1
|
Kimmich MJ, Geary MA, Mi-Mi L, Votra SD, Pellenz CD, Sundaramurthy S, Pruyne D. The sole essential low molecular weight tropomyosin isoform of Caenorhabditis elegans is essential for pharyngeal muscle function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628433. [PMID: 39764053 PMCID: PMC11702560 DOI: 10.1101/2024.12.13.628433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U). We demonstrate here C. elegans can survive with a single low molecular weight isoform, LEV-11E. Mutants disrupted for LEV-11E die as young larvae, whereas mutants disrupted for all other short isoforms are viable with no overt phenotype. Vertebrate low molecular weight tropomyosins are often considered "nonmuscle" isoforms, but we find LEV-11E localizes to sarcomeric thin filaments in pharyngeal muscle, and co-precipitates from worm extracts with the formin FHOD-1, which is also associated with thin filaments in pharyngeal muscle. Pharyngeal sarcomere organization is grossly normal in larvae lacking LEV-11E, indicating the tropomyosin is not required to stabilize thin filaments, but pharyngeal pumping is absent, suggesting LEV-11E regulates actomyosin activity similar to higher molecular weight sarcomeric tropomyosin isoforms.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - SarahBeth D Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| |
Collapse
|
2
|
Lambert MR, Gussoni E. Tropomyosin 3 (TPM3) function in skeletal muscle and in myopathy. Skelet Muscle 2023; 13:18. [PMID: 37936227 PMCID: PMC10629095 DOI: 10.1186/s13395-023-00327-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.
Collapse
Affiliation(s)
- Matthias R Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
4
|
Carman PJ, Barrie KR, Dominguez R. Novel human cell expression method reveals the role and prevalence of posttranslational modification in nonmuscle tropomyosins. J Biol Chem 2021; 297:101154. [PMID: 34478714 PMCID: PMC8463859 DOI: 10.1016/j.jbc.2021.101154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Biochemical studies require large quantities of proteins, which are typically obtained using bacterial overexpression. However, the folding machinery in bacteria is inadequate for expressing many mammalian proteins, which additionally undergo posttranslational modifications (PTMs) that bacteria, yeast, or insect cells cannot perform. Many proteins also require native N- and C-termini and cannot tolerate extra tag amino acids for proper function. Tropomyosin (Tpm), a coiled coil protein that decorates most actin filaments in cells, requires both native N- and C-termini and PTMs, specifically N-terminal acetylation (Nt-acetylation), to polymerize along actin filaments. Here, we describe a new method that combines native protein expression in human cells with an intein-based purification tag that can be precisely removed after purification. Using this method, we expressed several nonmuscle Tpm isoforms (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2) and the muscle isoform Tpm1.1. Proteomics analysis revealed that human-cell-expressed Tpms present various PTMs, including Nt-acetylation, Ser/Thr phosphorylation, Tyr phosphorylation, and Lys acetylation. Depending on the Tpm isoform (humans express up to 40 Tpm isoforms), Nt-acetylation occurs on either the initiator methionine or on the second residue after removal of the initiator methionine. Human-cell-expressed Tpms bind F-actin differently than their Escherichia coli-expressed counterparts, with or without N-terminal extensions intended to mimic Nt-acetylation, and they can form heterodimers in cells and in vitro. The expression method described here reveals previously unknown features of nonmuscle Tpms and can be used in future structural and biochemical studies with Tpms and other proteins, as shown here for α-synuclein.
Collapse
Affiliation(s)
- Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle R Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
6
|
An expanded proteome of cardiac t-tubules. Cardiovasc Pathol 2019; 42:15-20. [PMID: 31202980 DOI: 10.1016/j.carpath.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Transverse tubules (t-tubules) are important structural elements, derived from sarcolemma, found on all striated myocytes. These specialized organelles create a scaffold for many proteins crucial to the effective propagation of signal in cardiac excitation-contraction coupling. The full protein composition of this region is unknown. METHODS We characterized the t-tubule subproteome using 52,033 immunohistochemical images covering 13,203 proteins from the Human Protein Atlas (HPA) cardiac tissue microarrays. We used HPASubC, a suite of Python tools, to rapidly review and classify each image for a specific t-tubule staining pattern. The tools Gene Cards, String 11, and Gene Ontology Consortium as well as literature searches were used to understand pathways and relationships between the proteins. RESULTS There were 96 likely t-tubule proteins identified by HPASubC. Of these, 12 were matrisome proteins and 3 were mitochondrial proteins. A separate literature search identified 50 known t-tubule proteins. A comparison of the 2 lists revealed only 17 proteins in common, including 8 of the matrisome proteins. String11 revealed that 94 of 127 combined t-tubule proteins generated a single interconnected network. CONCLUSION Using HPASubC and the HPA, we identified 78 novel, putative t-tubule proteins and validated 17 within the literature. This expands and improves our knowledge of this important subcellular structure of the cardiac myocyte. This information can be used to identify new structural targets involved in excitation-contraction coupling that may be altered in disease.
