1
|
Sun J, Zhang Y, Yu W, Fu H, Lin N, Yu F, Chen X, Mao J, Hu L. Cysteine variants in PMM2 lead to protein instability and higher sensitivity to oxidative stress in PMM2-CDG. Int J Biol Macromol 2025; 305:140865. [PMID: 39952535 DOI: 10.1016/j.ijbiomac.2025.140865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
PMM2-congenital disorder of glycosylation (PMM2-CDG) is caused by genetic defects in PMM2, the gene encoding phosphomannomutase 2. Effective therapies for this disorder remain elusive. Recent studies emphasize cysteine's vulnerability to oxidative modifications that can instigate disease by facilitating inter-protein disulfide bonding, reducing protein mobility, highlighting its potential as a target for therapeutic intervention. Specifically, five cysteine-related pathogenic mutants have been identified in PMM2-CDG, namely Phe11Cys (F11C), Tyr64Cys (Y64C), Tyr76Cys (Y76C), Tyr106Cys (Y106C) and Gly228Cys (G228C), however the fundamental molecular mechanisms are still not fully understood. In this study, compared to wild-type (WT), Cys pathogenic mutants induced structural destruction, augmented hydrophobic exposure, reduced thermal stability, and a propensity to aggregate at physiological temperatures. Meanwhile, Cys mutants were sensitive to oxidative stress, which in the evident formation of aggregation. Molecular dynamics simulation revealed alterations in the core region and subunit binding free energy of homologous PMM2, instigated by the pathophysiogenic variants. Based on previous articles, we found cysteine pathogenic mutants can be partly rescued by celastrol. In summary, our findings provide critical insights into the molecular and functional impacts of specific cysteine variants in the PMM2 enzyme, offering a foundation for exploring novel therapeutic strategies for the prevention and treatment of PMM2-CDG.
Collapse
Affiliation(s)
- Jingmiao Sun
- Department of Nephrology, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China, 310052
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang Province, China, 310009; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, Zhejiang Province, China, 310020
| | - Wei Yu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang Province, China, 310009; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, Zhejiang Province, China, 310020
| | - Haidong Fu
- Department of Nephrology, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China, 310052
| | - Ningqin Lin
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang Province, China, 310009; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, Zhejiang Province, China, 310020
| | - Fan Yu
- Department of Nephrology, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China, 310052
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang Province, China, 310009; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, Zhejiang Province, China, 310020
| | - Jianhua Mao
- Department of Nephrology, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China, 310052.
| | - Lidan Hu
- Department of Nephrology, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China, 310052; Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
2
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Pajusalu S, Vals MA, Serrano M, Witters P, Cechova A, Honzik T, Edmondson AC, Ficicioglu C, Barone R, De Lonlay P, Bérat CM, Vuillaumier-Barrot S, Lam C, Patterson MC, Janssen MCH, Martins E, Quelhas D, Sykut-Cegielska J, Mousa J, Urreizti R, McWilliams P, Vernhes F, Plotkin H, Morava E, Õunap K. Genotype/Phenotype Relationship: Lessons From 137 Patients With PMM2-CDG. Hum Mutat 2024; 2024:8813121. [PMID: 40225925 PMCID: PMC11922042 DOI: 10.1155/2024/8813121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 04/15/2025]
Abstract
We report on the largest single dataset of patients with PMM2-CDG enrolled in an ongoing international, multicenter natural history study collecting genetic, clinical, and biological information to evaluate similarities with previous studies, report on novel findings, and, additionally, examine potential genotype/phenotype correlations. A total of 137 participants had complete genotype information, representing 60 unique variants, of which the most common were found to be p.Arg141His in 58.4% (n = 80) of participants, followed by p.Pro113Leu (21.2%, n = 29), and p.Phe119Leu (12.4%, n = 17), consistent with previous studies. Interestingly, six new variants were reported, comprised of five missense variants (p.Pro20Leu, p.Tyr64Ser, p.Phe68Cys, p.Tyr76His, and p.Arg238His) and one frameshift (c.696del p.Ala233Argfs∗100). Patient phenotypes were characterized via the Nijmegen Progression CDG Rating Scale (NPCRS), together with biochemical parameters, the most consistently dysregulated of which were coagulation factors, specifically antithrombin (below normal in 79.5%, 93 of 117), in addition to Factor XI and protein C activity. Patient genotypes were classified based upon the predicted pathogenetic mechanism of disease-associated mutations, of which most were found in the catalysis/activation, folding, or dimerization regions of the PMM2 enzyme. Two different approaches were used to uncover genotype/phenotype relationships. The first characterized genotype only by the predicted pathogenic mechanisms and uncovered associated changes in biochemical parameters, not apparent using only NPCRS, involving catalysis/activation, dimerization, folding, and no protein variants. The second approach characterized genotype by the predicted pathogenic mechanism and/or individual variants when paired with a subset of severe nonfunctioning variants and uncovered correlations with both NPCRS and biochemical parameters, demonstrating that p.Cys241Ser was associated with milder disease, while p.Val231Met, dimerization, and folding variants with more severe disease. Although determining comprehensive genotype/phenotype relationships has previously proven challenging for PMM2-CDG, the larger sample size, plus inclusion of biochemical parameters in the current study, has provided new insights into the interplay of genetics with disease. Trial Registration: NCT03173300.
