1
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Kakar R, Ghosh C, Sun Y. Phosphoinositide Signaling in Immune Cell Migration. Biomolecules 2023; 13:1705. [PMID: 38136577 PMCID: PMC10741629 DOI: 10.3390/biom13121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
In response to different immune challenges, immune cells migrate to specific sites in the body, where they perform their functions such as defense against infection, inflammation regulation, antigen recognition, and immune surveillance. Therefore, the migration ability is a fundamental aspect of immune cell function. Phosphoinositide signaling plays critical roles in modulating immune cell migration by controlling cell polarization, cytoskeletal rearrangement, protrusion formation, and uropod contraction. Upon chemoattractant stimulation, specific phosphoinositide kinases and phosphatases control the local phosphoinositide levels to establish polarized phosphoinositide distribution, which recruits phosphoinositide effectors to distinct subcellular locations to facilitate cell migration. In this Special Issue of "Molecular Mechanisms Underlying Cell Adhesion and Migration", we discuss the significance of phosphoinositide production and conversion by phosphoinositide kinases and phosphatases in the migration of different types of immune cells.
Collapse
Affiliation(s)
| | | | - Yue Sun
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.K.); (C.G.)
| |
Collapse
|
4
|
Andreata F, Clément M, Benson RA, Hadchouel J, Procopio E, Even G, Vorbe J, Benadda S, Ollivier V, Ho-Tin-Noe B, Le Borgne M, Maffia P, Nicoletti A, Caligiuri G. CD31 signaling promotes the detachment at the uropod of extravasating neutrophils allowing their migration to sites of inflammation. eLife 2023; 12:e84752. [PMID: 37549051 PMCID: PMC10431918 DOI: 10.7554/elife.84752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed β2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.
Collapse
Affiliation(s)
- Francesco Andreata
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Marc Clément
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Juliette Hadchouel
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center (PARCC)ParisFrance
| | - Emanuele Procopio
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Julie Vorbe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Samira Benadda
- Cell and Tissue Imaging Platform, INSERM, CNRS, ERL8252, Centre de Recherche sur l’Inflammation (CRI)ParisFrance
| | - Véronique Ollivier
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Benoit Ho-Tin-Noe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Marie Le Borgne
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico IINaplesItaly
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
- Department of Cardiology and of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Nord Val-de-Seine, Site BichatParisFrance
| |
Collapse
|
5
|
Waddell GL, Drew EE, Rupp HP, Hansen SD. Mechanisms controlling membrane recruitment and activation of the autoinhibited SHIP1 inositol 5-phosphatase. J Biol Chem 2023; 299:105022. [PMID: 37423304 PMCID: PMC10448276 DOI: 10.1016/j.jbc.2023.105022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3) lipids by PI3K. Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P3 to generate phosphatidylinositol-(3,4)-bisphosphate. Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single-molecule total internal reflection fluorescence microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that localization of the central catalytic domain of SHIP1 is insensitive to dynamic changes in PI(3,4,5)P3 and phosphatidylinositol-(3,4)-bisphosphate both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine and PI(3,4,5)P3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal Src homology 2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor-derived phosphopeptides presented either in solution or conjugated to a membrane. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid-binding specificity, protein-protein interactions, and the activation of autoinhibited SHIP1.
Collapse
Affiliation(s)
- Grace L Waddell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Emma E Drew
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Henry P Rupp
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
6
|
Waddell GL, Drew EE, Rupp HP, Hansen SD. Mechanisms controlling membrane recruitment and activation of autoinhibited SHIP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538895. [PMID: 37205499 PMCID: PMC10187190 DOI: 10.1101/2023.04.30.538895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P 3 ) lipids by phosphoinositide-3-kinase (PI3K). Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P 3 to generate PI(3,4)P 2 . Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single molecule TIRF microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that SHIP1's interactions with lipids are insensitive to dynamic changes in PI(3,4,5)P 3 both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine (PS) and PI(3,4,5)P 3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal SH2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor derived phosphopeptides presented either in solution or conjugated to supported membranes. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid binding specificity, protein-protein interactions, and activation of autoinhibited SHIP1.
Collapse
|
7
|
Zajac DJ, Simpson J, Zhang E, Parikh I, Estus S. Expression of INPP5D Isoforms in Human Brain: Impact of Alzheimer's Disease Neuropathology and Genetics. Genes (Basel) 2023; 14:763. [PMID: 36981033 PMCID: PMC10048252 DOI: 10.3390/genes14030763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The single nucleotide polymorphisms rs35349669 and rs10933431 within Inositol Polyphosphate-5-Phosphatase D (INPP5D) are strongly associated with Alzheimer's Disease risk. To better understand INPP5D expression in the brain, we investigated INPP5D isoform expression as a function of rs35349669 and rs10933431, as well as Alzheimer's disease neuropathology, by qPCR and isoform-specific primers. In addition, INPP5D allelic expression imbalance was evaluated relative to rs1141328 within exon 1. Expression of INPP5D isoforms associated with transcription start sites in exon 1 and intron 14 was increased in individuals with high Alzheimer's disease neuropathology. In addition, a novel variant with 47bp lacking from exon 12 increased expression in Alzheimer's Disease brains, accounting for 13% of total INPP5D expression, and was found to undergo nonsense-mediated decay. Although inter-individual variation obscured a possible polymorphism effect on INPP5D isoform expression as measured by qPCR, rs35349669 was associated with rs1141328 allelic expression imbalance, suggesting that rs35349669 is significantly associated with full-length INPP5D isoform expression. In summary, expression of INPP5D isoforms with start sites in exon 1 and intron 14 are increased in brains with high Alzheimer's Disease neuropathology, a novel isoform lacking the phosphatase domain was significantly increased with the disease, and the polymorphism rs35349669 correlates with allele-specific full-length INPP5D expression.
Collapse
Affiliation(s)
| | | | | | | | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
8
|
Miyasato S, Iwata K, Mura R, Nakamura S, Yanagida K, Shindou H, Nagata Y, Kawahara M, Yamaguchi S, Aoki J, Inoue A, Nagamune T, Shimizu T, Nakamura M. Constitutively active GPR43 is crucial for proper leukocyte differentiation. FASEB J 2023; 37:e22676. [PMID: 36468834 DOI: 10.1096/fj.202201591r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
The G protein-coupled receptors, GPR43 (free fatty acid receptor 2, FFA2) and GPR41 (free fatty acid receptor 3, FFA3), are activated by short-chain fatty acids produced under various conditions, including microbial fermentation of carbohydrates. Previous studies have implicated this receptor energy homeostasis and immune responses as well as in cell growth arrest and apoptosis. Here, we observed the expression of both receptors in human blood cells and a remarkable enhancement in leukemia cell lines (HL-60, U937, and THP-1 cells) during differentiation. A reporter assay revealed that GPR43 is coupled with Gαi and Gα12/13 and is constitutively active without any stimuli. Specific blockers of GPR43, GLPG0974 and CATPB function as inverse agonists because treatment with these compounds significantly reduces constitutive activity. In HL-60 cells, enhanced expression of GPR43 led to growth arrest through Gα12/13 . In addition, the blockage of GPR43 activity in these cells significantly impaired their adherent properties due to the reduction of adhesion molecules. We further revealed that enhanced GPR43 activity induces F-actin formation. However, the activity of GPR43 did not contribute to butyrate-induced apoptosis in differentiated HL-60 cells because of the ineffectiveness of the inverse agonist on cell death. Collectively, these results suggest that GPR43, which possesses constitutive activity, is crucial for growth arrest, followed by the proper differentiation of leukocytes.
