1
|
Martínez-Martos JM, Cantón-Habas V, Rich-Ruíz M, Reyes-Medina MJ, Ramírez-Expósito MJ, Carrera-González MDP. Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications. Life (Basel) 2024; 14:1547. [PMID: 39768255 PMCID: PMC11677427 DOI: 10.3390/life14121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity. Adult neurogenesis in the dentate gyrus, dendritic spine density, and electrophysiological plasticity contribute to the hippocampus' remarkable plasticity. Glucose transporters GLUT3 and GLUT4 are expressed in human hippocampal neurons, with proper glucose metabolism being crucial for learning and memory. Sex hormones play a major role, with the aromatase enzyme that generates estradiol increasing in neurons and astrocytes as an endogenous neuroprotective mechanism. Inhibition of aromatase increases gliosis and neurodegeneration after brain injury. Genetic variants of aromatase may confer higher Alzheimer's risk. Estrogen replacement therapy in postmenopausal women prevents hippocampal hypometabolism and preserves memory. Insulin is also a key regulator of hippocampal glucose metabolism and cognitive processes. Dysregulation of the insulin-sensitive glucose transporter GLUT4 may explain the comorbidity between type II diabetes and Alzheimer's. GLUT4 colocalizes with the insulin-regulated aminopeptidase IRAP in neuronal vesicles, suggesting an activity-dependent glucose uptake mechanism. Sex differences in brain metabolism are an important factor in understanding neurodegenerative diseases, and future research must elucidate the underlying mechanisms and potential therapeutic implications of these differences.
Collapse
Affiliation(s)
- José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
| | - Vanesa Cantón-Habas
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| | - Manuel Rich-Ruíz
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| | - María José Reyes-Medina
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain; (V.C.-H.); (M.R.-R.); (M.J.R.-M.)
| | - María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
| | - María del Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain; (J.M.M.-M.); (M.J.R.-E.)
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004 Cordoba, Spain
| |
Collapse
|
2
|
Mpakali A, Georgaki G, Buson A, Findlay AD, Foot JS, Mauvais F, van Endert P, Giastas P, Hamprecht DW, Stratikos E. Stabilization of the open conformation οf insulin-regulated aminopeptidase by a novel substrate-selective small-molecule inhibitor. Protein Sci 2024; 33:e5151. [PMID: 39167040 PMCID: PMC11337929 DOI: 10.1002/pro.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Insulin-regulated aminopeptidase (IRAP) is an enzyme with important biological functions and the target of drug-discovery efforts. We combined in silico screening with a medicinal chemistry optimization campaign to discover a nanomolar inhibitor of IRAP based on a pyrazolylpyrimidine scaffold. This compound displays an excellent selectivity profile versus homologous aminopeptidases, and kinetic analysis suggests it utilizes an uncompetitive mechanism of action when inhibiting the cleavage of a typical dipeptidic substrate. Surprisingly, the compound is a poor inhibitor of the processing of the physiological cyclic peptide substrate oxytocin and a 10mer antigenic epitope precursor but displays a biphasic inhibition profile for the trimming of a 9mer antigenic peptide. While the compound reduces IRAP-dependent cross-presentation of an 8mer epitope in a cellular assay, it fails to block in vitro trimming of select epitope precursors. To gain insight into the mechanism and basis of this unusual selectivity for this inhibitor, we solved the crystal structure of its complex with IRAP. The structure indicated direct zinc(II) engagement by the pyrazolylpyrimidine scaffold and revealed that the compound binds to an open conformation of the enzyme in a pose that should block the conformational transition to the enzymatically active closed conformation previously observed for other low-molecular-weight inhibitors. This compound constitutes the first IRAP inhibitor targeting the active site that utilizes a conformation-specific mechanism of action, provides insight into the intricacies of the IRAP catalytic cycle, and highlights a novel approach to regulating IRAP activity by blocking its conformational rearrangements.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| | - Galateia Georgaki
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| | | | | | | | | | - Peter van Endert
- INSERM, CNRS, Institut Necker Enfants MaladesUniversité Paris CitéParisFrance
| | - Petros Giastas
- Department of Biotechnology, School of Applied Biology & BiotechnologyAgricultural University of AthensAthensGreece
| | | | - Efstratios Stratikos
- National Centre for Scientific Research DemokritosAthensGreece
- Laboratory of Biochemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
3
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
4
|
Kandror KV. Self-assembly of the insulin-responsive vesicles creates a signaling platform for the insulin action on glucose uptake. VITAMINS AND HORMONES 2024; 128:93-121. [PMID: 40097254 DOI: 10.1016/bs.vh.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In fat and skeletal muscle cells, insulin causes plasma membrane translocation of specialized insulin-responsive vesicles, or IRVs. These vesicles consist of multiple copies of Glut4, sortilin, IRAP, and LRP1 as well as several auxiliary components. Major IRV proteins have relatively long half-life inside the cell and survive multiple rounds of translocation to and from the cell surface. Here, we summarize evidence showing how the IRVs are self-assembled from pre-synthesized Glut4, sortilin, IRAP, and LRP1 after each translocation event. Furthermore, the cytoplasmic tail of sortilin binds Akt while cytoplasmic tails of IRAP and LRP1 interact with the Akt target, TBC1D4. Recruitment of signaling proteins to the IRVs may render insulin responsiveness to this compartment and thus distinguish it from other intracellular membrane vesicles.
Collapse
Affiliation(s)
- Konstantin V Kandror
- Department of Biochemistry and Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States.
| |
Collapse
|
5
|
Telianidis J, Hunter A, Widdop R, Kemp-Harper B, Pham V, McCarthy C, Chai SY. Inhibition of insulin-regulated aminopeptidase confers neuroprotection in a conscious model of ischemic stroke. Sci Rep 2023; 13:19722. [PMID: 37957163 PMCID: PMC10643421 DOI: 10.1038/s41598-023-46072-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is a leading cause of mortality and morbidity with a paucity of effective pharmacological treatments. We have previously identified insulin-regulated aminopeptidase (IRAP) as a potential target for the development of a new class of drugs for the treatment of stroke, as global deletion of this gene in mice significantly protected against ischemic damage. In the current study, we demonstrate that small molecular weight IRAP inhibitors reduce infarct volume and improve neurological outcome in a hypertensive animal model of ischemic stroke. The effects of two structurally distinct IRAP inhibitors (HFI419 or SJM164) were investigated in a model of stroke where the middle cerebral artery was transiently occluded with endothelin-1 in the conscious spontaneously hypertensive rat. IRAP inhibitor was administered into the lateral ventricle at 2 or 6 h after stroke, with subsequent doses delivered at 24, 48 and 70 h post-stroke. Functional outcomes were assessed prior to drug treatment, and on day 1 and 3 post-stroke. Histological analyses and neuroinflammatory cytokine profiling were conducted at 72 and 24 h post-stroke respectively. IRAP inhibitor treatment following stroke significantly reduced infarct volume and improved neurological and motor deficits. These protective effects were maintained even when the therapeutic window was extended to 6 h. Examination of the cellular architecture at 72 h post-stroke demonstrated that IRAP expression was upregulated in CD11b positive cells and activated astrocytes. Furthermore, IRAP inhibitor treatment significantly increased gene expression for interleukin 6 and C-C motif chemokine ligand 2 in the ischemic core. This study provides proof-of-principle that selective inhibition of IRAP activity with two structurally distinct IRAP inhibitors reduces infarct volume and improves functional outcome even when the first dose is administered 6 h post-stroke. This is the first direct evidence that IRAP inhibitors are a class of drug with potential use in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Hunter
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Robert Widdop
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Barbara Kemp-Harper
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Claudia McCarthy
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
6
|
Zuchowski Y, Carty J, Terker AS, Bock F, Trapani JB, Bhave G, Watts JA, Keller S, Zhang M, Zent R, Harris RC, Arroyo JP. Insulin-regulated aminopeptidase is required for water excretion in response to acute hypotonic stress. Am J Physiol Renal Physiol 2023; 324:F521-F531. [PMID: 36995926 PMCID: PMC10202483 DOI: 10.1152/ajprenal.00318.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
The objective of this study was to understand the response of mice lacking insulin-regulated aminopeptidase (IRAP) to an acute water load. For mammals to respond appropriately to acute water loading, vasopressin activity needs to decrease. IRAP degrades vasopressin in vivo. Therefore, we hypothesized that mice lacking IRAP have an impaired ability to degrade vasopressin and, thus, have persistent urinary concentration. Age-matched 8- to 12-wk-old IRAP wild-type (WT) and knockout (KO) male mice were used for all experiments. Blood electrolytes and urine osmolality were measured before and 1 h after water load (∼2 mL sterile water via intraperitoneal injection). Urine was collected from IRAP WT and KO mice for urine osmolality measurements at baseline and after 1 h administration of the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). Immunofluorescence and immunoblot analysis were performed on kidneys at baseline and after 1 h acute water load. IRAP was expressed in the glomerulus, thick ascending loop of Henle, distal tubule, connecting duct, and collecting duct. IRAP KO mice had elevated urine osmolality compared with WT mice due to higher membrane expression of aquaporin 2 (AQP2), which was restored to that of controls after administration of OPC-31260. IRAP KO mice developed hyponatremia after an acute water load because they were unable to increase free water excretion due to increased surface expression of AQP2. In conclusion, IRAP is required to increase water excretion in response to an acute water load due to persistent vasopressin stimulation of AQP2.NEW & NOTEWORTHY Insulin-regulated aminopeptidase (IRAP) degrades vasopressin, but its role in urinary concentration and dilution is unknown. Here, we show that IRAP-deficient mice have a high urinary osmolality at baseline and are unable to excrete free water in response to water loading. These results reveal a novel regulatory role for IRAP in urine concentration and dilution.