Collapse
|
7
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
8
|
Mitchell CB, Stehn JR, O'Neill GM. Small molecule targeting of the actin associating protein tropomyosin Tpm3.1 increases neuroblastoma cell response to inhibition of Rac‐mediated multicellular invasion. Cytoskeleton (Hoboken) 2018; 75:307-317. [DOI: 10.1002/cm.21452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Camilla B. Mitchell
- Children's Cancer Research UnitKids Research Institute, The Children's Hospital at WestmeadWestmead New South Wales Australia
| | - Justine R. Stehn
- Novogen Pty LtdHornsby NSW Australia
- School of Medical SciencesUniversity of New South Wales AustraliaSydney NSW Australia
| | - Geraldine M. O'Neill
- Children's Cancer Research UnitKids Research Institute, The Children's Hospital at WestmeadWestmead New South Wales Australia
- Discipline of Paediatrics and Child HealthThe University of SydneySydney New South Wales Australia
| |
Collapse
|
9
|
Barnes DE, Watabe E, Ono K, Kwak E, Kuroyanagi H, Ono S. Tropomyosin isoforms differentially affect muscle contractility in the head and body regions of the nematode Caenorhabditis elegans. Mol Biol Cell 2018; 29:1075-1088. [PMID: 29496965 PMCID: PMC5921574 DOI: 10.1091/mbc.e17-03-0152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 11/11/2022] Open
Abstract
Tropomyosin, one of the major actin filament-binding proteins, regulates actin-myosin interaction and actin-filament stability. Multicellular organisms express a number of tropomyosin isoforms, but understanding of isoform-specific tropomyosin functions is incomplete. The nematode Caenorhabditis elegans has a single tropomyosin gene, lev-11, which has been reported to express four isoforms by using two separate promoters and alternative splicing. Here, we report a fifth tropomyosin isoform, LEV-11O, which is produced by alternative splicing that includes a newly identified seventh exon, exon 7a. By visualizing specific splicing events in vivo, we find that exon 7a is predominantly selected in a subset of the body wall muscles in the head, while exon 7b, which is the alternative to exon 7a, is utilized in the rest of the body. Point mutations in exon 7a and exon 7b cause resistance to levamisole--induced muscle contraction specifically in the head and the main body, respectively. Overexpression of LEV-11O, but not LEV-11A, in the main body results in weak levamisole resistance. These results demonstrate that specific tropomyosin isoforms are expressed in the head and body regions of the muscles and contribute differentially to the regulation of muscle contractility.
Collapse
Affiliation(s)
- Dawn E. Barnes
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kanako Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Euiyoung Kwak
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shoichiro Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
10
|
Masedunskas A, Appaduray MA, Lucas CA, Lastra Cagigas M, Heydecker M, Holliday M, Meiring JCM, Hook J, Kee A, White M, Thomas P, Zhang Y, Adelstein RS, Meckel T, Böcking T, Weigert R, Bryce NS, Gunning PW, Hardeman EC. Parallel assembly of actin and tropomyosin, but not myosin II, during de novo actin filament formation in live mice. J Cell Sci 2018; 131:jcs.212654. [PMID: 29487177 DOI: 10.1242/jcs.212654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/12/2018] [Indexed: 01/04/2023] Open
Abstract
Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the de novo assembly of actin filaments is not known. Intravital subcellular microscopy of secretory granule exocytosis allows the visualisation and quantification of the formation of an actin scaffold in real time, with the added advantage that it occurs in a living mammal under physiological conditions. We used this model system to investigate the de novo assembly of actin, tropomyosin Tpm3.1 (a short isoform of TPM3) and myosin IIA (the form of non-muscle myosin II with its heavy chain encoded by Myh9) on secretory granules in mouse salivary glands. Blocking actin polymerization with cytochalasin D revealed that Tpm3.1 assembly is dependent on actin assembly. We used time-lapse imaging to determine the timing of the appearance of the actin filament reporter LifeAct-RFP and of Tpm3.1-mNeonGreen on secretory granules in LifeAct-RFP transgenic, Tpm3.1-mNeonGreen and myosin IIA-GFP (GFP-tagged MYH9) knock-in mice. Our findings are consistent with the addition of tropomyosin to actin filaments shortly after the initiation of actin filament nucleation, followed by myosin IIA recruitment.
Collapse
Affiliation(s)
| | | | | | | | - Marco Heydecker
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia.,Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Mira Holliday
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | | | - Jeff Hook
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Anthony Kee
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Melissa White
- South Australian Genome Editing, Facility Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Thomas
- South Australian Genome Editing, Facility Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yingfan Zhang
- NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Tobias Meckel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Till Böcking
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Kee AJ, Chagan J, Chan JY, Bryce NS, Lucas CA, Zeng J, Hook J, Treutlein H, Laybutt DR, Stehn JR, Gunning PW, Hardeman EC. On-target action of anti-tropomyosin drugs regulates glucose metabolism. Sci Rep 2018; 8:4604. [PMID: 29545590 PMCID: PMC5854615 DOI: 10.1038/s41598-018-22946-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
The development of novel small molecule inhibitors of the cancer-associated tropomyosin 3.1 (Tpm3.1) provides the ability to examine the metabolic function of specific actin filament populations. We have determined the ability of these anti-Tpm (ATM) compounds to regulate glucose metabolism in mice. Acute treatment (1 h) of wild-type (WT) mice with the compounds (TR100 and ATM1001) led to a decrease in glucose clearance due mainly to suppression of glucose-stimulated insulin secretion (GSIS) from the pancreatic islets. The impact of the drugs on GSIS was significantly less in Tpm3.1 knock out (KO) mice indicating that the drug action is on-target. Experiments in MIN6 β-cells indicated that the inhibition of GSIS by the drugs was due to disruption to the cortical actin cytoskeleton. The impact of the drugs on insulin-stimulated glucose uptake (ISGU) was also examined in skeletal muscle ex vivo. In the absence of drug, ISGU was decreased in KO compared to WT muscle, confirming a role of Tpm3.1 in glucose uptake. Both compounds suppressed ISGU in WT muscle, but in the KO muscle there was little impact of the drugs. Collectively, this data indicates that the ATM drugs affect glucose metabolism in vivo by inhibiting Tpm3.1's function with few off-target effects.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jayshan Chagan
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christine A Lucas
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jun Zeng
- MedChemSoft Solutions, Level 3 Brandon Park Drive, Wheelers Hill, 3150, VIC, Australia
| | - Jeff Hook
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Herbert Treutlein
- Sanoosa Pty. Ltd., 35 Collins Street, Melbourne, 3000, VIC, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Justine R Stehn
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
- Novogen Pty Ltd, 502/20 George St, Hornsby, NSW, 2077, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
12
|
O'Rourke AR, Lindsay A, Tarpey MD, Yuen S, McCourt P, Nelson DM, Perrin BJ, Thomas DD, Spangenburg EE, Lowe DA, Ervasti JM. Impaired muscle relaxation and mitochondrial fission associated with genetic ablation of cytoplasmic actin isoforms. FEBS J 2018; 285:481-500. [PMID: 29265728 DOI: 10.1111/febs.14367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
While α-actin isoforms predominate in adult striated muscle, skeletal muscle-specific knockouts (KOs) of nonmuscle cytoplasmic βcyto - or γcyto -actin each cause a mild, but progressive myopathy effected by an unknown mechanism. Using transmission electron microscopy, we identified morphological abnormalities in both the mitochondria and the sarcoplasmic reticulum (SR) in aged muscle-specific βcyto - and γcyto -actin KO mice. We found βcyto - and γcyto -actin proteins to be enriched in isolated mitochondrial-associated membrane preparations, which represent the interface between mitochondria and sarco-endoplasmic reticulum important in signaling and mitochondrial dynamics. We also measured significantly elongated and interconnected mitochondrial morphologies associated with a significant decrease in mitochondrial fission events in primary mouse embryonic fibroblasts lacking βcyto - and/or γcyto -actin. Interestingly, mitochondrial respiration in muscle was not measurably affected as oxygen consumption was similar in skeletal muscle fibers from 12 month-old muscle-specific βcyto - and γcyto -actin KO mice. Instead, we found that the maximal rate of relaxation after isometric contraction was significantly slowed in muscles of 12-month-old βcyto - and γcyto -actin muscle-specific KO mice. Our data suggest that impaired Ca2+ re-uptake may presage development of the observed SR morphological changes in aged mice while providing a potential pathological mechanism for the observed myopathy.