Collapse
Affiliation(s)
- Sosuke Miyasato
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Kurumi Iwata
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Reika Mura
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Shou Nakamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Nagata
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Satoshi Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Inoue
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Institute of Microbial Chemistry, Tokyo, Japan
| | - Motonao Nakamura
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
9
|
Pavliuchenko N, Duric I, Kralova J, Fabisik M, Spoutil F, Prochazka J, Kasparek P, Pokorna J, Skopcova T, Sedlacek R, Brdicka T. Molecular interactions of adaptor protein PSTPIP2 control neutrophil-mediated responses leading to autoinflammation. Front Immunol 2022; 13:1035226. [PMID: 36605205 PMCID: PMC9807597 DOI: 10.3389/fimmu.2022.1035226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Autoinflammatory diseases are characterized by dysregulation of innate immune system leading to spontaneous sterile inflammation. One of the well-established animal models of this group of disorders is the mouse strain Pstpip2cmo . In this strain, the loss of adaptor protein PSTPIP2 leads to the autoinflammatory disease chronic multifocal osteomyelitis. It is manifested by sterile inflammation of the bones and surrounding soft tissues of the hind limbs and tail. The disease development is propelled by elevated production of IL-1β and reactive oxygen species by neutrophil granulocytes. However, the molecular mechanisms linking PSTPIP2 and these pathways have not been established. Candidate proteins potentially involved in these mechanisms include PSTPIP2 binding partners, PEST family phosphatases (PEST-PTPs) and phosphoinositide phosphatase SHIP1. Methods To address the role of these proteins in PSTPIP2-mediated control of inflammation, we have generated mouse strains in which PEST-PTP or SHIP1 binding sites in PSTPIP2 have been disrupted. In these mouse strains, we followed disease symptoms and various inflammation markers. Results Our data show that mutation of the PEST-PTP binding site causes symptomatic disease, whereas mice lacking the SHIP1 interaction site remain asymptomatic. Importantly, both binding partners of PSTPIP2 contribute equally to the control of IL-1β production, while PEST-PTPs have a dominant role in the regulation of reactive oxygen species. In addition, the interaction of PEST-PTPs with PSTPIP2 regulates the production of the chemokine CXCL2 by neutrophils. Its secretion likely creates a positive feedback loop that drives neutrophil recruitment to the affected tissues. Conclusions We demonstrate that PSTPIP2-bound PEST-PTPs and SHIP1 together control the IL-1β pathway. In addition, PEST-PTPs have unique roles in the control of reactive oxygen species and chemokine production, which in the absence of PEST-PTP binding to PSTPIP2 shift the balance towards symptomatic disease.
Collapse
Affiliation(s)
- Nataliia Pavliuchenko
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Department of Cell Biology, Charles University, Faculty of Science, Prague, Czechia
| | - Iris Duric
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Department of Cell Biology, Charles University, Faculty of Science, Prague, Czechia
| | - Jarmila Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Matej Fabisik
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia,Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia,Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Tomas Brdicka,
| |
Collapse
|
10
|
Recent advances in function and structure of two leukotriene B 4 receptors: BLT1 and BLT2. Biochem Pharmacol 2022; 203:115178. [PMID: 35850310 DOI: 10.1016/j.bcp.2022.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
Leukotriene B4 (LTB4) is generated by the enzymatic oxidation of arachidonic acid, which is then released from the cell membrane and acts as a potent activator of leukocytes and other inflammatory cells. Numerous studies have demonstrated the physiological and pathophysiological significance of this lipid in various diseases. LTB4 exerts its activities by binding to its specific G protein-coupled receptors (GPCRs): BLT1 and BLT2. In mouse disease models, treatment with BLT1 antagonists or BLT1 gene ablation attenuated various diseases, including bronchial asthma, arthritis, and psoriasis, whereas BLT2 deficiency exacerbated several diseases in the skin, cornea, and small intestine. Therefore, BLT1 inhibitors and BLT2 activators could be beneficial for the treatment of several inflammatory and immune disorders. As a result, attractive compounds targeting LTB4 receptors have been developed by several pharmaceutical companies. This review aims to understand the potential of BLT1 and BLT2 as therapeutic targets for the treatment of various inflammatory diseases. In addition, recent topics are discussed with major focuses on the structure and post-translational modifications of BLT1 and BLT2. Collectively, current evidence on modulating LTB4 receptor functions provides new strategies for the treatment of various diseases.
Collapse
|
11
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
12
|
Michael M, McCormick B, Anderson KE, Karmakar U, Vermeren M, Schurmans S, Amour A, Vermeren S. The 5-Phosphatase SHIP2 Promotes Neutrophil Chemotaxis and Recruitment. Front Immunol 2021; 12:671756. [PMID: 33953730 PMCID: PMC8089392 DOI: 10.3389/fimmu.2021.671756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils, the most abundant circulating leukocytes in humans have key roles in host defense and in the inflammatory response. Agonist-activated phosphoinositide 3-kinases (PI3Ks) are important regulators of many facets of neutrophil biology. PIP3 is subject to dephosphorylation by several 5’ phosphatases, including SHIP family phosphatases, which convert the PI3K product and lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) into PI(3,4)P2, a lipid second messenger in its own right. In addition to the leukocyte restricted SHIP1, neutrophils express the ubiquitous SHIP2. This study analyzed mice and isolated neutrophils carrying a catalytically inactive SHIP2, identifying an important regulatory function in neutrophil chemotaxis and directionality in vitro and in neutrophil recruitment to sites of sterile inflammation in vivo, in the absence of major defects of any other neutrophil functions analyzed, including, phagocytosis and the formation of reactive oxygen species. Mechanistically, this is explained by a subtle effect on global 3-phosphorylated phosphoinositide species. This work identifies a non-redundant role for the hitherto overlooked SHIP2 in the regulation of neutrophils, and specifically, neutrophil chemotaxis/trafficking. It completes an emerging wider understanding of the complexity of PI3K signaling in the neutrophil, and the roles played by individual kinases and phosphatases within.
Collapse
Affiliation(s)
- Melina Michael
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Barry McCormick
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karen E Anderson
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Utsa Karmakar
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthieu Vermeren
- Centre of Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA Research Centre, University of Liège, Liège, Belgium
| | - Augustin Amour
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Tahir M, Arshid S, Fontes B, S. Castro M, Sidoli S, Schwämmle V, Luz IS, Roepstorff P, Fontes W. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. Int J Mol Sci 2020; 21:ijms21165799. [PMID: 32823483 PMCID: PMC7460855 DOI: 10.3390/ijms21165799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Intestinal ischemia reperfusion injury (iIRI) is a severe clinical condition presenting high morbidity and mortality worldwide. Some of the systemic consequences of IRI can be prevented by applying ischemic preconditioning (IPC), a series of short ischemia/reperfusion events preceding the major ischemia. Although neutrophils are key players in the pathophysiology of ischemic injuries, neither the dysregulation presented by these cells in iIRI nor the protective effect of iIPC have their regulation mechanisms fully understood. Protein phosphorylation, as well as the regulation of the respective phosphatases and kinases are responsible for regulating a large number of cellular functions in the inflammatory response. Moreover, in previous work we found hydrolases and transferases to be modulated in iIR and iIPC, suggesting the possible involvement of phosphatases and kinases in the process. Therefore, in the present study, we analyzed the phosphoproteome of neutrophils from rats submitted to mesenteric ischemia and reperfusion, either submitted or not to IPC, compared to quiescent controls and sham laparotomy. Proteomic analysis was performed by multi-step enrichment of phosphopeptides, isobaric labeling, and LC-MS/MS analysis. Bioinformatics was used to determine phosphosite and phosphopeptide abundance and clustering, as well as kinases and phosphatases sites and domains. We found that most of the phosphorylation-regulated proteins are involved in apoptosis and migration, and most of the regulatory kinases belong to CAMK and CMGC families. An interesting finding revealed groups of proteins that are modulated by iIR, but such modulation can be prevented by iIPC. Among the regulated proteins related to the iIPC protective effect, Vamp8 and Inpp5d/Ship are discussed as possible candidates for control of the iIR damage.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Samina Arshid
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Mariana S. Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Isabelle S. Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Correspondence:
| |
Collapse
|
14
|
A neutrophil-centric view of chemotaxis. Essays Biochem 2020; 63:607-618. [PMID: 31420450 DOI: 10.1042/ebc20190011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Neutrophils are key players of the innate immune system, that are involved in coordinating the initiation, propagation and resolution of inflammation. Accurate neutrophil migration (chemotaxis) to sites of inflammation in response to gradients of chemoattractants is pivotal to these roles. Binding of chemoattractants to dedicated G-protein-coupled receptors (GPCRs) initiates downstream signalling events that promote neutrophil polarisation, a prerequisite for directional migration. We provide a brief summary of some of the recent insights into signalling events and feedback loops that serve to initiate and maintain neutrophil polarisation. This is followed by a discussion of recent developments in the understanding of in vivo neutrophil chemotaxis, a process that is frequently referred to as 'recruitment' or 'trafficking'. Here, we summarise neutrophil mobilisation from and homing to the bone marrow, and briefly discuss the role of glucosaminoglycan-immobilised chemoattractants and their corresponding receptors in the regulation of neutrophil extravasation and neutrophil swarming. We furthermore touch on some of the most recent insights into the roles of atypical chemokine receptors (ACKRs) in neutrophil recruitment, and discuss neutrophil reverse (transendothelial) migration together with potential function(s) in the dissemination and/or resolution of inflammation.
