Adipose Tissue Favors Prostate Cancer Cell Invasion in an Obesity-Dependent Manner: Role of Oxidative Stress. Mol Cancer Res 2019; 17:821-835. [PMID: 30606769 DOI: 10.1158/1541-7786.mcr-18-0748] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022]
Abstract
Prostate gland is surrounded by periprostatic adipose tissue (PPAT), which is increasingly believed to play a paracrine role in prostate cancer progression. Our previous work demonstrates that adipocytes promote homing of prostate cancer cells to PPAT and that this effect is upregulated by obesity. Here, we show that once tumor cells have invaded PPAT (mimicked by an in vitro model of coculture), they establish a bidirectional crosstalk with adipocytes, which promotes tumor cell invasion. Indeed, tumor cells induce adipocyte lipolysis and the free fatty acids (FFA) released are taken up and stored by tumor cells. Incubation with exogenous lipids also stimulates tumor cell invasion, underlining the importance of lipid transfer in prostate cancer aggressiveness. Transferred FFAs (after coculture or exogenous lipid treatment) stimulate the expression of one isoform of the pro-oxidant enzyme NADPH oxidase, NOX5. NOX5 increases intracellular reactive oxygen species (ROS) that, in turn, activate a HIF1/MMP14 pathway, which is responsible for the increased tumor cell invasion. In obesity, tumor-surrounding adipocytes are more prone to activate the depicted signaling pathway and to induce tumor invasion. Finally, the expression of NOX5 and MMP14 is upregulated at the invasive front of human tumors where cancer cells are in close proximity to adipocytes and this process is amplified in obese patients, underlining the clinical relevance of our results. IMPLICATIONS: Our work emphasizes the key role of adjacent PPAT in prostate cancer dissemination and proposes new molecular targets for the treatment of obese patients exhibiting aggressive diseases.
Collapse
Affiliation(s)
- Victor Laurent
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aurélie Toulet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Delphine Milhas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stéphanie Dauvillier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Falek Zaidi
- Service d'Anatomo-Pathologie, Institut Universitaire du Cancer, Toulouse, France
| | - Emily Clement
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mathieu Cinato
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, Inserm UMR 1048, UPS, Toulouse, France
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, Inserm UMR 1048, UPS, Toulouse, France
| | - Adrien Guérard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Lehuédé
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - David Garandeau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Nieto
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Edith Renaud-Gabardos
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, Inserm UMR 1048, UPS, Toulouse, France
| | - Anne-Catherine Prats
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, Inserm UMR 1048, UPS, Toulouse, France
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, Inserm UMR 1048, UPS, Toulouse, France
| | - Bernard Malavaud
- Département d'Urologie, Institut Universitaire du Cancer, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
9
|
Pahwa S, Bhowmick M, Amar S, Cao J, Strongin AY, Fridman R, Weiss SJ, Fields GB. Characterization and regulation of MT1-MMP cell surface-associated activity. Chem Biol Drug Des 2018; 93:1251-1264. [PMID: 30480376 DOI: 10.1111/cbdd.13450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/18/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022]
Abstract
Quantitative assessment of MT1-MMP cell surface-associated proteolytic activity remains undefined. Presently, MT1-MMP was stably expressed and a cell-based FRET assay developed to quantify activity toward synthetic collagen-model triple-helices. To estimate the importance of cell surface localization and specific structural domains on MT1-MMP proteolysis, activity measurements were performed using a series of membrane-anchored MT1-MMP mutants and compared directly with those of soluble MT1-MMP. MT1-MMP activity (kcat /KM ) on the cell surface was 4.8-fold lower compared with soluble MT1-MMP, with the effect largely manifested in kcat . Deletion of the MT1-MMP cytoplasmic tail enhanced cell surface activity, with both kcat and KM values affected, while deletion of the hemopexin-like domain negatively impacted KM and increased kcat . Overall, cell surface localization of MT1-MMP restricts substrate binding and protein-coupled motions (based on changes in both kcat and KM ) for catalysis. Comparison of soluble and cell surface-bound MT2-MMP revealed 12.9-fold lower activity on the cell surface. The cell-based assay was utilized for small molecule and triple-helical transition state analog MMP inhibitors, which were found to function similarly in solution and at the cell surface. These studies provide the first quantitative assessments of MT1-MMP activity and inhibition in the native cellular environment of the enzyme.
Collapse
Affiliation(s)
- Sonia Pahwa
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida
| | - Manishabrata Bhowmick
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida
| | - Sabrina Amar
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida
| | - Jian Cao
- Departments of Medicine/Cancer Prevention and Pathology, Stony Brook University, Stony Brook, New York
| | - Alex Y Strongin
- Cancer Research Center, Sanford Burnham Prebys Medical Research Institute, La Jolla, California
| | - Rafael Fridman
- Department of Pathology and the Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Stephen J Weiss
- Division of Molecular Medicine & Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Gregg B Fields
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida.,The Scripps Research Institute/Scripps Florida, Jupiter, Florida
| |
Collapse
|
10
|
Marcink TC, Simoncic JA, An B, Knapinska AM, Fulcher YG, Akkaladevi N, Fields GB, Van Doren SR. MT1-MMP Binds Membranes by Opposite Tips of Its β Propeller to Position It for Pericellular Proteolysis. Structure 2018; 27:281-292.e6. [PMID: 30471921 DOI: 10.1016/j.str.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/08/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Critical to migration of tumor cells and endothelial cells is the proteolytic attack of membrane type 1 matrix metalloproteinase (MT1-MMP) upon collagen, growth factors, and receptors at cell surfaces. Lipid bilayer interactions of the substrate-binding hemopexin-like (HPX) domain of MT1-MMP were investigated by paramagnetic nuclear magnetic resonance relaxation enhancements (PREs), fluorescence, and mutagenesis. The HPX domain binds bilayers by blades II and IV on opposite sides of its β propeller fold. The EPGYPK sequence protruding from both blades inserts among phospholipid head groups in PRE-restrained molecular dynamics simulations. Bilayer binding to either blade II or IV exposes the CD44 binding site in blade I. Bilayer association with blade IV allows the collagen triple helix to bind without obstruction. Indeed, vesicles enhance proteolysis of collagen triple-helical substrates by the ectodomain of MT1-MMP. Hypothesized side-by-side MT1-MMP homodimerization would allow binding of bilayers, collagen, CD44, and head-to-tail oligomerization.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Jayce A Simoncic
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Bo An
- Departments of Biomedical Engineering and Chemistry, Tufts University, Medford, MA 02155, USA
| | - Anna M Knapinska
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA
| | - Yan G Fulcher
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Narahari Akkaladevi
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Metformin Inhibits Migration and Invasion by Suppressing ROS Production and COX2 Expression in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19113692. [PMID: 30469399 PMCID: PMC6274682 DOI: 10.3390/ijms19113692] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Several mechanisms of action have been proposed to explain the apparent antineoplastic functions of metformin, many of which are observed at high concentrations that may not be reflective of achievable tissue concentrations. We propose that metformin at low concentrations functions to inhibit ROS production and inflammatory signaling in breast cancer, thereby reducing metastasis. Methods: Using the highly invasive MDA-MB-231 breast carcinoma model, we ascertained the impact of metformin on cell viability by DNA content analysis and fluorescent dye exclusion. Migration and invasion assays were performed using a modified Boyden chamber assay and metastasis was ascertained using the chorioallantoic membrane (CAM) assay. PGE2 production was measured by Enzyme-Linked Immunosorbent Assay (ELISA). COX2 and ICAM1 levels were determined by flow cytometry immunoassay. Results: Metformin acutely decreased cell viability and caused G2 cell cycle arrest only at high concentrations (10 mM). At 100 µM, however, metformin reduced ICAM1 and COX2 expression, as well as reduced PGE2 production and endogenous mitochondrial ROS production while failing to significantly impact cell viability. Consequently, metformin inhibited migration, invasion in vitro and PGE2-dependent metastasis in CAM assays. Conclusion: At pharmacologically achievable concentrations, metformin does not drastically impact cell viability, but inhibits inflammatory signaling and metastatic progression in breast cancer cells.
