1
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Kumar A, Mishra S, Kumar A, Raut AA, Sato S, Takaoka A, Kumar H. Essential role of Rnd1 in innate immunity during viral and bacterial infections. Cell Death Dis 2022; 13:520. [PMID: 35654795 PMCID: PMC9161769 DOI: 10.1038/s41419-022-04954-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023]
Abstract
Intracellular and cell surface pattern-recognition receptors (PRRs) are an essential part of innate immune recognition and host defense. Here, we have compared the innate immune responses between humans and bats to identify a novel membrane-associated protein, Rnd1, which defends against viral and bacterial infection in an interferon-independent manner. Rnd1 belongs to the Rho GTPase family, but unlike other small GTPase members, it is constitutively active. We show that Rnd1 is induced by pro-inflammatory cytokines during viral and bacterial infections and provides protection against these pathogens through two distinct mechanisms. Rnd1 counteracts intracellular calcium fluctuations by inhibiting RhoA activation, thereby inhibiting virus internalisation. On the other hand, Rnd1 also facilitates pro-inflammatory cytokines IL-6 and TNF-α through Plxnb1, which are highly effective against intracellular bacterial infections. These data provide a novel Rnd1-mediated innate defense against viral and bacterial infections.
Collapse
Affiliation(s)
- Akhilesh Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shalabh Mishra
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ashish Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India ,grid.27860.3b0000 0004 1936 9684Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA USA
| | - Ashwin Ashok Raut
- grid.506025.40000 0004 5997 407XPathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Seiichi Sato
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Takaoka
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Himanshu Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India ,grid.136593.b0000 0004 0373 3971WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Meng Z, Li FL, Fang C, Yeoman B, Qiu Y, Wang Y, Cai X, Lin KC, Yang D, Luo M, Fu V, Ma X, Diao Y, Giancotti FG, Ren B, Engler AJ, Guan KL. The Hippo pathway mediates Semaphorin signaling. SCIENCE ADVANCES 2022; 8:eabl9806. [PMID: 35613278 PMCID: PMC9132450 DOI: 10.1126/sciadv.abl9806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Fu-Long Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cao Fang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kimberly C. Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Di Yang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Luo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yarui Diao
- Regeneration Next Initiative, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Filippo G. Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of GU Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Herbert Irving Comprehensive Cancer Center and Department of Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10033, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
5
|
Abstract
Rnd proteins constitute a subfamily of Rho GTPases represented in mammals by Rnd1, Rnd2 and Rnd3. Despite their GTPase structure, their specific feature is the inability to hydrolyse GTP-bound nucleotide. This aspect makes them atypical among Rho GTPases. Rnds are regulated for their expression at the transcriptional or post-transcriptional levels and they are activated through post-translational modifications and interactions with other proteins. Rnd proteins are mainly involved in the regulation of the actin cytoskeleton and cell proliferation. Whereas Rnd3 is ubiquitously expressed, Rnd1 and 2 are tissue-specific. Increasing data has described their important role during development and diseases. Herein, we describe their involvement in physiological and pathological conditions with a focus on the neuronal and vascular systems, and summarize their implications in tumorigenesis.
Collapse
Affiliation(s)
- Sara Basbous
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| | - Roberta Azzarelli
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Emilie Pacary
- INSERM, U1215 - Neurocentre Magendie, F-33077, Univ. Bordeaux, Bordeaux, France
| | - Violaine Moreau
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
6
|
Blangy A, Bompard G, Guerit D, Marie P, Maurin J, Morel A, Vives V. The osteoclast cytoskeleton - current understanding and therapeutic perspectives for osteoporosis. J Cell Sci 2020; 133:133/13/jcs244798. [PMID: 32611680 DOI: 10.1242/jcs.244798] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoclasts are giant multinucleated myeloid cells specialized for bone resorption, which is essential for the preservation of bone health throughout life. The activity of osteoclasts relies on the typical organization of osteoclast cytoskeleton components into a highly complex structure comprising actin, microtubules and other cytoskeletal proteins that constitutes the backbone of the bone resorption apparatus. The development of methods to differentiate osteoclasts in culture and manipulate them genetically, as well as improvements in cell imaging technologies, has shed light onto the molecular mechanisms that control the structure and dynamics of the osteoclast cytoskeleton, and thus the mechanism of bone resorption. Although essential for normal bone physiology, abnormal osteoclast activity can cause bone defects, in particular their hyper-activation is commonly associated with many pathologies, hormonal imbalance and medical treatments. Increased bone degradation by osteoclasts provokes progressive bone loss, leading to osteoporosis, with the resulting bone frailty leading to fractures, loss of autonomy and premature death. In this context, the osteoclast cytoskeleton has recently proven to be a relevant therapeutic target for controlling pathological bone resorption levels. Here, we review the present knowledge on the regulatory mechanisms of the osteoclast cytoskeleton that control their bone resorption activity in normal and pathological conditions.