Collapse
Affiliation(s)
- Yvonne Zuchowski
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Joshua Carty
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jonathan B Trapani
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States
| | - Susanna Keller
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Mingzhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Diaz-Vegas A, Norris DM, Jall-Rogg S, Cooke KC, Conway OJ, Shun-Shion AS, Duan X, Potter M, van Gerwen J, Baird HJ, Humphrey SJ, James DE, Fazakerley DJ, Burchfield JG. A high-content endogenous GLUT4 trafficking assay reveals new aspects of adipocyte biology. Life Sci Alliance 2023; 6:e202201585. [PMID: 36283703 PMCID: PMC9595207 DOI: 10.26508/lsa.202201585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced GLUT4 translocation to the plasma membrane in muscle and adipocytes is crucial for whole-body glucose homeostasis. Currently, GLUT4 trafficking assays rely on overexpression of tagged GLUT4. Here we describe a high-content imaging platform for studying endogenous GLUT4 translocation in intact adipocytes. This method enables high fidelity analysis of GLUT4 responses to specific perturbations, multiplexing of other trafficking proteins and other features including lipid droplet morphology. Using this multiplexed approach we showed that Vps45 and Rab14 are selective regulators of GLUT4, but Trarg1, Stx6, Stx16, Tbc1d4 and Rab10 knockdown affected both GLUT4 and TfR translocation. Thus, GLUT4 and TfR translocation machinery likely have some overlap upon insulin-stimulation. In addition, we identified Kif13A, a Rab10 binding molecular motor, as a novel regulator of GLUT4 traffic. Finally, comparison of endogenous to overexpressed GLUT4 highlights that the endogenous GLUT4 methodology has an enhanced sensitivity to genetic perturbations and emphasises the advantage of studying endogenous protein trafficking for drug discovery and genetic analysis of insulin action in relevant cell types.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sigrid Jall-Rogg
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Olivia J Conway
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Xiaowen Duan
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Harry Jm Baird
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Pei J, Prasad M, Mohamed Helal G, El-Sherbiny M, Abdelmonem Elsherbini DM, Rajagopal P, Palanisamy CP, Veeraraghavan VP, Jayaraman S, Surapaneni KM. Beta-Sitosterol Facilitates GLUT4 Vesicle Fusion on the Plasma Membrane via the Activation of Rab/IRAP/Munc 18 Signaling Pathways in Diabetic Gastrocnemius Muscle of Adult Male Rats. Bioinorg Chem Appl 2022; 2022:7772305. [PMID: 35992048 PMCID: PMC9388314 DOI: 10.1155/2022/7772305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/21/2022] [Indexed: 12/18/2022] Open
Abstract
Nutritional overload in the form of high-fat and nonglycolysis sugar intake contributes towards the accelerated creation of reactive oxygen species (ROS), hyperglycemia, and dyslipidemia. Glucose absorption and its subsequent oxidation processes in fat and muscle tissues alter as a consequence of these modifications. Insulin resistance (IR) caused glucose transporter 4 (GLUT4) translocation to encounter a challenge that manifested itself as changes in glycolytic pathways and insulin signaling. We previously found that beta (β)-sitosterol reduces IR in fat tissue via IRS-1/PI3K/Akt facilitated signaling due to its hypolipidemic and hypoglycemic activity. The intention of this research was to see whether the phytosterol β-sitosterol can aid in the translocation of GLUT4 in rats fed on high-fat diet (HFD) and sucrose by promoting Rab/IRAP/Munc 18 signaling molecules. The rats were labeled into four groups, namely control rats, HFD and sucrose-induced diabetic control rats, HFD and sucrose-induced diabetic rats given oral dose of 20 mg/kg body wt./day of β-sitosterol treatment for 30 days, and HFD and sucrose-induced diabetic animals given oral administration of 50 mg/kg body wt./day metformin for 30 days. Diabetic rats administered with β-sitosterol and normalized the titers of blood glucose, serum insulin, serum testosterone, and the status of insulin tolerance and oral glucose tolerance. In comparison with the control group, β-sitosterol effectively regulated both glycolytic and gluconeogenesis enzymes. Furthermore, qRT-PCR analysis of the mRNA levels of key regulatory genes such as SNAP23, VAMP-2, syntaxin-4, IRAP, vimentin, and SPARC revealed that β-sitosterol significantly regulated the mRNA levels of the above genes in diabetic gastrocnemius muscle. Protein expression analysis of Rab10, IRAP, vimentin, and GLUT4 demonstrated that β-sitosterol had a positive effect on these proteins, resulting in effective GLUT4 translocation in skeletal muscle. According to the findings, β-sitosterol reduced HFD and sucrose-induced IR and augmented GLUT4 translocation in gastrocnemius muscle through insulin signaling modulation via Rab/IRAP/Munc 18 and glucose metabolic enzymes. The present work is the first of its kind to show that β-sitosterol facilitates GLUT4 vesicle fusion on the plasma membrane via Rab/IRAP/Munc 18 signaling molecules in gastrocnemius muscle.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains, Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ghada Mohamed Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai 600078, India
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry,Molecular Virology,Medical Education,Research,Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| |
Collapse
|
9
|
Endosomal v-ATPase as a Sensor Determining Myocardial Substrate Preference. Metabolites 2022; 12:metabo12070579. [PMID: 35888703 PMCID: PMC9316095 DOI: 10.3390/metabo12070579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The heart is a metabolically flexible omnivore that can utilize a variety of substrates for energy provision. To fulfill cardiac energy requirements, the healthy adult heart mainly uses long-chain fatty acids and glucose in a balanced manner, but when exposed to physiological or pathological stimuli, it can switch its substrate preference to alternative substrates such as amino acids (AAs) and ketone bodies. Using the failing heart as an example, upon stress, the fatty acid/glucose substrate balance is upset, resulting in an over-reliance on either fatty acids or glucose. A chronic fuel shift towards a single type of substrate is linked with cardiac dysfunction. Re-balancing myocardial substrate preference is suggested as an effective strategy to rescue the failing heart. In the last decade, we revealed that vacuolar-type H+-ATPase (v-ATPase) functions as a key regulator of myocardial substrate preference and, therefore, as a novel potential treatment approach for the failing heart. Fatty acids, glucose, and AAs selectively influence the assembly state of v-ATPase resulting in modulation of its proton-pumping activity. In this review, we summarize these novel insights on v-ATPase as an integrator of nutritional information. We also describe its exploitation as a therapeutic target with focus on supplementation of AA as a nutraceutical approach to fight lipid-induced insulin resistance and contractile dysfunction of the heart.