Collapse
Affiliation(s)
- Allison R O'Rourke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Angus Lindsay
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Tarpey
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Samantha Yuen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Preston McCourt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, IN, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Dawn A Lowe
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Kee AJ, Bryce NS, Yang L, Polishchuk E, Schevzov G, Weigert R, Polishchuk R, Gunning PW, Hardeman EC. ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton (Hoboken) 2017; 74:379-389. [PMID: 28834398 DOI: 10.1002/cm.21405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
We have identified novel actin filaments defined by tropomyosin Tpm4.2 at the ER. EM analysis of mouse embryo fibroblasts (MEFs) isolated from mice expressing a mutant Tpm4.2 (Tpm4Plt53/Plt53 ), incapable of incorporating into actin filaments, revealed swollen ER structures compared with wild-type (WT) MEFs (Tpm4+/+ ). ER-to-Golgi, but not Golgi-to-ER trafficking was altered in the Tpm4Plt53/Plt53 MEFs following the transfection of the temperature sensitive ER-associated ts045-VSVg construct. Exogenous Tpm4.2 was able to rescue the ER-to-Golgi trafficking defect in the Tpm4Plt53/Plt53 cells. The treatment of WT MEFs with the myosin II inhibitor, blebbistatin, blocked the Tpm4.2-dependent ER-to-Golgi trafficking. The lack of an effect on ER-to-Golgi trafficking following treatment of MEFs with CK666 indicates that branched Arp2/3-containing actin filaments are not involved in anterograde vesicle trafficking. We propose that unbranched, Tpm4.2-containing filaments have an important role in maintaining ER/Golgi structure and that these structures, in conjunction with myosin II motors, mediate ER-to-Golgi trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lingyan Yang
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Galina Schevzov
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Sui Z, Gokhin DS, Nowak RB, Guo X, An X, Fowler VM. Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells. Mol Biol Cell 2017; 28:2531-2542. [PMID: 28720661 PMCID: PMC5597325 DOI: 10.1091/mbc.e16-10-0699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023] Open
Abstract
The absence of Tpm3.1 in red blood cells (RBCs) induces a compensatory increase in Tpm1.9 and abnormally stable F-actin in the membrane skeleton, with reduced association of Band 3 and glycophorin A, leading to a compensated hemolytic anemia with abnormal RBC shapes and mechanical properties. The short F-actins in the red blood cell (RBC) membrane skeleton are coated along their lengths by an equimolar combination of two tropomyosin isoforms, Tpm1.9 and Tpm3.1. We hypothesized that tropomyosin’s ability to stabilize F-actin regulates RBC morphology and mechanical properties. To test this, we examined mice with a targeted deletion in alternatively spliced exon 9d of Tpm3 (Tpm3/9d–/–), which leads to absence of Tpm3.1 in RBCs along with a compensatory increase in Tpm1.9 of sufficient magnitude to maintain normal total tropomyosin content. The isoform switch from Tpm1.9/Tpm3.1 to exclusively Tpm1.9 does not affect membrane skeleton composition but causes RBC F-actins to become hyperstable, based on decreased vulnerability to latrunculin-A–induced depolymerization. Unexpectedly, this isoform switch also leads to decreased association of Band 3 and glycophorin A with the membrane skeleton, suggesting that tropomyosin isoforms regulate the strength of F-actin-to-membrane linkages. Tpm3/9d–/– mice display a mild compensated anemia, in which RBCs have spherocytic morphology with increased osmotic fragility, reduced membrane deformability, and increased membrane stability. We conclude that RBC tropomyosin isoforms directly influence RBC physiology by regulating 1) the stability of the short F-actins in the membrane skeleton and 2) the strength of linkages between the membrane skeleton and transmembrane glycoproteins.