Collapse
Affiliation(s)
- Anne Blangy
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Guillaume Bompard
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - David Guerit
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Pauline Marie
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Justine Maurin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| | - Virginie Vives
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000 Montpellier, France
| |
Collapse
|
7
|
Traglia M, Windham GC, Pearl M, Poon V, Eyles D, Jones KL, Lyall K, Kharrazi M, Croen LA, Weiss LA. Genetic Contributions to Maternal and Neonatal Vitamin D Levels. Genetics 2020; 214:1091-1102. [PMID: 32047095 PMCID: PMC7153928 DOI: 10.1534/genetics.119.302792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/05/2020] [Indexed: 02/08/2023] Open
Abstract
Vitamin D is essential for several physiological functions and biological processes. Increasing levels of maternal vitamin D are required throughout pregnancy as a unique source of vitamin D for the fetus, and consequently maternal vitamin D deficiency may result in several adverse outcomes in newborns. However, the genetic regulation of vitamin D in pregnancy and at birth is not yet well understood. We performed genome-wide association studies of maternal midgestational serum-derived and neonatal blood-spot-derived total 25-hydroxyvitamin D from a case-control study of autism spectrum disorder (ASD). We identified one fetal locus (rs4588) significantly associated with neonatal vitamin D levels in the GC gene, encoding the binding protein for the transport and function of vitamin D. We also found suggestive cross-associated loci for neonatal and maternal vitamin D near immune genes, such as CXCL6-IL8 and ACKR1 We found no interactions with ASD. However, when including a set of cases with intellectual disability but not ASD (N = 179), we observed a suggestive interaction between decreased levels of neonatal vitamin D and a specific maternal genotype near the PKN2 gene. Our results suggest that genetic variation influences total vitamin D levels during pregnancy and at birth via proteins in the vitamin D pathway, but also potentially via distinct mechanisms involving loci with known roles in immune function that might be involved in vitamin D pathophysiology in pregnancy.
Collapse
Affiliation(s)
- Michela Traglia
- Department of Psychiatry, Institute for Human Genetics, University of California, San Francisco, California 94143
| | - Gayle C Windham
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Michelle Pearl
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Victor Poon
- Sequoia Foundation, La Jolla, California 92037
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Karen L Jones
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California 95616
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania 191044
| | - Martin Kharrazi
- California Department of Public Health, Environmental Health Investigations Branch, Richmond, California 94804
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, California 94612
| | - Lauren A Weiss
- Department of Psychiatry, Institute for Human Genetics, University of California, San Francisco, California 94143
| |
Collapse
|
8
|
Mouly L, Gilhodes J, Lemarié A, Cohen-Jonathan Moyal E, Toulas C, Favre G, Sordet O, Monferran S. The RND1 Small GTPase: Main Functions and Emerging Role in Oncogenesis. Int J Mol Sci 2019; 20:ijms20153612. [PMID: 31344837 PMCID: PMC6696182 DOI: 10.3390/ijms20153612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023] Open
Abstract
The Rho GTPase family can be classified into classic and atypical members. Classic members cycle between an inactive Guanosine DiPhosphate -bound state and an active Guanosine TriPhosphate-bound state. Atypical Rho GTPases, such as RND1, are predominantly in an active GTP-bound conformation. The role of classic members in oncogenesis has been the subject of numerous studies, while that of atypical members has been less explored. Besides the roles of RND1 in healthy tissues, recent data suggest that RND1 is involved in oncogenesis and response to cancer therapeutics. Here, we present the current knowledge on RND1 expression, subcellular localization, and functions in healthy tissues. Then, we review data showing that RND1 expression is dysregulated in tumors, the molecular mechanisms involved in this deregulation, and the role of RND1 in oncogenesis. For several aggressive tumors, RND1 presents the features of a tumor suppressor gene. In these tumors, low expression of RND1 is associated with a bad prognosis for the patients. Finally, we highlight that RND1 expression is induced by anticancer agents and modulates their response. Of note, RND1 mRNA levels in tumors could be used as a predictive marker of both patient prognosis and response to anticancer agents.
Collapse
Affiliation(s)
- Laetitia Mouly
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
| | - Julia Gilhodes
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Anthony Lemarié
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Christine Toulas
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
| | - Sylvie Monferran
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France.
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France.