Collapse
|
12
|
Ku M, Kim HJ, Yau SY, Yoon N, Kim NH, Yook JI, Suh JS, Kim DE, Yang J. Microsphere-Based Nanoindentation for the Monitoring of Cellular Cortical Stiffness Regulated by MT1-MMP. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803000. [PMID: 30350552 DOI: 10.1002/smll.201803000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/21/2018] [Indexed: 05/07/2023]
Abstract
Biophysical properties are intimately connected to metastatic functions and aggressiveness in cancers. Especially, cellular stiffness is regarded as a biomarker for the understanding of metastatic potential and drug sensitivity. Here, protease-mediated changes of cortical stiffness are identified due to the deformation of cytoskeleton alignment at a cortex. For the past few decades, membrane type 1-matrix metalloproteinase (MT1-MMP) has been well known as a kernel protease enriched in podosomes during metastasis for extracellular matrix degradation. However, the biophysical significance of MT1-MMP expressing cancer cells is still unknown. Therefore, the nanomechanics of cancer cells is analyzed by a nanoindentation using a microsphere-attached cantilever of atomic force microscopy (AFM). In conclusion, the results suggest that MT1-MMP has contributed as a key regulator in cytoskeletal deformation related with cancer metastasis. Particularly, the AFM-based nanoindentation system for the monitoring of cortical nanomechanics will be crucial to understand molecular networks in cancers.
Collapse
Affiliation(s)
- Minhee Ku
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722, Republic of Korea
| | - Hyun-Joon Kim
- Department of Precision Mechanical Engineering, Kyungpook National University, 2559, Gyeongsang-daero, Sangju, 37224, Republic of Korea
| | - Su Yee Yau
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center of Nano-Wear, Yonsei University, Seoul, 03722, Republic of Korea
| | - Nara Yoon
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute (SBSI), Seoul, 03722, Republic of Korea
| | - Dae-Eun Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center of Nano-Wear, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute (SBSI), Seoul, 03722, Republic of Korea
- Research Institute of Radiological Science, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Baker TM, Waheed S, Syed V. RNA interference screening identifies clathrin-B and cofilin-1 as mediators of MT1-MMP in endometrial cancer. Exp Cell Res 2018; 370:663-670. [PMID: 30036538 DOI: 10.1016/j.yexcr.2018.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/24/2022]
Abstract
The matrix metalloproteinases (MMPs) are implicated in tumor invasion and metastasis. Given their multiple tumor promoting roles, MMPs are promising targets for the treatment of metastatic cancer. Using a siRNA library screen of 140 membrane trafficking genes, we identified 41 genes in HEC-1B and 36 in Ishikawa cancer cells that decreased metalloproteinases activity. The 16 genes common in both cancer cell lines that decreased MMPs activity are involved in cargo sorting, vesicle formation and vesicle recycling. The top two genes clathrin-B and cofilin-1 were chosen for post hoc functional studies. Higher expression of both genes was confirmed in cancer cells and knockdown with respective siRNAs inhibited their invasive potential and matrix metalloproteinases activity. Membrane Type 1- Matrix Metalloproteinase (MT1-MMP) is a master switch proteinase and regulator of invasion and metastasis. A marked decrease in MT1-MMP expression and activity was seen in clathrin-B and cofilin-1 knockdown cancer cells which was associated with a marked decreased expression of invadopodia formation proteins. Our results suggest that the decreased expression of clathrin-B and cofilin-1 decreases the expression of MT1-MMP and results in attenuation of MT1-MMP at the cell surface, thus inhibiting tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Tabari M Baker
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sana Waheed
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Viqar Syed
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Molecular and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; John P. Murtha Cancer Center at Water Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, United States.
| |
Collapse
|
14
|
Yosef G, Arkadash V, Papo N. Targeting the MMP-14/MMP-2/integrin α vβ 3 axis with multispecific N-TIMP2-based antagonists for cancer therapy. J Biol Chem 2018; 293:13310-13326. [PMID: 29986882 DOI: 10.1074/jbc.ra118.004406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Indexed: 12/27/2022] Open
Abstract
The pathophysiological functions of the signaling molecules matrix metalloproteinase-14 (MMP-14) and integrin αvβ3 in various types of cancer are believed to derive from their collaborative activity in promoting invasion, metastasis, and angiogenesis, as shown in vitro and in vivo The two effectors act in concert in a cell-specific manner through the localization of pro-MMP-2 to the cell surface, where it is processed to intermediate and matured MMP-2. The matured MMP-2 product is localized to the cell surface via its binding to integrin αvβ3 The MMP-14/MMP-2/integrin αvβ3 axis thus constitutes an attractive putative target for therapeutic interventions, but the development of inhibitors that target this axis remains an unfulfilled task. To address the lack of such multitarget inhibitors, we have established a combinatorial approach that is based on flow cytometry screening of a yeast-displayed N-TIMP2 (N-terminal domain variant of tissue inhibitor of metalloproteinase-2) mutant library. On the basis of this screening, we generated protein monomers and a heterodimer that contain monovalent and bivalent binding epitopes to MMP-14 and integrin αvβ3 Among these proteins, the bi-specific heterodimer, which bound strongly to both MMP-14 and integrin αvβ3, exhibited superior ability to inhibit MMP-2 activation and displayed the highest inhibitory activity in cell-based models of a MMP-14-, MMP-2-, and integrin αvβ3-dependent glioblastoma and of endothelial cell invasiveness and endothelial capillary tube formation. These assays enabled us to show the superiority of the combined target effects of the inhibitors and to investigate separately the role each of the three signaling molecules in various malignant processes.
