1
|
Wang Z, Liu L, Pu Y, Fang Y, Lv W, Liu W. Distinct but Redundant Roles of ER Cargo Receptors p24 and Erv29 in Facilitating Proper Secretion of Cellulases in Trichoderma reesei. Mol Microbiol 2025; 123:344-361. [PMID: 39895577 DOI: 10.1111/mmi.15343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Trichoderma reesei represents an important industrial workhorse for (hemi)cellulase production. However, relatively little is known about the details of its secretory pathway ensuring the extremely high-level enzyme secretion and how they might be leveraged for engineering improved protein production. Here, the functions of T. reesei ER cargo receptors p24 and Erv29 in trafficking cellulase were characterised. Whereas individual deletion of p24 or erv29 resulted in only a marginal effect on extracellular cellulase secretion, distinct intracellular trafficking pathways exist for individual hydrolytic enzyme in T. reesei. Notably, the simultaneous absence of p24 and Erv29 abolished the secreted production of cellulases but not xylanases. The secretion defect was accompanied by an apparent intracellular accumulation of cellulases. Mutations of residues on the cytosolic side of p24 and Erv29 supposed to mediate COPII coat recognition also compromised cellulase secretion although the overall ER exit sites (ERES) formation did not seem to be affected. We further revealed that a VPL motif following the signal peptide of CBH2 necessitates its efficient secretion mediated by Erv29. These results indicate that two specific ER cargo receptors complement each other to mediate the proper intracellular trafficking of cellulases and thus ensuring their extracellular secretion.
Collapse
Affiliation(s)
- Zhixing Wang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Lin Liu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Yi Pu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Wenhao Lv
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Ronzier E, Satpute-Krishnan P. TMED9 coordinates the clearance of misfolded GPI-anchored proteins out of the ER and into the Golgi. PLoS Biol 2025; 23:e3003084. [PMID: 40203033 PMCID: PMC12052135 DOI: 10.1371/journal.pbio.3003084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025] Open
Abstract
The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here, we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET). From the Golgi, they access the plasma membrane where they are rapidly internalized for lysosomal degradation. We used biochemical and imaging approaches in cultured cells to demonstrate that at steady-state, the majority of misfolded GPI-APs reside in the ER in association with calnexin and TMED9. During RESET, they dissociate from calnexin and increase their association with TMED9. Inhibition of TMED9's function through siRNA-induced depletion or chemical inhibitor, BRD4780, blocked ER-export of misfolded GPI-APs. In contrast, TMED9-inhibition did not prevent ER-export of wild-type GPI-APs, indicating a specific role for TMED9 in GPI-AP PQC. Intriguingly, we discovered that acute treatment with BRD4780 induced a shift in TMED9 localization away from the ER to the downstream Golgi cisternae and blocked the RESET pathway. Upon removal of BRD4780 following acute treatment, TMED9 regained access to the ER where TMED9 was able to associate with the RESET substrate and restore the RESET pathway. These results suggest that TMED9 plays a requisite role in RESET by capturing misfolded GPI-APs that are released by calnexin within the ER and conveying them to the Golgi.
Collapse
Affiliation(s)
- Elsa Ronzier
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Ronzier E, Satpute-Krishnan P. TMED9 coordinates the clearance of misfolded GPI-anchored proteins out of the endoplasmic reticulum and into the Golgi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.27.615420. [PMID: 39974996 PMCID: PMC11838446 DOI: 10.1101/2024.09.27.615420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET). From the Golgi, they access the plasma membrane where they are rapidly internalized for lysosomal degradation. We used biochemical and imaging approaches in cultured cells to demonstrate that at steady-state, the majority of misfolded GPI-APs reside in the ER in association with calnexin and TMED9. During RESET, they dissociate from calnexin and increase their association with TMED9. Inhibition of TMED9's function through siRNA-induced depletion or chemical inhibitor, BRD4780, blocked ER-export of misfolded GPI-APs. By contrast, TMED9-inhibition did not prevent ER-export of wild type GPI-APs, indicating a specific role for TMED9 in GPI-AP PQC. Intriguingly, we discovered that acute treatment with BRD4780 induced a shift in TMED9 localization away from the ER to the downstream Golgi cisternae and blocked the RESET pathway. Upon removal of BRD4780 following acute treatment, TMED9 regained access to the ER where TMED9 was able to associate with the RESET substrate and restore the RESET pathway. These results suggest that TMED9 plays a requisite role in RESET by capturing misfolded GPI-APs that are released by calnexin within the ER and conveying them to the Golgi.
Collapse
|
4
|
Menon NA, Kumar CD, Ramachandran P, Blaize B, Gautam M, Cordani M, Lekha Dinesh Kumar. Small-molecule inhibitors of WNT signalling in cancer therapy and their links to autophagy and apoptosis. Eur J Pharmacol 2025; 986:177137. [PMID: 39551337 DOI: 10.1016/j.ejphar.2024.177137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cancer represents an intricate and heterogeneous ailment that evolves from a multitude of epigenetic and genetic variations that disrupt normal cellular function. The WNT/β-catenin pathway is essential in maintaining the balance between cell renewal and differentiation in various tissues. Abnormal activation of this pathway can lead to uncontrolled cell growth and initiate cancer across a variety of tissues such as the colon, skin, liver, and ovary. It enhances characteristics that lead to cancer progression, including angiogenesis, invasion and metastasis. Processes like autophagy and apoptosis which regulate cell death and play a crucial role in maintaining cellular equilibrium are also intimately linked with WNT/ β-catenin pathway. Thus, targeting WNT pathway has become a key strategy in developing antitumor therapies. Employing small molecule inhibitors has emerged as a targeted therapy to improve the clinical outcome compared to conventional cancer treatments. Many strategies using small molecule inhibitors for modulating the WNT/β-catenin pathway, such as hindering WNT ligands' secretion or interaction, disrupting receptor complex, and blocking the nuclear translocation of β-catenin have been investigated. These interventions have shown promise in both preclinical and clinical settings. This review provides a comprehensive understanding of the role of WNT/β-catenin signalling pathway's role in cancer, emphasizing its regulation of autophagy and apoptosis. Our goal is to highlight the potential of specific small molecule inhibitors targeting this pathway, fostering the development of novel, tailored cancer treatments.
Collapse
Affiliation(s)
- Nayana A Menon
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore, 632004, Tamil Nadu, India
| | - Pournami Ramachandran
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Britny Blaize
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Mridul Gautam
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
5
|
Bazua-Valenti S, Brown MR, Zavras J, Riedl Khursigara M, Grinkevich E, Sidhom EH, Keller KH, Racette M, Dvela-Levitt M, Quintanova C, Demirci H, Sewerin S, Goss AC, Lin J, Yoo H, Vaca Jacome AS, Papanastasiou M, Udeshi N, Carr SA, Himmerkus N, Bleich M, Mutig K, Bachmann S, Halbritter J, Kmoch S, Živná M, Kidd K, Bleyer AJ, Weins A, Alper SL, Shaw JL, Kost-Alimova M, Pablo JLB, Greka A. Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors. J Clin Invest 2024; 134:e180347. [PMID: 39680459 PMCID: PMC11645142 DOI: 10.1172/jci180347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/22/2024] [Indexed: 12/18/2024] Open
Abstract
The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.