| |
Collapse
|
9
|
Matsuda T, Namura A, Oinuma I. Dynamic spatiotemporal patterns of alternative splicing of an F-actin scaffold protein, afadin, during murine development. Gene 2019; 689:56-68. [PMID: 30572094 DOI: 10.1016/j.gene.2018.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/23/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
An F-actin scaffold protein, afadin, comprises two splice variants called l-afadin (a long isoform) and s-afadin (a short isoform). It is known that in adult tissues, l-afadin is ubiquitously expressed while s-afadin is restrictedly expressed in brain. In cultured cortical neurons, l-afadin potentiates axonal branching whereas s-afadin blocks axonal branching by functioning as a naturally occurring dominant-negative isoform that forms a heterodimer with l-afadin. However, the temporal and spatial expression pattern of s-afadin during development or across multiple tissues and organs has not been fully understood. In this study, using Western blotting and RT-qPCR techniques and the fluorescent splicing reporters, we examined the detailed expression patterns of l- and s-afadin isoforms across various tissues and cell types, including rat organs at developmental stages, primary cultured neuronal and non-neuronal cells prepared from the developing rat brain, and in neurons in vitro generated from P19 embryonal carcinoma (EC) cells. Both mRNA and protein of s-afadin were abundantly expressed in various regions of rat neuronal tissues, and their expression dynamically changed during development in vivo. The expression of s-afadin was also detected in primary rat cortical neurons, but not in astrocytes or fibroblasts, and the neuronal expression increased during neuronal maturation in vitro. The dynamic alternative splicing event of afadin during development was successfully visualized with the newly developed fluorescent splicing reporter plasmids at a single cell level. Moreover, s-afadin was undetectable in undifferentiated EC cells, and the expression was induced upon differentiation of the cells into neurons. These data suggest that spatiotemporal and dynamic alternative splicing produces differential expression patterns of afadin isoforms and that alternative splicing of afadin is controlled by the neuron-specific regulator(s) whose activity is triggered and dynamically altered during neuronal differentiation and maturation.
Collapse
Affiliation(s)
- Takahiko Matsuda
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Arisa Namura
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Izumi Oinuma
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Liu S, Zheng F, Cai Y, Zhang W, Dun Y. Effect of Long-Term Exercise Training on lncRNAs Expression in the Vascular Injury of Insulin Resistance. J Cardiovasc Transl Res 2018; 11:459-469. [DOI: 10.1007/s12265-018-9830-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
|
11
|
Jain M, Mann TD, Stulić M, Rao SP, Kirsch A, Pullirsch D, Strobl X, Rath C, Reissig L, Moreth K, Klein-Rodewald T, Bekeredjian R, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Pablik E, Cimatti L, Martin D, Zinnanti J, Graier WF, Sibilia M, Frank S, Levanon EY, Jantsch MF. RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J 2018; 37:e94813. [PMID: 30087110 PMCID: PMC6166124 DOI: 10.15252/embj.201694813] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
Epitranscriptomic events such as adenosine-to-inosine (A-to-I) RNA editing by ADAR can recode mRNAs to translate novel proteins. Editing of the mRNA that encodes actin crosslinking protein Filamin A (FLNA) mediates a Q-to-R transition in the interactive C-terminal region. While FLNA editing is conserved among vertebrates, its physiological function remains unclear. Here, we show that cardiovascular tissues in humans and mice show massive editing and that FLNA RNA is the most prominent substrate. Patient-derived RNA-Seq data demonstrate a significant drop in FLNA editing associated with cardiovascular diseases. Using mice with only impaired FLNA editing, we observed increased vascular contraction and diastolic hypertension accompanied by increased myosin light chain phosphorylation, arterial remodeling, and left ventricular wall thickening, which eventually causes cardiac remodeling and reduced systolic output. These results demonstrate a causal relationship between RNA editing and the development of cardiovascular disease indicating that a single epitranscriptomic RNA modification can maintain cardiovascular health.
Collapse
Affiliation(s)
- Mamta Jain
- Division of Cell Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Tomer D Mann
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Maja Stulić
- Division of Cell Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Shailaja P Rao
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrijana Kirsch
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dieter Pullirsch
- Division of Cell Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Xué Strobl
- Division of Cell Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Claus Rath
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eleonore Pablik
- Section for Medical Statistics, CeMSIIS, Medical University of Vienna, Vienna, Austria
| | - Laura Cimatti
- Division of Cell Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - David Martin
- Division of Cell Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang F Graier
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Maria Sibilia
- Department of Medicine I, Comprehensive Cancer Center, Institute for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Saša Frank
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Michael F Jantsch
- Division of Cell Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Differential regional and subcellular localization patterns of afadin splice variants in the mouse central nervous system. Brain Res 2018; 1692:74-86. [PMID: 29733813 DOI: 10.1016/j.brainres.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
Abstract
AF6/afadin is an F-actin scaffold protein that plays essential roles in the organization of cell-cell junctions of polarized epithelia. Afadin comprises two major isoforms produced by alternative splicing - a longer isoform l-afadin, having the F-actin-binding domain, and a shorter isoform s-afadin, harboring the amino acid sequences unique to the isoform but lacking the F-actin-binding domain. We recently identified functional differences between l- and s-afadin isoforms in the regulation of axon branching in primary cultured cortical neurons; the former potentiates and the latter blocks axon branching. Previous biochemical reports indicate differences in tissue and cell-type distributions of isoforms, and it was shown that l-afadin is ubiquitously expressed in various tissues and cell-types, while s-afadin is predominantly expressed in neuronal tissues and cultured neurons. However, the spatial expression pattern of s-afadin across neuronal tissues or within neurons has not been revealed because no antibody specific for s-afadin is yet available. In this study, we report the generation and characterization of an antibody that specifically distinguishes s-afadin from l-afadin, and its application to investigate the expression profile of s-afadin in primary cultured neurons and tissue cryosections of adult mouse brain and retina. We describe differential regional and subcellular localization patterns of l- and s-afadin isoforms in the mouse central nervous system.