Collapse
Affiliation(s)
- Gal Yosef
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Valeria Arkadash
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
A RAB35-p85/PI3K axis controls oscillatory apical protrusions required for efficient chemotactic migration. Nat Commun 2018; 9:1475. [PMID: 29662076 PMCID: PMC5902610 DOI: 10.1038/s41467-018-03571-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/15/2018] [Indexed: 11/17/2022] Open
Abstract
How cells move chemotactically remains a major unmet challenge in cell biology. Emerging evidence indicates that for interpreting noisy, shallow gradients of soluble cues a system must behave as an excitable process. Here, through an RNAi-based, high-content screening approach, we identify RAB35 as necessary for the formation of growth factors (GFs)-induced waves of circular dorsal ruffles (CDRs), apically restricted actin-rich migratory protrusions. RAB35 is sufficient to induce recurrent and polarized CDRs that travel as propagating waves, thus behaving as an excitable system that can be biased to control cell steering. Consistently, RAB35 is essential for promoting directed chemotactic migration and chemoinvasion of various cells in response to gradients of motogenic GFs. Molecularly, RAB35 does so by directly regulating the activity of p85/PI3K polarity axis. We propose that RAB35 is a molecular determinant for the control of an excitable, oscillatory system that acts as a steering wheel for GF-mediated chemotaxis and chemoinvasion. Circular dorsal ruffles (CDRs) are apical actin enriched structures involved in the interpretation of growth factor gradients during cell migration. Here, the authors find that a RAB35/PI3K axis is necessary and sufficient for the formation and stabilization of polarized CDRs and persistent directional migration.
Collapse
|
16
|
Sakr M, Li XY, Sabeh F, Feinberg TY, Tesmer JJG, Tang Y, Weiss SJ. Tracking the Cartoon mouse phenotype: Hemopexin domain-dependent regulation of MT1-MMP pericellular collagenolytic activity. J Biol Chem 2018; 293:8113-8127. [PMID: 29643184 DOI: 10.1074/jbc.ra117.001503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Following ENU mutagenesis, a phenodeviant line was generated, termed the "Cartoon mouse," that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp-null animals as well as the functional characteristics of MT1-MMP-/- cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P-expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP-/- mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.
Collapse
Affiliation(s)
- Moustafa Sakr
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research institute (GEBRI), University of Sadat City, Sadat City, Egypt 32897
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Tamar Y Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - John J G Tesmer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry, Pharmacology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yi Tang
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry, Pharmacology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
17
|
Cortactin recruits FMNL2 to promote actin polymerization and endosome motility in invadopodia formation. Cancer Lett 2018; 419:245-256. [DOI: 10.1016/j.canlet.2018.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 01/28/2023]
|
18
|
Iizuka S, Abdullah C, Buschman MD, Diaz B, Courtneidge SA. The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma. Oncotarget 2018; 7:78473-78486. [PMID: 27802184 PMCID: PMC5346654 DOI: 10.18632/oncotarget.12954] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/22/2016] [Indexed: 01/07/2023] Open
Abstract
Metastatic cancer cells are characterized by their ability to degrade and invade through extracellular matrix. We previously showed that the Tks adaptor proteins, Tks4 and Tks5, are required for invadopodia formation and/or function in Src-transformed fibroblasts and a number of human cancer cell types. In this study, we investigated the role of Tks adaptor proteins in melanoma cell invasion and metastasis. Knockdown of either Tks4 or Tks5 in both mouse and human melanoma cell lines resulted in a decreased ability to form invadopodia and degrade extracellular matrix. In addition, Tks-knockdown melanoma cells had decreased proliferation in a 3-dimensional type l collagen matrix, but not in 2-dimensional culture conditions. We also investigated the role of Tks proteins in melanoma progression in vivo using xenografts and experimental metastasis assays. Consistent with our in vitro results, reduction of Tks proteins markedly reduced subcutaneous melanoma growth as well as metastatic growth in the lung. We explored the clinical relevance of Tks protein expression in human melanoma specimens using a tissue microarray. Compared to non-malignant nevi, both Tks proteins were highly expressed in melanoma tissues. Moreover, metastatic melanoma cases showed higher expression of Tks5 than primary melanoma cases. Taken together, these findings suggest the importance of Tks adaptor proteins in melanoma growth and metastasis in vivo, likely via functional invadopodia formation.
Collapse
Affiliation(s)
- Shinji Iizuka
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Christopher Abdullah
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Matthew D Buschman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA
| | - Begoña Diaz
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sara A Courtneidge
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
19
|
Latifi Z, Fattahi A, Ranjbaran A, Nejabati HR, Imakawa K. Potential roles of metalloproteinases of endometrium-derived exosomes in embryo-maternal crosstalk during implantation. J Cell Physiol 2017; 233:4530-4545. [PMID: 29115666 DOI: 10.1002/jcp.26259] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
During embryo implantation, crosstalk between the endometrial epithelium and the blastocyst, especially the trophoblasts, is a prerequisite for successful implantation. During this crosstalk, various molecular and functional changes occur to promote synchrony between the embryo and the endometrium as well as the uterine cavity microenvironment. In the past few years, growing evidence has shown that endometrium-derived exosomes play pivotal roles in the embryonic-maternal crosstalk during implantation, although the exact mechanism of this crosstalk has yet to be determined. The presence of metalloproteinases has been reported in endometrium-derived exosomes, implying the importance of these enzymes in exosome-based crosstalk. Thus, in this review, we describe the potential roles of the metalloproteinases of endometrium-derived exosomes in promoting embryo attachment and implantation. This study could provide a better understanding of the potential roles of exosomal metalloproteinases in embryo implantation and pave the way for developing novel exosome-based regulatory agents to support early pregnancy.
Collapse
Affiliation(s)
- Zeinab Latifi
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ranjbaran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| |
Collapse
|
20
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
21
|
Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:1940-1951. [PMID: 28456643 PMCID: PMC5605394 DOI: 10.1016/j.bbamcr.2017.04.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
Abstract
The proteolytic processing of collagen (collagenolysis) is critical in development and homeostasis, but also contributes to numerous pathologies. Mammalian interstitial collagenolytic enzymes include members of the matrix metalloproteinase (MMP) family and cathepsin K. While MMPs have long been recognized for their ability to catalyze the hydrolysis of collagen, the roles of individual MMPs in physiological and pathological collagenolysis are less defined. The use of knockout and mutant animal models, which reflect human diseases, has revealed distinct collagenolytic roles for MT1-MMP and MMP-13. A better understanding of temporal and spatial collagen processing, along with the knowledge of the specific MMP involved, will ultimately lead to more effective treatments for cancer, arthritis, cardiovascular conditions, and infectious diseases. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Sabrina Amar
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
22
|
Chen Y, Lu H, Tao D, Fan M, Zhuang Q, Xing Z, Chen Z, He X. Membrane type-2 matrix metalloproteinases improve the progression of renal cell cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10618-10626. [PMID: 31966404 PMCID: PMC6965760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/08/2017] [Indexed: 06/10/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes, which involved in the degradation of extracellular matrix (ECM) and basement membrane (BM), and associated with tumor invasion and metastasis. Membrane type-2 MMP (MT2-MMP) is a member of MT-MMPs subgroup, and is supposed to be an important step for cancer invasion and metastasis. However, the roles of MT2-MMP in human renal cell carcinoma (RCC) remain unknown. In present study, we identified the roles of MT2-MMP in renal cancer progression by MT2-MMP suppression and overexpression in ACHN cells, which expressed highest level of MT2-MMP and lowest level of MT1-MMP in three kinds of renal cancer cells (786-0, ACHN, OS-RC-2). We found that the expression of MMP-2 could be regulated by MT2-MMP suppression or overexpression in ACHN cells, and both adhesion and invasive activities of ACHN cells were suppressed with MT2-MMP siRNA transfection. In addition, we found that MT2-MMP could increase ACHN cell proliferation, and inhibit cell apoptosis. In vitro tumor growth experiment showed that MT2-MMP could increase clone formation of ACHN cells. The results indicated that MT2-MMP could promoter renal cancer cell invasion and adhesion by activating the expression of MMP2, and stimulate tumor growth of renal cancer.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University 185 Juqian Street, Changzhou 213003, People's Republic of China