Collapse
|
10
|
Wang TN, Hu XG, Chen GX. Uses of knockout, knockdown, and transgenic models in the studies of glucose transporter 4. World J Meta-Anal 2022; 10:1-11. [DOI: 10.13105/wjma.v10.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
|
11
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
12
|
Eickelschulte S, Hartwig S, Leiser B, Lehr S, Joschko V, Chokkalingam M, Chadt A, Al-Hasani H. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction with insulin-regulated aminopeptidase. J Biol Chem 2021; 296:100637. [PMID: 33872597 PMCID: PMC8131924 DOI: 10.1016/j.jbc.2021.100637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
TBC1D4 is a 160 kDa multidomain Rab GTPase-activating protein (RabGAP) and a downstream target of the insulin- and contraction-activated kinases AKT and AMPK. Phosphorylation of TBC1D4 has been linked to translocation of GLUT4 from storage vesicles (GSVs) to the cell surface. However, its impact on enzymatic activity is not well understood, as previous studies mostly investigated the truncated GAP domain lacking the known phosphorylation sites. In the present study, we expressed and purified recombinant full-length TBC1D4 using a baculovirus system. Size-exclusion chromatography and coimmunoprecipitation experiments revealed that full-length TBC1D4 forms oligomers of ∼600 kDa. Compared with the truncated GAP domain, full-length TBC1D4 displayed similar substrate specificity, but had a markedly higher specific GAP activity toward Rab10. Using high-resolution mass spectrometry, we mapped 19 Ser/Thr phosphorylation sites in TBC1D4. We determined Michaelis–Menten kinetics using in vitro phosphorylation assays with purified kinases and stable isotope-labeled γ-[18O4]-ATP. These data revealed that Ser324 (KM ∼6 μM) and Thr649 (KM ∼25 μM) were preferential sites for phosphorylation by AKT, whereas Ser348, Ser577, Ser595 (KM ∼10 μM), Ser711 (KM ∼79 μM), and Ser764 were found to be preferred targets for AMPK. Phosphorylation of TBC1D4 by AKT or AMPK did not alter the intrinsic RabGAP activity, but did disrupt interaction with insulin-regulated aminopeptidase (IRAP), a resident protein of GSVs implicated in GLUT4 trafficking. These findings provide evidence that insulin and contraction may regulate TBC1D4 function primarily by disrupting the recruitment of the RabGAP to GLUT4 vesicles.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Sonja Hartwig
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Ben Leiser
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Stefan Lehr
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Viola Joschko
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Manopriya Chokkalingam
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
13
|
Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front Mol Biosci 2020; 7:583556. [PMID: 33195428 PMCID: PMC7606930 DOI: 10.3389/fmolb.2020.583556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.
Collapse
Affiliation(s)
| | - Irini Evnouchidou
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Inovarion, Paris, France
| | - Vivien Caillens
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Peter van Endert
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Université de Paris, INSERM Unité 1151, CNRS UMR 8253, Paris, France.,Service d'immunologie biologique, AP-HP, Hôpital Necker, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| |
Collapse
|
14
|
Vear A, Gaspari T, Thompson P, Chai SY. Is There an Interplay Between the Functional Domains of IRAP? Front Cell Dev Biol 2020; 8:585237. [PMID: 33134302 PMCID: PMC7550531 DOI: 10.3389/fcell.2020.585237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
As a member of the M1 family of aminopeptidases, insulin regulated aminopeptidase (IRAP) is characterized by distinct binding motifs at the active site in the C-terminal domain that mediate the catalysis of peptide substrates. However, what makes IRAP unique in this family of enzymes is that it also possesses trafficking motifs at the N-terminal domain which regulate the movement of IRAP within different intracellular compartments. Research on the role of IRAP has focused predominantly on the C-terminus catalytic domain in different physiological and pathophysiological states ranging from pregnancy to memory loss. Many of these studies have utilized IRAP inhibitors, that bind competitively to the active site of IRAP, to explore the functional significance of its catalytic activity. However, it is unknown whether these inhibitors are able to access intracellular sites where IRAP is predominantly located in a basal state as the enzyme may need to be at the cell surface for the inhibitors to mediate their effects. This property of IRAP has often been overlooked. Interestingly, in some pathophysiological states, the distribution of IRAP is altered. This, together with the fact that IRAP possesses trafficking motifs, suggest the localization of IRAP may play an important role in defining its physiological or pathological functions and provide insights into the interplay between the two functional domains of the protein.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Philip Thompson
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Camus SM, Camus MD, Figueras-Novoa C, Boncompain G, Sadacca LA, Esk C, Bigot A, Gould GW, Kioumourtzoglou D, Perez F, Bryant NJ, Mukherjee S, Brodsky FM. CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis. J Cell Biol 2020; 219:133472. [PMID: 31863584 PMCID: PMC7039200 DOI: 10.1083/jcb.201812135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
Blood glucose clearance relies on insulin-stimulated exocytosis of glucose transporter 4 (GLUT4) from sites of sequestration in muscle and fat. This work demonstrates that, in humans, CHC22 clathrin controls GLUT4 traffic from the ER-to-Golgi intermediate compartment to sites of sequestration during GLUT4 pathway biogenesis. Glucose transporter 4 (GLUT4) is sequestered inside muscle and fat and then released by vesicle traffic to the cell surface in response to postprandial insulin for blood glucose clearance. Here, we map the biogenesis of this GLUT4 traffic pathway in humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits through the early secretory pathway more slowly than the constitutively secreted GLUT1 transporter and localize CHC22 to the ER-to-Golgi intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, as demonstrated by an essential role in forming the replication vacuole of Legionella pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes with ERGIC tether p115, GLUT4, and sortilin, and downregulation of either p115 or CHC22, but not GM130 or sortilin, abrogates insulin-responsive GLUT4 release. This indicates that CHC22 traffic initiates human GLUT4 sequestration from the ERGIC and defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, which lack CHC22.
Collapse
Affiliation(s)
- Stéphane M Camus
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| | - Marine D Camus
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| | | | - Gaelle Boncompain
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | | | - Christopher Esk
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Anne Bigot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, UMR S974 Centre for Research in Myology, Paris, France
| | - Gwyn W Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dimitrios Kioumourtzoglou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Biology and York Biomedical Research Institute, University of York, York, UK
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York, UK
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA
| | - Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA.,Department of Microbiology and Immunology and the G.W. Hooper Foundation, University of California, San Francisco, San Francisco, CA.,Division of Biosciences, University College London, London, UK
| |
Collapse
|
16
|
Building GLUT4 Vesicles: CHC22 Clathrin's Human Touch. Trends Cell Biol 2020; 30:705-719. [PMID: 32620516 DOI: 10.1016/j.tcb.2020.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Insulin stimulates glucose transport by triggering regulated delivery of intracellular vesicles containing the GLUT4 glucose transporter to the plasma membrane. This process is defective in diseases such as type 2 diabetes (T2DM). While studies in rodent cells have been invaluable in understanding GLUT4 traffic, evolutionary plasticity must be considered when extrapolating these findings to humans. Recent work has identified species-specific distinctions in GLUT4 traffic, notably the participation of a novel clathrin isoform, CHC22, in humans but not rodents. Here, we discuss GLUT4 sorting in different species and how studies of CHC22 have identified new routes for GLUT4 trafficking. We further consider how different sorting-protein complexes relate to these routes and discuss other implications of these pathways in cell biology and disease.
Collapse
|
17
|
Bryant NJ, Gould GW. Insulin stimulated GLUT4 translocation - Size is not everything! Curr Opin Cell Biol 2020; 65:28-34. [PMID: 32182545 DOI: 10.1016/j.ceb.2020.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Insulin-regulated trafficking of the facilitative glucose transporter GLUT4 has been studied in many cell types. The translocation of GLUT4 from intracellular membranes to the cell surface is often described as a highly specialised form of membrane traffic restricted to certain cell types such as fat and muscle, which are the major storage depots for insulin-stimulated glucose uptake. Here, we discuss evidence that favours the argument that rather than being restricted to specialised cell types, the machinery through which insulin regulates GLUT4 traffic is present in all cell types. This is an important point as it provides confidence in the use of experimentally tractable model systems to interrogate the trafficking itinerary of GLUT4.
Collapse
Affiliation(s)
- Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
18
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
19
|
Mizutani S, Matsumoto K, Kato Y, Mizutani E, Mizutani H, Iwase A, Shibata K. New insights into human endometrial aminopeptidases in both implantation and menstruation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140332. [PMID: 31765716 DOI: 10.1016/j.bbapap.2019.140332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/16/2023]
Abstract
The endometrium cycle involves proliferation of endometrial epithelial cells in preparation for implantation of fertilized ovum. With ovulation, the endometrium secretes nutrients such as peptides and amino acids into the endometrial cavity. The histological evidence of ovulation in normal menstrual cycle includes subnuclear glycogen vacuoles surrounded by placental leucine aminopeptidase (P-LAP) in endometrial epithelial cells. P-LAP is an essentially involved in intracellular trafficking of glucose transporter (GLUT) 4 which is primarily important for glucose uptake in skeletal muscles and fat tissues. On the other hand, glucose influx from blood into endometrial epithelial cells is not mainly mediated by GLUTs, but by coincident appearing progesterone just after ovulation. Progesterone increases permeability of not only plasma membranes, but also lysosomal membranes, and this may be primarily involved in glucose influx. Progesterone also expands the exocytosis in the endometrium after ovulation, and endometrial secretion after ovulation is possibly apocrine and holocrine, which is augmented and exaggerated exocytosis of the lysosomal contents. The endometrial spiral arteries/arterioles are surrounded by endometrial stromal cells which are differentiated into decidual/pre-decidual cells. Decidual cells are devoid of aminopeptidase A (APA), possibly leading to enhancement of Angiotensin-II action in decidual cell area due to loss of its degradation by APA. Angiotensin-II is thought to exert growth-factor-like effects in post-implantation embryos in decidual cells, thereby contributing to implantation. Without implantation, angiotensin-II constricts the endometrial spiral arteries/arterioles to promote menstruation. Thus, P-LAP and APA may be involved in homeostasis in uterus via regulating glucose transport and vasoconstrictive peptides.