Collapse
|
13
|
Bidaud-Meynard A, Binamé F, Lagrée V, Moreau V. Regulation of Rho GTPase activity at the leading edge of migrating cells by p190RhoGAP. Small GTPases 2017; 10:99-110. [PMID: 28287334 DOI: 10.1080/21541248.2017.1280584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell migration, a key feature of embryonic development, immunity, angiogenesis, and tumor metastasis, is based on the coordinated regulation of actin dynamics and integrin-mediated adhesion. Rho GTPases play a major role in this phenomenon by regulating the onset and maintenance of actin-based protruding structures at cell leading edges (i.e. lamellipodia and filopodia) and contractile structures (i.e., stress fibers) at their trailing edge. While spatio-temporal analysis demonstrated the tight regulation of Rho GTPases at the migration front during cell locomotion, little is known about how the main regulators of Rho GTPase activity, such as GAPs, GEFs and GDIs, play a role in this process. In this review, we focus on a major negative regulator of RhoA, p190RhoGAP-A and its close isoform p190RhoGAP-B, which are necessary for efficient cell migration. Recent studies, including our, demonstrated that p190RhoGAP-A localization and activity undergo a complex regulatory mechanism, accounting for the tight regulation of RhoA, but also other members of the Rho GTPase family, at the cell periphery.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Fabien Binamé
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Valérie Lagrée
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Violaine Moreau
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| |
Collapse
|
14
|
McColl B, Garg R, Riou P, Riento K, Ridley AJ. Rnd3-induced cell rounding requires interaction with Plexin-B2. J Cell Sci 2016; 129:4046-4056. [PMID: 27656111 PMCID: PMC5117210 DOI: 10.1242/jcs.192211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022] Open
Abstract
Rnd proteins are atypical members of the Rho GTPase family that induce actin cytoskeletal reorganization and cell rounding. Rnd proteins have been reported to bind to the intracellular domain of several plexin receptors, but whether plexins contribute to the Rnd-induced rounding response is not known. Here we show that Rnd3 interacts preferentially with plexin-B2 of the three plexin-B proteins, whereas Rnd2 interacts with all three B-type plexins, and Rnd1 shows only very weak interaction with plexin-B proteins in immunoprecipitations. Plexin-B1 has been reported to act as a GAP for R-Ras and/or Rap1 proteins. We show that all three plexin-B proteins interact with R-Ras and Rap1, but Rnd proteins do not alter this interaction or R-Ras or Rap1 activity. We demonstrate that plexin-B2 promotes Rnd3-induced cell rounding and loss of stress fibres, and enhances the inhibition of HeLa cell invasion by Rnd3. We identify the amino acids in Rnd3 that are required for plexin-B2 interaction, and show that mutation of these amino acids prevents Rnd3-induced morphological changes. These results indicate that plexin-B2 is a downstream target for Rnd3, which contributes to its cellular function.
Collapse
Affiliation(s)
- Brad McColl
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Ritu Garg
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Philippe Riou
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Kirsi Riento
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
15
|
Haga RB, Ridley AJ. Rho GTPases: Regulation and roles in cancer cell biology. Small GTPases 2016; 7:207-221. [PMID: 27628050 PMCID: PMC5129894 DOI: 10.1080/21541248.2016.1232583] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Rho GTPases are well known for their roles in regulating cell migration, and also contribute to a variety of other cellular responses. They are subdivided into 2 groups: typical and atypical. The typical Rho family members, including RhoA, Rac1 and Cdc42, cycle between an active GTP-bound and inactive GDP-bound conformation, and are regulated by GEFs, GAPs and GDIs, whereas atypical Rho family members have amino acid substitutions that alter their ability to interact with GTP/GDP and hence are regulated by different mechanisms. Both typical and atypical Rho GTPases contribute to cancer progression. In a few cancers, RhoA or Rac1 are mutated, but in most cancers expression levels and/or activity of Rho GTPases is altered. Rho GTPase signaling could therefore be therapeutically targeted in cancer treatment.
Collapse
Affiliation(s)
- Raquel B. Haga
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
16
|
Abstract
Rnd3, also known as RhoE, belongs to the Rnd subclass of the Rho family of small guanosine triphosphate (GTP)-binding proteins. Rnd proteins are unique due to their inability to switch from a GTP-bound to GDP-bound conformation. Even though studies of the biological function of Rnd3 are far from being concluded, information is available regarding its expression pattern, cellular localization, and its activity, which can be altered depending on the conditions. The compiled data from these studies implies that Rnd3 may not be a traditional small GTPase. The basic role of Rnd3 is to report as an endogenous antagonist of RhoA signaling-mediated actin cytoskeleton dynamics, which specifically contributes to cell migration and neuron polarity. In addition, Rnd3 also plays a critical role in arresting cell cycle distribution, inhibiting cell growth, and inducing apoptosis and differentiation. Increasing data have shown that aberrant Rnd3 expression may be the leading cause of some systemic diseases; particularly highlighted in apoptotic cardiomyopathy, developmental arrhythmogenesis and heart failure, hydrocephalus, as well as tumor metastasis and chemotherapy resistance. Therefore, a better understanding of the function of Rnd3 under different physiological and pathological conditions, through the use of suitable models, would provide a novel insight into the origin and treatment of multiple human diseases.