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University 185 Juqian Street, Changzhou 213003, People's Republic of China
| | - Ding Tao
- Department of Urology, The Third Affiliated Hospital of Soochow University 185 Juqian Street, Changzhou 213003, People's Republic of China
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University 185 Juqian Street, Changzhou 213003, People's Republic of China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University 185 Juqian Street, Changzhou 213003, People's Republic of China
| | - Zhaoyu Xing
- Department of Urology, The Third Affiliated Hospital of Soochow University 185 Juqian Street, Changzhou 213003, People's Republic of China
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University 185 Juqian Street, Changzhou 213003, People's Republic of China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University 185 Juqian Street, Changzhou 213003, People's Republic of China
| |
Collapse
|
23
|
Peripheral membrane associations of matrix metalloproteinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1964-1973. [PMID: 28442379 DOI: 10.1016/j.bbamcr.2017.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Water soluble matrix metalloproteinases (MMPs) have been regarded as diffusing freely in the extracellular matrix. Yet multiple MMPs are also observed at cell surfaces. Their membrane-proximal activities include sheddase activities, collagenolysis, bacterial killing, and intracellular trafficking reaching as far as the nucleus. The catalytic domains of MMP-7 and MMP-12 bind bilayers peripherally, each in two different orientations, by presenting positive charges and a few hydrophobic groups to the surface. Related peripheral membrane associations are predicted for other soluble MMPs. The peripheral membrane associations may support pericellular proteolysis and endocytosis. The isolated soluble domains of MT1-MMP can also associate with membranes. NMR assays suggest transient association of the hemopexin-like domains of MT1-MMP and MMP-12 with lipid bilayers. Peripheral association of soluble MMP domains with bilayers or heparin sulfate proteoglycans probably concentrates them near the membrane. This could increase the probability of forming complexes with membrane-associated proteins, such as those targeted for proteolysis. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
|
24
|
Turunen SP, Tatti-Bugaeva O, Lehti K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1974-1988. [PMID: 28390905 DOI: 10.1016/j.bbamcr.2017.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden
| | - Olga Tatti-Bugaeva
- Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden; Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland; K. Albin Johansson Foundation, Finnish Cancer Institute, P.O. Box 63, FI-00014, Helsinki, Finland.
| |
Collapse
|
25
|
Stawowczyk M, Wellenstein MD, Lee SB, Yomtoubian S, Durrans A, Choi H, Narula N, Altorki NK, Gao D, Mittal V. Matrix Metalloproteinase 14 promotes lung cancer by cleavage of Heparin-Binding EGF-like Growth Factor. Neoplasia 2016; 19:55-64. [PMID: 28013056 PMCID: PMC5198728 DOI: 10.1016/j.neo.2016.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022]
Abstract
Molecularly targeted therapies benefit approximately 15–20% of non-small cell lung cancer (NSCLC) patients carrying specific drug-sensitive mutations. Thus, there is a clinically unmet need for the identification of novel targets for drug development. Here, we performed RNA-deep sequencing to identify altered gene expression between malignant and non-malignant lung tissue. Matrix Metalloproteinase 14 (MMP14), a membrane-bound proteinase, was significantly up-regulated in the tumor epithelial cells and intratumoral myeloid compartments in both mouse and human NSCLC. Overexpression of a soluble dominant negative MMP14 (DN-MMP14) or pharmacological inhibition of MMP14 blocked invasion of lung cancer cells through a collagen I matrix in vitro and reduced tumor incidence in an orthotopic K-RasG12D/+p53−/− mouse model of lung cancer. Additionally, MMP14 activity mediated proteolytic processing and activation of Heparin-Binding EGF-like Growth Factor (HB-EGF), stimulating the EGFR signaling pathway to increase proliferation and tumor growth. This study highlights the potential for development of therapeutic strategies that target MMP14 in NSCLC with particular focus on MMP14-HB-EGF axis.
Collapse
Affiliation(s)
- Marcin Stawowczyk
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA
| | - Max D Wellenstein
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA
| | - Sharrell B Lee
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA
| | - Shira Yomtoubian
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Department of pharmacology, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA
| | - Anna Durrans
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA
| | - Hyejin Choi
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA
| | - Navneet Narula
- Department of Pathology, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA.
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA; Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 1300 York Avenue, 525 East 68th Street, NY, New York 10065, USA.
| |
Collapse
|
26
|
Law ME, Ferreira RB, Davis BJ, Higgins PJ, Kim JS, Castellano RK, Chen S, Luesch H, Law BK. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res 2016; 18:80. [PMID: 27495374 PMCID: PMC4974783 DOI: 10.1186/s13058-016-0741-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Background While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Methods Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. Results This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Conclusions Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0741-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary E Law
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Paul J Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, 12208, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | | | - Sixue Chen
- Department of Biology, Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, FL, 32611, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA. .,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA. .,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
27
|
Cerofolini L, Amar S, Lauer JL, Martelli T, Fragai M, Luchinat C, Fields GB. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity. Sci Rep 2016; 6:29511. [PMID: 27405411 PMCID: PMC4942797 DOI: 10.1038/srep29511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis.
Collapse
Affiliation(s)
- Linda Cerofolini
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Sabrina Amar
- Department of Chemistry &Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Janelle L Lauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Tommaso Martelli
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Gregg B Fields
- Department of Chemistry &Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA.,Department of Chemistry, The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.,Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 33458, Port St. Lucie, FL 34987, USA
| |
Collapse
|
28
|
Wu Q, Nadesalingam J, Moodley S, Bai X, Liu M. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells. Oncotarget 2016; 6:18050-65. [PMID: 25980441 PMCID: PMC4627235 DOI: 10.18632/oncotarget.3777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/09/2015] [Indexed: 01/02/2023] Open
Abstract
Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.
Collapse
Affiliation(s)
- Qifei Wu
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jeya Nadesalingam
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Lagoutte E, Villeneuve C, Lafanechère L, Wells CM, Jones GE, Chavrier P, Rossé C. LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP. Sci Rep 2016; 6:24925. [PMID: 27116935 PMCID: PMC4847008 DOI: 10.1038/srep24925] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/06/2016] [Indexed: 12/24/2022] Open
Abstract
During their metastatic spread, cancer cells need to remodel the extracellular matrix in order to migrate through stromal compartments adjacent to the primary tumor. Dissemination of breast carcinoma cells is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14), the main invadopodial matrix degradative component. Here, we identify MT1-MMP as a novel interacting partner of dual-specificity LIM Kinase-1 and -2 (LIMK1/2), and provide several evidence for phosphorylation of tyrosine Y573 in the cytoplasmic domain of MT1-MMP by LIMK. Phosphorylation of Y573 influences association of F-actin binding protein cortactin to MT1-MMP-positive endosomes and invadopodia formation and matrix degradation. Moreover, we show that LIMK1 regulates cortactin association to MT1-MMP-positive endosomes, while LIMK2 controls invadopodia-associated cortactin. In turn, LIMK1 and LIMK2 are required for MT1-MMP-dependent matrix degradation and cell invasion in a three-dimensional type I collagen environment. This novel link between LIMK1/2 and MT1-MMP may have important consequences for therapeutic control of breast cancer cell invasion.