Collapse
|
15
|
The Msp Protein of Treponema denticola Interrupts Activity of Phosphoinositide Processing in Neutrophils. Infect Immun 2019; 87:IAI.00553-19. [PMID: 31481407 DOI: 10.1128/iai.00553-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease is a significant health burden, causing tooth loss and poor oral and overall systemic health. Dysbiosis of the oral biofilm and a dysfunctional immune response drive chronic inflammation, causing destruction of soft tissue and alveolar bone supporting the teeth. Treponema denticola, a spirochete abundant in the plaque biofilm of patients with severe periodontal disease, perturbs neutrophil function by modulating appropriate phosphoinositide (PIP) signaling. Through a series of immunoblotting and quantitative PCR (qPCR) experiments, we show that Msp does not alter the gene transcription or protein content of key enzymes responsible for PIP3 signaling: 3' phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), or 5' Src homology 2 domain-containing inositol phosphatase 1 (SHIP1). Instead, using immunoblotting and enzyme-linked immunosorbent assays (ELISAs), we found that Msp activates PTEN through dephosphorylation specifically at the S380 site. Msp in intact organisms or outer membrane vesicles also restricts PIP signaling. SHIP1 phosphatase release was assessed using chemical inhibition and immunoprecipitation to show that Msp moderately decreases SHIP1 activity. Msp also prevents secondary activation of the PTEN/PI3K response. We speculate that this result is due to the redirection of the PIP3 substrate away from SHIP1 to PTEN. Immunofluorescence microscopy revealed a redistribution of PTEN from the cytoplasm to the plasma membrane following exposure to Msp, which may contribute to PTEN activation. Mechanisms of how T. denticola modulates and evades the host immune response are still poorly described, and here we provide further mechanistic evidence of how spirochetes modify PIP signaling to dampen neutrophil function. Understanding how oral bacteria evade the immune response to perpetuate the cycle of inflammation and infection is critical for combating periodontal disease to improve overall health outcomes.
Collapse
|
16
|
Hou Q, Liu F, Chakraborty A, Jia Y, Prasad A, Yu H, Zhao L, Ye K, Snyder SH, Xu Y, Luo HR. Inhibition of IP6K1 suppresses neutrophil-mediated pulmonary damage in bacterial pneumonia. Sci Transl Med 2019; 10:10/435/eaal4045. [PMID: 29618559 DOI: 10.1126/scitranslmed.aal4045] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 11/16/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023]
Abstract
The significance of developing host-modulating personalized therapies to counteract the growing threat of antimicrobial resistance is well-recognized because such resistance cannot be overcome using microbe-centered strategies alone. Immune host defenses must be finely controlled during infection to balance pathogen clearance with unwanted inflammation-induced tissue damage. Thus, an ideal antimicrobial treatment would enhance bactericidal activity while preventing neutrophilic inflammation, which can induce tissue damage. We report that disrupting the inositol hexakisphosphate kinase 1 (Ip6k1) gene or pharmacologically inhibiting IP6K1 activity using the specific inhibitor TNP [N2-(m-(trifluoromethyl)benzyl) N6-(p-nitrobenzyl)purine] efficiently and effectively enhanced host bacterial killing but reduced pulmonary neutrophil accumulation, minimizing the lung damage caused by both Gram-positive and Gram-negative bacterial pneumonia. IP6K1-mediated inorganic polyphosphate (polyP) production by platelets was essential for infection-induced neutrophil-platelet aggregate (NPA) formation and facilitated neutrophil accumulation in alveolar spaces during bacterial pneumonia. IP6K1 inhibition reduced serum polyP levels, which regulated NPAs by triggering the bradykinin pathway and bradykinin-mediated neutrophil activation. Thus, we identified a mechanism that enhances host defenses while simultaneously suppressing neutrophil-mediated pulmonary damage in bacterial pneumonia. IP6K1 is, therefore, a legitimate therapeutic target for such disease.
Collapse
Affiliation(s)
- Qingming Hou
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Anutosh Chakraborty
- Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yonghui Jia
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA
| | - Amit Prasad
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA
| | - Hongbo Yu
- Veterans Affairs Boston Healthcare System, Department of Pathology and Laboratory Medicine, 1400 Veterans of Foreign Wars Parkway, West Roxbury, MA 02132, USA
| | - Li Zhao
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Solomon H Snyder
- Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center; Department of Laboratory Medicine, Children's Hospital Boston, Karp Family Research Building, Room 10214, Boston, MA 02115, USA.
| |
Collapse
|
17
|
McCormick B, Craig HE, Chu JY, Carlin LM, Canel M, Wollweber F, Toivakka M, Michael M, Astier AL, Norton L, Lilja J, Felton JM, Sasaki T, Ivaska J, Hers I, Dransfield I, Rossi AG, Vermeren S. A Negative Feedback Loop Regulates Integrin Inactivation and Promotes Neutrophil Recruitment to Inflammatory Sites. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1579-1588. [PMID: 31427445 PMCID: PMC6731454 DOI: 10.4049/jimmunol.1900443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.