Collapse
Affiliation(s)
- Zhenhua Sui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David S Gokhin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065.,School of Life Science, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
15
|
Pinali C, Malik N, Davenport JB, Allan LJ, Murfitt L, Iqbal MM, Boyett MR, Wright EJ, Walker R, Zhang Y, Dobryznski H, Holt CM, Kitmitto A. Post-Myocardial Infarction T-tubules Form Enlarged Branched Structures With Dysregulation of Junctophilin-2 and Bridging Integrator 1 (BIN-1). J Am Heart Assoc 2017; 6:e004834. [PMID: 28473402 PMCID: PMC5524063 DOI: 10.1161/jaha.116.004834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a common secondary complication following a myocardial infarction (MI), characterized by impaired cardiac contraction and t-tubule (t-t) loss. However, post-MI nano-scale morphological changes to the remaining t-ts are poorly understood. METHOD AND RESULTS We utilized a porcine model of MI, using a nonlethal microembolization method to generate controlled microinfarcts. Using serial block face scanning electron microscopy, we report that post-MI, after mild left-ventricular dysfunction has developed, t-ts are not only lost in the peri-infarct region, but also the remnant t-ts form enlarged, highly branched disordered structures, containing a dense intricate inner membrane. Biochemical and proteomics analyses showed that the calcium release channel, ryanodine receptor 2 (RyR2), abundance is unchanged, but junctophilin-2 (JP2), important for maintaining t-t trajectory, is depressed (-0.5×) in keeping with the t-ts being disorganized. However, immunolabeling shows that populations of RyR2 and JP2 remain associated with the remodeled t-ts. The bridging integrator 1 protein (BIN-1), a regulator of tubulogensis, is upregulated (+5.4×), consistent with an overdeveloped internal membrane system, a feature not present in control t-ts. Importantly, we have determined that t-ts, in the remote region, are narrowed and also contain dense membrane folds (BIN-1 is up-regulated +3.4×), whereas the t-ts have a radial organization comparable to control JP2 is upregulated +1.7×. CONCLUSIONS This study reveals previously unidentified remodeling of the t-t nano-architecture in the post-MI heart that extends to the remote region. Our findings highlight that targeting JP2 may be beneficial for preserving the orientation of the t-ts, attenuating the development of hypocontractility post-MI.
Collapse
Affiliation(s)
- Christian Pinali
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Nadim Malik
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - J Bernard Davenport
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Laurence J Allan
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Lucy Murfitt
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Mohammad M Iqbal
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Mark R Boyett
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Elizabeth J Wright
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Rachel Walker
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Yu Zhang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Halina Dobryznski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Cathy M Holt
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
16
|
Abstract
Unique to striated muscle cells, transverse tubules (t-tubules) are membrane organelles that consist of sarcolemma penetrating into the myocyte interior, forming a highly branched and interconnected network. Mature t-tubule networks are found in mammalian ventricular cardiomyocytes, with the transverse components of t-tubules occurring near sarcomeric z-discs. Cardiac t-tubules contain membrane microdomains enriched with ion channels and signaling molecules. The microdomains serve as key signaling hubs in regulation of cardiomyocyte function. Dyad microdomains formed at the junctional contact between t-tubule membrane and neighboring sarcoplasmic reticulum are critical in calcium signaling and excitation-contraction coupling necessary for beat-to-beat heart contraction. In this review, we provide an overview of the current knowledge in gross morphology and structure, membrane and protein composition, and function of the cardiac t-tubule network. We also review in detail current knowledge on the formation of functional membrane subdomains within t-tubules, with a particular focus on the cardiac dyad microdomain. Lastly, we discuss the dynamic nature of t-tubules including membrane turnover, trafficking of transmembrane proteins, and the life cycles of membrane subdomains such as the cardiac BIN1-microdomain, as well as t-tubule remodeling and alteration in diseased hearts. Understanding cardiac t-tubule biology in normal and failing hearts is providing novel diagnostic and therapeutic opportunities to better treat patients with failing hearts.
Collapse
Affiliation(s)
- TingTing Hong
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robin M Shaw
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Pleines I, Woods J, Chappaz S, Kew V, Foad N, Ballester-Beltrán J, Aurbach K, Lincetto C, Lane RM, Schevzov G, Alexander WS, Hilton DJ, Astle WJ, Downes K, Nurden P, Westbury SK, Mumford AD, Obaji SG, Collins PW, NIHR BioResource, Delerue F, Ittner LM, Bryce NS, Holliday M, Lucas CA, Hardeman EC, Ouwehand WH, Gunning PW, Turro E, Tijssen MR, Kile BT. Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia. J Clin Invest 2017; 127:814-829. [PMID: 28134622 PMCID: PMC5330761 DOI: 10.1172/jci86154] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/01/2016] [Indexed: 01/12/2023] Open
Abstract
Platelets are anuclear cells that are essential for blood clotting. They are produced by large polyploid precursor cells called megakaryocytes. Previous genome-wide association studies in nearly 70,000 individuals indicated that single nucleotide variants (SNVs) in the gene encoding the actin cytoskeletal regulator tropomyosin 4 (TPM4) exert an effect on the count and volume of platelets. Platelet number and volume are independent risk factors for heart attack and stroke. Here, we have identified 2 unrelated families in the BRIDGE Bleeding and Platelet Disorders (BPD) collection who carry a TPM4 variant that causes truncation of the TPM4 protein and segregates with macrothrombocytopenia, a disorder characterized by low platelet count. N-Ethyl-N-nitrosourea–induced (ENU-induced) missense mutations in Tpm4 or targeted inactivation of the Tpm4 locus led to gene dosage–dependent macrothrombocytopenia in mice. All other blood cell counts in Tpm4-deficient mice were normal. Insufficient TPM4 expression in human and mouse megakaryocytes resulted in a defect in the terminal stages of platelet production and had a mild effect on platelet function. Together, our findings demonstrate a nonredundant role for TPM4 in platelet biogenesis in humans and mice and reveal that truncating variants in TPM4 cause a previously undescribed dominant Mendelian platelet disorder.