Collapse
Affiliation(s)
- Shigehiko Mizutani
- Daiyabilding Lady's Clinic, 3-15-1 Meieki, Nakamura-ku, Nagoya 450-0002, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Eita Mizutani
- Daiyabilding Lady's Clinic, 3-15-1 Meieki, Nakamura-ku, Nagoya 450-0002, Japan; Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, 3-6-10 Odobashi, Nakagawa-ku, Nagoya 454-8509, Japan
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Okazaki Municipal Hospital, 3-1 Koryuji-cho, Okazaaki 444-8553, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, 3-6-10 Odobashi, Nakagawa-ku, Nagoya 454-8509, Japan
| |
Collapse
|
20
|
Vasopressin inactivation: Role of insulin-regulated aminopeptidase. VITAMINS AND HORMONES 2019; 113:101-128. [PMID: 32138946 DOI: 10.1016/bs.vh.2019.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological importance of vasopressin inactivation has long been appreciated, but the mechanisms and potential pathophysiologic roles of this process remain active subjects of research. Human Placental Leucine Aminopeptidase (P-LAP, encoded by the LNPEP gene) is an important determinant of vasopressinase activity during pregnancy and is associated with gestational diabetes insipidus and preeclampsia. Insulin-Regulated Aminopeptidase (IRAP), the rodent homologue of P-LAP, is coregulated with the insulin-responsive glucose transporter, GLUT4, in adipose and muscle cells. Recently, the Tether containing a UBX domain for GLUT4 (TUG) protein was shown to mediate the coordinated regulation of water and glucose homeostasis. TUG sequesters IRAP and GLUT4 intracellularly in the absence of insulin. Insulin and other stimuli cause the proteolytic cleavage of TUG to mobilize these proteins to the cell surface, where IRAP acts to terminate the activity of circulating vasopressin. Intriguingly, genetic variation in LNPEP is associated with the vasopressin response and mortality during sepsis, and increased copeptin, a marker of vasopressin secretion, is associated with cardiovascular and metabolic disease. We propose that in the setting of insulin resistance in muscle, increased cell-surface IRAP and accelerated vasopressin degradation cause a compensatory increase in vasopressin secretion. The increased vasopressin concentrations present at the kidneys then contribute to hypertension in the metabolic syndrome. Further analyses of metabolism and of vasopressin and copeptin may yield novel insights into a unified pathophysiologic mechanism linking insulin resistance and hypertension, and potentially other components of the metabolic syndrome, in humans.
Collapse
|
21
|
Li DT, Habtemichael EN, Julca O, Sales CI, Westergaard XO, DeVries SG, Ruiz D, Sayal B, Bogan JS. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:453-470. [PMID: 31543708 PMCID: PMC6747935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Fat and muscle cells contain a specialized, intracellular organelle known as the GLUT4 storage vesicle (GSV). Insulin stimulation mobilizes GSVs, so that these vesicles fuse at the cell surface and insert GLUT4 glucose transporters into the plasma membrane. This example is likely one instance of a broader paradigm for regulated, non-secretory exocytosis, in which intracellular vesicles are translocated in response to diverse extracellular stimuli. GSVs have been studied extensively, yet these vesicles remain enigmatic. Data support the view that in unstimulated cells, GSVs are present as a pool of preformed small vesicles, which are distinct from endosomes and other membrane-bound organelles. In adipocytes, GSVs contain specific cargoes including GLUT4, IRAP, LRP1, and sortilin. They are formed by membrane budding, involving sortilin and probably CHC22 clathrin in humans, but the donor compartment from which these vesicles form remains uncertain. In unstimulated cells, GSVs are trapped by TUG proteins near the endoplasmic reticulum - Golgi intermediate compartment (ERGIC). Insulin signals through two main pathways to mobilize these vesicles. Signaling by the Akt kinase modulates Rab GTPases to target the GSVs to the cell surface. Signaling by the Rho-family GTPase TC10α stimulates Usp25m-mediated TUG cleavage to liberate the vesicles from the Golgi. Cleavage produces a ubiquitin-like protein modifier, TUGUL, that links the GSVs to KIF5B kinesin motors to promote their movement to the cell surface. In obesity, attenuation of these processes results in insulin resistance and contributes to type 2 diabetes and may simultaneously contribute to hypertension and dyslipidemia in the metabolic syndrome.
Collapse
Affiliation(s)
- Don T. Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Estifanos N. Habtemichael
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Omar Julca
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Chloe I. Sales
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Xavier O. Westergaard
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Stephen G. DeVries
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Diana Ruiz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Bhavesh Sayal
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT,To whom all correspondence should be addressed: Jonathan S. Bogan, Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020; Tel: 203-785-6319; Fax: 203-785-6462;
| |
Collapse
|
22
|
Pan X, Meriin A, Huang G, Kandror KV. Insulin-responsive amino peptidase follows the Glut4 pathway but is dispensable for the formation and translocation of insulin-responsive vesicles. Mol Biol Cell 2019; 30:1536-1543. [PMID: 30943117 PMCID: PMC6724691 DOI: 10.1091/mbc.e18-12-0792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In fat and skeletal muscle cells, insulin-responsive amino peptidase (IRAP) along with glucose transporter 4 (Glut4) and sortilin, represents a major component protein of the insulin-responsive vesicles (IRVs). Here, we show that IRAP, similar to Glut4 and sortilin, is retrieved from endosomes to the trans-Golgi network by retromer. Unlike Glut4, retrograde transport of IRAP does not require sortilin, as retromer can directly bind to the cytoplasmic tail of IRAP. Ablation of IRAP in 3T3-L1 adipocytes shifts the endosomal pool of Glut4 to more acidic endosomes, but does not affect IRV targeting, stability, and insulin responsiveness of Glut4.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Anatoli Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Guanrong Huang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Konstantin V. Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118,*Address correspondence to: K. V. Kandror ()
| |
Collapse
|
23
|
Sadler JBA, Lamb CA, Welburn CR, Adamson IS, Kioumourtzoglou D, Chi NW, Gould GW, Bryant NJ. The deubiquitinating enzyme USP25 binds tankyrase and regulates trafficking of the facilitative glucose transporter GLUT4 in adipocytes. Sci Rep 2019; 9:4710. [PMID: 30886164 PMCID: PMC6423145 DOI: 10.1038/s41598-019-40596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Key to whole body glucose homeostasis is the ability of fat and muscle cells to sequester the facilitative glucose transporter GLUT4 in an intracellular compartment from where it can be mobilized in response to insulin. We have previously demonstrated that this process requires ubiquitination of GLUT4 while numerous other studies have identified several molecules that are also required, including the insulin-responsive aminopeptidase IRAP and its binding partner, the scaffolding protein tankyrase. In addition to binding IRAP, Tankyrase has also been shown to bind the deubiquinating enzyme USP25. Here we demonstrate that USP25 and Tankyrase interact, and colocalise with GLUT4 in insulin-sensitive cells. Furthermore depletion of USP25 from adipocytes reduces cellular levels of GLUT4 and concomitantly blunts the ability of insulin to stimulate glucose transport. Collectively, these data support our model that sorting of GLUT4 into its insulin-sensitive store involves a cycle of ubiquitination and subsequent deubiquitination.