Collapse
Affiliation(s)
- Emilie Lagoutte
- Institut Curie, PSL Research University, CNRS UMR 144, Membrane and Cytoskeleton Dynamics, 75248 cedex 05, Paris, France
| | - Clémentine Villeneuve
- Institut Curie, PSL Research University, CNRS UMR 144, Membrane and Cytoskeleton Dynamics, 75248 cedex 05, Paris, France
| | - Laurence Lafanechère
- Univ. Grenoble Alpes, INSERM U823, Institut Albert Bonniot, CRI, Team 3 "Polarity, Development and Cancer", F-38000 Grenoble France
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London, United Kingdom
| | - Gareth E Jones
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Philippe Chavrier
- Institut Curie, PSL Research University, CNRS UMR 144, Membrane and Cytoskeleton Dynamics, 75248 cedex 05, Paris, France
| | - Carine Rossé
- Institut Curie, PSL Research University, CNRS UMR 144, Membrane and Cytoskeleton Dynamics, 75248 cedex 05, Paris, France
| |
Collapse
|
30
|
Dave JM, Abbey CA, Duran CL, Seo H, Johnson GA, Bayless KJ. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci 2016; 129:743-56. [PMID: 26769900 DOI: 10.1242/jcs.170571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022] Open
Abstract
During angiogenesis, endothelial cells must coordinate matrix proteolysis with migration. Here, we tested whether the focal adhesion scaffold protein Hic-5 (also known as TGFB1I1) regulated endothelial sprouting in three dimensions. Hic-5 silencing reduced endothelial sprouting and lumen formation, and sprouting defects were rescued by the return of Hic-5 expression. Pro-angiogenic factors enhanced colocalization and complex formation between membrane type-1 matrix metalloproteinase (MT1-MMP, also known as MMP14) and Hic-5, but not between paxillin and MT1-MMP. The LIM2 and LIM3 domains of Hic-5 were necessary and sufficient for Hic-5 to form a complex with MT1-MMP. The degree of interaction between MT1-MMP and Hic-5 and the localization of the complex within detergent-resistant membrane fractions were enhanced during endothelial sprouting, and Hic-5 depletion lowered the surface levels of MT1-MMP. In addition, we observed that loss of Hic-5 partially reduced complex formation between MT1-MMP and focal adhesion kinase (FAK, also known as PTK2), suggesting that Hic-5 bridges MT1-MMP and FAK. Finally, Hic-5 LIM2-LIM3 deletion mutants reduced sprout initiation. Hic-5, MT1-MMP and FAK colocalized in angiogenic vessels during porcine pregnancy, supporting that this complex assembles during angiogenesis in vivo. Collectively, Hic-5 appears to enhance complex formation between MT1-MMP and FAK in activated endothelial cells, which likely coordinates matrix proteolysis and cell motility.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Heewon Seo
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
31
|
Kuhl S, Voss E, Scherer A, Lusche DF, Wessels D, Soll DR. 4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs. Methods Mol Biol 2016; 1407:229-50. [PMID: 27271907 DOI: 10.1007/978-1-4939-3480-5_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis.
Collapse
Affiliation(s)
- Spencer Kuhl
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Edward Voss
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Amanda Scherer
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Deborah Wessels
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - David R Soll
- Department of Biology, The University of Iowa, 302 Biology Building East, 210 Iowa Avenue, Iowa City, IA, 52242, USA.
| |
Collapse
|
32
|
Zhao Y, Marcink TC, Sanganna Gari RR, Marsh BP, King GM, Stawikowska R, Fields GB, Van Doren SR. Transient collagen triple helix binding to a key metalloproteinase in invasion and development. Structure 2015; 23:257-69. [PMID: 25651059 DOI: 10.1016/j.str.2014.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022]
Abstract
Skeletal development and invasion by tumor cells depends on proteolysis of collagen by the pericellular metalloproteinase MT1-MMP. Its hemopexin-like (HPX) domain binds to collagen substrates to facilitate their digestion. Spin labeling and paramagnetic nuclear magnetic resonance (NMR) detection have revealed how the HPX domain docks to collagen I-derived triple helix. Mutations impairing triple-helical peptidase activity corroborate the interface. Saturation transfer difference NMR suggests rotational averaging around the longitudinal axis of the triple-helical peptide. Part of the interface emerges as unique and potentially targetable for selective inhibition. The triple helix crosses the junction of blades I and II at a 45° angle to the symmetry axis of the HPX domain, placing the scissile Gly∼Ile bond near the HPX domain and shifted ∼25 Å from MMP-1 complexes. This raises the question of the MT1-MMP catalytic domain folding over the triple helix during catalysis, a possibility accommodated by the flexibility between domains suggested by atomic force microscopy images.
Collapse
Affiliation(s)
- Yingchu Zhao
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Thomas C Marcink
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | | | - Brendan P Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Gavin M King
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA; Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Roma Stawikowska
- Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Gregg B Fields
- Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| |
Collapse
|
33
|
Terawaki S, Kitano K, Aoyama M, Mori T, Hakoshima T. MT1‐MMP recognition by ERM proteins and its implication in CD44 shedding. Genes Cells 2015; 20:847-59. [DOI: 10.1111/gtc.12276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/05/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Shin‐ichi Terawaki
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Ken Kitano
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Miki Aoyama
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Tomoyuki Mori
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| |
Collapse
|
34
|
Chung EY, Ochs CJ, Wang Y, Lei L, Qin Q, Smith AM, Strongin AY, Kamm R, Qi YX, Lu S, Wang Y. Activatable and Cell-Penetrable Multiplex FRET Nanosensor for Profiling MT1-MMP Activity in Single Cancer Cells. NANO LETTERS 2015; 15:5025-5032. [PMID: 26203778 PMCID: PMC4675668 DOI: 10.1021/acs.nanolett.5b01047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We developed a quantum-dot-based fluorescence resonance energy transfer (QD-FRET) nanosensor to visualize the activity of matrix metalloproteinase (MT1-MMP) at cell membrane. A bended peptide with multiple motifs was engineered to position the FRET pair at a close proximity to allow energy transfer, which can be cleaved by active MT1-MMP to result in FRET changes and the exposure of cell penetrating sequence. Via FRET and penetrated QD signals, the nanosensor can profile cancer cells.