Collapse
Affiliation(s)
- Wei Jie
- Department of Pathology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang, Guangdong Province, China
| | - Kelsey C Andrade
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xi Lin
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xiangsheng Yang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xiaojing Yue
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Jiang Chang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| |
Collapse
|
17
|
Kshitiz, Afzal J, Kim DH, Levchenko A. Concise review: Mechanotransduction via p190RhoGAP regulates a switch between cardiomyogenic and endothelial lineages in adult cardiac progenitors. Stem Cells 2015; 32:1999-2007. [PMID: 24710857 DOI: 10.1002/stem.1700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/18/2014] [Indexed: 01/01/2023]
Abstract
Mechanical cues can have pleiotropic influence on stem cell shape, proliferation, differentiation, and morphogenesis, and are increasingly realized to play an instructive role in regeneration and maintenance of tissue structure and functions. To explore the putative effects of mechanical cues in regeneration of the cardiac tissue, we investigated therapeutically important cardiosphere-derived cells (CDCs), a heterogeneous patient- or animal-specific cell population containing c-Kit(+) multipotent stem cells. We showed that mechanical cues can instruct c-Kit(+) cell differentiation along two lineages with corresponding morphogenic changes, while also serving to amplify the initial c-Kit(+) subpopulation. In particular, mechanical cues mimicking the structure of myocardial extracellular matrix specify cardiomyogenic fate, while cues mimicking myocardium rigidity specify endothelial fates. Furthermore, we found that these cues dynamically regulate the same molecular species, p190RhoGAP, which then acts through both RhoA-dependent and independent mechanisms. Thus, differential regulation of p190RhoGAP molecule by either mechanical inputs or genetic manipulation can determine lineage type specification. Since human CDCs are already in phase II clinical trials, the potential therapeutic use of mechanical or genetic manipulation of the cell fate could enhance effectiveness of these progenitor cells in cardiac repair, and shed new light on differentiation mechanisms in cardiac and other tissues.
Collapse
Affiliation(s)
- Kshitiz
- Department of Bioengineering, Institute of Stem Cells and Regenerative Medicine and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA; Institute of Stem Cells and Regenerative Medicine and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
18
|
RND1 is up-regulated in esophageal squamous cell carcinoma and promotes the growth and migration of cancer cells. Tumour Biol 2015; 37:773-9. [DOI: 10.1007/s13277-015-3855-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/28/2015] [Indexed: 11/26/2022] Open
|
19
|
Azzarelli R, Guillemot F, Pacary E. Function and regulation of Rnd proteins in cortical projection neuron migration. Front Neurosci 2015; 9:19. [PMID: 25705175 PMCID: PMC4319381 DOI: 10.3389/fnins.2015.00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/13/2015] [Indexed: 01/08/2023] Open
Abstract
The mammalian cerebral cortex contains a high variety of neuronal subtypes that acquire precise spatial locations and form long or short-range connections to establish functional neuronal circuits. During embryonic development, cortical projection neurons are generated in the areas lining the lateral ventricles and they subsequently undergo radial migration to reach the position of their final maturation within the cortical plate. The control of the neuroblast migratory behavior and the coordination of the migration process with other neurogenic events such as cell cycle exit, differentiation and final maturation are crucial to normal brain development. Among the key regulators of cortical neuron migration, the small GTP binding proteins of the Rho family and the atypical Rnd members play important roles in integrating intracellular signaling pathways into changes in cytoskeletal dynamics and motility behavior. Here we review the role of Rnd proteins during cortical neuronal migration and we discuss both the upstream mechanisms that regulate Rnd protein activity and the downstream molecular pathways that mediate Rnd effects on cell cytoskeleton.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Cambridge Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge Cambridge, UK
| | - François Guillemot
- Division of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| | - Emilie Pacary
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Université de Bordeaux Bordeaux, France
| |
Collapse
|
20
|
|
21
|
Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-Bleyer Y, Kühn LI, Gruber CW, Lienhard GE, Ghosh S. κB-Ras proteins regulate both NF-κB-dependent inflammation and Ral-dependent proliferation. Cell Rep 2014; 8:1793-1807. [PMID: 25220458 DOI: 10.1016/j.celrep.2014.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/19/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023] Open
Abstract
The transformation of cells generally involves multiple genetic lesions that undermine control of both cell death and proliferation. We now report that κB-Ras proteins act as regulators of NF-κB and Ral pathways, which control inflammation/cell death and proliferation, respectively. Cells lacking κB-Ras therefore not only show increased NF-κB activity, which results in increased expression of inflammatory mediators, but also exhibit elevated Ral activity, which leads to enhanced anchorage-independent proliferation (AIP). κB-Ras deficiency consequently leads to significantly increased tumor growth that can be dampened by inhibiting either Ral or NF-κB pathways, revealing the unique tumor-suppressive potential of κB-Ras proteins. Remarkably, numerous human tumors show reduced levels of κB-Ras, and increasing the level of κB-Ras in these tumor cells impairs their ability to undergo AIP, thereby implicating κB-Ras proteins in human disease.