Collapse
Affiliation(s)
- Sander Pajusalu
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, L. Puusepa Street 2, Tartu, Estonia
- Department of Genetics and Personalized Medicine, Institute of Clinical Medicine, University of Tartu, L. Puusepa Street 2, Tartu, Estonia
| | - Mari-Anne Vals
- Department of Genetics and Personalized Medicine, Institute of Clinical Medicine, University of Tartu, L. Puusepa Street 2, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, N. Lunini Street 6, Tartu, Estonia
| | - Mercedes Serrano
- Pediatric Neurology Department and Clinical Biochemistry and Genetics Units, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Peter Witters
- Department of Paediatrics, Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Anna Cechova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzik
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Andrew C. Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Can Ficicioglu
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Pascale De Lonlay
- Reference Center for Inborn Errors of Metabolism, Necker Hospital, APHP, University of Paris, Inserm UMR_S1163, INEM, and Institut Imagine, Filière G2M, MetabERN, Paris, France
| | - Claire-Marine Bérat
- Biochemistry and Genetics Department, Bichat-Claude Bernard Hospital, AP-HP, University of Paris and Inserm U1149, Paris, France
| | - Sandrine Vuillaumier-Barrot
- Biochemistry and Genetics Department, Bichat-Claude Bernard Hospital, AP-HP, University of Paris and Inserm U1149, Paris, France
| | - Christina Lam
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Marc C. Patterson
- Departments of Neurology and Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mirian C. H. Janssen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Esmeralda Martins
- Centro de Genética Médica, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Dulce Quelhas
- Centro de Genética Médica, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, The Institute of Mother and Child, Warsaw, Poland
| | - Jehan Mousa
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Roser Urreizti
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | | - Eva Morava
- Departments of Neurology and Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Katrin Õunap
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, L. Puusepa Street 2, Tartu, Estonia
- Department of Genetics and Personalized Medicine, Institute of Clinical Medicine, University of Tartu, L. Puusepa Street 2, Tartu, Estonia
| |
Collapse
|
4
|
Vilas A, Briso-Montiano Á, Segovia-Falquina C, Martín-Martínez A, Soriano-Sexto A, Gallego D, Ruiz-Montés V, Gámez A, Pérez B. HepG2 PMM2-CDG knockout model: A versatile platform for variant and therapeutic evaluation. Mol Genet Metab 2024; 143:108538. [PMID: 39096554 DOI: 10.1016/j.ymgme.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent congenital disorder of glycosylation, is an autosomal recessive disease caused by biallelic pathogenic variants in the PMM2 gene. There is no cure for this multisystemic syndrome. Some of the therapeutic approaches that are currently in development include mannose-1-phosphate replacement therapy, drug repurposing, and the use of small chemical molecules to correct folding defects. Preclinical models are needed to evaluate the efficacy of treatments to overcome the high lethality of the available animal model. In addition, the number of variants with unknown significance is increasing in clinical settings. This study presents the generation of a cellular disease model by knocking out the PMM2 gene in the hepatoma HepG2 cell line using CRISPR-Cas9 gene editing. The HepG2 knockout model accurately replicates the PMM2-CDG phenotype, exhibiting a complete absence of PMM2 protein and mRNA, a 90% decrease in PMM enzymatic activity, and altered ICAM-1, LAMP1 and A1AT glycoprotein patterns. The evaluation of PMM2 disease-causing variants validates the model's utility for studying new PMM2 clinical variants, providing insights for diagnosis and potentially for evaluating therapies. A CRISPR-Cas9-generated HepG2 knockout model accurately recapitulates the PMM2-CDG phenotype, providing a valuable tool for assessing disease-causing variants and advancing therapeutic strategies.
Collapse
Affiliation(s)
- Alicia Vilas
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Álvaro Briso-Montiano
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Cristina Segovia-Falquina
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Arturo Martín-Martínez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Alejandro Soriano-Sexto
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Diana Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Vera Ruiz-Montés
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Alejandra Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; U746 - CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain.
| |
Collapse
|
5
|
Radenkovic S, Budhraja R, Klein-Gunnewiek T, King AT, Bhatia TN, Ligezka AN, Driesen K, Shah R, Ghesquière B, Pandey A, Kasri NN, Sloan SA, Morava E, Kozicz T. Neural and metabolic dysregulation in PMM2-deficient human in vitro neural models. Cell Rep 2024; 43:113883. [PMID: 38430517 DOI: 10.1016/j.celrep.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/04/2024] Open
Abstract
Phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG) is a rare inborn error of metabolism caused by deficiency of the PMM2 enzyme, which leads to impaired protein glycosylation. While the disorder presents with primarily neurological symptoms, there is limited knowledge about the specific brain-related changes caused by PMM2 deficiency. Here, we demonstrate aberrant neural activity in 2D neuronal networks from PMM2-CDG individuals. Utilizing multi-omics datasets from 3D human cortical organoids (hCOs) derived from PMM2-CDG individuals, we identify widespread decreases in protein glycosylation, highlighting impaired glycosylation as a key pathological feature of PMM2-CDG, as well as impaired mitochondrial structure and abnormal glucose metabolism in PMM2-deficient hCOs, indicating disturbances in energy metabolism. Correlation between PMM2 enzymatic activity in hCOs and symptom severity suggests that the level of PMM2 enzyme function directly influences neurological manifestations. These findings enhance our understanding of specific brain-related perturbations associated with PMM2-CDG, offering insights into the underlying mechanisms and potential directions for therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Teun Klein-Gunnewiek
- Department of Human Genetics, Radboud University Medical Centre, 6525 XZ Nijmegen, the Netherlands
| | - Alexia Tyler King
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Karen Driesen
- Metabolomics Expertise Center, VIB-KU Leuven, 3000 Leuven, Belgium
| | - Rameen Shah
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB-KU Leuven, 3000 Leuven, Belgium; Laboratory of Applied Mass Spectrometry, KU Leuven, 3000 Leuven, Belgium
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Centre, 6525 XZ Nijmegen, the Netherlands
| | - Steven A Sloan
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biophysics, University of Pécs Medical School, 7624 Pécs, Hungary; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Anatomy, University of Pécs Medical School, 7624 Pécs, Hungary; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| |
Collapse
|
6
|
Klaver EJ, Dukes-Rimsky L, Kumar B, Xia ZJ, Dang T, Lehrman MA, Angel P, Drake RR, Freeze HH, Steet R, Flanagan-Steet H. Protease-dependent defects in N-cadherin processing drive PMM2-CDG pathogenesis. JCI Insight 2021; 6:153474. [PMID: 34784297 PMCID: PMC8783681 DOI: 10.1172/jci.insight.153474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The genetic bases for the congenital disorders of glycosylation (CDG) continue to expand, but how glycosylation defects cause patient phenotypes remains largely unknown. Here, we combined developmental phenotyping and biochemical studies in a potentially new zebrafish model (pmm2sa10150) of PMM2-CDG to uncover a protease-mediated pathogenic mechanism relevant to craniofacial and motility phenotypes in mutant embryos. Mutant embryos had reduced phosphomannomutase activity and modest decreases in N-glycan occupancy as detected by matrix-assisted laser desorption ionization mass spectrometry imaging. Cellular analyses of cartilage defects in pmm2sa10150 embryos revealed a block in chondrogenesis that was associated with defective proteolytic processing, but seemingly normal N-glycosylation, of the cell adhesion molecule N-cadherin. The activities of the proconvertases and matrix metalloproteinases responsible for N-cadherin maturation were significantly altered in pmm2sa10150 mutant embryos. Importantly, pharmacologic and genetic manipulation of proconvertase activity restored matrix metalloproteinase activity, N-cadherin processing, and cartilage pathology in pmm2sa10150 embryos. Collectively, these studies demonstrate in CDG that targeted alterations in protease activity create a pathogenic cascade that affects the maturation of cell adhesion proteins critical for tissue development.