Collapse
Affiliation(s)
- Silvana Bazua-Valenti
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Matthew R. Brown
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Jason Zavras
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Magdalena Riedl Khursigara
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth Grinkevich
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Eriene-Heidi Sidhom
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith H. Keller
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Racette
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Moran Dvela-Levitt
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Hasan Demirci
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Sebastian Sewerin
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Alissa C. Goss
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John Lin
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Hyery Yoo
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Alvaro S. Vaca Jacome
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Malvina Papanastasiou
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Namrata Udeshi
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A. Carr
- Proteomics Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nina Himmerkus
- Institute of Physiology, Christian - Albrechts - Universität, Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Christian - Albrechts - Universität, Kiel, Germany
| | - Kerim Mutig
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Sebastian Bachmann
- Institute of Translational Physiology and
- Department of Anatomy, Charité - Universitätsmedizin, Berlin, Germany
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kendrah Kidd
- Section on Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina, USA
| | - Anthony J. Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L. Alper
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jillian L. Shaw
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Maria Kost-Alimova
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Juan Lorenzo B. Pablo
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Anna Greka
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Smith M, Gay L, Babst M. ER-plasma membrane contact sites deliver ER lipids and proteins for rapid cell surface expansion. J Cell Biol 2024; 223:e202308137. [PMID: 39302311 PMCID: PMC11415304 DOI: 10.1083/jcb.202308137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
As a consequence of hypoosmotic shock, yeast cells swell rapidly and increase the surface area by ∼20% in 20 s. Approximately, 35% of this surface increase is mediated by the ER-plasma membrane contact sites, specifically the tricalbins, which are required for the delivery of both lipids and the GPI-anchored protein Crh2 from the cortical ER to the plasma membrane. Therefore, we propose a new function for the tricalbins: mediating the fusion of the ER to the plasma membrane at contact sites. This proposed fusion is triggered by calcium influx via the stretch-gated channel Cch1 and is supported by the anoctamin Ist2.
Collapse
Affiliation(s)
- Madison Smith
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Lincoln Gay
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Markus Babst
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Sagia GM, Georgiou X, Chamilos G, Diallinas G, Dimou S. Distinct trafficking routes of polarized and non-polarized membrane cargoes in Aspergillus nidulans. eLife 2024; 13:e103355. [PMID: 39431919 DOI: 10.7554/elife.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.
Collapse
Affiliation(s)
- Georgia Maria Sagia
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Georgios Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| |
Collapse
|
8
|
Rajakumar T, Hossain MA, Stopka SA, Micoogullari Y, Ang J, Agar NYR, Hanna J. Dysregulation of ceramide metabolism causes phytoceramide-dependent induction of the unfolded protein response. Mol Biol Cell 2024; 35:ar117. [PMID: 39024283 PMCID: PMC11449394 DOI: 10.1091/mbc.e24-03-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The unfolded protein response (UPR) detects and mitigates the harmful effects of dysregulated endoplasmic reticulum (ER) function. The UPR has been best characterized as a protein quality control response, and the sole UPR sensor in yeast, Ire1, is known to detect misfolded ER proteins. However, recent work suggests the UPR can also sense diverse defects within the ER membrane, including increased fatty acid saturation and altered phospholipid abundance. These and other lipid-related stimuli have been referred to as lipid bilayer stress and may be sensed independently through Ire1's transmembrane domain. Here, we show that the loss of Isc1, a phospholipase that catabolizes complex ceramides, causes UPR induction, even in the absence of exogenous stress. A series of chemical and genetic approaches identified a requirement for very long-chain fatty acid (VLCFA)-containing phytoceramides for UPR induction. In parallel, comprehensive lipidomics analyses identified large increases in the abundance of specific VLCFA-containing phytoceramides in the isc1Δ mutant. We failed to identify evidence of an accompanying defect in protein quality control or ER-associated protein degradation. These results extend our understanding of lipid bilayer stress in the UPR and provide a foundation for mechanistic investigation of this fascinating intersection between ceramide metabolism, membrane homeostasis, and the UPR.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Md Amin Hossain
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Sylwia A. Stopka
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Yagmur Micoogullari
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Jessie Ang
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| |
Collapse
|
9
|
Sharma S, Chaudhary V. Dissociation of Drosophila Evi-Wg Complex Occurs Post Apical Internalization in the Maturing Acidic Endosomes. Traffic 2024; 25:e12955. [PMID: 39313313 DOI: 10.1111/tra.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024]
Abstract
Signaling pathways activated by secreted Wnt ligands play an essential role in tissue development and the progression of diseases, like cancer. Secretion of the lipid-modified Wnt proteins is tightly regulated by a repertoire of intracellular factors. For instance, a membrane protein, Evi, interacts with the Wnt ligand in the ER, and it is essential for its further trafficking and release in the extracellular space. After dissociating from the Wnt, the Wnt-unbound Evi is recycled back to the ER via Golgi. However, where in this trafficking path Wnt proteins dissociate from Evi remains unclear. Here, we have used the Drosophila wing epithelium to trace the route of the Evi-Wg (Wnt homolog) complex leading up to their separation. In these polarized cells, Wg is first trafficked to the apical surface; however, the secretion of Wg is believed to occurs post-internalization via recycling. Our results show that the Evi-Wg complex is internalized from the apical surface and transported to the retromer-positive endosomes. Furthermore, using antibodies that specifically label the Wnt-unbound Evi, we show that Evi and Wg separation occurs post-internalization in the acidic endosomes. These results refine our understanding of the polarized trafficking of Wg and highlight the importance of Wg endocytosis in its secondary secretion.
Collapse
Affiliation(s)
- Satyam Sharma
- Cell and Developmental Signaling Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Varun Chaudhary
- Cell and Developmental Signaling Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
10
|
Castello-Serrano I, Heberle FA, Diaz-Rohrer B, Ippolito R, Shurer CR, Lujan P, Campelo F, Levental KR, Levental I. Partitioning to ordered membrane domains regulates the kinetics of secretory traffic. eLife 2024; 12:RP89306. [PMID: 38837189 PMCID: PMC11152573 DOI: 10.7554/elife.89306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting the Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.
Collapse
Affiliation(s)
- Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | | | | | - Rossana Ippolito
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Carolyn R Shurer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
11
|
Yang K, Feng Z, Pastor-Pareja JC. p24-Tango1 interactions ensure ER-Golgi interface stability and efficient transport. J Cell Biol 2024; 223:e202309045. [PMID: 38470362 PMCID: PMC10932740 DOI: 10.1083/jcb.202309045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
The eukaryotic p24 family, consisting of α-, β-, γ- and δ-p24 subfamilies, has long been known to be involved in regulating secretion. Despite increasing interest in these proteins, fundamental questions remain about their role. Here, we systematically investigated Drosophila p24 proteins. We discovered that members of all four p24 subfamilies are required for general secretion and that their localizations between ER exit site (ERES) and Golgi are interdependent in an α→βδ→γ sequence. We also found that localization of p24 proteins and ERES determinant Tango1 requires interaction through their respective GOLD and SH3 lumenal domains, with Tango1 loss sending p24 proteins to the plasma membrane and vice versa. Finally, we show that p24 loss expands the COPII zone at ERES and increases the number of ER-Golgi vesicles, supporting a restrictive role of p24 proteins on vesicle budding for efficient transport. Our results reveal Tango1-p24 interplay as central to the generation of a stable ER-Golgi interface.