Collapse
Affiliation(s)
- Eddie Y. Chung
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Christopher J. Ochs
- Singapore-MIT Alliance for Research and Technology, BioSystems and Micromechanics, Singapore 138602
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Lei Lei
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Qin Qin
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
| | - Andrew M. Smith
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Alex Y. Strongin
- Sanford Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Roger Kamm
- Singapore-MIT Alliance for Research and Technology, BioSystems and Micromechanics, Singapore 138602
| | - Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoying Lu
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California—San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
35
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
36
|
Kim SY, Choi EJ, Yun JA, Jung ES, Oh ST, Kim JG, Kang WK, Lee SH. Syndecan-1 expression is associated with tumor size and EGFR expression in colorectal carcinoma: a clinicopathological study of 230 cases. Int J Med Sci 2015; 12:92-9. [PMID: 25589885 PMCID: PMC4293174 DOI: 10.7150/ijms.10497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/07/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Syndecan-1 (SDC1) is reported to modulate several key processes of tumorigenesis and has variable expression in many cancers. To date, the cause of altered expression has not been elucidated. In this study, we compared SDC1 expression with various clinicopathological parameters and molecular markers to evaluate its clinical significance in colorectal carcinoma. METHODS We screened for SDC1 expression using immunohistochemistry in 230 surgical specimens of primary colorectal carcinoma from patients consecutively treated between 2008 and 2011 at Seoul St. Mary's Hospital, The Catholic University of Korea. The relationship between SDC1 expression and various clinicopathological parameters and molecular markers was analyzed. RESULTS The tumors were principally located in the left colon (71.3%) and rectum (33.5%). There were 216 (93.9%) adenocarcinomas, 10 (4.3%) mucinous adenocarcinomas, and 4 other tumors. Most of the carcinomas were pT3 (68.3%) and pT4 (22.2%). There was regional lymph node metastasis in 140 patients. SDC1 expression was identified in the cancer cells of 212 (96.8%) colon cancer cases. Of the SDC1-positive cases, 131 showed predominantly membranous immunopositivity, and 81 showed a predominantly cytoplasmic staining pattern. Mixed membranous and cytoplasmic staining was observed in 154 cases. In 93 cases, stromal SDC1 reactivity was noted. Epithelial SDC1 immunopositivity was significantly associated with tumor size (p=0.016) and epidermal growth factor receptor expression (p=0.006). However, it was not significantly correlated with lymph node metastasis, distant metastasis, lymphatic or vascular invasion, or KRAS mutation. In addition, stromal SDC1 immunopositivity was significantly associated with the male sex (p=0.018). CONCLUSIONS The expression profile of SDC1 may be of clinical value in colorectal cancer and may help in identifying aggressive forms of colorectal carcinoma. Further studies are needed in order to better understand the role of SDC1 in the progression and invasiveness of colorectal carcinoma.
Collapse
Affiliation(s)
- Su Young Kim
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Eun Ji Choi
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Jeong A Yun
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Eun Sun Jung
- 2. Department of Hospital Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Seung Taek Oh
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Jun Gi Kim
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Won Kyung Kang
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Sung Hak Lee
- 2. Department of Hospital Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| |
Collapse
|
37
|
Frittoli E, Palamidessi A, Marighetti P, Confalonieri S, Bianchi F, Malinverno C, Mazzarol G, Viale G, Martin-Padura I, Garré M, Parazzoli D, Mattei V, Cortellino S, Bertalot G, Di Fiore PP, Scita G. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. ACTA ACUST UNITED AC 2014; 206:307-28. [PMID: 25049275 PMCID: PMC4107781 DOI: 10.1083/jcb.201403127] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5-dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and β3 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program.
Collapse
Affiliation(s)
- Emanuela Frittoli
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Andrea Palamidessi
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Paola Marighetti
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Stefano Confalonieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Fabrizio Bianchi
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Chiara Malinverno
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Giovanni Mazzarol
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Giuseppe Viale
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Ines Martin-Padura
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | | | - Dario Parazzoli
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Valentina Mattei
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | | | - Giovanni Bertalot
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia, 20141 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
38
|
Macpherson IR, Rainero E, Mitchell LE, van den Berghe PVE, Speirs C, Dozynkiewicz MA, Chaudhary S, Kalna G, Edwards J, Timpson P, Norman JC. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer. J Cell Sci 2014; 127:3893-901. [PMID: 25015290 DOI: 10.1242/jcs.135947] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chloride intracellular channel 3 (CLIC3) drives invasiveness of pancreatic and ovarian cancer by acting in concert with Rab25 to regulate the recycling of α5β1 integrin from late endosomes to the plasma membrane. Here, we show that in two estrogen receptor (ER)-negative breast cancer cell lines, CLIC3 has little influence on integrin recycling, but controls trafficking of the pro-invasive matrix metalloproteinase MT1-MMP (also known as MMP14). In MDA-MB-231 cells, MT1-MMP and CLIC3 are localized primarily to late endosomal/lysosomal compartments located above the plane of adhesion and near the nucleus. MT1-MMP is transferred from these late endosomes to sites of cell-matrix adhesion in a CLIC3-dependent fashion. Correspondingly, CLIC3-knockdown opposes MT1-MMP-dependent invasive processes. These include the disruption of the basement membrane as acini formed from MCF10DCIS.com cells acquire invasive characteristics in 3D culture, and the invasion of MDA-MB-231 cells into Matrigel or organotypic plugs of type I collagen. Consistent with this, expression of CLIC3 predicts poor prognosis in ER-negative breast cancer. The identification of MT1-MMP as a cargo of a CLIC3-regulated pathway that drives invasion highlights the importance of late endosomal sorting and trafficking in breast cancer.
Collapse
Affiliation(s)
- Iain R Macpherson
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Elena Rainero
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Louise E Mitchell
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | | | - Claire Speirs
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | | | - Suman Chaudhary
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Gabriela Kalna
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| |
Collapse
|
39
|
von Nandelstadh P, Gucciardo E, Lohi J, Li R, Sugiyama N, Carpen O, Lehti K. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton. Mol Biol Cell 2014; 25:2556-70. [PMID: 24989798 PMCID: PMC4148246 DOI: 10.1091/mbc.e13-11-0667] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP-negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain-containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion.
Collapse
Affiliation(s)
- Pernilla von Nandelstadh
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland Department of Pathology, HUSLAB, Helsinki University Central Hospital, FIN-00290, Helsinki, Finland
| | - Rui Li
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Olli Carpen
- Department of Pathology, University of Turku and Turku University Central Hospital, FIN-20520, Turku, Finland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076602. [PMID: 25006689 DOI: 10.1088/0034-4885/77/7/076602] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
41
|
Gong Y, Chippada-Venkata UD, Oh WK. Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel) 2014; 6:1298-327. [PMID: 24978435 PMCID: PMC4190542 DOI: 10.3390/cancers6031298] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/31/2014] [Accepted: 06/09/2014] [Indexed: 01/16/2023] Open
Abstract
Matrix metalloproteinases (MMPs), a group of zinc-dependent endopeptidases involved in the degradation of the extracellular matrix, play an important role in tissue remodeling associated with various physiological processes such as morphogenesis, angiogenesis, and tissue repair, as well as pathological processes including cirrhosis, arthritis and cancer. The MMPs are well established as mediators of tumor invasion and metastasis by breaking down connective tissue barriers. Although there has been a vast amount of literature on the role of MMPs in invasion, metastasis and angiogenesis of various cancers, the role of these endopeptidases in prostate cancer progression has not been systematically reviewed. This overview summarizes findings on the tissue and blood expression of MMPs, their function, regulation and prognostic implication in human prostate cancer, with a focus on MMP-2, -7, -9, MT1-MMP and tissue inhibitor of metalloproteinase 1 (TIMP-1). This review also summarizes the efficacy and failure of early-generation matrix metalloproteinase inhibitors (MMPIs) in the treatment of metastatic prostate cancer and highlights the lessons and challenges for next generation MMPIs.