Collapse
Affiliation(s)
- Andrea Oeckinghaus
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Thomas S Postler
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ping Rao
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Heike Schmitt
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Verena Schmitt
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lars I Kühn
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gustav E Lienhard
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
22
|
Glucocorticoid receptor DNA binding factor 1 expression and osteosarcoma prognosis. Tumour Biol 2014; 35:12449-58. [PMID: 25185653 DOI: 10.1007/s13277-014-2563-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoid receptor DNA binding factor 1 (GRF-1) is an important Rho family GTPase-activating protein, and the dysregulation of GRF-1 expression maybe involved in tumor progression. However, the role of GRF-1 expression in the osteosarcoma prognosis has been well less elaborated. Here, we conducted a hospital-based case study, including 247 patients with pathologically confirmed osteosarcoma to evaluate the associations between GRF-1 expression and osteosarcoma prognosis. We found that high GRF-1 expression was correlated with poor outcome of osteosarcoma compared with low GRF-1 expression (the median recurrence-free survival times, 11 months vs 56 months; the median overall survival times, 18 months vs 53 months). Like tumor stage, the GRF-1 expression was an independent prognostic factor influencing the survival of osteosarcoma [hazard ratio values (95 % confidence interval) were 5.39 (3.54-8.20) for recurrence-free survival (RFS) and 6.58 (4.44-9.74) for overall survival (OS), respectively]. Furthermore, the high expression of GRF-1 was significantly associated with larger tumor size, tumor dedifferentiation, and increasing metastasis risk. Functionally, the knockdown of GRF-1 expression inhibited tumor cells proliferation and induced cell apoptosis. These results indicate for the first time that GRF-1 expression may modify osteosarcoma prognosis and may be a potential tumor therapeutic target.
Collapse
|
23
|
Suehiro JI, Kanki Y, Makihara C, Schadler K, Miura M, Manabe Y, Aburatani H, Kodama T, Minami T. Genome-wide approaches reveal functional vascular endothelial growth factor (VEGF)-inducible nuclear factor of activated T cells (NFAT) c1 binding to angiogenesis-related genes in the endothelium. J Biol Chem 2014; 289:29044-59. [PMID: 25157100 DOI: 10.1074/jbc.m114.555235] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
VEGF is a key regulator of endothelial cell migration, proliferation, and inflammation, which leads to activation of several signaling cascades, including the calcineurin-nuclear factor of activated T cells (NFAT) pathway. NFAT is not only important for immune responses but also for cardiovascular development and the pathogenesis of Down syndrome. By using Down syndrome model mice and clinical patient samples, we showed recently that the VEGF-calcineurin-NFAT signaling axis regulates tumor angiogenesis and tumor metastasis. However, the connection between genome-wide views of NFAT-mediated gene regulation and downstream gene function in the endothelium has not been studied extensively. Here we performed comprehensive mapping of genome-wide NFATc1 binding in VEGF-stimulated primary cultured endothelial cells and elucidated the functional consequences of VEGF-NFATc1-mediated phenotypic changes. A comparison of the NFATc1 ChIP sequence profile and epigenetic histone marks revealed that predominant NFATc1-occupied peaks overlapped with promoter-associated histone marks. Moreover, we identified two novel NFATc1 regulated genes, CXCR7 and RND1. CXCR7 knockdown abrogated SDF-1- and VEGF-mediated cell migration and tube formation. siRNA treatment of RND1 impaired vascular barrier function, caused RhoA hyperactivation, and further stimulated VEGF-mediated vascular outgrowth from aortic rings. Taken together, these findings suggest that dynamic NFATc1 binding to target genes is critical for VEGF-mediated endothelial cell activation. CXCR7 and RND1 are NFATc1 target genes with multiple functions, including regulation of cell migration, tube formation, and barrier formation in endothelial cells.