Collapse
Affiliation(s)
- Jessica B A Sadler
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christopher A Lamb
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cassie R Welburn
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Iain S Adamson
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Nia J Bryant
- Department of Biology, University of York, York, YO10 4HJ, UK.
| |
Collapse
|
24
|
Mafakheri S, Flörke RR, Kanngießer S, Hartwig S, Espelage L, De Wendt C, Schönberger T, Hamker N, Lehr S, Chadt A, Al-Hasani H. AKT and AMP-activated protein kinase regulate TBC1D1 through phosphorylation and its interaction with the cytosolic tail of insulin-regulated aminopeptidase IRAP. J Biol Chem 2018; 293:17853-17862. [PMID: 30275018 DOI: 10.1074/jbc.ra118.005040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
In skeletal muscle, the Rab GTPase-activating (GAP) protein TBC1D1 is phosphorylated by AKT and AMP-activated protein kinase (AMPK) in response to insulin and muscle contraction. Genetic ablation of Tbc1d1 or mutation of distinct phosphorylation sites impairs intracellular GLUT4 retention and GLUT4 traffic, presumably through alterations of the activation state of downstream Rab GTPases. Previous studies have focused on characterizing the C-terminal GAP domain of TBC1D1 that lacks the known phosphorylation sites, as well as putative regulatory domains. As a result, it has been unclear how phosphorylation of TBC1D1 would regulate its activity. In the present study, we have expressed, purified, and characterized recombinant full-length TBC1D1 in Sf9 insect cells via the baculovirus system. Full-length TBC1D1 showed RabGAP activity toward GLUT4-associated Rab8a, Rab10, and Rab14, indicating similar substrate specificity as the truncated GAP domain. However, the catalytic activity of the full-length TBC1D1 was markedly higher than that of the GAP domain. Although in vitro phosphorylation of TBC1D1 by AKT or AMPK increased 14-3-3 binding, it did not alter the intrinsic RabGAP activity. However, we found that TBC1D1 interacts through its N-terminal PTB domains with the cytoplasmic domain of the insulin-regulated aminopeptidase, a resident protein of GLUT4 storage vesicles, and this binding is disrupted by phosphorylation of TBC1D1 by AKT or AMPK. In summary, our findings suggest that other regions outside the GAP domain may contribute to the catalytic activity of TBC1D1. Moreover, our data indicate that recruitment of TBC1D1 to GLUT4-containing vesicles and not its GAP activity is regulated by insulin and contraction-mediated phosphorylation.
Collapse
Affiliation(s)
- Samaneh Mafakheri
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Ralf R Flörke
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Sibylle Kanngießer
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Sonja Hartwig
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Lena Espelage
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Christian De Wendt
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Tina Schönberger
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Nele Hamker
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Stefan Lehr
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Alexandra Chadt
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Hadi Al-Hasani
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| |
Collapse
|
25
|
Regulation of RabGAPs involved in insulin action. Biochem Soc Trans 2018; 46:683-690. [PMID: 29784647 DOI: 10.1042/bst20170479] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Rab (Ras-related proteins in brain) GTPases are key proteins responsible for a multiplicity of cellular trafficking processes. Belonging to the family of monomeric GTPases, they are regulated by cycling between their active GTP-bound and inactive GDP-bound conformations. Despite possessing a slow intrinsic GTP hydrolysis activity, Rab proteins rely on RabGAPs (Rab GTPase-activating proteins) that catalyze GTP hydrolysis and consequently inactivate the respective Rab GTPases. Two related RabGAPs, TBC1D1 and TBC1D4 (=AS160) have been described to be associated with obesity-related traits and type 2 diabetes in both mice and humans. Inactivating mutations of TBC1D1 and TBC1D4 lead to substantial changes in trafficking and subcellular distribution of the insulin-responsive glucose transporter GLUT4, and to subsequent alterations in energy substrate metabolism. The activity of the RabGAPs is controlled through complex phosphorylation events mediated by protein kinases including AKT and AMPK, and by putative regulatory interaction partners. However, the dynamics and downstream events following phosphorylation are not well understood. This review focuses on the specific role and regulation of TBC1D1 and TBC1D4 in insulin action.
Collapse
|
26
|
Broderick TL, Jankowski M, Gutkowska J. The effects of exercise training and caloric restriction on the cardiac oxytocin natriuretic peptide system in the diabetic mouse. Diabetes Metab Syndr Obes 2017; 10:27-36. [PMID: 28138261 PMCID: PMC5238809 DOI: 10.2147/dmso.s115453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Regular exercise training (ET) and caloric restriction (CR) are the frontline strategies in the treatment of type 2 diabetes mellitus with the aim at reducing cardiometabolic risk. ET and CR improve body weight and glycemic control, and experimental studies indicate that these paradigms afford cardioprotection. In this study, the effects of combined ET and CR on the cardioprotective oxytocin (OT)-natriuretic peptide (NP) system were determined in the db/db mouse, a model of type 2 diabetes associated with insulin resistance, hyperglycemia, and obesity. METHODS Five-week-old male db/db mice were assigned to the following groups: sedentary, ET, and ET + CR. Nonobese heterozygote littermates served as controls. ET was performed on a treadmill at moderate intensity, and CR was induced by reducing food intake by 30% of that consumed by sedentary db/db mice for a period of 8 weeks. RESULTS After 8 weeks, only ET + CR, but not ET, slightly improved body weight compared to sedentary db/db mice. Regardless of the treatment, db/db mice remained hyperglycemic. Hearts from db/db mice demonstrated reduced expression of genes linked to the cardiac OT-NP system. In fact, compared to control mice, mRNA expression of GATA binding protein 4 (GATA4), OT receptor, OT, brain NP, NP receptor type C, and endothelial nitric oxide synthase (eNOS) was decreased in hearts from sedentary db/db mice. Both ET alone and ET + CR increased the mRNA expression of GATA4 compared to sedentary db/db mice. Only ET combined with CR produced increased eNOS mRNA and protein expression. CONCLUSION Our data indicate that enhancement of eNOS by combined ET and CR may improve coronary endothelial vasodilator dysfunction in type 2 diabetes but did not prevent the downregulation of cardiac expression in the OT-NP system, possibly resulting from the sustained hyperglycemia and obesity in diabetic mice.
Collapse
Affiliation(s)
- Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Glendale, AZ, USA
- Correspondence: Tom L Broderick, Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA, Tel +1 623 572 3664, Fax +1 623 572 3673, Email
| | - Marek Jankowski
- Department of Medicine, Laboratory of Cardiovascular Biochemistry, Centre Hospitalier de l‘Université de Montréal-Hôtel-Dieu, Montréal, QC, Canada
| | - Jolanta Gutkowska
- Department of Medicine, Laboratory of Cardiovascular Biochemistry, Centre Hospitalier de l‘Université de Montréal-Hôtel-Dieu, Montréal, QC, Canada
| |
Collapse
|
27
|
Slamkova M, Zorad S, Krskova K. Alternative renin-angiotensin system pathways in adipose tissue and their role in the pathogenesis of obesity. Endocr Regul 2016; 50:229-240. [DOI: 10.1515/enr-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Adipose tissue expresses all the renin-angiotensin system (RAS) components that play an important role in the adipogenesis, lipid and glucose metabolism regulation in an auto/paracrine manner. The classical RAS has been found to be over-activated during the adipose tissue enlargement, thus elevated generation of angiotensin II (Ang II) may contribute to the obesity pathogenesis. The contemporary view on the RAS has become more complex with the discovery of alternative pathways, including angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor, (pro)renin receptor, as well as angiotensin IV(Ang IV)/AT4 receptor. Ang-(1-7) via Mas receptor counteracts with most of the deleterious effects of the Ang II-mediated by AT1 receptor implying its beneficial role in the glucose and lipid metabolism, oxidative stress, inflammation, and insulin resistance. Pro(renin) receptor may play a role (at least partial) in the pathogenesis of the obesity by increasing the local production of Ang II in adipose tissue as well as triggering signal transduction independently of Ang II. In this review, modulation of alternative RAS pathways in adipose tissue during obesity is discussed and the involvement of Ang-(1-7), (pro)renin and AT4 receptors in the regulation of adipose tissue homeostasis and insulin resistance is summarized.
Collapse
Affiliation(s)
- M Slamkova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - S Zorad
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - K Krskova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
28
|
Bruno J, Brumfield A, Chaudhary N, Iaea D, McGraw TE. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. J Cell Biol 2016; 214:61-76. [PMID: 27354378 PMCID: PMC4932369 DOI: 10.1083/jcb.201509052] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Sec16A is known to be required for COPII vesicle formation from the ER. Here, Bruno et al. show that, independent of its role at the ER, Sec16A is a RAB10 effector involved in the insulin-stimulated formation of specialized transport vesicles that ferry the GLUT4 glucose transporter to the plasma membrane of adipocytes. RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10–SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4.