Collapse
Affiliation(s)
- Barry McCormick
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Helen E Craig
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Julia Y Chu
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Marta Canel
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Florian Wollweber
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Matilda Toivakka
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Melina Michael
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Anne L Astier
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université Toulouse, 31024 Toulouse Cedex 3, France
| | - Laura Norton
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Jennifer M Felton
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Johanna Ivaska
- Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université Toulouse, 31024 Toulouse Cedex 3, France
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sonja Vermeren
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom;
| |
Collapse
|
18
|
So EY, Sun C, Wu KQ, Driesman A, Leggett S, Isaac M, Spangler T, Dubielecka-Szczerba PM, Reginato AM, Liang OD. Lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development. J Cell Physiol 2019; 235:1425-1437. [PMID: 31287165 PMCID: PMC6879780 DOI: 10.1002/jcp.29063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
SH2‐containing inositol‐5′‐phosphatase‐1 (SHIP‐1) controls the phosphatidylinositol‐3′‐kinase (PI3K) initiated signaling pathway by limiting cell membrane recruitment and activation of Akt. Despite the fact that many of the growth factors important to cartilage development and functions are able to activate the PI3K signal transduction pathway, little is known about the role of PI3K signaling in chondrocyte biology and its contribution to mammalian skeletogenesis. Here, we report that the lipid phosphatase SHIP‐1 regulates chondrocyte hypertrophy and skeletal development through its expression in osteochondroprogenitor cells. Global SHIP‐1 knockout led to accelerated chondrocyte hypertrophy and premature formation of the secondary ossification center in the bones of postnatal mice. Drastically higher vascularization and greater number of c‐kit + progenitors associated with sinusoids in the bone marrow also indicated more advanced chondrocyte hypertrophic differentiation in SHIP‐1 knockout mice than in wild‐type mice. In corroboration with the in vivo phenotype, SHIP‐1 deficient PDGFRα + Sca‐1 + osteochondroprogenitor cells exhibited rapid differentiation into hypertrophic chondrocytes under chondrogenic culture conditions in vitro. Furthermore, SHIP‐1 deficiency inhibited hypoxia‐induced cellular activation of Akt and extracellular‐signal‐regulated kinase (Erk) and suppressed hypoxia‐induced cell proliferation. These results suggest that SHIP‐1 is required for hypoxia‐induced growth signaling under physiological hypoxia in the bone marrow. In conclusion, the lipid phosphatase SHIP‐1 regulates skeletal development by modulating chondrogenesis and the hypoxia response of the osteochondroprogenitors during endochondral bone formation.
Collapse
Affiliation(s)
- Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Changqi Sun
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Keith Q Wu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Adam Driesman
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Susan Leggett
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mauricio Isaac
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Travis Spangler
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Patrycja M Dubielecka-Szczerba
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Anthony M Reginato
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
19
|
Poles WA, Nishi EE, de Oliveira MB, Eugênio AIP, de Andrade TA, Campos AHFM, de Campos RR, Vassallo J, Alves AC, Scapulatempo Neto C, Paes RAP, Landman G, Zerbini MCN, Colleoni GWB. Targeting the polarization of tumor-associated macrophages and modulating mir-155 expression might be a new approach to treat diffuse large B-cell lymphoma of the elderly. Cancer Immunol Immunother 2019; 68:269-282. [PMID: 30430204 PMCID: PMC11028330 DOI: 10.1007/s00262-018-2273-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022]
Abstract
Aging immune deterioration and Epstein-Barr (EBV) intrinsic mechanisms play an essential role in EBV-positive diffuse large B-cell lymphoma (DLBCL) of the elderly (EBV + DLBCLe) pathogenesis, through the expression of viral proteins, interaction with host molecules and epigenetic regulation, such as miR-155, required for induction of M1 phenotype of macrophages. This study aims to evaluate the relationship between macrophage polarization pattern in the tumor microenvironment and relative expression of miR-155 in EBV + DLBCLe and EBV-negative DLBCL patients. We studied 28 EBV + DLBCLe and 65 EBV-negative DLBCL patients. Tumor-associated macrophages (TAM) were evaluated by expression of CD68, CD163 and CD163/CD68 ratio (degree of M2 polarization), using tissue microarray. RNA was extracted from paraffin-embedded tumor samples for miR-155 relative expression study. We found a significantly higher CD163/CD68 ratio in EBV + DLBCLe compared to EBV-negative DLBCL. In EBV-negative DLBCL, CD163/CD68 ratio was higher among advanced-staged/high-tumor burden disease and overexpression of miR-155 was associated with decreased polarization to the M2 phenotype of macrophages. The opposite was observed in EBV + DLBCLe patients: we found a positive association between miR-155 relative expression and CD163/CD68 ratio, which was not significant after outlier exclusion. We believe that the higher CD163/CD68 ratio in this group is probably due to the presence of the EBV since it directly affects macrophage polarization towards M2 phenotype through cytokine secretion in the tumor microenvironment. Therapeutic strategies modulating miR-155 expression or preventing immuno-regulatory and pro-tumor macrophage polarization could be adjuvants in EBV + DLBCLe therapy since this entity has a rich infiltration of M2 macrophages in its tumor microenvironment.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/physiology
- Humans
- Lymphoma, Large B-Cell, Diffuse/complications
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Macrophage Activation/immunology
- Macrophages/classification
- Macrophages/immunology
- Macrophages/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/immunology
- Middle Aged
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Wagner A Poles
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Erika E Nishi
- Department of Physiology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Mariana B de Oliveira
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Angela I P Eugênio
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Tathiana A de Andrade
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | | | - Ruy R de Campos
- Department of Physiology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - José Vassallo
- Department of Pathology, AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Antonio C Alves
- Department of Pathology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | - Gilles Landman
- Department of Pathology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | - Gisele W B Colleoni
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil.
| |
Collapse
|
20
|
Tahir M, Arshid S, Fontes B, Castro MS, Luz IS, Botelho KLR, Sidoli S, Schwämmle V, Roepstorff P, Fontes W. Analysis of the Effect of Intestinal Ischemia and Reperfusion on the Rat Neutrophils Proteome. Front Mol Biosci 2018; 5:89. [PMID: 30555831 PMCID: PMC6281993 DOI: 10.3389/fmolb.2018.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 10/04/2018] [Indexed: 01/26/2023] Open
Abstract
Intestinal ischemia and reperfusion injury is a model system of possible consequences of severe trauma and surgery, which might result into tissue dysfunction and organ failure. Neutrophils contribute to the injuries preceded by ischemia and reperfusion. However, the mechanisms by which intestinal ischemia and reperfusion stimulate and activate circulating neutrophils is still not clear. In this work, we used proteomics approach to explore the underlying regulated mechanisms in Wistar rat neutrophils after ischemia and reperfusion. We isolated neutrophils from three different biological groups; control, sham laparotomy, and intestinal ischemia/reperfusion. In the workflow, we included iTRAQ-labeling quantification and peptide fractionation using HILIC prior to LC-MS/MS analysis. From proteomic analysis, we identified 2,045 proteins in total that were grouped into five different clusters based on their regulation trend between the experimental groups. A total of 417 proteins were found as significantly regulated in at least one of the analyzed conditions. Interestingly, the enzyme prediction analysis revealed that ischemia/reperfusion significantly reduced the relative abundance of most of the antioxidant and pro-survival molecules to cause more tissue damage and ROS production whereas some of the significantly up regulated enzymes were involved in cytoskeletal rearrangement, adhesion and migration. Clusters based KEGG pathways analysis revealed high motility, phagocytosis, directional migration, and activation of the cytoskeletal machinery in neutrophils after ischemia and reperfusion. Increased ROS production and decreased phagocytosis were experimentally validated by microscopy assays. Taken together, our findings provide a characterization of the rat neutrophil response to intestinal ischemia and reperfusion and the possible mechanisms involved in the tissue injury by neutrophils after intestinal ischemia and reperfusion.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Samina Arshid
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Isabelle S Luz
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Katyelle L R Botelho
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| |
Collapse
|
21
|