Collapse
Affiliation(s)
- Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
12
|
Roberts BS, Mitra D, Abishek S, Beher R, Satpute-Krishnan P. The p24-family and COPII subunit SEC24C facilitate the clearance of alpha1-antitrypsin Z from the endoplasmic reticulum to lysosomes. Mol Biol Cell 2024; 35:ar45. [PMID: 38294851 PMCID: PMC10916869 DOI: 10.1091/mbc.e23-06-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
A subpopulation of the alpha-1-antitrypsin misfolding Z mutant (ATZ) is cleared from the endoplasmic reticulum (ER) via an ER-to-lysosome-associated degradation (ERLAD) pathway. Here, we report that the COPII subunit SEC24C and the p24-family of proteins facilitate the clearance of ATZ via ERLAD. In addition to the previously reported ERLAD components calnexin and FAM134B, we discovered that ATZ coimmunoprecipitates with the p24-family members TMP21 and TMED9. This contrasts with wild type alpha1-antitrypsin, which did not coimmunoprecipitate with FAM134B, calnexin or the p24-family members. Live-cell imaging revealed that ATZ and the p24-family members traffic together from the ER to lysosomes. Using chemical inhibitors to block ER exit or autophagy, we demonstrated that p24-family members and ATZ co-accumulate at SEC24C marked ER-exit sites or in ER-derived compartments, respectively. Furthermore, depletion of SEC24C, TMP21, or TMED9 inhibited lysosomal trafficking of ATZ and resulted in the increase of intracellular ATZ levels. Conversely, overexpression of these p24-family members resulted in the reduction of ATZ levels. Intriguingly, the p24-family members coimmunoprecipitate with ATZ, FAM134B, and SEC24C. Thus, we propose a model in which the p24-family functions in an adaptor complex linking SEC24C with the ERLAD machinery for the clearance of ATZ.
Collapse
Affiliation(s)
| | - Debashree Mitra
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Sudhanshu Abishek
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Richa Beher
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | |
Collapse
|
13
|
Castello-Serrano I, Heberle FA, Diaz-Rohrer B, Ippolito R, Shurer CR, Lujan P, Campelo F, Levental KR, Levental I. Partitioning to ordered membrane domains regulates the kinetics of secretory traffic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.18.537395. [PMID: 37131599 PMCID: PMC10153169 DOI: 10.1101/2023.04.18.537395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.
Collapse
|
14
|
Hong J, Li T, Chao Y, Xu Y, Zhu Z, Zhou Z, Gu W, Qu Q, Li D. Molecular basis of the inositol deacylase PGAP1 involved in quality control of GPI-AP biogenesis. Nat Commun 2024; 15:8. [PMID: 38167496 PMCID: PMC10761859 DOI: 10.1038/s41467-023-44568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The secretion and quality control of glycosylphosphatidylinositol-anchored proteins (GPI-APs) necessitates post-attachment remodeling initiated by the evolutionarily conserved PGAP1, which deacylates the inositol in nascent GPI-APs. Impairment of PGAP1 activity leads to developmental diseases in humans and fatality and infertility in animals. Here, we present three PGAP1 structures (2.66-2.84 Å), revealing its 10-transmembrane architecture and product-enzyme interaction details. PGAP1 holds GPI-AP acyl chains in an optimally organized, guitar-shaped cavity with apparent energetic penalties from hydrophobic-hydrophilic mismatches. However, abundant glycan-mediated interactions in the lumen counterbalance these repulsions, likely conferring substrate fidelity and preventing off-target hydrolysis of bulk membrane lipids. Structural and biochemical analyses uncover a serine hydrolase-type catalysis with atypical features and imply mechanisms for substrate entrance and product release involving a drawing compass movement of GPI-APs. Our findings advance the mechanistic understanding of GPI-AP remodeling.
Collapse
Affiliation(s)
- Jingjing Hong
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Tingting Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Yidan Xu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhini Zhu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China
| | - Weijie Gu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, School of Stomatology, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Fudan University, Shanghai, 200032, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
15
|
Li T, Yang F, Heng Y, Zhou S, Wang G, Wang J, Wang J, Chen X, Yao ZP, Wu Z, Guo Y. TMED10 mediates the trafficking of insulin-like growth factor 2 along the secretory pathway for myoblast differentiation. Proc Natl Acad Sci U S A 2023; 120:e2215285120. [PMID: 37931110 PMCID: PMC10655563 DOI: 10.1073/pnas.2215285120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
The insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2. We found that a type I transmembrane protein, TMED10, is essential for the secretion of IGF2 and for differentiation of mouse myoblast C2C12 cells. Further analyses indicate that the residues 112-140 in IGF2 are important for the secretion of IGF2 and these residues directly interact with the GOLD domain of TMED10. We then reconstituted the release of IGF2 into COPII vesicles. This assay suggests that TMED10 mediates the packaging of IGF2 into COPII vesicles to be efficiently delivered to the Golgi. Moreover, TMED10 also mediates ER export of TGN-localized cargo receptor, sortilin, which subsequently mediates TGN export of IGF2. These analyses indicate that TMED10 is critical for IGF2 secretion by directly regulating ER export and indirectly regulating TGN export of IGF2, providing insights into trafficking of IGF2 for myoblast differentiation.
Collapse
Affiliation(s)
- Tiantian Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Yang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Youshan Heng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shaopu Zhou
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianying Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xianwei Chen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhenguo Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518057, China
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology, Guangzhou 511453, China
| |
Collapse
|
16
|
Tutanov OS, Glass SE, Coffey RJ. Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:195-217. [PMID: 37840781 PMCID: PMC10569057 DOI: 10.20517/evcna.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to "bring order to chaos." In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.
Collapse
Affiliation(s)
- Oleg S. Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Sarah E. Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
17
|
Aguilera-Romero A, Lucena R, Sabido-Bozo S, Muñiz M. Impact of sphingolipids on protein membrane trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159334. [PMID: 37201864 DOI: 10.1016/j.bbalip.2023.159334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Membrane trafficking is essential to maintain the spatiotemporal control of protein and lipid distribution within membrane systems of eukaryotic cells. To achieve their functional destination proteins are sorted and transported into lipid carriers that construct the secretory and endocytic pathways. It is an emerging theme that lipid diversity might exist in part to ensure the homeostasis of these pathways. Sphingolipids, a chemical diverse type of lipids with special physicochemical characteristics have been implicated in the selective transport of proteins. In this review, we will discuss current knowledge about how sphingolipids modulate protein trafficking through the endomembrane systems to guarantee that proteins reach their functional destination and the proposed underlying mechanisms.
Collapse
Affiliation(s)
- Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - Rafael Lucena
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
18
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
19
|
Anwar MU, Sergeeva OA, Abrami L, Mesquita FS, Lukonin I, Amen T, Chuat A, Capolupo L, Liberali P, D'Angelo G, van der Goot FG. ER-Golgi-localized proteins TMED2 and TMED10 control the formation of plasma membrane lipid nanodomains. Dev Cell 2022; 57:2334-2346.e8. [PMID: 36174556 DOI: 10.1016/j.devcel.2022.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
To promote infections, pathogens exploit host cell machineries such as structural elements of the plasma membrane. Studying these interactions and identifying molecular players are ideal for gaining insights into the fundamental biology of the host cell. Here, we used the anthrax toxin to screen a library of 1,500 regulatory, cell-surface, and membrane trafficking genes for their involvement in the intoxication process. We found that endoplasmic reticulum (ER)-Golgi-localized proteins TMED2 and TMED10 are required for toxin oligomerization at the plasma membrane of human cells, an essential step dependent on localization to cholesterol-rich lipid nanodomains. Biochemical, morphological, and mechanistic analyses showed that TMED2 and TMED10 are essential components of a supercomplex that operates the exchange of both cholesterol and ceramides at ER-Golgi membrane contact sites. Overall, this study of anthrax intoxication led to the discovery that lipid compositional remodeling at ER-Golgi interfaces fully controls the formation of functional membrane nanodomains at the cell surface.