Collapse
Affiliation(s)
- Elsenoor J Klaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Lynn Dukes-Rimsky
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Brijesh Kumar
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Tammie Dang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Mark A Lehrman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Peggi Angel
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Richard Steet
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | | |
Collapse
|
7
|
Shimizu K, Kotajima D, Fukao K, Mogi F, Horiuchi R, Kataoka C, Kagami Y, Fujita M, Miyanishi N, Kashiwada S. Exposure of silver nanocolloids causes glycosylation disorders and embryonic deformities in medaka. Toxicol Appl Pharmacol 2021; 430:115714. [PMID: 34543669 DOI: 10.1016/j.taap.2021.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022]
Abstract
Silver nanomaterials such as silver nanocolloids (SNC) contribute to environmental pollution and have adverse ecological effects on aquatic organisms. In particular, chemical exposure of fish during embryogenesis leads to deformities and puts the population at risk. Although glycans and glycosylation are known to be important for proper morphology in embryogenesis, little glycobiology-based research has examined morphological disorders caused by environmental pollutants. This study addressed the glycobiological effects of SNC exposure on medaka embryogenesis. After exposure of medaka embryos to SNC, deformities such as small heads and deformed eyes were observed. The expression of five glycan-related genes (alg2, gnsb, b4galt2, b3gat1a, and b3gat2) was significantly altered, with changes depending on the embryonic stage at exposure, with more severe deformities with exposure at earlier stages. In situ hybridization analyses indicated that the five genes were expressed mainly in the head region; exposure of SNC suppressed alg2 and gnsb and enhanced b4galt2 and b3gat1a expression relative to controls on day 7. Loss (siRNA)- and gain (RNA overexpression)-of-function experiments confirmed that alg2, gnsb, and b4galt2 are essential for embryogenesis. The effects of SNC exposure on glycan synthesis were estimated by glycan structure analysis. In the medaka embryo, high mannose-type glycans were dominant, and SNC exposure altered glycan synthesis. The alteration was more significant when exposure occurred at an early stage of medaka embryogenesis. Thus, SNC exposure causes embryonic deformities in medaka embryos through disordered glycosylation.
Collapse
Affiliation(s)
- Kaori Shimizu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Daisuke Kotajima
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Kensuke Fukao
- Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Futaba Mogi
- Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Risa Horiuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Department of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Chisato Kataoka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Japan Society for the Promotion of Science, Japan
| | - Yoshihiro Kagami
- Mizuki Biotech Co. Ltd, 1-1 Hyakunenkouen, Kurume, Fukuoka 839-0864, Japan
| | - Misato Fujita
- Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Department of Biological Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Nobumitsu Miyanishi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Graduate School of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Shosaku Kashiwada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Center for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan.
| |
Collapse
|
8
|
Xia ZJ, Zeng XXI, Tambe M, Ng BG, Dong PDS, Freeze HH. A Dominant Heterozygous Mutation in COG4 Causes Saul-Wilson Syndrome, a Primordial Dwarfism, and Disrupts Zebrafish Development via Wnt Signaling. Front Cell Dev Biol 2021; 9:720688. [PMID: 34595172 PMCID: PMC8476873 DOI: 10.3389/fcell.2021.720688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Saul-Wilson syndrome (SWS) is a rare, skeletal dysplasia with progeroid appearance and primordial dwarfism. It is caused by a heterozygous, dominant variant (p.G516R) in COG4, a subunit of the conserved oligomeric Golgi (COG) complex involved in intracellular vesicular transport. Our previous work has shown the intracellular disturbances caused by this mutation; however, the pathological mechanism of SWS needs further investigation. We sought to understand the molecular mechanism of specific aspects of the SWS phenotype by analyzing SWS-derived fibroblasts and zebrafish embryos expressing this dominant variant. SWS fibroblasts accumulate glypicans, a group of heparan sulfate proteoglycans (HSPGs) critical for growth and bone development through multiple signaling pathways. Consistently, we find that glypicans are increased in zebrafish embryos expressing the COG4 p.G516R variant. These animals show phenotypes consistent with convergent extension (CE) defects during gastrulation, shortened body length, and malformed jaw cartilage chondrocyte intercalation at larval stages. Since non-canonical Wnt signaling was shown in zebrafish to be related to the regulation of these processes by glypican 4, we assessed wnt levels and found a selective increase of wnt4 transcripts in the presence of COG4 p.G516R . Moreover, overexpression of wnt4 mRNA phenocopies these developmental defects. LGK974, an inhibitor of Wnt signaling, corrects the shortened body length at low concentrations but amplifies it at slightly higher concentrations. WNT4 and the non-canonical Wnt signaling component phospho-JNK are also elevated in cultured SWS-derived fibroblasts. Similar results from SWS cell lines and zebrafish point to altered non-canonical Wnt signaling as one possible mechanism underlying SWS pathology.