Collapse
Affiliation(s)
- Irina Pleines
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Joanne Woods
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stephane Chappaz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Verity Kew
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicola Foad
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - José Ballester-Beltrán
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Katja Aurbach
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Wuerzburg, Wuerzburg, Germany
| | - Chiara Lincetto
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rachael M. Lane
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Galina Schevzov
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Warren S. Alexander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Douglas J. Hilton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - William J. Astle
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Plateforme Technologique d’Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
| | - Sarah K. Westbury
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Samya G. Obaji
- Arthur Bloom Haemophilia Centre, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Peter W. Collins
- Arthur Bloom Haemophilia Centre, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - NIHR BioResource
- NIHR BioResource–Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fabien Delerue
- Transgenic Animal Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Lars M. Ittner
- Transgenic Animal Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Nicole S. Bryce
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Mira Holliday
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christine A. Lucas
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Edna C. Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NIHR BioResource–Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Peter W. Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, United Kingdom
| | - Marloes R. Tijssen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Benjamin T. Kile
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This article discusses recent advances and unsolved questions in our understanding of actin filament organization and dynamics in the red blood cell (RBC) membrane skeleton, a two-dimensional quasi-hexagonal network consisting of (α1β1)2-spectrin tetramers interconnecting short actin filament-based junctional complexes. RECENT FINDINGS In contrast to the long-held view that RBC actin filaments are static structures that do not exchange subunits with the cytosol, RBC actin filaments are dynamic structures that undergo subunit exchange and turnover, as evidenced by monomer incorporation experiments with rhodamine-actin and filament disruption experiments with actin-targeting drugs. The malaria-causing parasite, Plasmodium falciparum, co-opts RBC actin dynamics to construct aberrantly branched actin filament networks. Even though RBC actin filaments are dynamic, RBC actin filament lengths are highly uniform (∼37 nm). RBC actin filament lengths are thought to be stabilized by the capping proteins, tropomodulin-1 and αβ-adducin, as well as the side-binding protein tropomyosin, present in an equimolar combination of two isoforms, TM5b (Tpm1.9) and TM5NM1 (Tpm3.1). SUMMARY New evidence indicates that RBC actin filaments are not simply passive cytolinkers, but rather dynamic structures whose assembly and disassembly play important roles in RBC membrane function.
Collapse
|
19
|
Appaduray MA, Masedunskas A, Bryce NS, Lucas CA, Warren SC, Timpson P, Stear JH, Gunning PW, Hardeman EC. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics. PLoS One 2016; 11:e0168203. [PMID: 27977753 PMCID: PMC5158027 DOI: 10.1371/journal.pone.0168203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/28/2016] [Indexed: 12/23/2022] Open
Abstract
The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.
Collapse
Affiliation(s)
- Mark A. Appaduray
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Andrius Masedunskas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Nicole S. Bryce
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Christine A. Lucas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Sean C. Warren
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jeffrey H. Stear
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Peter W. Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Edna C. Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
20
|
Coombes JD, Schevzov G, Kan CY, Petti C, Maritz MF, Whittaker S, Mackenzie KL, Gunning PW. Ras Transformation Overrides a Proliferation Defect Induced by Tpm3.1 Knockout. Cell Mol Biol Lett 2016; 20:626-46. [PMID: 26274783 DOI: 10.1515/cmble-2015-0037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Extensive re-organisation of the actin cytoskeleton and changes in the expression of its binding proteins is a characteristic feature of cancer cells. Previously we have shown that the tropomyosin isoform Tpm3.1, an integral component of the actin cytoskeleton in tumor cells, is required for tumor cell survival. Our objective was to determine whether cancer cells devoid of Tpm3.1 would evade the tumorgenic effects induced by H-Ras transformation. The tropomyosin isoform (Tpm) expression profile of a range of cancer cell lines (21) demonstrates that Tpm3.1 is one of the most broadly expressed Tpm isoform. Consequently, the contribution of Tpm3.1 to the transformation process was functionally evaluated. Primary embryonic fibroblasts isolated from wild type (WT) and Tpm3.1 knockout (KO) mice were transduced with retroviral vectors expressing SV40 large T antigen and an oncogenic allele of the H-Ras gene, H-RasV12, to generate immortalized and transformed WT and KO MEFs respectively. We show that Tpm3.1 is required for growth factor-independent proliferation in the SV40 large T antigen immortalized MEFs, but this requirement is overcome by H-Ras transformation. Consistent with those findings, we found that Tpm3.1 was not required for anchorage independent growth or growth of H-Ras-driven tumors in a mouse model. Finally, we show that pERK and Importin 7 protein interactions are significantly decreased in the SV40 large T antigen immortalized KO MEFs but not in the H-Ras transformed KO cells, relative to control MEFs. The data demonstrate that H-Ras transformation overrides a requirement for Tpm3.1 in growth factor-independent proliferation of immortalized MEFs. We propose that in the SV40 large T antigen immortalized MEFs, Tpm3.1 is partly responsible for the efficient interaction between pERK and Imp7 resulting in cell proliferation, but this is overidden by Ras transformation.
Collapse
|
21
|
Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. J Muscle Res Cell Motil 2015; 36:501-15. [DOI: 10.1007/s10974-015-9421-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/24/2023]
|
22
|
Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP. Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci 2015; 128:2965-74. [PMID: 26240174 DOI: 10.1242/jcs.172502] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.
Collapse
Affiliation(s)
- Peter W Gunning
- School of Medical Sciences, UNSW Australia, Sydney 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Australia, Sydney 2052, Australia
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Daniel P Mulvihill
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
23
|
Kee AJ, Yang L, Lucas CA, Greenberg MJ, Martel N, Leong GM, Hughes WE, Cooney GJ, James DE, Ostap EM, Han W, Gunning PW, Hardeman EC. An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake. Traffic 2015; 16:691-711. [PMID: 25783006 PMCID: PMC4945106 DOI: 10.1111/tra.12282] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM.