Collapse
Affiliation(s)
- Muhammad U Anwar
- Global Health Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Oksana A Sergeeva
- Global Health Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Francisco S Mesquita
- Global Health Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | - Triana Amen
- Global Health Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Audrey Chuat
- Global Health Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Laura Capolupo
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | - Giovanni D'Angelo
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
| | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
20
|
Abstract
A hallmark of eukaryotic cells is the ability to form a secretory pathway connecting many intracellular compartments. In the early secretory pathway, coated protein complex II (COPII)-coated vesicles mediate the anterograde transport of newly synthesized secretory cargo from the endoplasmic reticulum to the Golgi apparatus. The COPII coat complex is comprised of an inner layer of Sec23/Sec24 heterodimers and an outer layer of Sec13/Sec31 heterotetramers. In African trypanosomes, there are two paralogues each of Sec23 and Sec24, that form obligate heterodimers (TbSec23.2/TbSec24.1, TbSec23.1/TbSec24.2). It is not known if these form distinct homotypic classes of vesicles or one heterotypic class, but it is known that TbSec23.2/TbSec24.1 specifically mediate forward trafficking of GPI-anchored proteins (GPI-APs) in bloodstream-form trypanosomes (BSF). Here, we showed that this selectivity was lost in insect procyclic stage parasites (PCF). All isoforms of TbSec23 and TbSec24 are essential in PCF parasites as judged by RNAi knockdowns. RNAi silencing of each subunit had equivalent effects on the trafficking of GPI-APs and p67, a transmembrane lysosomal protein. However, silencing of the TbSec23.2/TbSec24.1 had heterodimer had a significant impact on COPII mediated trafficking of soluble TbCatL from the ER to the lysosome. This finding suggests a model in which selectivity of COPII transport was altered between the BSF and PCF trypanosomes, possibly as an adaptation to a digenetic life cycle. IMPORTANCE African trypanosomes synthesize dense surface coats composed of stage-specific glycosylphosphatidylinositol lipid anchored proteins. We previously defined specific machinery in bloodstream stage parasites that mediate the exit of these proteins from the endoplasmic reticulum. Here, we performed similar analyses in the procyclic insect stage and found significant differences in this process. These findings contribute to our understanding of secretory processes in this unusual eukaryotic model system.
Collapse
|
21
|
Rodriguez-Gallardo S, Sabido-Bozo S, Ikeda A, Araki M, Okazaki K, Nakano M, Aguilera-Romero A, Cortes-Gomez A, Lopez S, Waga M, Nakano A, Kurokawa K, Muñiz M, Funato K. Quality-controlled ceramide-based GPI-anchored protein sorting into selective ER exit sites. Cell Rep 2022; 39:110768. [PMID: 35508142 DOI: 10.1016/j.celrep.2022.110768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) exit the endoplasmic reticulum (ER) through a specialized export pathway in the yeast Saccharomyces cerevisiae. We have recently shown that a very-long acyl chain (C26) ceramide present in the ER membrane drives clustering and sorting of GPI-APs into selective ER exit sites (ERES). Now, we show that this lipid-based ER sorting also involves the C26 ceramide as a lipid moiety of GPI-APs, which is incorporated into the GPI anchor through a lipid-remodeling process after protein attachment in the ER. Moreover, we also show that a GPI-AP with a C26 ceramide moiety is monitored by the GPI-glycan remodelase Ted1, which, in turn, is required for receptor-mediated export of GPI-APs. Therefore, our study reveals a quality-control system that ensures lipid-based sorting of GPI-APs into selective ERESs for differential ER export, highlighting the physiological need for this specific export pathway.
Collapse
Affiliation(s)
- Sofia Rodriguez-Gallardo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Kouta Okazaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sergio Lopez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Miho Waga
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.
| | - Manuel Muñiz
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain.
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
22
|
Bernat-Silvestre C, Ma Y, Johnson K, Ferrando A, Aniento F, Marcote MJ. Characterization of Arabidopsis Post-Glycosylphosphatidylinositol Attachment to Proteins Phospholipase 3 Like Genes. FRONTIERS IN PLANT SCIENCE 2022; 13:817915. [PMID: 35222477 PMCID: PMC8874281 DOI: 10.3389/fpls.2022.817915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Lipid remodeling of Glycosylphosphatidylinositol (GPI) anchors is required for their maturation and may influence the localization and function of GPI-anchored proteins (GPI-APs). Maturation of GPI-anchors is well characterized in animals and fungi but very little is known about this process in plants. In yeast, the GPI-lipid remodeling occurs entirely at the ER and is initiated by the remodeling enzyme Bst1p (Post-Glycosylphosphatidylinositol Attachment to Proteins inositol deacylase 1 -PGAP1- in mammals and Arabidopsis). Next, the remodeling enzyme Per1p (Post-Glycosylphosphatidylinositol Attachment to Proteins phospholipase 3 -PGAP3- in mammals) removes a short, unsaturated fatty acid of phosphatidylinositol (PI) that is replaced with a very long-chain saturated fatty acid or ceramide to complete lipid remodeling. In mammals, lipid remodeling starts at the ER and is completed at the Golgi apparatus. Studies of the Arabidopsis PGAP1 gene showed that the lipid remodeling of the GPI anchor is critical for the final localization of GPI-APs. Here we characterized loss-of-function mutants of Arabidopsis Per1/PGAP3 like genes (AtPGAP3A and AtPGAP3B). Our results suggest that PGAP3A function is required for the efficient transport of GPI-anchored proteins from the ER to the plasma membrane/cell wall. In addition, loss of function of PGAP3A increases susceptibility to salt and osmotic stresses that may be due to the altered localization of GPI-APs in this mutant. Furthermore, PGAP3B complements a yeast strain lacking PER1 gene suggesting that PGAP3B and Per1p are functional orthologs. Finally, subcellular localization studies suggest that PGAP3A and PGAP3B cycle between the ER and the Golgi apparatus.
Collapse
Affiliation(s)
- Cesar Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Yingxuan Ma
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, VIC, Australia
| | - Kim Johnson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, VIC, Australia
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
23
|
Manzano-Lopez J, Rodriguez-Gallardo S, Sabido-Bozo S, Cortes-Gomez A, Perez-Linero AM, Lucena R, Cordones-Romero A, Lopez S, Aguilera-Romero A, Muñiz M. Crosslinking assay to study a specific cargo-coat interaction through a transmembrane receptor in the secretory pathway. PLoS One 2022; 17:e0263617. [PMID: 35143573 PMCID: PMC8830656 DOI: 10.1371/journal.pone.0263617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 12/03/2022] Open
Abstract
Intracellular trafficking through the secretory organelles depends on transient interactions between cargo proteins and transport machinery. Cytosolic coat protein complexes capture specific luminal cargo proteins for incorporation into transport vesicles by interacting with them indirectly through a transmembrane adaptor or cargo receptor. Due to their transient nature, it is difficult to study these specific ternary protein interactions just using conventional native co-immunoprecipitation. To overcome this technical challenge, we have applied a crosslinking assay to stabilize the transient and/or weak protein interactions. Here, we describe a protocol of protein crosslinking and co-immunoprecipitation, which was employed to prove the indirect interaction in the endoplasmic reticulum of a luminal secretory protein with a selective subunit of the cytosolic COPII coat through a specific transmembrane cargo receptor. This method can be extended to address other transient ternary interactions between cytosolic proteins and luminal or extracellular proteins through a transmembrane receptor within the endomembrane system.