Nakanishi Y, Tan M, Ichiki T, Inoue A, Yoshihara JI, Maekawa N, Takenoshita I, Yanagida K, Yamahira S, Yamaguchi S, Aoki J, Nagamune T, Yokomizo T, Shimizu T, Nakamura M. Stepwise phosphorylation of leukotriene B 4 receptor 1 defines cellular responses to leukotriene B 4. Sci Signal 2018; 11:11/544/eaao5390. [PMID: 30131369 DOI: 10.1126/scisignal.aao5390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Leukotriene B4 (LTB4) receptor type 1 (BLT1) is abundant in phagocytic and immune cells and plays crucial roles in various inflammatory diseases. BLT1 is phosphorylated at several serine and threonine residues upon stimulation with the inflammatory lipid LTB4 Using Phos-tag gel electrophoresis to separate differentially phosphorylated forms of BLT1, we identified two distinct types of phosphorylation, basal and ligand-induced, in the carboxyl terminus of human BLT1. In the absence of LTB4, the basal phosphorylation sites were modified to various degrees, giving rise to many different phosphorylated forms of BLT1. Different concentrations of LTB4 induced distinct phosphorylation events, and these ligand-induced modifications facilitated additional phosphorylation events at the basal phosphorylation sites. Because neutrophils migrate toward inflammatory sites along a gradient of LTB4, the degree of BLT1 phosphorylation likely increases in parallel with the increase in LTB4 concentration as the cells migrate. At high concentrations of LTB4, deficiencies in these two types of phosphorylation events impaired chemotaxis and β-hexosaminidase release, a proxy for degranulation, in Chinese hamster ovary (CHO-K1) and rat basophilic leukemia (RBL-2H3) cells, respectively. These results suggest that an LTB4 gradient around inflammatory sites enhances BLT1 phosphorylation in a stepwise manner to facilitate the precise migration of phagocytic and immune cells and the initiation of local responses, including degranulation.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Modong Tan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takako Ichiki
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Asuka Inoue
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Jun-Ichi Yoshihara
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Naoto Maekawa
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Itsuki Takenoshita
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Keisuke Yanagida
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Yamahira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junken Aoki
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Lipid Signaling, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Motonao Nakamura
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
22
|
Gao Y, Ge W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis 2018; 9:33. [PMID: 29348610 PMCID: PMC5833786 DOI: 10.1038/s41419-017-0040-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/14/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
Osteoclasts are absorptive cells that play a critical role in homeostatic bone remodeling and pathological bone resorption. Emerging evidence suggests an important role of epigenetic regulation in osteoclastogenesis. In this study, we investigated the role of DOT1L, which regulates gene expression epigenetically by histone H3K79 methylation (H3K79me), during osteoclast formation. Using RANKL-induced RAW264.7 macrophage cells as an osteoclast differentiation model, we found that DOT1L and H3K79me2 levels were upregulated during osteoclast differentiation. Small molecule inhibitor- (EPZ5676 or EPZ004777) or short hairpin RNA-mediated reduction in DOT1L expression promoted osteoclast differentiation and resorption. In addition, DOT1L inhibition increased osteoclast surface area and accelerated bone-mass reduction in a mouse ovariectomy (OVX) model of osteoporosis without alter osteoblast differentiation. DOT1L inhibition increase reactive oxygen species (ROS) generation and autophagy activity, and cell migration in pre-osteoclasts. Moreover, it strengthened expression of osteoclast fusion and resorption-related protein CD9 and MMP9 in osteoclasts derived from RAW264.7. Our findings support a new mechanism of DOT1L-regulated, H3K79me2-mediated, epigenetic regulation of osteoclast differentiation, implicating DOT1L as a new therapeutic target for osteoclast dysregulation-induced disease.
Collapse
Affiliation(s)
- Yanpan Gao
- State Key Laboratory of Medical Molecular Biology & Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
23
|
Smith T, Engelbrecht L, Smith C. Anti-inflammatory cellular targets on neutrophils elucidated using a novel cell migration model and confocal microscopy: a clinical supplementation study. JOURNAL OF INFLAMMATION-LONDON 2018; 15:2. [PMID: 29311762 PMCID: PMC5756363 DOI: 10.1186/s12950-017-0177-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/17/2017] [Indexed: 01/20/2023]
Abstract
Background In vivo studies have shown grape seed-derived polyphenols (GSP) to benefit in recovery from muscle injury by modulation of neutrophil infiltration into damaged tissue, thereby reducing secondary damage, as well as by facilitating an early anti-inflammatory macrophage phenotype shift. The current study aimed to provide data in this context from human models and to elucidate specific molecular targets of GSP. Using a placebo-controlled, double-blind study design, eighteen normally healthy volunteers between the ages of 18–35 years old (13 female and 5 male) were orally supplemented with 140 mg/day of GSP for 2 weeks. Blood samples (days 0 and 14) were comprehensively analysed for in vitro neutrophil chemokinetic capacity towards a chemotaxin (fMLP) using a novel neutrophil migration assay, in combination with live cell tracking, as well as immunostaining for neutrophil polarisation factors (ROCK, PI3K) at migration endpoint. Macrophage phenotype marker expression was assessed using flow cytometry. Results fMLP induced significant chemokinesis (P < 0.01), validating our model. GSP did not exert a significant effect on neutrophil chemokinesis in this non-compromised population, but tended to decrease overall ROCK expression in fMLP-stimulated neutrophils (P = 0.06). Macrophage phenotype markers CD274 and MPO – indicators of a pro-inflammatory M1 phenotype – seemed to be normalised relative to baseline expression levels after GSP treatment. Conclusions Current data suggest that GSP may have a modulatory effect on the ROCK-PI3K-PTEN system, but results in this normal population is not conclusive and should be confirmed in a larger, more inflamed population. Potential modulation of macrophage phenotype by GSP should be investigated further. Electronic supplementary material The online version of this article (10.1186/s12950-017-0177-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Smith
- Department Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - L Engelbrecht
- Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - C Smith
- Department Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
24
|
Timescale Separation of Positive and Negative Signaling Creates History-Dependent Responses to IgE Receptor Stimulation. Sci Rep 2017; 7:15586. [PMID: 29138425 PMCID: PMC5686181 DOI: 10.1038/s41598-017-15568-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023] Open
Abstract
The high-affinity receptor for IgE expressed on the surface of mast cells and basophils interacts with antigens, via bound IgE antibody, and triggers secretion of inflammatory mediators that contribute to allergic reactions. To understand how past inputs (memory) influence future inflammatory responses in mast cells, a microfluidic device was used to precisely control exposure of cells to alternating stimulatory and non-stimulatory inputs. We determined that the response to subsequent stimulation depends on the interval of signaling quiescence. For shorter intervals of signaling quiescence, the second response is blunted relative to the first response, whereas longer intervals of quiescence induce an enhanced second response. Through an iterative process of computational modeling and experimental tests, we found that these memory-like phenomena arise from a confluence of rapid, short-lived positive signals driven by the protein tyrosine kinase Syk; slow, long-lived negative signals driven by the lipid phosphatase Ship1; and slower degradation of Ship1 co-factors. This work advances our understanding of mast cell signaling and represents a generalizable approach for investigating the dynamics of signaling systems.
Collapse
|
25
|
Jones MM, Vanyo ST, Visser MB. The C-terminal region of the major outer sheath protein of Treponema denticola inhibits neutrophil chemotaxis. Mol Oral Microbiol 2017; 32:375-389. [PMID: 28296262 PMCID: PMC5585023 DOI: 10.1111/omi.12180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Treponema denticola is an oral spirochete strongly associated with severe periodontal disease. A prominent virulence factor, the major outer sheath protein (Msp), disorients neutrophil chemotaxis by altering the cellular phosphoinositide balance, leading to impairment of downstream chemotactic events including actin rearrangement, Rac1 activation, and Akt activation in response to chemoattractant stimulation. The specific regions of Msp responsible for interactions with neutrophils remain unknown. In this study, we investigated the inhibitory effect of truncated Msp regions on neutrophil chemotaxis and associated signaling pathways. Murine neutrophils were treated with recombinant protein truncations followed by assessment of chemotaxis and associated signal pathway activation. Chemotaxis assays indicate sequences within the C-terminal region; particularly the first 130 amino acids, have the strongest inhibitory effect on neutrophil chemotaxis. Neutrophils incubated with the C-terminal region protein also demonstrated the greatest inhibition of Rac1 activation, increased phosphoinositide phosphatase activity, and decreased Akt activation; orchestrating impairment of chemotaxis. Furthermore, incubation with antibodies specific to only the C-terminal region blocked the Msp-induced inhibition of chemotaxis and denaturing the protein restored Rac1 activation. Msp from the strain OTK, with numerous amino acid substitutions throughout the polypeptide, including the C-terminal region compared with strain 35405, showed increased ability to impair neutrophil chemotaxis. Collectively, these results indicate that the C-terminal region of Msp is the most potent region to modulate neutrophil chemotactic signaling and that specific sequences and structures are likely to be required. Knowledge of how spirochetes dampen the neutrophil response is limited and Msp may represent a novel therapeutic target for periodontal disease.