Collapse
Affiliation(s)
- Joanne Bruno
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | | | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - David Iaea
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
29
|
Alponti RF, Alves PL, Silveira PF. Novel adipocyte aminopeptidases are selectively upregulated by insulin in healthy and obese rats. J Endocrinol 2016; 228:97-104. [PMID: 26577934 DOI: 10.1530/joe-15-0266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
The lack of a complete assembly of the sensitivity of subcellular aminopeptidase (AP) activities to insulin in different pathophysiological conditions has hampered the complete view of the adipocyte metabolic pathways and its implications in these conditions. Here we investigated the influence of insulin on basic AP (APB), neutral puromycin-sensitive AP (PSA), and neutral puromycin-insensitive AP (APM) in high and low density microsomal and plasma membrane fractions from adipocytes of healthy and obese rats. Catalytic activities of these enzymes were fluorometrically monitoring in these fractions with or without insulin stimulus. Canonical traffic such as insulin-regulated AP was not detected for these novel adipocyte APs in healthy and obese rats. However, insulin increased APM in low density microsomal and plasma membrane fractions from healthy rats, APB in high density microsomal fraction from obese rats and PSA in plasma membrane fraction from healthy rats. A new concept of intracellular compartment-dependent upregulation of AP enzyme activities by insulin emerges from these data. This relatively selective regulation has pathophysiological significance, since these enzymes are well known to act as catalysts and receptor of peptides directly related to energy metabolism. Overall, the regulation of each one of these enzyme activities reflects certain dysfunction in obese individuals.
Collapse
Affiliation(s)
- Rafaela Fadoni Alponti
- Laboratory of PharmacologyUnit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Avenida Vital Brasil, 1500, CEP05503-900 Sao Paulo, BrazilDepartment of PhysiologyUniversidade de Sao Paulo, Sao Paulo, Brazil Laboratory of PharmacologyUnit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Avenida Vital Brasil, 1500, CEP05503-900 Sao Paulo, BrazilDepartment of PhysiologyUniversidade de Sao Paulo, Sao Paulo, Brazil
| | - Patricia Lucio Alves
- Laboratory of PharmacologyUnit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Avenida Vital Brasil, 1500, CEP05503-900 Sao Paulo, BrazilDepartment of PhysiologyUniversidade de Sao Paulo, Sao Paulo, Brazil
| | - Paulo Flavio Silveira
- Laboratory of PharmacologyUnit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Avenida Vital Brasil, 1500, CEP05503-900 Sao Paulo, BrazilDepartment of PhysiologyUniversidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
30
|
Trans-Modulation of the Somatostatin Type 2A Receptor Trafficking by Insulin-Regulated Aminopeptidase Decreases Limbic Seizures. J Neurosci 2015; 35:11960-75. [PMID: 26311777 DOI: 10.1523/jneurosci.0476-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. In addition, IRAP ligands display anticonvulsive properties. We therefore sought to assess by in vitro and in vivo experiments in hippocampal rat tissue whether IRAP ligands could regulate the trafficking of the sst2A receptor and, consequently, modulate limbic seizures. Using pharmacological and cell biological approaches, we demonstrate that IRAP ligands accelerate the recycling of the sst2A receptor that has internalized in neurons in vitro or in vivo. Most importantly, because IRAP ligands increase the density of this inhibitory receptor at the plasma membrane, they also potentiate the neuropeptide SRIF inhibitory effects on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures and possibly for other neurological conditions in which downregulation of G-protein-coupled receptors occurs. SIGNIFICANCE STATEMENT The somatostatin type 2A receptor (sst2A) is localized on principal hippocampal neurons and displays anticonvulsant properties. Following agonist exposure, however, this receptor rapidly internalizes and recycles slowly. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. We therefore assessed by in vitro and in vivo experiments whether IRAP could regulate the trafficking of this receptor. We demonstrate that IRAP ligands accelerate sst2A recycling in hippocampal neurons. Because IRAP ligands increase the density of sst2A receptors at the plasma membrane, they also potentiate the effects of this inhibitory receptor on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures.
Collapse
|
31
|
Alponti RF, Silveira PF. Adipocyte aminopeptidases in obesity and fasting. Mol Cell Endocrinol 2015; 415:24-31. [PMID: 26257241 DOI: 10.1016/j.mce.2015.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/13/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
This study checked the existence of a diverse array of aminopeptidase (AP) enzymes in high (HDM) and low (LDM) density microsomal and plasma membrane (MF) fractions from adipocytes of control, monosodium glutamate obese and food deprived rats. Gene expression was detected for ArgAP, AspAP, MetAP, and two AlaAP (APM and PSA). APM and PSA had the highest catalytic efficiency, whereas AspAP the highest affinity. Subcellular distribution of AP activities depended on metabolic status. Comparing catalytic levels, AspAP in HDM, LDM and MF was absent in obese and control under food deprivation; PSA in LDM was 3.5-times higher in obese than in normally fed control and control and obese under food deprivation; MetAP in MF was 4.5-times higher in obese than in food deprived obese. Data show new AP enzymes genetically expressed in subcellular compartments of adipocytes, three of them with altered catalytic levels that respond to whole-body energetic demands.
Collapse
Affiliation(s)
- Rafaela Fadoni Alponti
- Laboratory of Pharmacology, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, Sao Paulo, Brazil; Department of Physiology, Universidade de Sao Paulo, Rua do Matao, Travessa 14, 101, 05508-900, Sao Paulo, Brazil
| | - Paulo Flavio Silveira
- Laboratory of Pharmacology, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, Sao Paulo, Brazil.
| |
Collapse
|
32
|
Habtemichael EN, Alcázar-Román A, Rubin BR, Grossi LR, Belman JP, Julca O, Löffler MG, Li H, Chi NW, Samuel VT, Bogan JS. Coordinated Regulation of Vasopressin Inactivation and Glucose Uptake by Action of TUG Protein in Muscle. J Biol Chem 2015; 290:14454-61. [PMID: 25944897 DOI: 10.1074/jbc.c115.639203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 01/16/2023] Open
Abstract
In adipose and muscle cells, insulin stimulates the exocytic translocation of vesicles containing GLUT4, a glucose transporter, and insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. A substrate of IRAP is vasopressin, which controls water homeostasis. The physiological importance of IRAP translocation to inactivate vasopressin remains uncertain. We previously showed that in skeletal muscle, insulin stimulates proteolytic processing of the GLUT4 retention protein, TUG, to promote GLUT4 translocation and glucose uptake. Here we show that TUG proteolysis also controls IRAP targeting and regulates vasopressin action in vivo. Transgenic mice with constitutive TUG proteolysis in muscle consumed much more water than wild-type control mice. The transgenic mice lost more body weight during water restriction, and the abundance of renal AQP2 water channels was reduced, implying that vasopressin activity is decreased. To compensate for accelerated vasopressin degradation, vasopressin secretion was increased, as assessed by the cosecreted protein copeptin. IRAP abundance was increased in T-tubule fractions of fasting transgenic mice, when compared with controls. Recombinant IRAP bound to TUG, and this interaction was mapped to a short peptide in IRAP that was previously shown to be critical for GLUT4 intracellular retention. In cultured 3T3-L1 adipocytes, IRAP was present in TUG-bound membranes and was released by insulin stimulation. Together with previous results, these data support a model in which TUG controls vesicle translocation by interacting with IRAP as well as GLUT4. Furthermore, the effect of IRAP to reduce vasopressin activity is a physiologically important consequence of vesicle translocation, which is coordinated with the stimulation of glucose uptake.
Collapse
Affiliation(s)
| | - Abel Alcázar-Román
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Bradley R Rubin
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Laura R Grossi
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Jonathan P Belman
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Omar Julca
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Michael G Löffler
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Hongjie Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Nai-Wen Chi
- the Veterans Affairs San Diego Healthcare System and Department of Medicine, University of California, San Diego, California 92093, and
| | - Varman T Samuel
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and the Veterans Affairs Medical Center, West Haven, Connecticut 06516
| | - Jonathan S Bogan
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020,
| |
Collapse
|
33
|
Abstract
The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure homeostasis and vascular injury and repair responses. The RAAS was originally thought to be an endocrine system critically important in regulating blood pressure homeostasis. Yet, important local forms of the RAAS have been described in many tissues, which are mostly independent of the systemic RAAS. These systems have been associated with diverse physiological functions, but also with inflammation, fibrosis and target-organ damage. Pharmacological modulation of the RAAS has brought about important advances in preventing morbidity and mortality associated with cardiovascular disease. Yet, traditional RAAS blockers such as angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) only reduce the risk of disease progression in patients with established cardiovascular or renal disease by ∼20% compared with other therapies. As more components of the RAAS are described, other potential therapeutic targets emerge, which could provide improved cardiovascular and renal protection beyond that provided by an ACE inhibitor or ARB. This Review summarizes the present and future pharmacological manipulation of this important system.