Collapse
Affiliation(s)
- Yixuan Gong
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Uma D Chippada-Venkata
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
42
|
Tu TY, Wang Z, Bai J, Sun W, Peng WK, Huang RYJ, Thiery JP, Kamm RD. Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening. Adv Healthc Mater 2014; 3:609-16. [PMID: 23983140 PMCID: PMC4038742 DOI: 10.1002/adhm.201300151] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/04/2013] [Indexed: 01/27/2023]
Abstract
Microwell technology has revolutionized many aspects of in vitro cellular studies from 2D traditional cultures to 3D in vivo-like functional assays. However, existing lithography-based approaches are often costly and time-consuming. This study presents a rapid, low-cost prototyping method of CO2 laser ablation of a conventional untreated culture dish to create concave microwells used for generating multicellular aggregates, which can be readily available for general laboratories. Polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polystyrene (PS) microwells are investigated, and each produces distinctive microwell features. Among these three materials, PS cell culture dishes produce the optimal surface smoothness and roundness. A549 lung cancer cells are grown to form cancer aggregates of controllable size from ≈40 to ≈80 μm in PS microwells. Functional assays of spheroids are performed to study migration on 2D substrates and in 3D hydrogel conditions as a step towards recapitulating the dissemination of cancer cells. Preclinical anti-cancer drug screening is investigated and reveals considerable differences between 2D and 3D conditions, indicating the importance of assay type as well as the utility of the present approach.
Collapse
Affiliation(s)
- Ting-Yuan Tu
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Zhe Wang
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Jing Bai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Wei Sun
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Weng Kung Peng
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore MD6, Medical Drive, Singapore 117456, Singapore
| | - Jean-Paul Thiery
- Institute of Molecular Cell Biology (IMCB), A-STAR Departement of Biochemistry School of Medicine, National University of Singapore Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Roger D. Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| |
Collapse
|
43
|
Pahwa S, Stawikowski MJ, Fields GB. Monitoring and Inhibiting MT1-MMP during Cancer Initiation and Progression. Cancers (Basel) 2014; 6:416-35. [PMID: 24549119 PMCID: PMC3980612 DOI: 10.3390/cancers6010416] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/14/2022] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion. Numerous substrates and binding partners have been identified for MT1-MMP, and its role in collagenolysis appears crucial for tumor invasion. However, development of MT1-MMP inhibitors must consider the substantial functions of MT1-MMP in normal physiology and disease prevention. The present review examines the plethora of MT1-MMP activities, how these activities relate to cancer initiation and progression, and how they can be monitored in real time. Examination of MT1-MMP activities and cell surface behaviors can set the stage for the development of unique, selective MT1-MMP inhibitors.
Collapse
Affiliation(s)
- Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | - Maciej J Stawikowski
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| | - Gregg B Fields
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|
44
|
McLaughlin SL, Ice RJ, Rajulapati A, Kozyulina PY, Livengood RH, Kozyreva VK, Loskutov YV, Culp MV, Weed SA, Ivanov AV, Pugacheva EN. NEDD9 depletion leads to MMP14 inactivation by TIMP2 and prevents invasion and metastasis. Mol Cancer Res 2013; 12:69-81. [PMID: 24202705 DOI: 10.1158/1541-7786.mcr-13-0300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The scaffolding protein NEDD9 is an established prometastatic marker in several cancers. Nevertheless, the molecular mechanisms of NEDD9-driven metastasis in cancers remain ill-defined. Here, using a comprehensive breast cancer tissue microarray, it was shown that increased levels of NEDD9 protein significantly correlated with the transition from carcinoma in situ to invasive carcinoma. Similarly, it was shown that NEDD9 overexpression is a hallmark of highly invasive breast cancer cells. Moreover, NEDD9 expression is crucial for the protease-dependent mesenchymal invasion of cancer cells at the primary site but not at the metastatic site. Depletion of NEDD9 is sufficient to suppress invasion of tumor cells in vitro and in vivo, leading to decreased circulating tumor cells and lung metastases in xenograft models. Mechanistically, NEDD9 localized to invasive pseudopods and was required for local matrix degradation. Depletion of NEDD9 impaired invasion of cancer cells through inactivation of membrane-bound matrix metalloproteinase MMP14 by excess TIMP2 on the cell surface. Inactivation of MMP14 is accompanied by reduced collagenolytic activity of soluble metalloproteinases MMP2 and MMP9. Reexpression of NEDD9 is sufficient to restore the activity of MMP14 and the invasive properties of breast cancer cells in vitro and in vivo. Collectively, these findings uncover critical steps in NEDD9-dependent invasion of breast cancer cells. IMPLICATIONS This study provides a mechanistic basis for potential therapeutic interventions to prevent metastasis.
Collapse
Affiliation(s)
- Sarah L McLaughlin
- Department of Biochemistry and Mary Babb Randolph Cancer Center, PO Box 9142, 1 Medical Center Drive, West Virginia University School of Medicine, Morgantown, WV 26506.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer 2013; 110:189-98. [PMID: 24196787 PMCID: PMC3887287 DOI: 10.1038/bjc.2013.676] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
Background: FSCN1 and matrix metalloproteinase 14 (MMP14) are both invadopodia-related proteins. We herein elucidate the tumourigenicity of these proteins and identify novel therapeutic agents in esophageal squamous cell carcinoma (ESCC). Methods: FSCN1 and MMP14 were evaluated by immunohistochemistry and quantitative PCR, and microRNA (miR)-133a was also evaluated by PCR in surgical ESCC specimens. The roles of FSCN1, MMP14 and miR-133a were established in ESCC cells. Results: The expression of FSCN1 or MMP14 was an independent poor prognostic factor according to a multivariate analysis of immunohistochemistry, and their co-expression correlated with the poorest overall survival (OS) out of all the examined factors. Additionally, their mRNAs significantly correlated and both inversely correlated with miR-133a in surgical specimens. Transfection of a miR-133a mimic decreased the mRNA and protein levels of both FSCN1 and MMP14 in ESCC cells. The knockdown of FSCN1 or MMP14 and transfection of a miR-133a mimic inhibited the proliferation and invasion of ESCC cells. Patients with a lower miR-133a expression have a significantly poorer OS than those with a higher expression. Conclusion: The combined expression of FSCN1 and MMP14 is associated with a poor prognosis, and miR-133a, which regulates their mRNAs, can serve as a strong tumour suppressor of ESCC.