Collapse
Affiliation(s)
- Javier Manzano-Lopez
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail: (JM-L); (AA-R); (MM)
| | - Sofia Rodriguez-Gallardo
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Ana Maria Perez-Linero
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rafael Lucena
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Cordones-Romero
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Sergio Lopez
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail: (JM-L); (AA-R); (MM)
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail: (JM-L); (AA-R); (MM)
| |
Collapse
|
24
|
Chen L, Tu L, Yang G, Banfield DK. Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Rep 2021; 37:110120. [PMID: 34965437 DOI: 10.1016/j.celrep.2021.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 01/15/2023] Open
Abstract
Newly synthesized glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive remodeling prior to transport to the plasma membrane. GPI-AP remodeling events serve as quality assurance signatures, and complete remodeling of the anchor functions as a transport warrant. Using a genetic approach in yeast cells, we establish that one remodeling event, the removal of ethanolamine-phosphate from mannose 2 via Ted1p (yPGAP5), is essential for cell viability in the absence of the Golgi-localized putative phosphodiesterase Dcr2p. While GPI-APs in which mannose 2 has not been remodeled in dcr2 ted1-deficient cells can still be delivered to the plasma membrane, their presence elicits a unique stress response. Stress is sensed by Mid2p, a constituent of the cell wall integrity pathway, whereupon signal promulgation culminates in activation of the spindle assembly checkpoint. Our results are consistent with a model in which cellular stress response and chromosome segregation checkpoint pathways are functionally interconnected.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Linna Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
25
|
Xie C, Shang Q, Mo C, Xiao Y, Wang G, Xie J, Jiang D, Xiao X. Early Secretory Pathway-Associated Proteins SsEmp24 and SsErv25 Are Involved in Morphogenesis and Pathogenicity in a Filamentous Phytopathogenic Fungus. mBio 2021; 12:e0317321. [PMID: 34933451 PMCID: PMC8689567 DOI: 10.1128/mbio.03173-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Proper protein secretion is critical for fungal development and pathogenesis. However, the potential roles of proteins involved in the early secretory pathway are largely undescribed in filamentous fungi. p24 proteins are cargo receptors that cycle between the endoplasmic reticulum (ER) and Golgi apparatus in the early secretory pathway and recruit cargo proteins to nascent vesicles. This study characterized the function of two p24 family proteins (SsEmp24 and SsErv25) in a phytopathogenic fungus, Sclerotinia sclerotiorum. Both SsEmp24 and SsErv25 were upregulated during the early stages of S. sclerotiorum infection. ΔSsEmp24 mutant and ΔSsErv25 mutant displayed abnormal vegetative growth and sclerotium formation, were defective in infection cushion formation, and showed lower virulence on host plants. ΔSsEmp24 mutant had a more severe abnormal phenotype than ΔSsErv25 mutant, implying that SsEmp24 could play a central role in the early secretory pathway. Similar to their Saccharomyces cerevisiae counterparts, SsEmp24 interacted with SsErv25 and predominantly colocalized in the ER or nuclear envelope. The absence of SsEmp24 or SsErv25 led to defective in protein secretion in S. sclerotiorum, including the pathogenicity-related extracellular hydrolytic enzymes and effectors. It is proposed that SsEmp24 and SsErv25, components in the early secretory pathway, are involved in modulating morphogenesis and pathogenicity in S. sclerotiorum by mediating protein secretion. IMPORTANCE Understanding the reproduction and pathogenesis mechanism of phytopathogens could provide new opinions to effectively control fungal diseases. Although it has been known that effectors and extracellular hydrolytic enzymes secreted by phytopathogenic fungi play important roles in fungus-host interactions, the secretion system for the delivery of virulence factors to the host is still largely undescribed. Although the role of the early secretory pathway-associated p24 proteins in S. cerevisiae has been well characterized, the function of these proteins in filamentous fungi was scarcely known prior to this study. The present research provides evidence that p24 proteins participate in the reproduction and pathogenesis of phytopathogenic fungi through the mediation of protein secretion. This research advances our understanding of p24 proteins in filamentous phytopathogenic fungi. In addition, the candidate cargos of the two p24 proteins, SsEmp24 and SsErv25, were screened out by comparative proteomics, which could aid the identification of novel development and virulence-associated factors in phytopathogenic fungi.
Collapse
Affiliation(s)
- Chong Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Qingna Shang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Chenmi Mo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yannong Xiao
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Gaofeng Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
26
|
Bernat-Silvestre C, Sánchez-Simarro J, Ma Y, Montero-Pau J, Johnson K, Aniento F, Marcote MJ. AtPGAP1 functions as a GPI inositol-deacylase required for efficient transport of GPI-anchored proteins. PLANT PHYSIOLOGY 2021; 187:2156-2173. [PMID: 34618080 PMCID: PMC8644293 DOI: 10.1093/plphys/kiab384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 05/19/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signaling, and cell wall biosynthesis. The GPI anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodeled. In mammals and yeast, this remodeling is required for GPI-APs to be included in Coat Protein II-coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodeling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and Post-GPI Attachment to Proteins Inositol Deacylase 1 (PGAP1, mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis (Arabidopsis thaliana) PGAP1 localizes to the ER and likely functions as the GPI inositol-deacylase that cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.
Collapse
Affiliation(s)
- César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
| | - Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Javier Montero-Pau
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
| | - Kim Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
- Author for communication: (M.J.M), (F.A)
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
- Author for communication: (M.J.M), (F.A)
| |
Collapse
|
27
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
28
|
Gomez-Navarro N, Melero A, Li XH, Boulanger J, Kukulski W, Miller EA. Cargo crowding contributes to sorting stringency in COPII vesicles. J Cell Biol 2021; 219:151777. [PMID: 32406500 PMCID: PMC7300426 DOI: 10.1083/jcb.201806038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Accurate maintenance of organelle identity in the secretory pathway relies on retention and retrieval of resident proteins. In the endoplasmic reticulum (ER), secretory proteins are packaged into COPII vesicles that largely exclude ER residents and misfolded proteins by mechanisms that remain unresolved. Here we combined biochemistry and genetics with correlative light and electron microscopy (CLEM) to explore how selectivity is achieved. Our data suggest that vesicle occupancy contributes to ER retention: in the absence of abundant cargo, nonspecific bulk flow increases. We demonstrate that ER leakage is influenced by vesicle size and cargo occupancy: overexpressing an inert cargo protein or reducing vesicle size restores sorting stringency. We propose that cargo recruitment into vesicles creates a crowded lumen that drives selectivity. Retention of ER residents thus derives in part from the biophysical process of cargo enrichment into a constrained spherical membrane-bound carrier.
Collapse
Affiliation(s)
| | - Alejandro Melero
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Xiao-Han Li
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jérôme Boulanger
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wanda Kukulski
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
29
|
Mammalian GPI-anchor modifications and the enzymes involved. Biochem Soc Trans 2021; 48:1129-1138. [PMID: 32573677 DOI: 10.1042/bst20191142] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.
Collapse
|
30
|
Yang G, Banfield DK. Cdc1p is a Golgi-localized glycosylphosphatidylinositol-anchored protein remodelase. Mol Biol Cell 2020; 31:2883-2891. [PMID: 33112703 PMCID: PMC7927193 DOI: 10.1091/mbc.e20-08-0539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive posttranslational modifications and remodeling, including the addition and subsequent removal of phosphoethanolamine (EtNP) from mannose 1 (Man1) and mannose 2 (Man2) of the glycan moiety. Removal of EtNP from Man1 is catalyzed by Cdc1p, an event that has previously been considered to occur in the endoplasmic reticulum (ER). We establish that Cdc1p is in fact a cis/medial Golgi membrane protein that relies on the COPI coatomer for its retention in this organelle. We also determine that Cdc1p does not cycle between the Golgi and the ER, and consistent with this finding, when expressed at endogenous levels ER-localized Cdc1p-HDEL is unable to support the growth of cdc1Δ cells. Our cdc1 temperature-sensitive alleles are defective in the transport of a prototypical GPI-AP-Gas1p to the cell surface, a finding we posit reveals a novel Golgi-localized quality control warrant. Thus, yeast cells scrutinize GPI-APs in the ER and also in the Golgi, where removal of EtNP from Man2 (via Ted1p in the ER) and from Man1 (by Cdc1p in the Golgi) functions as a quality assurance signal.