Collapse
Affiliation(s)
- Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Xin-Xin I Zeng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Mitali Tambe
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,National Centre for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
9
|
Gücüm S, Sakson R, Hoffmann M, Grote V, Becker C, Pakari K, Beedgen L, Thiel C, Rapp E, Ruppert T, Thumberger T, Wittbrodt J. A patient-based medaka alg2 mutant as a model for hypo-N-glycosylation. Development 2021; 148:269015. [PMID: 34106226 PMCID: PMC8217707 DOI: 10.1242/dev.199385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Defects in the evolutionarily conserved protein-glycosylation machinery during embryonic development are often fatal. Consequently, congenital disorders of glycosylation (CDG) in human are rare. We modelled a putative hypomorphic mutation described in an alpha-1,3/1,6-mannosyltransferase (ALG2) index patient (ALG2-CDG) to address the developmental consequences in the teleost medaka (Oryzias latipes). We observed specific, multisystemic, late-onset phenotypes, closely resembling the patient's syndrome, prominently in the facial skeleton and in neuronal tissue. Molecularly, we detected reduced levels of N-glycans in medaka and in the patient's fibroblasts. This hypo-N-glycosylation prominently affected protein abundance. Proteins of the basic glycosylation and glycoprotein-processing machinery were over-represented in a compensatory response, highlighting the regulatory topology of the network. Proteins of the retinal phototransduction machinery, conversely, were massively under-represented in the alg2 model. These deficiencies relate to a specific failure to maintain rod photoreceptors, resulting in retinitis pigmentosa characterized by the progressive loss of these photoreceptors. Our work has explored only the tip of the iceberg of N-glycosylation-sensitive proteins, the function of which specifically impacts on cells, tissues and organs. Taking advantage of the well-described human mutation has allowed the complex interplay of N-glycosylated proteins and their contribution to development and disease to be addressed.
Collapse
Affiliation(s)
- Sevinç Gücüm
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.,HBIGS, Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Roman Sakson
- HBIGS, Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany.,Core facility for Mass Spectrometry and Proteomics, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Clara Becker
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kaisa Pakari
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Lars Beedgen
- Center for Child and Adolescent Medicine, Department Pediatrics I, Heidelberg University, 69120 Heidelberg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department Pediatrics I, Heidelberg University, 69120 Heidelberg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.,glyXera GmbH, 39120 Magdeburg, Germany
| | - Thomas Ruppert
- Core facility for Mass Spectrometry and Proteomics, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Thomas Thumberger
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Joachim Wittbrodt
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish. Biomolecules 2020; 10:biom10091352. [PMID: 32971894 PMCID: PMC7564250 DOI: 10.3390/biom10091352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of metabolism cause abnormal synthesis, recycling, or breakdown of amino acids, neurotransmitters, and other various metabolites. This aberrant homeostasis commonly causes the accumulation of toxic compounds or depletion of vital metabolites, which has detrimental consequences for the patients. Efficient and rapid intervention is often key to survival. Therefore, it requires useful animal models to understand the pathomechanisms and identify promising therapeutic drug targets. Zebrafish are an effective tool to investigate developmental mechanisms and understanding the pathophysiology of disorders. In the past decades, zebrafish have proven their efficiency for studying genetic disorders owing to the high degree of conservation between human and zebrafish genes. Subsequently, several rare inherited metabolic disorders have been successfully investigated in zebrafish revealing underlying mechanisms and identifying novel therapeutic targets, including methylmalonic acidemia, Gaucher’s disease, maple urine disorder, hyperammonemia, TRAPPC11-CDGs, and others. This review summarizes the recent impact zebrafish have made in the field of inborn errors of metabolism.
Collapse
|
11
|
Gámez A, Serrano M, Gallego D, Vilas A, Pérez B. New and potential strategies for the treatment of PMM2-CDG. Biochim Biophys Acta Gen Subj 2020; 1864:129686. [PMID: 32712172 DOI: 10.1016/j.bbagen.2020.129686] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mutations in the PMM2 gene cause phosphomannomutase 2 deficiency (PMM2; MIM# 212065), which manifests as a congenital disorder of glycosylation (PMM2-CDG). Mutant PMM2 leads to the reduced conversion of Man-6-P to Man-1-P, which results in low concentrations of guanosine 5'-diphospho-D-mannose, a nucleotide-activated sugar essential for the construction of protein oligosaccharide chains. To date the only therapeutic options are preventive and symptomatic. SCOPE OF REVIEW This review covers the latest advances in the search for a treatment for PMM2-CDG. MAJOR CONCLUSIONS Treatments based on increasing Man-1-P levels have been proposed, along with the administration of different mannose derivates, employing enzyme inhibitors or repurposed drugs to increase the synthesis of GDP-Man. A single repurposed drug that might alleviate a severe neurological symptom associated with the disorder is now in clinical use. Proof of concept also exists regarding the use of pharmacological chaperones and/or proteostatic regulators to increase the concentration of hypomorphic PMM2 mutant proteins. GENERAL SIGNIFICANCE The ongoing challenges facing the discovery of drugs to treat this orphan disease are discussed.
Collapse
Affiliation(s)
- Alejandra Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Mercedes Serrano
- Pediatric Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Spain
| | - Diana Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Alicia Vilas
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain.
| |
Collapse
|
12
|
Hall BD, Stevenson RE, Jones JR. Fatal hyperkeratosis syndrome in four siblings due to dolichol kinase deficiency. Am J Med Genet A 2020; 182:1421-1425. [PMID: 32250540 DOI: 10.1002/ajmg.a.61574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/10/2022]
Abstract
A diagnostic journey began in 1966 when a male was born with a lethal hyperkeratosis of undetermined etiology, only to be followed by three additional siblings with the same unknown disorder. All four siblings had unique circumferential skin constrictions on all of their digits. They died within 5 days after birth with no diagnosis or etiology established. The first author (BDH) maintained notes, partial medical records, photographs, and comments about one autopsy report. This information was regularly revisited in the hope of finding a literature match, but no etiological diagnosis was forthcoming. However, in 2017, Rush et al. reported two siblings with similar phenotype in whom they found dolichol kinase deficiency (DOLK). Ultimately, our family was relocated and DNA isolated from the pathology slides of the third affected infant showed compound heterozygous pathogenic variants in the DOLK gene. The variants were in trans, with different missense variants from the mother and father. This 52-year diagnostic pursuit, culminated in an answer that gave the family an explanation for their losses.