Collapse
Affiliation(s)
- Megan M. Jones
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| | - Stephen T. Vanyo
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| | - Michelle B. Visser
- State University of New York at Buffalo, 3435 Main St, Buffalo, NY 14214, USA
| |
Collapse
|
26
|
Cross J, Stenton GR, Harwig C, Szabo C, Genovese T, Di Paola R, Esposito E, Cuzzocrea S, Mackenzie LF. AQX-1125, small molecule SHIP1 activator inhibits bleomycin-induced pulmonary fibrosis. Br J Pharmacol 2017; 174:3045-3057. [PMID: 28658529 PMCID: PMC5573425 DOI: 10.1111/bph.13934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/26/2017] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The phosphatase SHIP1 negatively regulates the PI3K pathway, and its predominant expression within cells of the haematopoietic compartment makes SHIP1 activation a novel strategy to limit inflammatory signalling generated through PI3K. AQX-1125 is the only clinical-stage, orally administered, SHIP1 activator. Here, we demonstrate the prophylactic and therapeutic effects of AQX-1125, in a mouse model of bleomycin-induced lung fibrosis. EXPERIMENTAL APPROACH For prophylactic evaluation, AQX-1125 (3, 10 or 30 mg·kg-1 ·d-1 , p.o.) or dexamethasone (1 mg·kg-1 ·d-1 , i.p.) were given to CD-1 mice starting 3 days before intratracheal administration of bleomycin (0.1 IU per mouse) and continued daily for 7 or 21 days. Therapeutic potentials of AQX-1125 (3, 10 or 30 mg·kg-1 ·d-1 , p.o.) or pirfenidone (90 mg·kg-1 ·d-1 , p.o.) were assessed by initiating treatment 13 days after bleomycin instillation and continuing until day 28. KEY RESULTS Given prophylactically, AQX-1125 (10 and 30 mg·kg-1 ) reduced histopathological changes in lungs, 7 and 21 days following bleomycin-induced injury. At the same doses, AQX-1125 reduced the number of total leukocytes, neutrophil activity, TGF-β immunoreactivity and soluble collagen in lungs. Administered therapeutically, AQX-1125 (10 and 30 mg·kg-1 ) improved lung histopathology, cellular infiltration and reduced lung collagen content. At 30 mg·kg-1 , the effects of AQX-1125 were similar to those of pirfenidone (90 mg·kg-1 ) with corresponding improvements in disease severity. CONCLUSIONS AND IMPLICATIONS AQX-1125 prevented bleomycin-induced lung injury during the inflammatory and fibrotic phases. AQX-1125, given therapeutically, modified disease progression and improved survival, as effectively as pirfenidone.
Collapse
Affiliation(s)
| | | | - Curtis Harwig
- Aquinox Pharmaceuticals (Canada) Inc.VancouverBCCanada
| | - Csaba Szabo
- Aquinox Pharmaceuticals (Canada) Inc.VancouverBCCanada
| | - Tiziana Genovese
- Department of Clinical and Experimental Medicine and PharmacologyUniversity of MessinaMessinaItaly
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Emanuale Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and PharmacologyUniversity of MessinaMessinaItaly
| | | |
Collapse
|
27
|
Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L. Targeting microRNAs as key modulators of tumor immune response. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:103. [PMID: 27349385 PMCID: PMC4924278 DOI: 10.1186/s13046-016-0375-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023]
Abstract
The role of immune response is emerging as a key factor in the complex multistep process of cancer. Tumor microenvironment contains different types of immune cells, which contribute to regulate the fine balance between anti and protumor signals. In this context, mechanisms of crosstalk between cancer and immune cells remain to be extensively elucidated. Interestingly, microRNAs (miRNAs) have been demonstrated to function as crucial regulators of immune response in both physiological and pathological conditions. Specifically, different miRNAs have been reported to have a role in controlling the development and the functions of tumor-associated immune cells. This review aims to describe the most important miRNAs acting as critical modulators of immune response in the context of different solid tumors. In particular, we discuss recent studies that have demonstrated the existence of miRNA-mediated mechanisms regulating the recruitment and the activation status of specific tumor-associated immune cells in the tumor microenvironment. Moreover, various miRNAs have been found to target key cancer-related immune pathways, which concur to mediate the secretion of immunosuppressive or immunostimulating factors by cancer or immune cells. Modalities of miRNA exchange and miRNA-based delivery strategies are also discussed. Based on these findings, the modulation of individual or multiple miRNAs has the potential to enhance or inhibit specific immune subpopulations supporting antitumor immune responses, thus contributing to negatively affect tumorigenesis. New miRNA-based strategies can be developed for more effective immunotherapeutic interventions in cancer.
Collapse
Affiliation(s)
- Laura Paladini
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulia Bottai
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - Carlotta Raschioni
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Libero Santarpia
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano-Milan, Italy.
| |
Collapse
|
28
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Panesar S, Neethirajan S. Microfluidics: Rapid Diagnosis for Breast Cancer. NANO-MICRO LETTERS 2016; 8:204-220. [PMID: 30460281 PMCID: PMC6223681 DOI: 10.1007/s40820-015-0079-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/04/2015] [Indexed: 05/06/2023]
Abstract
Breast cancer affected 1.7 million people worldwide in 2012 and accounts for approximately 23.3 % of all cancers diagnosed in women. The disease is characterized by a genetic mutation, either inherited or resulting from environmental factors, that causes uncontrollable cellular growth of breast tissue or adjacent tissues. Current means of diagnosing this disease depend on the individual analyzing the results from bulky, highly technical, and expensive equipment that is not globally accessible. As a result, patients can go undiagnosed due to a lack of available equipment or be over-diagnosed due to human error. This review attempts to highlight current means of diagnosing breast cancer and critically analyze their effectiveness and usefulness in terms of patient survival. An alternative means based on microfluidics biomarker detection is then presented. This method can be considered as a primary screening tool for diagnosing breast cancer based on its robustness, high throughput, low energy requirements, and accessibility to the general public.
Collapse
Affiliation(s)
- Satvinder Panesar
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
30
|
Kulkarni YM, Dutta S, Iyer AKV, Venkatadri R, Kaushik V, Ramesh V, Wright CA, Semmes OJ, Yakisich JS, Azad N. A proteomics approach to identifying key protein targets involved in VEGF inhibitor mediated attenuation of bleomycin-induced pulmonary fibrosis. Proteomics 2015; 16:33-46. [PMID: 26425798 DOI: 10.1002/pmic.201500171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/07/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a life expectancy of less than 5 years post diagnosis for most patients. Poor molecular characterization of IPF has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies. In this study, we have integrated a label-free LC-MS based approach with systems biology to identify signaling pathways and regulatory nodes within protein interaction networks that govern phenotypic changes that may lead to IPF. Ingenuity Pathway Analysis of proteins modulated in response to bleomycin treatment identified PI3K/Akt and Wnt signaling as the most significant profibrotic pathways. Similar analysis of proteins modulated in response to vascular endothelial growth factor (VEGF) inhibitor (CBO-P11) treatment identified natural killer cell signaling and PTEN signaling as the most significant antifibrotic pathways. Mechanistic/mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) were identified to be key mediators of pro- and antifibrotic response, where bleomycin (BLM) treatment resulted in increased expression and VEGF inhibitor treatment attenuated expression of mTOR and ERK. Using a BLM mouse model of pulmonary fibrosis and VEGF inhibitor CBO-P11 as a therapeutic measure, we identified a comprehensive set of signaling pathways and proteins that contribute to the pathogenesis of pulmonary fibrosis that can be targeted for therapy against this fatal disease.