Collapse
Affiliation(s)
- Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR of China
| | - David K. Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR of China
| |
Collapse
|
31
|
Rodriguez-Gallardo S, Kurokawa K, Sabido-Bozo S, Cortes-Gomez A, Ikeda A, Zoni V, Aguilera-Romero A, Perez-Linero AM, Lopez S, Waga M, Araki M, Nakano M, Riezman H, Funato K, Vanni S, Nakano A, Muñiz M. Ceramide chain length-dependent protein sorting into selective endoplasmic reticulum exit sites. SCIENCE ADVANCES 2020; 6:6/50/eaba8237. [PMID: 33310842 PMCID: PMC7732199 DOI: 10.1126/sciadv.aba8237] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/30/2020] [Indexed: 05/05/2023]
Abstract
Protein sorting in the secretory pathway is crucial to maintain cellular compartmentalization and homeostasis. In addition to coat-mediated sorting, the role of lipids in driving protein sorting during secretory transport is a longstanding fundamental question that still remains unanswered. Here, we conduct 3D simultaneous multicolor high-resolution live imaging to demonstrate in vivo that newly synthesized glycosylphosphatidylinositol-anchored proteins having a very long chain ceramide lipid moiety are clustered and sorted into specialized endoplasmic reticulum exit sites that are distinct from those used by transmembrane proteins. Furthermore, we show that the chain length of ceramide in the endoplasmic reticulum membrane is critical for this sorting selectivity. Our study provides the first direct in vivo evidence for lipid chain length-based protein cargo sorting into selective export sites of the secretory pathway.
Collapse
Affiliation(s)
- Sofia Rodriguez-Gallardo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.
| | - Susana Sabido-Bozo
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Valeria Zoni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Ana Maria Perez-Linero
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sergio Lopez
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Miho Waga
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Howard Riezman
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Manuel Muñiz
- Department of Cell Biology, Faculty of Biology, University of Seville and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
32
|
Bernat-Silvestre C, De Sousa Vieira V, Sanchez-Simarro J, Pastor-Cantizano N, Hawes C, Marcote MJ, Aniento F. p24 Family Proteins Are Involved in Transport to the Plasma Membrane of GPI-Anchored Proteins in Plants. PLANT PHYSIOLOGY 2020; 184:1333-1347. [PMID: 32900981 PMCID: PMC7608175 DOI: 10.1104/pp.20.00880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/26/2020] [Indexed: 05/04/2023]
Abstract
p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the transport to the plasma membrane of glycosylphosphatidylinositol (GPI)-anchored proteins. We found that GPI-anchored proteins mostly localized to the ER in p24δ3δ4δ5δ6 mutant cells, in contrast to plasma membrane proteins with other types of membrane attachment. The plasma membrane localization of GPI-anchored proteins was restored in the p24δ3δ4δ5δ6 mutant upon transient expression of a single member of the p24 δ-1 subclass, RFP-p24δ5, which was dependent on the coiled-coil domain in p24δ5. The coiled-coil domain was also important for a direct interaction between p24δ5 and the GPI-anchored protein arabinogalactan protein4 (AGP4). These results suggest that Arabidopsis p24 proteins are involved in ER export and transport to the plasma membrane of GPI-anchored proteins.
Collapse
Affiliation(s)
- César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Vanessa De Sousa Vieira
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, OX3 0BP Oxford, United Kingdom
| | - Judit Sanchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, OX3 0BP Oxford, United Kingdom
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| |
Collapse
|
33
|
Peñalva MA, Moscoso‐Romero E, Hernández‐González M. Tracking exocytosis of aGPI‐anchored protein inAspergillus nidulans. Traffic 2020; 21:675-688. [DOI: 10.1111/tra.12761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Miguel A. Peñalva
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Esteban Moscoso‐Romero
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
- Morphogenesis and Cell Polarity Unit Instituto de Biología Funcional y Genómica CSIC‐Universidad de Salamanca Salamanca Spain
| | - Miguel Hernández‐González
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
- The Francis Crick Institute London UK
| |
Collapse
|
34
|
Abstract
Biological membranes consist of a surprisingly high number of different lipid species. Little is known about how individual lipids cooperate in modulating cellular functions. A new study suggests an intricate interplay of sphingolipids with ether lipids in vesicular transport.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Jiménez-Rojo N, Leonetti MD, Zoni V, Colom A, Feng S, Iyengar NR, Matile S, Roux A, Vanni S, Weissman JS, Riezman H. Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory Pathway. Curr Biol 2020; 30:3775-3787.e7. [DOI: 10.1016/j.cub.2020.07.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/05/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
36
|
Lopez S, Perez-Linero AM, Manzano-Lopez J, Sabido-Bozo S, Cortes-Gomez A, Rodriguez-Gallardo S, Aguilera-Romero A, Goder V, Muñiz M. Dual Independent Roles of the p24 Complex in Selectivity of Secretory Cargo Export from the Endoplasmic Reticulum. Cells 2020; 9:cells9051295. [PMID: 32456004 PMCID: PMC7291304 DOI: 10.3390/cells9051295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022] Open
Abstract
The cellular mechanisms that ensure the selectivity and fidelity of secretory cargo protein transport from the endoplasmic reticulum (ER) to the Golgi are still not well understood. The p24 protein complex acts as a specific cargo receptor for GPI-anchored proteins by facilitating their ER exit through a specialized export pathway in yeast. In parallel, the p24 complex can also exit the ER using the general pathway that exports the rest of secretory proteins with their respective cargo receptors. Here, we show biochemically that the p24 complex associates at the ER with other cargo receptors in a COPII-dependent manner, forming high-molecular weight multireceptor complexes. Furthermore, live cell imaging analysis reveals that the p24 complex is required to retain in the ER secretory cargos when their specific receptors are absent. This requirement does not involve neither the unfolded protein response nor the retrograde transport from the Golgi. Our results suggest that, in addition to its role as a cargo receptor in the specialized GPI-anchored protein pathway, the p24 complex also plays an independent role in secretory cargo selectivity during its exit through the general ER export pathway, preventing the non-selective bulk flow of native secretory cargos. This mechanism would ensure receptor-regulated cargo transport, providing an additional layer of regulation of secretory cargo selectivity during ER export.
Collapse
Affiliation(s)
- Sergio Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Ana Maria Perez-Linero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
| | - Javier Manzano-Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Alejandro Cortes-Gomez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Sofia Rodriguez-Gallardo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
| | - Veit Goder
- Department of Genetics, University of Seville, 41012 Seville, Spain;
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; (S.L.); (A.M.P.-L.); (J.M.-L.); (S.S.-B.); (A.C.-G.); (S.R.-G.); (A.A.-R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Correspondence: ; Tel.: +34-954556529
| |
Collapse
|
37
|
Phillips BP, Gomez-Navarro N, Miller EA. Protein quality control in the endoplasmic reticulum. Curr Opin Cell Biol 2020; 65:96-102. [PMID: 32408120 PMCID: PMC7588826 DOI: 10.1016/j.ceb.2020.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
Misfolded and mistargeted proteins in the early secretory pathway present significant risks to the cell. A diverse and integrated network of quality control pathways protects the cell from these threats. We focus on the discovery of new mechanisms that contribute to this protective network. Biochemical and structural advances in endoplasmic reticulum targeting fidelity, and in the redistribution of mistargeted substrates are discussed. We further review new discoveries in quality control at the inner nuclear membrane in the context of orphaned subunits. We consider developments in our understanding of cargo selection for endoplasmic reticulum export. Conflicting data on quality control by cargo receptor proteins are discussed and we look to important future questions for the field.