Collapse
Affiliation(s)
- Bryan D Hall
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Julie R Jones
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| |
Collapse
|
13
|
Iyer S, Sam FS, DiPrimio N, Preston G, Verheijen J, Murthy K, Parton Z, Tsang H, Lao J, Morava E, Perlstein EO. Repurposing the aldose reductase inhibitor and diabetic neuropathy drug epalrestat for the congenital disorder of glycosylation PMM2-CDG. Dis Model Mech 2019; 12:dmm.040584. [PMID: 31636082 PMCID: PMC6899038 DOI: 10.1242/dmm.040584] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphomannomutase 2 deficiency, or PMM2-CDG, is the most common congenital disorder of glycosylation and affects over 1000 patients globally. There are no approved drugs that treat the symptoms or root cause of PMM2-CDG. To identify clinically actionable compounds that boost human PMM2 enzyme function, we performed a multispecies drug repurposing screen using a novel worm model of PMM2-CDG, followed by PMM2 enzyme functional studies in PMM2-CDG patient fibroblasts. Drug repurposing candidates from this study, and drug repurposing candidates from a previously published study using yeast models of PMM2-CDG, were tested for their effect on human PMM2 enzyme activity in PMM2-CDG fibroblasts. Of the 20 repurposing candidates discovered in the worm-based phenotypic screen, 12 were plant-based polyphenols. Insights from structure–activity relationships revealed epalrestat, the only antidiabetic aldose reductase inhibitor approved for use in humans, as a first-in-class PMM2 enzyme activator. Epalrestat increased PMM2 enzymatic activity in four PMM2-CDG patient fibroblast lines with genotypes R141H/F119L, R141H/E139K, R141H/N216I and R141H/F183S. PMM2 enzyme activity gains ranged from 30% to 400% over baseline, depending on genotype. Pharmacological inhibition of aldose reductase by epalrestat may shunt glucose from the polyol pathway to glucose-1,6-bisphosphate, which is an endogenous stabilizer and coactivator of PMM2 homodimerization. Epalrestat is a safe, oral and brain penetrant drug that was approved 27 years ago in Japan to treat diabetic neuropathy in geriatric populations. We demonstrate that epalrestat is the first small molecule activator of PMM2 enzyme activity with the potential to treat peripheral neuropathy and correct the underlying enzyme deficiency in a majority of pediatric and adult PMM2-CDG patients. Editor's choice: Drug repurposing screens using worm and patient fibroblast models of PMM2-CDG led to the discovery of epalrestat, the first activator of PMM2 that targets the root cause of disease.
Collapse
Affiliation(s)
- Sangeetha Iyer
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Feba S Sam
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Nina DiPrimio
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Graeme Preston
- Department of Clinical Genomics and Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Verheijen
- Department of Clinical Genomics and Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Kausalya Murthy
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Zachary Parton
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Hillary Tsang
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Jessica Lao
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | | |
Collapse
|
14
|
van Tol W, Michelakakis H, Georgiadou E, van den Bergh P, Moraitou M, Papadimas GK, Papadopoulos C, Huijben K, Alsady M, Willemsen MA, Lefeber DJ. Toward understanding tissue-specific symptoms in dolichol-phosphate-mannose synthesis disorders; insight from DPM3-CDG. J Inherit Metab Dis 2019; 42:984-992. [PMID: 30931530 DOI: 10.1002/jimd.12095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
The congenital disorders of glycosylation (CDG) are inborn errors of metabolism with a great genetic heterogeneity. Most CDG are caused by defects in the N-glycan biosynthesis, leading to multisystem phenotypes. However, the occurrence of tissue-restricted clinical symptoms in the various defects in dolichol-phosphate-mannose (DPM) synthesis remains unexplained. To deepen our understanding of the tissue-specific characteristics of defects in the DPM synthesis pathway, we investigated N-glycosylation and O-mannosylation in skeletal muscle of three DPM3-CDG patients presenting with muscle dystrophy and hypo-N-glycosylation of serum transferrin in only two of them. In the three patients, O-mannosylation of alpha-dystroglycan (αDG) was strongly reduced and western blot analysis of beta-dystroglycan (βDG) N-glycosylation revealed a consistent lack of one N-glycan in skeletal muscle. Recently, defective N-glycosylation of βDG has been reported in patients with mutations in guanosine-diphosphate-mannose pyrophosphorylase B (GMPPB). Thus, we suggest that aberrant O-glycosylation of αDG and N-glycosylation of βDG in skeletal muscle is indicative of a defect in the DPM synthesis pathway. Further studies should address to what extent hypo-N-glycosylation of βDG or other skeletal muscle proteins contribute to the phenotype of patients with defects in DPM synthesis. Our findings contribute to our understanding of the tissue-restricted phenotype of DPM3-CDG and other defects in the DPM synthesis pathway.