Collapse
Affiliation(s)
- Anthony J. Kee
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Lingyan Yang
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Christine A. Lucas
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Michael J. Greenberg
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Nick Martel
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
| | - Gary M. Leong
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
- Department of Paediatric Endocrinology and DiabetesMater Children's HospitalSouth BrisbaneQLD4010Australia
| | - William E. Hughes
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Gregory J. Cooney
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - David E. James
- Charles Perkins Centre, School of Molecular BioscienceUniversity of SydneySydneyNSW2006Australia
| | - E. Michael Ostap
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Weiping Han
- Singapore Bioimaging ConsortiumAgency for Science, Technology and Research (A*STAR)Singapore138667Singapore
| | - Peter W. Gunning
- Oncology Research UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Edna C. Hardeman
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| |
Collapse
|
24
|
Falcone S, Roman W, Hnia K, Gache V, Didier N, Lainé J, Auradé F, Marty I, Nishino I, Charlet-Berguerand N, Romero NB, Marazzi G, Sassoon D, Laporte J, Gomes ER. N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 2015; 6:1455-75. [PMID: 25262827 PMCID: PMC4237471 DOI: 10.15252/emmm.201404436] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in amphiphysin-2/BIN1, dynamin 2, and myotubularin are associated with centronuclear myopathy (CNM), a muscle disorder characterized by myofibers with atypical central nuclear positioning and abnormal triads. Mis-splicing of amphiphysin-2/BIN1 is also associated with myotonic dystrophy that shares histopathological hallmarks with CNM. How amphiphysin-2 orchestrates nuclear positioning and triad organization and how CNM-associated mutations lead to muscle dysfunction remains elusive. We find that N-WASP interacts with amphiphysin-2 in myofibers and that this interaction and N-WASP distribution are disrupted by amphiphysin-2 CNM mutations. We establish that N-WASP functions downstream of amphiphysin-2 to drive peripheral nuclear positioning and triad organization during myofiber formation. Peripheral nuclear positioning requires microtubule/Map7/Kif5b-dependent distribution of nuclei along the myofiber and is driven by actin and nesprins. In adult myofibers, N-WASP and amphiphysin-2 are only involved in the maintenance of triad organization but not in the maintenance of peripheral nuclear positioning. Importantly, we confirmed that N-WASP distribution is disrupted in CNM and myotonic dystrophy patients. Our results support a role for N-WASP in amphiphysin-2-dependent nuclear positioning and triad organization and in CNM and myotonic dystrophy pathophysiology.
Collapse
Affiliation(s)
- Sestina Falcone
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - William Roman
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Karim Hnia
- IGBMC-CNRS, UMR 7104 INSERM U964, Illkirch, France
| | - Vincent Gache
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nathalie Didier
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Jeanne Lainé
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Frederic Auradé
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Isabelle Marty
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble, France
| | - Ichizo Nishino
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | - Giovanna Marazzi
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - David Sassoon
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | | | - Edgar R Gomes
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Jalilian I, Heu C, Cheng H, Freittag H, Desouza M, Stehn JR, Bryce NS, Whan RM, Hardeman EC, Fath T, Schevzov G, Gunning PW. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton. PLoS One 2015; 10:e0126214. [PMID: 25978408 PMCID: PMC4433179 DOI: 10.1371/journal.pone.0126214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.
Collapse
Affiliation(s)
- Iman Jalilian
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Celine Heu
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Hong Cheng
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Hannah Freittag
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Melissa Desouza
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Justine R. Stehn
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Caldwell BJ, Lucas C, Kee AJ, Gaus K, Gunning PW, Hardeman EC, Yap AS, Gomez GA. Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens. Cytoskeleton (Hoboken) 2015; 71:663-76. [PMID: 25545457 DOI: 10.1002/cm.21202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023]
Abstract
Epithelial cells generate contractile forces at their cell-cell contacts. These are concentrated at the specialized apical junction of the zonula adherens (ZA), where a ring of stabilized E-cadherin lies adjacent to prominent actomyosin bundles. Coupling of adhesion and actomyosin contractility yields tension in the junction. The biogenesis of junctional contractility requires actin assembly at the ZA as well as the recruitment of nonmuscle myosin II, but the molecular regulators of these processes are not yet fully understood. We now report a role for tropomyosins 5NM1 (Tm5NM1) and 5NM2 (Tm5NM2) in their generation. Both these tropomyosin isoforms were found at the ZA and their depletion by RNAi or pharmacological inhibition reduced both F-actin and myosin II content at the junction. Photoactivation analysis revealed that the loss of F-actin was attributable to a decrease in filament stability. These changes were accompanied by a decrease in E-cadherin content at junctions. Ultimately, both long-term depletion of Tm5NM1/2 and acute inhibition with drugs caused junctional tension to be reduced. Thus these tropomyosin isoforms are novel contributors to junctional contractility and integrity.
Collapse
Affiliation(s)
- Benjamin J Caldwell
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lewis RA, Yamashiro S, Gokhin DS, Fowler VM. Functional effects of mutations in the tropomyosin-binding sites of tropomodulin1 and tropomodulin3. Cytoskeleton (Hoboken) 2014; 71:395-411. [PMID: 24922351 DOI: 10.1002/cm.21179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/02/2014] [Indexed: 01/16/2023]
Abstract
Tropomodulins (Tmods) interact with tropomyosins (TMs) via two TM-binding sites and cap the pointed ends of TM-coated actin filaments. To study the functional interplay between TM binding and TM-actin filament capping by Tmods, we introduced disabling mutations into the first, second, or both TM-binding sites of full-length Tmod1 (Tmod1-L27G, Tmod1-I131D, and Tmod1-L27G/I131D, respectively) and full-length Tmod3 (Tmod3-L29G, Tmod3-L134D, and Tmod3-L29G/L134D, respectively). Tmod1 and Tmod3 showed somewhat different TM-binding site utilization, but nearly all TM binding was abolished in Tmod1-L27G/I131D and Tmod3-L29G/L134D. Disruption of Tmod-TM binding had a modest effect on Tmod1's ability and no effect on Tmod3's ability to stabilize TM-actin pointed ends against latrunculin A-induced depolymerization. However, disruption of Tmod-TM binding did significantly impair the ability of Tmod3 to reduce elongation rates at pointed ends with α/βTM, albeit less so with TM5NM1, and not at all with TM5b. For Tmod1, disruption of Tmod-TM binding only slightly impaired its ability to reduce elongation rates with α/βTM and TM5NM1, but not at all with TM5b. Thus, Tmod-TM binding has a greater influence on Tmods' ability to inhibit subunit association as compared to dissociation from TM-actin pointed ends, particularly for α/βTM, with Tmod3's activity being more dependent on TM binding than Tmod1's activity. Nevertheless, disruption of Tmod1-TM binding precluded Tmod1 targeting to thin filament pointed ends in cardiac myocytes, suggesting that the functional effects of Tmod-TM binding on TM-coated actin filament capping can be significantly modulated by the in vivo conformation of the pointed end or other factors in the intracellular environment.