Collapse
|
38
|
Enhanced Efflux Pump Expression in Candida Mutants Results in Decreased Manogepix Susceptibility. Antimicrob Agents Chemother 2020; 64:AAC.00261-20. [PMID: 32179530 PMCID: PMC7179633 DOI: 10.1128/aac.00261-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Manogepix is a broad-spectrum antifungal agent that inhibits glycosylphosphatidylinositol (GPI) anchor biosynthesis. Using whole-genome sequencing, we characterized two efflux-mediated mechanisms in the fungal pathogens Candida albicans and Candida parapsilosis that resulted in decreased manogepix susceptibility. In C. albicans, a gain-of-function mutation in the transcription factor gene ZCF29 activated expression of ATP-binding cassette transporter genes CDR11 and SNQ2. Manogepix is a broad-spectrum antifungal agent that inhibits glycosylphosphatidylinositol (GPI) anchor biosynthesis. Using whole-genome sequencing, we characterized two efflux-mediated mechanisms in the fungal pathogens Candida albicans and Candida parapsilosis that resulted in decreased manogepix susceptibility. In C. albicans, a gain-of-function mutation in the transcription factor gene ZCF29 activated expression of ATP-binding cassette transporter genes CDR11 and SNQ2. In C. parapsilosis, a mitochondrial deletion activated expression of the major facilitator superfamily transporter gene MDR1.
Collapse
|
39
|
Abstract
At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
40
|
Abstract
Regulated transport through the secretory pathway is essential for embryonic development and homeostasis. Disruptions in this process impact cell fate, differentiation and survival, often resulting in abnormalities in morphogenesis and in disease. Several congenital malformations are caused by mutations in genes coding for proteins that regulate cargo protein transport in the secretory pathway. The severity of mutant phenotypes and the unclear aetiology of transport protein-associated pathologies have motivated research on the regulation and mechanisms through which these proteins contribute to morphogenesis. This review focuses on the role of the p24/transmembrane emp24 domain (TMED) family of cargo receptors in development and disease.
Collapse
|
41
|
Endoplasmic Reticulum Export of GPI-Anchored Proteins. Int J Mol Sci 2019; 20:ijms20143506. [PMID: 31319476 PMCID: PMC6678536 DOI: 10.3390/ijms20143506] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Protein export from the endoplasmic reticulum (ER) is an essential process in all eukaryotes driven by the cytosolic coat complex COPII, which forms vesicles at ER exit sites for transport of correctly assembled secretory cargo to the Golgi apparatus. The COPII machinery must adapt to the existing wide variety of different types of cargo proteins and to different cellular needs for cargo secretion. The study of the ER export of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), a special glycolipid-linked class of cell surface proteins, is contributing to address these key issues. Due to their special biophysical properties, GPI-APs use a specialized COPII machinery to be exported from the ER and their processing and maturation has been recently shown to actively regulate COPII function. In this review, we discuss the regulatory mechanisms by which GPI-APs are assembled and selectively exported from the ER.
Collapse
|
42
|
Komath SS, Singh SL, Pratyusha VA, Sah SK. Generating anchors only to lose them: The unusual story of glycosylphosphatidylinositol anchor biosynthesis and remodeling in yeast and fungi. IUBMB Life 2019; 70:355-383. [PMID: 29679465 DOI: 10.1002/iub.1734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present ubiquitously at the cell surface in all eukaryotes. They play a crucial role in the interaction of the cell with its external environment, allowing the cell to receive signals, respond to challenges, and mediate adhesion. In yeast and fungi, they also participate in the structural integrity of the cell wall and are often essential for survival. Roughly four decades after the discovery of the first GPI-APs, this review provides an overview of the insights gained from studies of the GPI biosynthetic pathway and the future challenges in the field. In particular, we focus on the biosynthetic pathway in Saccharomyces cerevisiae, which has for long been studied as a model organism. Where available, we also provide information about the GPI biosynthetic steps in other yeast/ fungi. Although the core structure of the GPI anchor is conserved across organisms, several variations are built into the biosynthetic pathway. The present Review specifically highlights these variations and their implications. There is growing evidence to suggest that several phenotypes are common to GPI deficiency and should be expected in GPI biosynthetic mutants. However, it appears that several phenotypes are unique to a specific step in the pathway and may even be species-specific. These could suggest the points at which the GPI biosynthetic pathway intersects with other important cellular pathways and could be points of regulation. They could be of particular significance in the study of pathogenic fungi and in identification of new and specific antifungal drugs/ drug targets. © 2018 IUBMB Life, 70(5):355-383, 2018.
Collapse
Affiliation(s)
| | - Sneh Lata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudisht Kumar Sah
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
43
|
Funato K, Riezman H, Muñiz M. Vesicular and non-vesicular lipid export from the ER to the secretory pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158453. [PMID: 31054928 DOI: 10.1016/j.bbalip.2019.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.
Collapse
Affiliation(s)
- Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Japan.
| | - Howard Riezman
- NCCR Chemical Biology and Department of Biochemistry, Sciences II, University of Geneva, Switzerland.
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
44
|
Ouyang H, Du T, Zhou H, Wilson IBH, Yang J, Latgé JP, Jin C. Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for proper transportation of the cell wall GPI-anchored proteins and polarized growth. Sci Rep 2019; 9:5857. [PMID: 30971734 PMCID: PMC6458175 DOI: 10.1038/s41598-019-42344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/21/2019] [Indexed: 01/10/2023] Open
Abstract
In fungi many proteins, which play important roles in maintaining the function of the cell wall and participating in pathogenic processes, are anchored to the cell surface by a glycosylphosphatidylinositol (GPI) anchor. It has been known that modification and removal of phosphoethanolamine (EtN-P) on the second mannose residue in GPI anchors is important for maturation and sorting of GPI anchored proteins in yeast and mammalian cells, but is a step absent from some protist parasites. In Aspergillus fumigatus, an opportunistic fungal pathogen causing invasive aspergillosis in humans, GPI-anchored proteins are known to be involved in cell wall synthesis and virulence. In this report the gene encoding A. fumigatus EtN-P transferase GPI7 was investigated. By deletion of the gpi7 gene, we evaluated the effects of EtN-P modification on the morphogenesis of A. fumigatus and localization of GPI proteins. Our results showed that deletion of the gpi7 gene led to reduced cell membrane GPI anchored proteins, the mis-localization of the cell wall GPI anchored protein Mp1, abnormal polarity, and autophagy in A. fumigatus. Our results suggest that addition of EtN-P of the second mannose on the GPI anchor is essential for transportation and localization of the cell wall GPI-anchored proteins.