Collapse
Affiliation(s)
- Cesar A. Romero
- grid.413103.40000 0001 2160 8953Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, E&R 7th Floor, Room 7112, Detroit, 48202 MI USA
| | - Marcelo Orias
- Section of Nephrology, Sanatorio Allende, Hipólito Irigoyen 301, Córdoba, 5000 Argentina
| | - Matthew R. Weir
- grid.411024.20000 0001 2175 4264Division of Nephrology, University of Maryland Medical School, 22 South Greene Street, Baltimore, 21201 MD USA
| |
Collapse
|
34
|
Chadt A, Immisch A, de Wendt C, Springer C, Zhou Z, Stermann T, Holman GD, Loffing-Cueni D, Loffing J, Joost HG, Al-Hasani H. “Deletion of both Rab-GTPase–activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport [corrected]. Diabetes 2015; 64:746-59. [PMID: 25249576 DOI: 10.2337/db14-0368] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Rab-GTPase–activating proteins TBC1D1 and TBC1D4 (AS160) were previously shown to regulate GLUT4 translocation in response to activation of AKT and AMP-dependent kinase [corrected]. However, knockout mice lacking either Tbc1d1 or Tbc1d4 displayed only partially impaired insulin-stimulated glucose uptake in fat and muscle tissue. The aim of this study was to determine the impact of the combined inactivation of Tbc1d1 and Tbc1d4 on glucose metabolism in double-deficient (D1/4KO) mice. D1/4KO mice displayed normal fasting glucose concentrations but had reduced tolerance to intraperitoneally administered glucose, insulin, and AICAR. D1/4KO mice showed reduced respiratory quotient, indicating increased use of lipids as fuel. These mice also consistently showed elevated fatty acid oxidation in isolated skeletal muscle, whereas insulin-stimulated glucose uptake in muscle and adipose cells was almost completely abolished. In skeletal muscle and white adipose tissue, the abundance of GLUT4 protein, but not GLUT4 mRNA, was substantially reduced. Cell surface labeling of GLUTs indicated that RabGAP deficiency impairs retention of GLUT4 in intracellular vesicles in the basal state. Our results show that TBC1D1 and TBC1D4 together play essential roles in insulin-stimulated glucose uptake and substrate preference in skeletal muscle and adipose cells.
Collapse
Affiliation(s)
- Alexandra Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany German Center for Diabetes Research (DZD), Düsseldorf, Germany
| | - Anja Immisch
- German Institute for Human Nutrition, Potsdam, Germany
| | - Christian de Wendt
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Springer
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhou Zhou
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Torben Stermann
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, U.K
| | | | | | - Hans-Georg Joost
- German Center for Diabetes Research (DZD), Düsseldorf, Germany German Institute for Human Nutrition, Potsdam, Germany
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany German Center for Diabetes Research (DZD), Düsseldorf, Germany
| |
Collapse
|
35
|
Niwa M, Numaguchi Y, Ishii M, Kuwahata T, Kondo M, Shibata R, Miyata K, Oike Y, Murohara T. IRAP deficiency attenuates diet-induced obesity in mice through increased energy expenditure. Biochem Biophys Res Commun 2015; 457:12-8. [DOI: 10.1016/j.bbrc.2014.12.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 11/29/2022]
|
36
|
Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes. DIABETES & METABOLISM 2014; 40:400-10. [PMID: 24656589 DOI: 10.1016/j.diabet.2014.01.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 01/28/2023]
|
37
|
Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol Cell Biochem 2014; 395:11-27. [PMID: 24880482 DOI: 10.1007/s11010-014-2107-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 01/01/2023]
Abstract
Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1(Tyr632), p-Akt(Ser473), β-arrestin-2, c-Src, p-AS160(Thr642), and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.
Collapse
|
38
|
Abstract
Insulin regulates glucose uptake by controlling the subcellular location of GLUT4 glucose transporters. GLUT4 is sequestered within fat and muscle cells during low-insulin states, and is translocated to the cell surface upon insulin stimulation. The TUG protein is a functional tether that sequesters GLUT4 at the Golgi matrix. To stimulate glucose uptake, insulin triggers TUG endoproteolytic cleavage. Cleavage accounts for a large proportion of the acute effect of insulin to mobilize GLUT4 to the cell surface. During ongoing insulin exposure, endocytosed GLUT4 recycles to the plasma membrane directly from endosomes, and bypasses a TUG-regulated trafficking step. Insulin acts through the TC10α GTPase and its effector protein, PIST, to stimulate TUG cleavage. This action is coordinated with insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases, and with other signals to direct overall GLUT4 targeting. Data support the idea that the N-terminal TUG cleavage product, TUGUL, functions as a novel ubiquitin-like protein modifier to facilitate GLUT4 movement to the cell surface. The C-terminal TUG cleavage product is extracted from the Golgi matrix, which vacates an "anchoring" site to permit subsequent cycles of GLUT4 retention and release. Together, GLUT4 vesicle translocation and TUG cleavage may coordinate glucose uptake with physiologic effects of other proteins present in the GLUT4-containing vesicles, and with potential additional effects of the TUG C-terminal product. Understanding this TUG pathway for GLUT4 retention and release will shed light on the regulation of glucose uptake and the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan P Belman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, Box 208020, New Haven, CT, 06520-8020, USA
| | | | | |
Collapse
|
39
|
Nikolaou A, Stijlemans B, Laoui D, Schouppe E, Tran HTT, Tourwé D, Chai SY, Vanderheyden PML, Van Ginderachter JA. Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. J Renin Angiotensin Aldosterone Syst 2014; 15:466-79. [DOI: 10.1177/1470320313507621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Alexandros Nikolaou
- Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Benoit Stijlemans
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Huyen TT Tran
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Vrije Universiteit Brussel, Belgium
| | - Siew Y Chai
- Department of Physiology, Monash University, Australia
| | | | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
40
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
41
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
42
|
HÄRDTNER CARMEN, MÖRKE CAROLINE, WALTHER REINHARD, WOLKE CARMEN, LENDECKEL UWE. High glucose activates the alternative ACE2/Ang-(1-7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β-cells. Int J Mol Med 2013; 32:795-804. [PMID: 23942780 PMCID: PMC3812297 DOI: 10.3892/ijmm.2013.1469] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/22/2013] [Indexed: 01/13/2023] Open
Abstract
The activation of the classical angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 receptor (AT1R) axis of the renin-angiotensin system (RAS) has been associated with islet dysfunction and insulin resistance. Hyperglycaemia, hypertension and obesity, major components of metabolic syndrome, are all associated with increased systemic and tissue levels of Ang II. Whereas it is well established that Ang II, by binding to AT1R, impairs glucose-stimulated insulin secretion and insulin signaling, the contribution of alternative RAS axes to β-cell function remains to be fully elucidated. In this study, using the BRIN-BD11 rat insulinoma cell line, we i) examined the basal expression levels of components of classical and alternative RAS axes and ii) investigated the effects of normal (5.5 mM) and elevated (11, 15, 25 mM) glucose concentrations on their expression and/or enzymatic activity by means of reverse transcription quantitative PCR (RT-qPCR), immunoblot analysis and enzymatic activity assays. The results correlated with the insulin production and release. Essential components of all RAS axes were found to be expressed in the BRIN-BD11 cells. Components of the alternative RAS axes, ACE2, neutral endopeptidase 24.11, Mas receptor (Mas), aminopeptidases A (APA) and N (APN) and insulin-regulated aminopeptidase (IRAP) showed an increased expression/activity in response to high glucose. These alterations were paralleled by the glucose-dependent increase in insulin production and release. By contrast, components of the classical RAS axis, ACE, AT1R and Ang II type 2 receptor (AT2R), remained largely unaffected under these conditions. Glucose induced the activation of the alternative ACE2/Ang-(1-7)/Mas and APN/Ang IV/IRAP RAS axes simultaneously with the stimulation of insulin production/release. Our data suggest the existence of a functional link between the local RAS axis and pancreatic β-cell function; however, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- CARMEN HÄRDTNER
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| | - CAROLINE MÖRKE
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| | - REINHARD WALTHER
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| | - CARMEN WOLKE
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| | - UWE LENDECKEL
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17475 Greifswald, Germany
| |
Collapse
|
43
|
Huang G, Buckler-Pena D, Nauta T, Singh M, Asmar A, Shi J, Kim JY, Kandror KV. Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin. Mol Biol Cell 2013; 24:3115-22. [PMID: 23966466 PMCID: PMC3784384 DOI: 10.1091/mbc.e12-10-0765] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Insulin-dependent translocation of Glut4 to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. In undifferentiated cells, insulin responsiveness of Glut4 depends on the presence of sortilin, whereas sortilin responds to insulin regardless of Glut4 expression. Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential for their ability to respond to insulin stimulation. We prepared two lines of 3T3-L1 cells with low and high expression of myc7-Glut4 and studied its translocation to the plasma membrane upon insulin stimulation, using fluorescence-assisted cell sorting and cell surface biotinylation. In undifferentiated 3T3-L1 preadipocytes, translocation of myc7-Glut4 was low regardless of its expression levels. Coexpression of sortilin increased targeting of myc7-Glut4 to the IRVs, and its insulin responsiveness rose to the maximal levels observed in fully differentiated adipocytes. Sortilin ectopically expressed in undifferentiated cells was translocated to the plasma membrane regardless of the presence or absence of myc7-Glut4. AS160/TBC1D4 is expressed at low levels in preadipocytes but is induced in differentiation and provides an additional mechanism for the intracellular retention and insulin-stimulated release of Glut4.