Collapse
Affiliation(s)
- Raymond A Lewis
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
29
|
Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J Muscle Res Cell Motil 2013; 34:261-74. [PMID: 23904035 PMCID: PMC3843815 DOI: 10.1007/s10974-013-9355-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/09/2013] [Indexed: 01/12/2023]
Abstract
The actin cytoskeleton plays a central role in many essential cellular processes. Its involvement requires actin filaments to form multiple populations with different structural and therefore functional properties in specific subcellular locations. This diversity is facilitated through the interaction between actin and a number of actin binding proteins. One family of proteins, the tropomyosins, are absolutely essential in regulating actin's ability to form such diverse structures. In this review we integrate studies from different organisms and cell types in an attempt to provide a unifying view of tropomyosin dependent regulation of the actin cytoskeleton.
Collapse
|
30
|
Savill SA, Leitch HF, Harvey JN, Thomas TH. Functional structure of the promoter regions for the predominant low molecular weight isoforms of tropomyosin in human kidney cells. J Cell Biochem 2013; 113:3576-86. [PMID: 22740512 DOI: 10.1002/jcb.24236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High and low molecular weight (LMW) tropomyosin isoforms, by regulation of actin filaments, have a major role in the regulation of cell behaviour. They affect malignant transformation, motility, differentiation, metastasis and cell membrane protein presentation. Expression of LMW isoforms from the TPM1 and TPM3 genes have an important role in these effects but the regulation of their expression is unknown. Luciferase assays on a progressively truncated 1.7 kb fragment upstream of the exon 1b translation start site in the TPM1 and TPM3 genes in HEK-293 cells showed upstream activation sequences in TPM1 between -152 and -139 bp and in TPM3 between -154 and -102 bp. The effect of mutating candidate transcription factor binding sites identified an AML1-like transcription factor binding site in TPM1 and a cAMP response element in TPM3. Downstream from the primary activation sequence in TPM1 was a repressor region corresponding to two Sp/KLF family binding GC boxes. Band shift assays confirmed that deletion of these sites altered transcription factor binding and ChIP assays confirmed the presence of AML1 and CREB at the TPM1 and TPM3 activation sequences in the respective promoters. Expression of LMW isoforms from TPM1 and TPM3 genes is regulated very differently. This facilitates regulation of the many cell processes involving these proteins. In situations where these proteins have a critical role, such as cancer metastasis, it also facilitates specific intervention.
Collapse
Affiliation(s)
- Stuart A Savill
- Diabetes and Endocrinology Research Group, College of Health and Behavioural Sciences, Wrexham Academic Unit, Bangor University, Bangor, UK.
| | | | | | | |
Collapse
|
31
|
Abstract
Precise orchestration of actin polymer into filaments with distinct characteristics of stability, bundling, and branching underpins cell migration. A key regulator of actin filament specialization is the tropomyosin family of actin-associating proteins. This multi-isoform family of proteins assemble into polymers that lie in the major groove of polymerized actin filaments, which in turn determine the association of molecules that control actin filament organization. This suggests that tropomyosins may be important regulators of actin function during physiological processes dependent on cell migration, such as wound healing. We have therefore analyzed the requirement for tropomyosin isoform expression in a mouse model of cutaneous wound healing. We find that mice in which the 9D exon from the TPM3/γTm tropomyosin gene is deleted (γ9D -/-) exhibit a more rapid wound-healing response 7 days after wounding compared with wild-type mice. Accelerated wound healing was not associated with increased cell proliferation, matrix remodeling, or epidermal abnormalities, but with increased cell migration. Rac GTPase activity and paxillin phosphorylation are elevated in cells from γ9D -/- mice, suggesting the activation of paxillin/Rac signaling. Collectively, our data reveal that tropomyosin isoform expression has an important role in temporal regulation of cell migration during wound healing.
Collapse
|
32
|
Tropomodulin capping of actin filaments in striated muscle development and physiology. J Biomed Biotechnol 2011; 2011:103069. [PMID: 22013379 PMCID: PMC3196151 DOI: 10.1155/2011/103069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 11/17/2022] Open
Abstract
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.
Collapse
|
33
|
Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM. The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci 2011; 278:2714-23. [PMID: 21697171 PMCID: PMC3145195 DOI: 10.1098/rspb.2011.0624] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 05/31/2011] [Indexed: 11/12/2022] Open
Abstract
The transverse tubules (t-tubules) are invaginations of the cell membrane rich in several ion channels and other proteins devoted to the critical task of excitation-contraction coupling in cardiac muscle cells (cardiomyocytes). They are thought to promote the synchronous activation of the whole depth of the cell despite the fact that the signal to contract is relayed across the external membrane. However, recent work has shown that t-tubule structure and function are complex and tightly regulated in healthy cardiomyocytes. In this review, we outline the rapidly accumulating knowledge of its novel roles and discuss the emerging evidence of t-tubule dysfunction in cardiac disease, especially heart failure. Controversy surrounds the t-tubules' regulatory elements, and we draw attention to work that is defining these elements from the genetic and the physiological levels. More generally, this field illustrates the challenges in the dissection of the complex relationship between cellular structure and function.