Collapse
Affiliation(s)
- Walinka van Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Elissavet Georgiadou
- First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Peter van den Bergh
- Neuromuscular Reference Center, University Hospital St-Luc, University of Louvain, Brussels, Belgium
| | - Marina Moraitou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - George K Papadimas
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Karin Huijben
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohammad Alsady
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Yeast Models of Phosphomannomutase 2 Deficiency, a Congenital Disorder of Glycosylation. G3-GENES GENOMES GENETICS 2019; 9:413-423. [PMID: 30530630 PMCID: PMC6385982 DOI: 10.1534/g3.118.200934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphomannomutase 2 Deficiency (PMM2-CDG) is the most common monogenic congenital disorder of glycosylation (CDG) affecting at least 800 patients globally. PMM2 orthologs are present in model organisms, including the budding yeast Saccharomyces cerevisiae gene SEC53. Here we describe conserved genotype-phenotype relationships across yeast and human patients between five PMM2 loss-of-function missense mutations and their orthologous SEC53 mutations. These alleles range in severity from folding defective (hypomorph) to dimerization defective (severe hypomorph) to catalytic dead (null). We included the first and second most common missense mutations – R141H, F119L respectively– and the most common compound heterozygote genotype – PMM2R141H/F119L – observed in PMM2-CDG patients. Each mutation described is expressed in haploid as well as homozygous and heterozygous diploid yeast cells at varying protein expression levels as either SEC53 protein variants or PMM2 protein variants. We developed a 384-well-plate, growth-based assay for use in a screen of the 2,560-compound Microsource Spectrum library of approved drugs, experimental drugs, tool compounds and natural products. We identified three compounds that suppress growth defects of SEC53 variants, F126L and V238M, based on the biochemical defect of the allele, protein abundance or ploidy. The rare PMM2 E139K protein variant is fully functional in yeast cells, suggesting that its pathogenicity in humans is due to the underlying DNA mutation that results in skipping of exon 5 and a nonfunctional truncated protein. Together, these results demonstrate that yeast models can be used to characterize known and novel PMM2 patient alleles in quantitative growth and enzymatic activity assays, and used as patient avatars for PMM2-CDG drug screens yielding compounds that could be rapidly cross-validated in zebrafish, rodent and human organoid models.
Collapse
|
16
|
Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, Thiel C, Foulquier F, Lefort N, Faivre-Sarrailh C, Colleaux L, Guerrera IC, Cantagrel V. High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife 2018; 7:38309. [PMID: 30311906 PMCID: PMC6185108 DOI: 10.7554/elife.38309] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
Proper brain development relies highly on protein N-glycosylation to sustain neuronal migration, axon guidance and synaptic physiology. Impairing the N-glycosylation pathway at early steps produces broad neurological symptoms identified in congenital disorders of glycosylation. However, little is known about the molecular mechanisms underlying these defects. We generated a cerebellum specific knockout mouse for Srd5a3, a gene involved in the initiation of N-glycosylation. In addition to motor coordination defects and abnormal granule cell development, Srd5a3 deletion causes mild N-glycosylation impairment without significantly altering ER homeostasis. Using proteomic approaches, we identified that Srd5a3 loss affects a subset of glycoproteins with high N-glycans multiplicity per protein and decreased protein abundance or N-glycosylation level. As IgSF-CAM adhesion proteins are critical for neuron adhesion and highly N-glycosylated, we observed impaired IgSF-CAM-mediated neurite outgrowth and axon guidance in Srd5a3 mutant cerebellum. Our results link high N-glycan multiplicity to fine-tuned neural cell adhesion during mammalian brain development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ekin Ucuncu
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Lam Son Nguyen
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Michael Nicouleau
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Joanna Lipecka
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | | | - Christian Thiel
- Center for Child and Adolescent Medicine, Kinderheilkunde I, University of Heidelberg, Heidelberg, Germany
| | - François Foulquier
- Université Lille, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Lille, France
| | | | | | - Laurence Colleaux
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent Cantagrel
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
17
|
Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis. Proc Natl Acad Sci U S A 2018; 115:9557-9562. [PMID: 30181269 DOI: 10.1073/pnas.1806034115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oligosaccharyltransferases (OSTs) N-glycosylate proteins by transferring oligosaccharides from lipid-linked oligosaccharides (LLOs) to asparaginyl residues of Asn-Xaa-Ser/Thr acceptor sequons. Mammals have OST isoforms with STT3A or STT3B catalytic subunits for cotranslational or posttranslational N-glycosylation, respectively. OSTs also hydrolyze LLOs, forming free oligosaccharides (fOSs). It has been unclear whether hydrolysis is due to one or both OSTs, segregated from N-glycosylation, and/or regulated. Transfer and hydrolysis were assayed in permeabilized HEK293 kidney and Huh7.5.1 liver cells lacking STT3A or STT3B. Transfer by both STT3A-OST and STT3B-OST with synthetic acceptors was robust. LLO hydrolysis by STT3B-OST was readily detected and surprisingly modulated: Without acceptors, STT3B-OST hydrolyzed Glc3Man9GlcNAc2-LLO but not Man9GlcNAc2-LLO, yet it hydrolyzed both LLOs with acceptors present. In contrast, LLO hydrolysis by STT3A-OST was negligible. STT3A-OST however may be regulatory, because it suppressed STT3B-OST-dependent fOSs. TREX1, a negative innate immunity factor that diminishes immunogenic fOSs derived from LLOs, acted through STT3B-OST as well. In summary, only STT3B-OST hydrolyzes LLOs, depending upon LLO quality and acceptor site occupancy. TREX1 and STT3A suppress STT3B-OST-dependent fOSs. Without strict kinetic limitations during posttranslational N-glycosylation, STT3B-OST can thus moonlight for LLO hydrolysis. In contrast, the STT3A-OST/translocon complex preserves LLOs for temporally fastidious cotranslational N-glycosylation.
Collapse
|
18
|
Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, Morava E, Jaeken J, Dos Reis Ferreira V. CDG Therapies: From Bench to Bedside. Int J Mol Sci 2018; 19:ijms19051304. [PMID: 29702557 PMCID: PMC5983582 DOI: 10.3390/ijms19051304] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic disorders that affect protein and lipid glycosylation and glycosylphosphatidylinositol synthesis. More than 100 different disorders have been reported and the number is rapidly increasing. Since glycosylation is an essential post-translational process, patients present a large range of symptoms and variable phenotypes, from very mild to extremely severe. Only for few CDG, potentially curative therapies are being used, including dietary supplementation (e.g., galactose for PGM1-CDG, fucose for SLC35C1-CDG, Mn2+ for TMEM165-CDG or mannose for MPI-CDG) and organ transplantation (e.g., liver for MPI-CDG and heart for DOLK-CDG). However, for the majority of patients, only symptomatic and preventive treatments are in use. This constitutes a burden for patients, care-givers and ultimately the healthcare system. Innovative diagnostic approaches, in vitro and in vivo models and novel biomarkers have been developed that can lead to novel therapeutic avenues aiming to ameliorate the patients’ symptoms and lives. This review summarizes the advances in therapeutic approaches for CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Dorinda Marques-da-Silva
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare-Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy.