Collapse
Affiliation(s)
- Guanrong Huang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Song X, Lichti CF, Townsend RR, Mueckler M. Single point mutations result in the miss-sorting of Glut4 to a novel membrane compartment associated with stress granule proteins. PLoS One 2013; 8:e68516. [PMID: 23874650 PMCID: PMC3713040 DOI: 10.1371/journal.pone.0068516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/29/2013] [Indexed: 01/16/2023] Open
Abstract
Insulin increases cellular glucose uptake and metabolism in the postprandial state by acutely stimulating the translocation of the Glut4 glucose transporter from intracellular membrane compartments to the cell surface in muscle and fat cells. The intracellular targeting of Glut4 is dictated by specific structural motifs within cytoplasmic domains of the transporter. We demonstrate that two leucine residues at the extreme C-terminus of Glut4 are critical components of a motif (IRM, insulin responsive motif) involved in the sorting of the transporter to insulin responsive vesicles in 3T3L1 adipocytes. Light microscopy, immunogold electron microscopy, subcellular fractionation, and sedimentation analysis indicate that mutations in the IRM cause the aberrant targeting of Glut4 to large dispersed membrane vesicles that are not insulin responsive. Proteomic characterization of rapidly and slowly sedimenting membrane vesicles (RSVs and SSVs) that were highly enriched by immunoadsorption for either wild-type Glut4 or an IRM mutant revealed that the major vesicle fraction containing the mutant transporter (IRM-RSVs) possessed a relatively small and highly distinct protein population that was enriched for proteins associated with stress granules. We suggest that the IRM is critical for an early step in the sorting of Glut4 to insulin-responsive subcellular membrane compartments and that IRM mutants are miss-targeted to relatively large, amorphous membrane vesicles that may be involved in a degradation pathway for miss-targeted or miss-folded proteins or represent a transitional membrane compartment that Glut4 traverses en route to insulin responsive storage compartments.
Collapse
Affiliation(s)
- XiaoMei Song
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cheryl F. Lichti
- Department of Pharmacology & Toxicology, University of Texas, Galveston, Texas, United States of America
| | - R. Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mike Mueckler
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
45
|
Sadacca LA, Bruno J, Wen J, Xiong W, McGraw TE. Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Mol Biol Cell 2013; 24:2544-57. [PMID: 23804653 PMCID: PMC3744946 DOI: 10.1091/mbc.e13-02-0103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RAB10 and RAB14 function at sequential steps of insulin-stimulated GLUT4 translocation to the plasma membrane. RAB14 functions upstream of RAB10 in GLUT4 sorting to the specialized transport vesicles, and RAB10 and its GAP protein comprise the main signaling module that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.
Collapse
Affiliation(s)
- L Amanda Sadacca
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
46
|
The Rab GTPase-activating protein TBC1D4/AS160 contains an atypical phosphotyrosine-binding domain that interacts with plasma membrane phospholipids to facilitate GLUT4 trafficking in adipocytes. Mol Cell Biol 2012; 32:4946-59. [PMID: 23045393 DOI: 10.1128/mcb.00761-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rab GTPase-activating protein TBC1D4/AS160 regulates GLUT4 trafficking in adipocytes. Nonphosphorylated AS160 binds to GLUT4 vesicles and inhibits GLUT4 translocation, and AS160 phosphorylation overcomes this inhibitory effect. In the present study we detected several new functional features of AS160. The second phosphotyrosine-binding domain in AS160 encodes a phospholipid-binding domain that facilitates plasma membrane (PM) targeting of AS160, and this function is conserved in other related RabGAP/Tre-2/Bub2/Cdc16 (TBC) proteins and an AS160 ortholog in Drosophila. This region also contains a nonoverlapping intracellular GLUT4-containing storage vesicle (GSV) cargo-binding site. The interaction of AS160 with GSVs and not with the PM confers the inhibitory effect of AS160 on insulin-dependent GLUT4 translocation. Constitutive targeting of AS160 to the PM increased the surface GLUT4 levels, and this was attributed to both enhanced AS160 phosphorylation and 14-3-3 binding and inhibition of AS160 GAP activity. We propose a model wherein AS160 acts as a regulatory switch in the docking and/or fusion of GSVs with the PM.
Collapse
|
47
|
Pham V, Albiston AL, Downes CE, Wong CH, Diwakarla S, Ng L, Lee S, Crack PJ, Chai SY. Insulin-Regulated Aminopeptidase Deficiency Provides Protection against Ischemic Stroke in Mice. J Neurotrauma 2012; 29:1243-8. [DOI: 10.1089/neu.2011.1824] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Vi Pham
- Howard Florey Institute, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | | | - Connie H.Y. Wong
- Department of Pharmacology, University of Melbourne, Victoria, Australia
- Department of Medicine, The University of Calgary, Canada
| | | | - Leelee Ng
- Howard Florey Institute, Victoria, Australia
| | - Seyoung Lee
- Howard Florey Institute, Victoria, Australia
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Peter J. Crack
- Department of Pharmacology, University of Melbourne, Victoria, Australia
| | - Siew Yeen Chai
- Howard Florey Institute, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
48
|
Abstract
To enhance glucose uptake into muscle and fat cells, insulin stimulates the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. This response requires the intersection of insulin signaling and vesicle trafficking pathways, and it is compromised in the setting of overnutrition to cause insulin resistance. Insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases and through the Rho GTPase TC10α to act on other targets. In unstimulated cells, GLUT4 is incorporated into specialized storage vesicles containing IRAP, LRP1, sortilin, and VAMP2, which are sequestered by TUG, Ubc9, and other proteins. Insulin mobilizes these vesicles directly to the plasma membrane, and it modulates the trafficking itinerary so that cargo recycles from endosomes during ongoing insulin exposure. Knowledge of how signaling and trafficking pathways are coordinated will be essential to understanding the pathogenesis of diabetes and the metabolic syndrome and may also inform a wide range of other physiologies.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|
49
|
The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation. Cell Res 2012; 22:1246-57. [PMID: 22473005 PMCID: PMC3411167 DOI: 10.1038/cr.2012.52] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2(-/-) mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.
Collapse
|
50
|
Saveanu L, van Endert P. The role of insulin-regulated aminopeptidase in MHC class I antigen presentation. Front Immunol 2012; 3:57. [PMID: 22566938 PMCID: PMC3342382 DOI: 10.3389/fimmu.2012.00057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/03/2012] [Indexed: 01/08/2023] Open
Abstract
Production of MHC-I ligands from antigenic proteins generally requires multiple proteolytic events. While the proteolytic steps required for antigen processing in the endogenous pathway are clearly established, persisting gaps of knowledge regarding putative cross-presentation compartments have made it difficult to map the precise proteolytic events required for generation of cross-presented antigens. It is only in the past decade that the importance of aminoterminal trimming as the final step in the endogenous presentation pathway has been recognized and that the corresponding enzymes have been described. This review focuses on the aminoterminal trimming of exogenous cross-presented peptides, with particular emphasis on the identification of insulin responsive aminopeptidase (IRAP) as the principal trimming aminopeptidase in endosomes and phagosomes.
Collapse
Affiliation(s)
- Loredana Saveanu
- Institut National de la Santé et de le Recherche Médicale Paris, France
| | | |
Collapse
|