Collapse
Affiliation(s)
- Michael Ibrahim
- Harefield Heart Science Centre, Imperial College London, Harefield, Middlesex UB9 6JH, UK
| | - Julia Gorelik
- Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, Harefield, Middlesex UB9 6JH, UK
| | - Magdi H. Yacoub
- Harefield Heart Science Centre, Imperial College London, Harefield, Middlesex UB9 6JH, UK
| | - Cesare M. Terracciano
- Harefield Heart Science Centre, Imperial College London, Harefield, Middlesex UB9 6JH, UK
| |
Collapse
|
34
|
Gokhin DS, Fowler VM. Cytoplasmic gamma-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. ACTA ACUST UNITED AC 2011; 194:105-20. [PMID: 21727195 PMCID: PMC3135406 DOI: 10.1083/jcb.201011128] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tropomodulins, cytoplasmic γ-actin, and small ankyrin 1.5 mechanically stabilize the sarcoplasmic reticulum and maintain myofibril alignment in skeletal muscle fibers. The sarcoplasmic reticulum (SR) serves as the Ca2+ reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γcyto-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γcyto-actin and Tmod3 defined an SR microdomain that was distinct from another Z line–flanking SR microdomain containing Tmod1 and Tmod4. The γcyto-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γcyto-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3–γcyto-actin–sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca2+ release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γcyto-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Schevzov G, Whittaker SP, Fath T, Lin JJ, Gunning PW. Tropomyosin isoforms and reagents. BIOARCHITECTURE 2011; 1:135-164. [PMID: 22069507 DOI: 10.4161/bioa.1.4.17897] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/18/2011] [Accepted: 08/26/2011] [Indexed: 12/29/2022]
Abstract
Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, NSW Australia
| | | | | | | | | |
Collapse
|
36
|
Gokhin DS, Fowler VM. The sarcoplasmic reticulum: Actin and tropomodulin hit the links. BIOARCHITECTURE 2011; 1:175-179. [PMID: 22069510 DOI: 10.4161/bioa.1.4.17533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 12/29/2022]
Abstract
Skeletal muscle exhibits strikingly regular intracellular sorting of actin and tropomodulin (Tmod) isoforms, which are essential for efficient muscle contraction. A recent study from our laboratory demonstrates that the skeletal muscle sarcoplasmic reticulum (SR) is associated with cytoplasmic γ-actin (γ(cyto)-actin) filaments, which are predominantly capped by Tmod3. When Tmod3 is experimentally induced to vacate its SR compartment, the cytoskeletal organization of SR-associated γ(cyto)-actin is perturbed, leading to SR swelling, depressed SR Ca(2+) release and myofibril misalignment. Based on these findings, Tmod3-capped γ(cyto)-actin filaments mechanically stabilize SR structure and regulate SR function via a novel lateral linkage. Furthermore, by placing these findings in the context of studies in nonmuscle cells, we conclude that Tmodcapped actin filaments are emerging as critical regulators of membrane stability and physiology in a broad assortment of cell types.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell Biology; The Scripps Research Institute; La Jolla, CA USA
| | | |
Collapse
|
37
|
Texada MJ, Simonette RA, Deery WJ, Beckingham KM. Tropomyosin is an interaction partner of the Drosophila coiled coil protein yuri gagarin. Exp Cell Res 2011; 317:474-87. [PMID: 21126519 PMCID: PMC3390024 DOI: 10.1016/j.yexcr.2010.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/28/2023]
Abstract
The Drosophila gene yuri gagarin is a complex locus encoding three protein isoform classes that are ubiquitously expressed in the organism. Mutations to the gene affect processes as diverse as gravitactic behavior and spermatogenesis. The larger Yuri isoforms contain extensive coiled-coil regions. Our previous studies indicate that one of the large isoform classes (Yuri-65) is required for formation of specialized F-actin-containing structures generated during spermatogenesis, including the so-called actin "cones" that mediate spermatid individualization. We used the tandem affinity purification of a tagged version of Yuri-65 (the TAP-tagging technique) to identify proteins associated with Yuri-65 in the intact organism. Tropomyosin, primarily as the 284-residue isoform derived from the ubiquitously expressed Tropomyosin 1 gene was thus identified as a major Yuri interaction partner. Co-immunoprecipitation experiments confirmed this interaction. We have established that the stable F-actin cones of spermatogenesis contain Tropomyosin 1 (Tm1) and that in mutant yuri(F64), failure of F-actin cone formation is associated with failure of Tm1 to accumulate at the cone initiation sites. In investigating possible interactions of Tm1 and Yuri in other tissues, we discovered that Tm1 and Yuri frequently colocalize with the endoplasmic reticulum. Tropomyosin has been implicated in actin-mediated membrane trafficking activity in other systems. Our findings suggest that Yuri-Tm1 complexes participate in related functions.
Collapse
Affiliation(s)
| | | | | | - Kathleen M. Beckingham
- Department of Biochemistry and Cell Biology, Rice University, MS-140, 6100 Main Street, Houston TX 77005
| |
Collapse
|
38
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 PMCID: PMC2923581 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
39
|
Kee AJ, Gunning PW, Hardeman EC. Diverse roles of the actin cytoskeleton in striated muscle. J Muscle Res Cell Motil 2009; 30:187-97. [PMID: 19997772 DOI: 10.1007/s10974-009-9193-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/24/2009] [Indexed: 12/14/2022]
Abstract
In addition to the highly specialized contractile apparatus, it is becoming increasingly clear that there is an extensive actin cytoskeleton which underpins a wide range of functions in striated muscle. Isoforms of cytoskeletal actin and actin-associated proteins (non-muscle myosins, cytoskeletal tropomyosins, and cytoskeletal alpha-actinins) have been detected in a number of regions of striated muscle: the sub-sarcolemmal costamere, the Z-disc and the T-tubule/sarcoplasmic reticulum membranes. As the only known function of these proteins is through association with actin filaments, their presence in striated muscles indicates that there are spatially and functionally distinct cytoskeletal actin filament systems in these tissues. These filaments are likely to have important roles in mechanical support, ion channel function, myofibrillogenenous and vesicle trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
40
|
Kee AJ, Gunning PW, Hardeman EC. A cytoskeletal tropomyosin can compromise the structural integrity of skeletal muscle. ACTA ACUST UNITED AC 2009; 66:710-20. [PMID: 19530183 DOI: 10.1002/cm.20400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have identified a number of extra-sarcomeric actin filaments defined by cytoskeletal tropomyosin (Tm) isoforms. Expression of a cytoskeletal Tm (Tm3) not normally present in skeletal muscle in a transgenic mouse resulted in muscular dystrophy. In the present report we show that muscle pathology in this mouse is late onset (between 2 and 6 months of age) and is predominately in the back and paraspinal muscles. In the Tm3 mice, Evans blue dye uptake in muscle and serum levels of creatine kinase were markedly increased following downhill exercise, and the force drop following a series of lengthening contractions in isolated muscles (extensor digitorum longus) was also significantly increased in these mice. These results demonstrate that expression of an inappropriate Tm in skeletal muscle results in increased susceptibility to contraction-induced damage. The extra-sarcomeric actin cytoskeleton therefore may have an important role in protecting the muscle from contractile stress.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|