Collapse
Affiliation(s)
- Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1190, Austria
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jean-Paul Latgé
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|
45
|
Yamamoto-Hino M, Katsumata E, Suzuki E, Maeda Y, Kinoshita T, Goto S. Nuclear envelope localization of PIG-B is essential for GPI-anchor synthesis in Drosophila. J Cell Sci 2018; 131:jcs.218024. [PMID: 30266758 PMCID: PMC6215393 DOI: 10.1242/jcs.218024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Membrane lipid biosynthesis is a complex process that takes place in various intracellular compartments. Glycosylphosphatidylinositol (GPI), a lipid involved in membrane anchoring of some proteins, is synthesized by the PIG enzymes. Most PIGs are localized to the endoplasmic reticulum (ER), but Drosophila PIG-B (DmPIG-B) is localized to the nuclear envelope (NE). To determine whether the NE localization of DmPIG-B is functionally important, we defined the determinants of localization and generated an ER-localized form, denoted DmPIG-B[ER]. The enzymatic activity of DmPIG-B[ER] was comparable to that of NE-localized DmPIG-B[NE]. Expression of DmPIG-B[ER] inefficiently rescued the lethality of the PIG-B mutant, whereas DmPIG-B[NE] rescued this lethality fully. DmPIG-B[ER] was preferentially degraded by lysosomes, suggesting that the NE localization is essential for function and stability of the protein. In addition, we found that the region of the ER proximal to the NE is the site of translation of GPI-anchored proteins and addition of GPI. Thus, the NE and proximal ER may provide a platform for efficient GPI anchoring. Summary: In Drosophila, localization of the enzyme PIG-B in the nuclear envelope (NE) is important for GPI anchor synthesis, and the NE and the perinuclear ER form a platform for the GPI modification.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Eri Katsumata
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Emiko Suzuki
- Gene Network Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yusuke Maeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoshi Goto
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
46
|
Yoko-O T, Umemura M, Komatsuzaki A, Ikeda K, Ichikawa D, Takase K, Kanzawa N, Saito K, Kinoshita T, Taguchi R, Jigami Y. Lipid moiety of glycosylphosphatidylinositol-anchored proteins contributes to the determination of their final destination in yeast. Genes Cells 2018; 23:880-892. [PMID: 30133879 DOI: 10.1111/gtc.12636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
Abstract
Yeasts have two classes of glycosylphosphatidylinositol (GPI)-anchored proteins; one is transferred to the cell wall, whereas the other is retained on the plasma membrane. The lipid moieties of the GPI in Saccharomyces cerevisiae consist of either phosphatidylinositol (PI) or inositolphosphorylceramide (IPC). Cwh43p is involved in the remodeling of lipid from PI to IPC. We found that the GPI lipid moiety of Cwp2p in wild-type cells is PI. To elucidate the physiological role of the lipid remodeling by Cwh43p, we investigated the distribution of Gas1p and Cwp2p by immunoblotting and found that Gas1p with the PI-form GPI lipid moiety in cwh43∆ mutant cells tends to be localized to the cell wall, suggesting that the IPC species in the GPI lipid moiety contributes to the retention of GPI-anchored proteins on the plasma membrane. We also found that CWH43 is genetically related to TED1, which encodes a protein involved in the removal of the ethanolamine phosphate from the second mannose residue in GPI glycan moieties. We propose possible models for the physiological function of Cwh43p and Ted1p in the transfer of GPI-anchored proteins from the plasma membrane to the cell wall.
Collapse
Affiliation(s)
- Takehiko Yoko-O
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mariko Umemura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akiko Komatsuzaki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kazutaka Ikeda
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Daisuke Ichikawa
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kumiko Takase
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Noriyuki Kanzawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazunobu Saito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshifumi Jigami
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
47
|
Tiengwe C, Koeller CM, Bangs JD. Endoplasmic reticulum-associated degradation and disposal of misfolded GPI-anchored proteins in Trypanosoma brucei. Mol Biol Cell 2018; 29:2397-2409. [PMID: 30091673 PMCID: PMC6233060 DOI: 10.1091/mbc.e18-06-0380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Misfolded secretory proteins are retained by endoplasmic reticulum quality control (ERQC) and degraded in the proteasome by ER-associated degradation (ERAD). However, in yeast and mammals, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins are preferentially degraded in the vacuole/lysosome. We investigate this process in the divergent eukaryotic pathogen Trypanosoma brucei using a misfolded GPI-anchored subunit (HA:E6) of the trypanosome transferrin receptor. HA:E6 is N-glycosylated and GPI-anchored and accumulates in the ER as aggregates. Treatment with MG132, a proteasome inhibitor, generates a smaller protected polypeptide (HA:E6*), consistent with turnover in the proteasome. HA:E6* partitions between membrane and cytosol fractions, and both pools are proteinase K-sensitive, indicating cytosolic disposition of membrane-associated HA:E6*. HA:E6* is de-N-glycosylated and has a full GPI-glycan structure from which dimyristoylglycerol has been removed, indicating that complete GPI removal is not a prerequisite for proteasomal degradation. However, HA:E6* is apparently not ubiquitin-modified. The trypanosome GPI anchor is a forward trafficking signal; thus the dynamic tension between ERQC and ER exit favors degradation by ERAD. These results differ markedly from the standard eukaryotic model systems and may indicate an evolutionary advantage related to pathogenesis.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
48
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
49
|
Yeats TH, Bacic A, Johnson KL. Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:649-669. [PMID: 29667761 DOI: 10.1111/jipb.12659] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 05/17/2023]
Abstract
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signal transduction pathways.
Collapse
Affiliation(s)
- Trevor H Yeats
- School of Integrated Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
50
|
Jain P, Sethi SC, Pratyusha VA, Garai P, Naqvi N, Singh S, Pawar K, Puri N, Komath SS. Ras signaling activates glycosylphosphatidylinositol (GPI) anchor biosynthesis via the GPI- N-acetylglucosaminyltransferase (GPI-GnT) in Candida albicans. J Biol Chem 2018; 293:12222-12238. [PMID: 29907567 DOI: 10.1074/jbc.ra117.001225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Indexed: 01/08/2023] Open
Abstract
The ability of Candida albicans to switch between yeast to hyphal form is a property that is primarily associated with the invasion and virulence of this human pathogenic fungus. Several glycosylphosphatidylinositol (GPI)-anchored proteins are expressed only during hyphal morphogenesis. One of the major pathways that controls hyphal morphogenesis is the Ras-signaling pathway. We examine the cross-talk between GPI anchor biosynthesis and Ras signaling in C. albicans. We show that the first step of GPI biosynthesis is activated by Ras in C. albicans This is diametrically opposite to what is reported in Saccharomyces cerevisiae Of the two C. albicans Ras proteins, CaRas1 alone activates GPI-GnT activity; activity is further stimulated by constitutively activated CaRas1. CaRas1 localized to the cytoplasm or endoplasmic reticulum (ER) is sufficient for GPI-GnT activation. Of the six subunits of the GPI-N-acetylglucosaminyltransferase (GPI-GnT) that catalyze the first step of GPI biosynthesis, CaGpi2 is the key player involved in activating Ras signaling and hyphal morphogenesis. Activation of Ras signaling is independent of the catalytic competence of GPI-GnT. This too is unlike what is observed in S. cerevisiae where multiple subunits were identified as inhibiting Ras2. Fluorescence resonance energy transfer (FRET) studies indicate a specific physical interaction between CaRas1 and CaGpi2 in the ER, which would explain the ability of CaRas1 to activate GPI-GnT. CaGpi2, in turn, promotes activation of the Ras-signaling pathway and hyphal morphogenesis. The Cagpi2 mutant is also more susceptible to macrophage-mediated killing, and macrophage cells show better survival when co-cultured with Cagpi2.
Collapse
Affiliation(s)
- Priyanka Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | | - Pramita Garai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Nilofer Naqvi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sonali Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Kalpana Pawar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|