Collapse
Affiliation(s)
| | - Yasuharu Kanki
- From the Division of Vascular Biology, Systems Biology, The Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904 Japan and
| | | | - Keri Schadler
- From the Division of Vascular Biology, the Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Mai Miura
- From the Division of Vascular Biology
| | | | | | - Tatsuhiko Kodama
- Systems Biology, The Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904 Japan and
| | | |
Collapse
|
24
|
Shen L, Qin K, Wang D, Zhang Y, Bai N, Yang S, Luo Y, Xiang R, Tan X. Overexpression of Oct4 suppresses the metastatic potential of breast cancer cells via Rnd1 downregulation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2087-95. [PMID: 25068817 DOI: 10.1016/j.bbadis.2014.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 02/05/2023]
Abstract
Although Oct4 is known as a critical transcription factor involved in maintaining "stemness", its role in tumor metastasis is still controversial. Herein, we overexpressed and silenced Oct4 expression in two breast cancer cell lines, MDA-MB-231 and 4T1, separately. Our data showed that ectopic overexpression of Oct4 suppressed cell migration and invasion in vitro and the formation of metastatic lung nodules in vivo. Conversely, Oct4 downregulation increased the metastatic potential of breast cancer cells both in vitro and in vivo. Furthermore, we identified Rnd1 as the downstream target of Oct4 by ribonucleic acid sequencing (RNA-seq) analysis, which was significantly downregulated upon Oct4 overexpression. Chromatin immunoprecipitation assays revealed the binding of Oct4 to the promoter region of Rnd1 by ectopic overexpression of Oct4. Dual luciferase assays indicated that Oct4 overexpression suppressed transcriptional activity of the Rnd1 promoter. Moreover, overexpression of Rnd1 partially rescued the inhibitory effects of Oct4 on the migration and invasion of breast cancer cells. Overexpression of Rnd1 counteracted the influence of Oct4 on the formation of cell adhesion and lamellipodia, which implied a potential underlying mechanism involving Rnd1. In addition, we also found that overexpression of Oct4 led to an elevation of E-cadherin expression, even in 4T1 cells that possess a relatively high basal level of E-cadherin. Rnd1 overexpression impaired the promoting effects of Oct4 on E-cadherin expression in MDA-MB-231 cells. These results suggest that Oct4 affects the metastatic potential of breast cancer cells through Rnd1-mediated effects that influence cell motility and E-cadherin expression.
Collapse
Affiliation(s)
- Long Shen
- Department of Pathology, Medical School of Nankai University, Tianjin 300071, China
| | - Kunhua Qin
- Department of Immunology, Medical School of Nankai University, Tianjin 300071, China
| | - Dekun Wang
- Department of Pathology, Medical School of Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Department of Immunology, Medical School of Nankai University, Tianjin 300071, China
| | - Nan Bai
- Department of Immunology, Medical School of Nankai University, Tianjin 300071, China
| | - Shengyong Yang
- West China Hospital, Molecular Medicine Research Centre, State Key Lab Biotherapy, Sichuan University, Chengdu 610064, China
| | - Yunping Luo
- Department of Immunology, Beijing Union Medical School, Beijing 100010, China
| | - Rong Xiang
- Department of Immunology, Medical School of Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- Department of Pathology, Medical School of Nankai University, Tianjin 300071, China.
| |
Collapse
|
25
|
Rho GTPase-activating protein 35 rs1052667 polymorphism and osteosarcoma risk and prognosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:396947. [PMID: 25136583 PMCID: PMC4124850 DOI: 10.1155/2014/396947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/30/2014] [Accepted: 06/30/2014] [Indexed: 12/20/2022]
Abstract
The Rho GTPase-activating protein 35 (ARHGAP35), an important Rho family GTPase-activating protein, may be associated with tumorigenesis of some tumors. Here, we investigated the relationship between an important polymorphic variant at 3′-UTR of this gene (rs1052667) and osteosarcoma risk and prognosis. This hospital-based case-control study, including 247 osteosarcoma patients and 428 age-, sex-, and race-matched healthy controls, was conducted in Guangxi population. Genotypes were tested using TaqMan PCR technique. We found a significant difference in the frequency of rs1052667 genotypes between cases and controls. Compared with the homozygote of rs1052667 C alleles (rs1052667-CC), the genotypes with rs1052667 T alleles (namely, rs1052667-CT or -TT) increased osteosarcoma risk (odds ratios: 2.41 and 7.35, resp.). Moreover, rs1052667 polymorphism was correlated with such pathological features of osteosarcoma as tumor size, tumor grade, and tumor metastasis. Additionally, this polymorphism also modified the overall survival and recurrence-free survival of osteosarcoma cases. Like tumor grade, ARHGAP35 rs1052667 polymorphism was an independent prognostic factor influencing the survival of osteosarcoma. These results suggest that ARHGAP35 rs1052667 polymorphism may be associated with osteosarcoma risk and prognosis.
Collapse
|
26
|
Sadok A, Marshall CJ. Rho GTPases: masters of cell migration. Small GTPases 2014; 5:e29710. [PMID: 24978113 PMCID: PMC4107589 DOI: 10.4161/sgtp.29710] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022] Open
Abstract
Since their discovery in the late eighties, the role of Rho GTPases in the regulation of cell migration has been extensively studied and has mainly focused on the hallmark family members Rho, Rac, and Cdc42. Recent technological advances in cell biology, such as Rho-family GTPase activity biosensors, studies in 3D, and unbiased RNAi-based screens, have revealed an increasingly complex role for Rho GTPases during cell migration, with many inter-connected functions and a strong dependency on the physical and chemical properties of the surrounding environment. This review aims to give an overview of recent studies on the role of Rho-family GTPase members in the modulation of cell migration in different environments, and discuss future directions.