Collapse
Affiliation(s)
- Yogesh M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Sucharita Dutta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA.,Leroy T. Canoles Jr, Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Anand Krishnan V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Rajkumar Venkatadri
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Vani Ramesh
- Department of Obstetrics and Gynecology, The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Clayton A Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA.,Leroy T. Canoles Jr, Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Juan S Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA, USA
| |
Collapse
|
31
|
Abstract
The neutrophil transmigration across the blood endothelial cell barrier represents the prerequisite step of innate inflammation. Neutrophil recruitment to inflamed tissues occurs in a well-defined stepwise manner, which includes elements of neutrophil rolling, firm adhesion, and crawling onto the endothelial cell surface before transmigrating across the endothelial barrier. This latter step known as diapedesis can occur at the endothelial cell junction (paracellular) or directly through the endothelial cell body (transcellular). The extravasation cascade is controlled by series of engagement of various adhesive modules, which result in activation of bidirectional signals to neutrophils and endothelial cells for adequate cellular response. This review will focus on recent advances in our understanding of mechanism of leukocyte crawling and diapedesis, with an emphasis on leukocyte-endothelial interactions and the signaling pathways they transduce to determine the mode of diapedesis, junctional or nonjunctional. I will also discuss emerging evidence highlighting key differences in the two modes of diapedesis and why it is clinically important to understand specificity in the regulation of diapedesis.
Collapse
Affiliation(s)
- Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA; University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
32
|
Abstract
SUMMARY Stimuli that promote cell migration, such as chemokines, cytokines, and growth factors in metazoans and cyclic AMP in Dictyostelium, activate signaling pathways that control organization of the actin cytoskeleton and adhesion complexes. The Rho-family GTPases are a key convergence point of these pathways. Their effectors include actin regulators such as formins, members of the WASP/WAVE family and the Arp2/3 complex, and the myosin II motor protein. Pathways that link to the Rho GTPases include Ras GTPases, TorC2, and PI3K. Many of the molecules involved form gradients within cells, which define the front and rear of migrating cells, and are also established in related cellular behaviors such as neuronal growth cone extension and cytokinesis. The signaling molecules that regulate migration can be integrated to provide a model of network function. The network displays biochemical excitability seen as spontaneous waves of activation that propagate along the cell cortex. These events coordinate cell movement and can be biased by external cues to bring about directed migration.
Collapse
Affiliation(s)
- Peter Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
33
|
Taylor EB, Nayak DK, Quiniou SMA, Bengten E, Wilson M. Identification of SHIP-1 and SHIP-2 homologs in channel catfish, Ictalurus punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:79-87. [PMID: 25743379 DOI: 10.1016/j.dci.2015.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Src homology domain 2 (SH2) domain-containing inositol 5'-phosphatases (SHIP) proteins have diverse roles in signal transduction. SHIP-1 and SHIP-2 homologs were identified in channel catfish, Ictalurus punctatus, based on sequence homology to murine and human SHIP sequences. Full-length cDNAs for catfish SHIP-1 and SHIP-2 (IpSHIP-1 and IpSHIP-2) were obtained using 5' and 3' RACE protocols. Catfish SHIP molecules share a high degree of sequence identity to their respective SHIP sequences from diverse taxa and both are encoded by single copy genes. IpSHIP-1 and IpSHIP-2 transcripts were expressed in all catfish tissues analyzed except for skin, and IpSHIP-1 message was more abundant than IpSHIP-2 message in lymphoid tissues. Catfish clonal B, cytotoxic T, and macrophage cell lines also expressed message for both molecules. IpSHIP-1 and IpSHIP-2 SH2 domains were expressed as recombinant proteins and were both found to be bound by cross-reacting rabbit anti-mouse SHIP-1 pAb. The anti-mouse SHIP-1 pAb also reacted with cell lysates from the cytotoxic T cell lines, macrophages and stimulated PBL. SHIP-1 is also phosphorylated at a conserved tyrosine residue, as shown by immunoprecipitation studies.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Deepak K Nayak
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Eva Bengten
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Melanie Wilson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
34
|
Mócsai A, Walzog B, Lowell CA. Intracellular signalling during neutrophil recruitment. Cardiovasc Res 2015; 107:373-85. [PMID: 25998986 PMCID: PMC4502828 DOI: 10.1093/cvr/cvv159] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/19/2015] [Indexed: 12/29/2022] Open
Abstract
Recruitment of leucocytes such as neutrophils to the extravascular space is a critical step of the inflammation process and plays a major role in the development of various diseases including several cardiovascular diseases. Neutrophils themselves play a very active role in that process by sensing their environment and responding to the extracellular cues by adhesion and de-adhesion, cellular shape changes, chemotactic migration, and other effector functions of cell activation. Those responses are co-ordinated by a number of cell surface receptors and their complex intracellular signal transduction pathways. Here, we review neutrophil signal transduction processes critical for recruitment to the site of inflammation. The two key requirements for neutrophil recruitment are the establishment of appropriate chemoattractant gradients and the intrinsic ability of the cells to migrate along those gradients. We will first discuss signalling steps required for sensing extracellular chemoattractants such as chemokines and lipid mediators and the processes (e.g. PI3-kinase pathways) leading to the translation of extracellular chemoattractant gradients to polarized cellular responses. We will then discuss signal transduction by leucocyte adhesion receptors (e.g. tyrosine kinase pathways) which are critical for adhesion to, and migration through the vessel wall. Finally, additional neutrophil signalling pathways with an indirect effect on the neutrophil recruitment process, e.g. through modulation of the inflammatory environment, will be discussed. Mechanistic understanding of these pathways provide better understanding of the inflammation process and may point to novel therapeutic strategies for controlling excessive inflammation during infection or tissue damage.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Tűzoltó utca 37-47, 1094 Budapest, Hungary MTA-SE 'Lendület' Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Barbara Walzog
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
Abstract
Rac and PI3Ks are intracellular signal transducers able to regulate multiple signaling pathways fundamental for cell behavior. PI3Ks are lipid kinases that produce phosphorylated lipids which, in turn, transduce extracellular cues within the cell, while Rac is a small G protein that impacts on actin organization. Compelling evidence indicates that in multiple circumstances the 2 signaling pathways appear intermingled. For instance, phosphorylated lipids produced by PI3Ks recruit and activate GEF and GAP proteins, key modulators of Rac function. Conversely, PI3Ks interact with activated Rac, leading to Rac signaling amplification. This review summarizes the molecular mechanisms underlying the cross-talk between Rac and PI3K signaling in 2 different processes, cell migration and ROS production.
Collapse
Affiliation(s)
- Carlo C Campa
- a Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino , Italy
| | | | | | | | | |
Collapse
|
36
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.