| | - Paula A Videira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Eva Morava
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaak Jaeken
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Center for Metabolic Diseases, Universitaire Ziekenhuizen (UZ) and Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
19
|
Bennett DC, Cazet A, Charest J, Contessa JN. MPDU1 regulates CEACAM1 and cell adhesion in vitro and in vivo. Glycoconj J 2018; 35:265-274. [PMID: 29671116 DOI: 10.1007/s10719-018-9819-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
N-linked glycosylation (NLG) is a co-translational modification that is essential for the folding, stability, and trafficking of transmembrane (TM) and secretory glycoproteins. Efficient NLG requires the stepwise synthesis and en bloc transfer of a 14-sugar carbohydrate known as a lipid-linked oligosaccharide (LLO). The genetics of LLO biosynthesis have been established in yeast and Chinese hamster systems, but human models of LLO biosynthesis are lacking. In this study we report that Kato III human gastric cancer cells represent a model of deficient LLO synthesis, possessing a homozygous deletion of the LLO biosynthesis factor, MPDU1. Kato III cells lacking MPDU1 have all the hallmarks of a glycosylation-deficient cell line, including altered sensitivity to lectins and the formation of truncated LLOs. Analysis of transcription using an expression microarray and protein levels using a proteome antibody array reveal changes in the expression of several membrane proteins, including the metalloprotease ADAM-15 and the cell adhesion molecule CEACAM1. Surprisingly, the restoration of MPDU1 expression in Kato III cells demonstrated a clear phenotype of increased cell-cell adhesion, a finding that was confirmed in vivo through analysis of tumor xenografts. These experiments also confirmed that protein levels of CEACAM-1, which functions in cell adhesion, is dependent on LLO biosynthesis in vivo. Kato III cells and the MPDU1-rescued Kato IIIM cells therefore provide a novel model to examine the consequences of defective LLO biosynthesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Daniel C Bennett
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Aurelie Cazet
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jon Charest
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
20
|
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proc Natl Acad Sci U S A 2018; 115:2758-2763. [PMID: 29472449 DOI: 10.1073/pnas.1714056115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nrf2 plays critical roles in animals' defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.
Collapse
|
21
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Rush ET, Baker CV, Rizzo WB. Dolichol kinase deficiency (DOLK-CDG): Two new cases and expansion of phenotype. Am J Med Genet A 2017; 173:2428-2434. [DOI: 10.1002/ajmg.a.38287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Eric T. Rush
- Department of Pediatrics; University of Nebraska Medical Center; Omaha Nebraska
- Munroe-Meyer Institute for Genetics and Rehabilitation; University of Nebraska Medical Center; Omaha Nebraska
- Children's Hospital & Medical Center; Omaha Nebraska
| | - Craig V. Baker
- Department of Pediatrics-Division of Medical Genetics; UTHealth McGovern Medical School; Houston Texas
| | - William B. Rizzo
- Department of Pediatrics; University of Nebraska Medical Center; Omaha Nebraska
- Children's Hospital & Medical Center; Omaha Nebraska
| |
Collapse
|
23
|
He C, Zeng S, Teixeira da Silva JA, Yu Z, Tan J, Duan J. Molecular cloning and functional analysis of the phosphomannomutase (PMM) gene from Dendrobium officinale and evidence for the involvement of an abiotic stress response during germination. PROTOPLASMA 2017; 254:1693-1704. [PMID: 27987037 DOI: 10.1007/s00709-016-1044-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Phosphomannomutase (PMM, EC 5.4.2.8) catalyzes the interconversion of mannose-6-phosphate to mannose-1-phosphate, the precursor for the synthesis of GDP-mannose. In this study, the complementary DNA (cDNA) of the Phosphomannomutase (PMM) gene was initially cloned from Dendrobium officinale by RACE method. Transient transform result showed that the DoPMM protein was localized in the cytoplasm. The DoPMM gene was highly expressed in the stems of D. officinale both in vegetative and reproductive developmental stages. The putative promoter was cloned by TAIL-PCR and used for searched cis-elements. Stress-related cis-elements like ABRE, TCA-element, and MBS were found in the promoter regions. The DoPMM gene was up-regulated after treatment with abscisic acid, salicylic acid, cold, polyethylene glycol, and NaCl. The total ascorbic acid (AsA) and polysaccharide content in all of the 35S::DoPMM Arabidopsis thaliana transgenic lines #1, #2, and #5 showed a 40, 39, and 31% increase in AsA and a 77, 22, and 39% increase in polysaccharides, respectively more than wild-type (WT) levels. All three 35S::DoPMM transgenic lines exhibited a higher germination percentage than WT plants when seeded on half-strength MS medium supplemented with 150 mM NaCl or 300 mM mannitol. These results provide genetic evidence for the involvement of PMM genes in the biosynthesis of AsA and polysaccharides and the mediation of PMM genes in abiotic stress tolerance during seed germination in A. thaliana.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jianwen Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
24
|
DPAGT1-CDG: Functional analysis of disease-causing pathogenic mutations and role of endoplasmic reticulum stress. PLoS One 2017; 12:e0179456. [PMID: 28662078 PMCID: PMC5491010 DOI: 10.1371/journal.pone.0179456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/29/2017] [Indexed: 11/23/2022] Open
Abstract
Pathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij), and limb-girdle congenital myasthenic syndrome (CMS) with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosamine phosphotransferase (GPT), the protein encoded by DPAGT1, is an endoplasmic reticulum (ER)-resident protein involved in an initial step in the N-glycosylation pathway. The aim of the present study was to examine the effect of six variants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic reticulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG. The effect of the six mutations, i.e., c.358C>A (p.Leu120Met), c.791T>G (p.Val264Gly), c.901C>T (p.Arg301Cys), c.902G>A (p.Arg301His), c.1154T>G (p.Leu385Arg), and of the novel mutation c.329T>C (p.Phe110Ser), were examined via the analysis of DPAGT1 transcriptional profiles and GTP levels in patient-derived fibroblasts. In addition, the transient expression of different mutations was analysed in COS-7 cells. The results obtained, together with those of bioinformatic studies, revealed these mutations to affect the splicing process, the stability of GTP, or the ability of this protein to correctly localise in the ER membrane. The unfolded protein response (UPR; the response to ER stress) was found not to be active in patient-derived fibroblasts, unlike that seen in cells from patients with PMM2-CDG or DPM1-CDG. Even so, the fibroblasts of patients with DPAGT1-CDG seemed to be more sensitive to the stressor tunicamycin. The present work improves our knowledge of DPAGT1-CDG and provides bases for developing tailored splicing and folding therapies.