Collapse
Affiliation(s)
- Amine Sadok
- The Institute of Cancer Research; Division of Cancer Biology; London, UK
| | - Chris J Marshall
- The Institute of Cancer Research; Division of Cancer Biology; London, UK
| |
Collapse
|
27
|
Rubashkin M, Ou G, Weaver VM. Deconstructing signaling in three dimensions. Biochemistry 2014; 53:2078-90. [PMID: 24649923 PMCID: PMC3985742 DOI: 10.1021/bi401710d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/17/2014] [Indexed: 01/13/2023]
Abstract
Cells in vivo exist within the context of a multicellular tissue, where their behavior is governed by homo- and heterotypic cell-cell interactions, the material properties of the extracellular matrix, and the distribution of various soluble and physical factors. Most methods currently used to study and manipulate cellular behavior in vitro, however, sacrifice physiological relevance for experimental expediency. The fallacy of such approaches has been highlighted by the recent development and application of three-dimensional culture models to cell biology, which has revealed striking phenotypic differences in cell survival, migration, and differentiation in genetically identical cells simply by varying culture conditions. These perplexing findings beg the question of what constitutes a three-dimensional culture and why cells behave so differently in two- and three-dimensional culture formats. In the following review, we dissect the fundamental differences between two- and three-dimensional culture conditions. We begin by establishing a basic definition of what "three dimensions" means at different biological scales and discuss how dimensionality influences cell signaling across different length scales. We identify which three-dimensional features most potently influence intracellular signaling and distinguish between conserved biological principles that are maintained across culture conditions and cellular behaviors that are sensitive to microenvironmental context. Finally, we highlight state-of-the-art molecular tools amenable to the study of signaling in three dimensions under conditions that facilitate deconstruction of signaling in a more physiologically relevant manner.
Collapse
Affiliation(s)
- Matthew
G. Rubashkin
- Joint
Bioengineering Program, UC-Berkeley/UCSF, Center for Bioengineering
and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, United States
| | - Guanqing Ou
- Joint
Bioengineering Program, UC-Berkeley/UCSF, Center for Bioengineering
and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, United States
| | - Valerie M. Weaver
- Joint
Bioengineering Program, UC-Berkeley/UCSF, Center for Bioengineering
and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, United States
- Departments
of Anatomy and Bioengineering and Therapeutic Sciences, Eli and Edythe
Broad Center of Regeneration Medicine and Stem Cell Research, and
UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
28
|
STI1 antagonizes cytoskeleton collapse mediated by small GTPase Rnd1 and regulates neurite growth. Exp Cell Res 2014; 324:84-91. [PMID: 24690281 DOI: 10.1016/j.yexcr.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 01/10/2023]
Abstract
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1-plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.
Collapse
|
29
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
30
|
Goh LL, Manser E. The GTPase-deficient Rnd proteins are stabilized by their effectors. J Biol Chem 2012; 287:31311-20. [PMID: 22807448 DOI: 10.1074/jbc.m111.327056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rnd proteins are Rho family GTP-binding proteins with cellular functions that antagonize RhoA signaling. We recently described a new Rnd3 effector Syx, also named PLEKHG5, that interacts with Rnds via a Raf1-like "Ras-binding domain." Syx is a multidomain RhoGEF that participates in early zebrafish development. Here we demonstrated that Rnd1, Rnd2, and Rnd3 stability is acutely dependent on interaction with their effectors such as Syx or p190 RhoGAP. Although Rnd3 turnover is blocked by treatment of cells with MG132, we provide evidence that such turnover is mediated indirectly by effects on the Rnd3 effectors, rather than on Rnd3 itself, which is not significantly ubiquitinated. The minimal regions of Syx and p190 RhoGAP that bind Rnd3 are not sequence-related but have similar effects. We have identified features that allow for Rnd3 turnover including a conserved Lys-45 close to the switch I region and the C-terminal membrane-binding domain of Rnd3, which cannot be substituted by the equivalent Cdc42 CAAX sequence. By contrast, an effector binding-defective mutant of Rnd3 when overexpressed undergoes turnover at normal rates. Interestingly the activity of the RhoA-regulated kinase ROCK stimulates Rnd3 turnover. This study suggests that Rnd proteins are regulated through feedback mechanisms in cells where the level of effectors and RhoA activity influence the stability of Rnd proteins. This effector feedback behavior is analogous to the ability of ACK1 and PAK1 to prolong the lifetime of the active GTP-bound state of Cdc42 and Rac1.
Collapse
Affiliation(s)
- Liuh Ling Goh
- Rho GTPases Signaling Group, Institute of Medical Biology, 8A Biomedical Grove, 06-06 Immunos Building 138648, Singapore
| | | |
Collapse
|