Collapse
Affiliation(s)
- Carolyn A Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721;
| | | |
Collapse
|
38
|
Abstract
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA Promega Corporation, Madison, WI, USA
| |
Collapse
|
39
|
DE MELO JASON, WU VINCENT, HE LIZHI, YAN JUDY, TANG DAMU. SIPL1 enhances the proliferation, attachment, and migration of CHO cells by inhibiting PTEN function. Int J Mol Med 2014; 34:835-41. [DOI: 10.3892/ijmm.2014.1840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/13/2014] [Indexed: 11/06/2022] Open
|
40
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
41
|
Gambardella L, Vermeren S. Molecular players in neutrophil chemotaxis-focus on PI3K and small GTPases. J Leukoc Biol 2013; 94:603-12. [DOI: 10.1189/jlb.1112564] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
42
|
Visser MB, Sun CX, Koh A, Ellen RP, Glogauer M. Treponema denticola major outer sheath protein impairs the cellular phosphoinositide balance that regulates neutrophil chemotaxis. PLoS One 2013; 8:e66209. [PMID: 23755300 PMCID: PMC3670873 DOI: 10.1371/journal.pone.0066209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
The major outer sheath protein (Msp) of Treponema denticola inhibits neutrophil polarization and directed chemotaxis together with actin dynamics in vitro in response to the chemoattractant N-formyl-methionine-leucine-phenylanine (fMLP). Msp disorients chemotaxis through inhibition of a Rac1-dependent signaling pathway, but the upstream mechanisms are unknown. We challenged murine bone marrow neutrophils with enriched native Msp to determine the role of phospholipid modifying enzymes in chemotaxis and actin assembly downstream of fMLP-stimulation. Msp modulated cellular phosphoinositide levels through inhibition of phosphatidylinositol 3-kinase (PI3-kinase) together with activation of the lipid phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Impaired phosphatidylinositol[(3,4,5)]-triphosphate (PIP3) levels prevented recruitment and activation of the downstream mediator Akt. Release of the actin capping proteins gelsolin and CapZ in response to fMLP was also inhibited by Msp exposure. Chemical inhibition of PTEN restored PIP3 signaling, as measured by Akt activation, Rac1 activation, actin uncapping, neutrophil polarization and chemotaxis in response to fMLP-stimulation, even in the presence of Msp. Transduction with active Rac1 also restored fMLP-mediated actin uncapping, suggesting that Msp acts at the level of PIP3 in the hierarchical feedback loop of PIP3 and Rac1 activation. Taken together, Msp alters the phosphoinositide balance in neutrophils, impairing the cell “compass”, which leads to inhibition of downstream chemotactic events.
Collapse
Affiliation(s)
- Michelle B Visser
- Matrix Dynamics Group, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
43
|
Souza LR, Silva E, Calloway E, Cabrera C, McLemore ML. G-CSF activation of AKT is not sufficient to prolong neutrophil survival. J Leukoc Biol 2013; 93:883-93. [PMID: 23559492 DOI: 10.1189/jlb.1211591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neutrophils play an important role in the innate immune response against bacterial and fungal infections. They have a short lifespan in circulation, and their survival can be modulated by several cytokines, including G-CSF. Previous studies have implicated AKT as a critical signaling intermediary in the regulation of neutrophil survival. Our results demonstrate that G-CSF activation of AKT is not sufficient to prolong neutrophil survival. Neutrophils treated with G-CSF undergo apoptosis, even in the presence of high levels of p-AKT. In addition, inhibitors of AKT and downstream targets failed to alter neutrophil survival. In contrast, neutrophil precursors appear to be dependent on AKT signaling pathways for survival, whereas high levels of p-AKT inhibit proliferation. Our data suggest that the AKT/mTOR pathway, although important in G-CSF-driven myeloid differentiation, proliferation, and survival of early hematopoietic progenitors, is less essential in G-CSF suppression of neutrophil apoptosis. Whereas basal AKT levels may be required for the brief life of neutrophils, further p-AKT expression is not able to extend the neutrophil lifespan in the presence of G-CSF.
Collapse
Affiliation(s)
- Liliana R Souza
- Winship Cancer Institute, Department of Hematology and Oncology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
44
|
A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood 2013; 122:243-52. [PMID: 23487026 DOI: 10.1182/blood-2012-08-449306] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A productive immune response requires transient upregulation of the microRNA miR-155 in hematopoietic cells mediating innate and adaptive immunity. In order to investigate miR-155 in the context of tumor-associated immune responses, we stably knocked down (KD) miR-155 in the myeloid compartment of MMTV-PyMT mice, a mouse model of spontaneous breast carcinogenesis that closely mimics tumor-host interactions seen in humans. Notably, miR-155/KD significantly accelerated tumor growth by impairing classic activation of tumor-associated macrophages (TAMs). This created an imbalance toward a protumoral microenvironment as evidenced by a lower proportion of CD11c(+) TAMs, reduced expression of activation markers, and the skewing of immune cells within the tumor toward an macrophage type 2/T helper 2 response. This study highlights the importance of tumor-infiltrating hematopoietic cells in constraining carcinogenesis and establishes an antitumoral function of a prototypical oncomiR.
Collapse
|
45
|
|
46
|
Corey SJ, Mehta HM, Stein PL. Two SHIPs passing in the middle of the immune system. Eur J Immunol 2012; 42:1681-4. [PMID: 22696261 DOI: 10.1002/eji.201242706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunity requires a complex, multiscale system of molecules, cells, and cytokines. In this issue of the European Journal of Immunology, Collazo et al. [Eur. J. Immunol. 2012. 42: 1785-1796] provide evidence that links the lipid phosphatase SHIP1 with the coordination of interactions between regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs). Using conditional knockouts of SHIP1 in either the myeloid or T-cell-lineage of mice, the authors show that the regulated development of Treg cells is controlled directly by cell-intrinsic SHIP1, and indirectly by extrinsic SHIP1 control of an unknown myeloid cell. Regulation of MDSCs is also determined by SHIP1 in an extrinsic manner, again via an as-yet-unknown myeloid cell. Furthermore, this extrinsic control of Treg cells and MDSCs is mediated in part by increased production of G-CSF, a growth factor critical for the production of neutrophils, in SHIP1-deficient mice. Thus, a physiologically important implication of this report is the collaboration between the innate and adaptive immune systems in fine tuning of Treg cells as discussed in this commentary.
Collapse
Affiliation(s)
- Seth J Corey
- Department of Pediatrics and Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | |
Collapse
|
47
|
Wang L, Huang J, Jiang M, Lin H, Qi L, Diao H. Activated PTHLH coupling feedback phosphoinositide to G-protein receptor signal-induced cell adhesion network in human hepatocellular carcinoma by systems-theoretic analysis. ScientificWorldJournal 2012; 2012:428979. [PMID: 22997493 PMCID: PMC3444843 DOI: 10.1100/2012/428979] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/29/2012] [Indexed: 12/27/2022] Open
Abstract
Studies were done on analysis of biological processes in the same high expression (fold change ≥2) activated PTHLH feedback-mediated cell adhesion gene ontology (GO) network of human hepatocellular carcinoma (HCC) compared with the corresponding low expression activated GO network of no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection). Activated PTHLH feedback-mediated cell adhesion network consisted of anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolism, cell adhesion, cell differentiation, cell-cell signaling, G-protein-coupled receptor protein signaling pathway, intracellular transport, metabolism, phosphoinositide-mediated signaling, positive regulation of transcription, regulation of cyclin-dependent protein kinase activity, regulation of transcription, signal transduction, transcription, and transport in HCC. We proposed activated PTHLH coupling feedback phosphoinositide to G-protein receptor signal-induced cell adhesion network. Our hypothesis was verified by the different activated PTHLH feedback-mediated cell adhesion GO network of HCC compared with the corresponding inhibited GO network of no-tumor hepatitis/cirrhotic tissues, or the same compared with the corresponding inhibited GO network of HCC. Activated PTHLH coupling feedback phosphoinositide to G-protein receptor signal-induced cell adhesion network included BUB1B, GNG10, PTHR2, GNAZ, RFC4, UBE2C, NRXN3, BAP1, PVRL2, TROAP, and VCAN in HCC from GEO dataset using gene regulatory network inference method and our programming.
Collapse
Affiliation(s)
- Lin Wang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | | | | | | | | | | |
Collapse
|
48
|
Blunt MD, Ward SG. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment, and new opportunities. Front Immunol 2012; 3:226. [PMID: 22876243 PMCID: PMC3410520 DOI: 10.3389/fimmu.2012.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022] Open
Abstract
The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | | |
Collapse
|