Collapse
|
46
|
Woskowicz AM, Weaver SA, Shitomi Y, Ito N, Itoh Y. MT-LOOP-dependent localization of membrane type I matrix metalloproteinase (MT1-MMP) to the cell adhesion complexes promotes cancer cell invasion. J Biol Chem 2013; 288:35126-37. [PMID: 24165131 DOI: 10.1074/jbc.m113.496067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Localization of membrane type I matrix metalloproteinase (MT1-MMP) to the leading edge is thought to be a crucial step during cancer cell invasion. However, its mechanisms and functional impact on cellular invasion have not been clearly defined. In this report, we have identified the MT-LOOP, a loop region in the catalytic domain of MT1-MMP ((163)PYAYIREG(170)), as an essential region for MT1-MMP to promote cellular invasion. Deletion of the MT-LOOP effectively inhibited functions of MT1-MMP on the cell surface, including proMMP-2 activation, degradation of gelatin and collagen films, and cellular invasion into a collagen matrix. This is not due to loss of the catalytic function of MT1-MMP but due to inefficient localization of the enzyme to β1-integrin-rich cell adhesion complexes at the plasma membrane. We also found that an antibody that specifically recognizes the MT-LOOP region of MT1-MMP (LOOPAb) inhibited MT1-MMP functions, fully mimicking the phenotype of the MT-LOOP deletion mutant. We therefore propose that the MT-LOOP region is an interface for molecular interactions that mediate enzyme localization to cell adhesion complexes and regulate MT1-MMP functions. Our findings have revealed a novel mechanism regulating MT1-MMP during cellular invasion and have identified the MT-LOOP as a potential exosite target region to develop selective MT1-MMP inhibitors.
Collapse
Affiliation(s)
- Anna M Woskowicz
- From the Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Strong AL, Semon JA, Strong TA, Santoke TT, Zhang S, McFerrin HE, Gimble JM, Bunnell BA. Obesity-associated dysregulation of calpastatin and MMP-15 in adipose-derived stromal cells results in their enhanced invasion. Stem Cells 2013; 30:2774-83. [PMID: 22969001 DOI: 10.1002/stem.1229] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/21/2012] [Indexed: 01/29/2023]
Abstract
Adipose tissue maintains a subpopulation of cells, referred to as adipose-derived stromal/stem cells (ASCs), which have been associated with increased breast cancer tumorigenesis and metastasis. For ASCs to affect breast cancer cells, it is necessary to delineate how they mobilize and home to cancer cells, which requires mobilization and invasion through extracellular matrix barriers. In this study, ASCs were separated into four different categories based on the donor's obesity status and depot site of origin. ASCs isolated from the subcutaneous abdominal adipose tissue of obese patients (Ob(+)Ab(+)) demonstrated increased invasion through Matrigel as well as a chick chorioallantoic membrane, a type I collagen-rich extracellular matrix barrier. Detailed mRNA and protein analyses revealed that calpain-4, calpastatin, and MMP-15 were associated with increased invasion, and the silencing of each protease or protease inhibitor confirmed their role in ASC invasion. Thus, the data indicate that both the donor's obesity status and depot site of origin distinguishes the properties of subcutaneous-derived ASCs with respect to enhanced invasion and this is associated with the dysregulation of calpain-4, calpastatin, and MMP-15.
Collapse
Affiliation(s)
- Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sugiyama N, Gucciardo E, Tatti O, Varjosalo M, Hyytiäinen M, Gstaiger M, Lehti K. EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. ACTA ACUST UNITED AC 2013; 201:467-84. [PMID: 23629968 PMCID: PMC3639392 DOI: 10.1083/jcb.201205176] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Metalloproteinase-mediated cleavage of EphA2 induces breast tumor cells to shift from collective invasion to single-cell invasion. Changes in EphA2 signaling can affect cancer cell–cell communication and motility through effects on actomyosin contractility. However, the underlying cell–surface interactions and molecular mechanisms of how EphA2 mediates these effects have remained unclear. We demonstrate here that EphA2 and membrane-anchored membrane type-1 matrix metalloproteinase (MT1-MMP) were selectively up-regulated and coexpressed in invasive breast carcinoma cells, where, upon physical interaction in same cell–surface complexes, MT1-MMP cleaved EphA2 at its Fibronectin type-III domain 1. This cleavage, coupled with EphA2-dependent Src activation, triggered intracellular EphA2 translocation, as well as an increase in RhoA activity and cell junction disassembly, which suggests an overall repulsive effect between cells. Consistent with this, cleavage-prone EphA2-D359I mutant shifted breast carcinoma cell invasion from collective to rounded single-cell invasion within collagen and in vivo. Up-regulated MT1-MMP also codistributed with intracellular EphA2 in invasive cells within human breast carcinomas. These results reveal a new proteolytic regulatory mechanism of cell–cell signaling in cancer invasion.
Collapse
Affiliation(s)
- Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Haartman Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
49
|
Han KY, Fahd DC, Tshionyi M, Allemann N, Jain S, Chang JH, Azar DT. MT1-MMP modulates bFGF-induced VEGF-A expression in corneal fibroblasts. Protein Pept Lett 2013; 19:1334-9. [PMID: 22670674 DOI: 10.2174/092986612803521639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/22/2022]
Abstract
The cornea is physiologically avascular. Following a corneal injury, wound healing often proceeds without neovascularization (NV); however, corneal NV may be induced during wound healing in certain inflammatory, infectious, degenerative, and traumatic states. Such states disrupt the physiologic balance between pro-angiogenic and antiangiogenic mediators, favoring angiogenesis. Contributors to such states are matrix metalloproteinases (MMPs), which are key factors in both extracellular matrix remodeling and angiogenesis. Similarly, vascular endothelial growth factor A (VEGF-A) and basic fibroblast growth factor (bFGF) exert pro-angiogenic effects. Here, we elaborate on the facilitative role of MMPs-specifically Membrane Type 1 MMP (MT1-MMP, MMP14)-in corneal NV. Additionally, we provide new insight into the signaling relating to MT1-MMP, Ras, and ERK in the bFGF-induced VEGF-A expression pathways within the corneal fibroblasts.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Barcelona PF, Jaldín-Fincati JR, Sánchez MC, Chiabrando GA. Activated α2-macroglobulin induces Müller glial cell migration by regulating MT1-MMP activity through LRP1. FASEB J 2013; 27:3181-97. [PMID: 23640058 DOI: 10.1096/fj.12-221598] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In retinal proliferative diseases, Müller glial cells (MGCs) acquire migratory abilities. However, the mechanisms that regulate this migration remain poorly understood. In addition, proliferative disorders associated with enhanced activities of matrix metalloprotease 2 (MMP-2) and MMP-9 also present increased levels of the protease inhibitor α2-macroglobulin (α2M) and its receptor, the low-density lipoprotein receptor-related protein 1 (LRP1). In the present work, we investigated whether the protease activated form of α2M, α2M*, and LRP1 are involved with the MGC migratory process. By performing wound-scratch migration and zymography assays, we demonstrated that α2M* induced cell migration and proMMP-2 activation in the human Müller glial cell line, MIO-M1. This induction was blocked when LRP1 and MT1-MMP were knocked down with siRNA techniques. Using fluorescence microscopy and biochemical procedures, we found that α2M* induced an increase in LRP1 and MT1-MMP accumulation in early endosomes, followed by endocytic recycling and intracellular distribution of MT1-MMP toward cellular protrusions. Moreover, Rab11-dominant negative mutant abrogated MT1-MMP recycling pathway, cell migration, and proMMP-2 activation induced by α2M*. In conclusion, α2M*, through its receptor LRP1, induces cellular migration of Müller glial cells by a mechanism that involves MT1-MMP intracellular traffic to the plasma membrane by a Rab11-dependent recycling pathway.
Collapse
Affiliation(s)
- Pablo F Barcelona
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Cientificas y Tecnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, (5000) Córdoba, Argentina
| | | | | | | |
Collapse
|