Collapse
|
25
|
Shtraizent N, DeRossi C, Nayar S, Sachidanandam R, Katz LS, Prince A, Koh AP, Vincek A, Hadas Y, Hoshida Y, Scott DK, Eliyahu E, Freeze HH, Sadler KC, Chu J. MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect. eLife 2017. [PMID: 28644127 PMCID: PMC5495572 DOI: 10.7554/elife.22477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rapid cellular proliferation in early development and cancer depends on glucose metabolism to fuel macromolecule biosynthesis. Metabolic enzymes are presumed regulators of this glycolysis-driven metabolic program, known as the Warburg effect; however, few have been identified. We uncover a previously unappreciated role for Mannose phosphate isomerase (MPI) as a metabolic enzyme required to maintain Warburg metabolism in zebrafish embryos and in both primary and malignant mammalian cells. The functional consequences of MPI loss are striking: glycolysis is blocked and cells die. These phenotypes are caused by induction of p53 and accumulation of the glycolytic intermediate fructose 6-phosphate, leading to engagement of the hexosamine biosynthetic pathway (HBP), increased O-GlcNAcylation, and p53 stabilization. Inhibiting the HBP through genetic and chemical methods reverses p53 stabilization and rescues the Mpi-deficient phenotype. This work provides mechanistic evidence by which MPI loss induces p53, and identifies MPI as a novel regulator of p53 and Warburg metabolism. DOI:http://dx.doi.org/10.7554/eLife.22477.001
Collapse
Affiliation(s)
- Nataly Shtraizent
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Shikha Nayar
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Liora S Katz
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Adam Prince
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anna P Koh
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Adam Vincek
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yujin Hoshida
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Donald K Scott
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hudson H Freeze
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Kirsten C Sadler
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
26
|
Abstract
The zebrafish skeleton shares many similarities with human and other vertebrate skeletons. Over the past years, work in zebrafish has provided an extensive understanding of the basic developmental mechanisms and cellular pathways directing skeletal development and homeostasis. This review will focus on the cell biology of cartilage and bone and how the basic cellular processes within chondrocytes and osteocytes function to assemble the structural frame of a vertebrate body. We will discuss fundamental functions of skeletal cells in production and secretion of extracellular matrix and cellular activities leading to differentiation of progenitors to mature cells that make up the skeleton. We highlight important examples where findings in zebrafish provided direction for the search for genes causing human skeletal defects and also how zebrafish research has proven important for validating candidate human disease genes. The work we cover here illustrates utility of zebrafish in unraveling molecular mechanisms of cellular functions necessary to form and maintain a healthy skeleton.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States
| | - Gokhan Unlu
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States
| | - Ela W Knapik
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
27
|
Berger RP, Dookwah M, Steet R, Dalton S. Glycosylation and stem cells: Regulatory roles and application of iPSCs in the study of glycosylation-related disorders. Bioessays 2016; 38:1255-1265. [PMID: 27667795 PMCID: PMC5214967 DOI: 10.1002/bies.201600138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycosylation refers to the co- and post-translational modification of protein and lipids by monosaccharides or oligosaccharide chains. The surface of mammalian cells is decorated by a heterogeneous and highly complex array of protein and lipid linked glycan structures that vary significantly between different cell types, raising questions about their roles in development and disease pathogenesis. This review will begin by focusing on recent findings that define roles for cell surface protein and lipid glycosylation in pluripotent stem cells and their functional impact during normal development. Then, we will describe how patient derived induced pluripotent stem cells are being used to model human diseases such as congenital disorders of glycosylation. Collectively, these studies indicate that cell surface glycans perform critical roles in human development and disease.
Collapse
Affiliation(s)
- Ryan P. Berger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Michelle Dookwah
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Richard Steet
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Isolation and analysis of sugar nucleotides using solid phase extraction and fluorophore assisted carbohydrate electrophoresis. MethodsX 2016; 3:251-60. [PMID: 27222820 PMCID: PMC4821447 DOI: 10.1016/j.mex.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/11/2016] [Indexed: 11/23/2022] Open
Abstract
The building blocks of simple and complex oligosaccharides, termed sugar nucleotides, are often overlooked for their role in metabolic diseases and may hold the key to the underlying disease pathogenesis. Multiple reasons may account for the lack of analysis and quantitation of these sugar nucleotides, including the difficulty in isolation and purification as well as the required expensive instrumentation such as a high performance liquid chromatography (HPLC), mass spectrometer, or capillary electrophoresis. We have established a simple yet effective way to purify and quantitate sugar nucleotides using solid phase extraction (SPE) chromatography combined with fluorophore assisted carbohydrate electrophoresis (FACE). The simplicity of use, combined with the ability to run multiple samples at one time, give this technique a distinct advantage over the established methods for isolation and analysis of sugar nucleotides from cell culture models. Sugar nucleotides can be easily purified with solid phase extraction chromatography. FACE can be used to analyze multiple nucleotide sugar extracts with a single run. The proposed method is simple, affordable, and uses common everyday research labware.
Collapse
Key Words
- AMAC, 2-aminoacridone
- APS, ammonium persulfate
- CMP, cytosine monophosphate
- Carbohydrate
- Electrophoresis
- FACE, fluorophore assisted carbohydrate electrophoresis
- Face
- GDP, guanosine diphosphate
- Gal, galactose
- GalNAc, N-acetylgalactosamine
- GlcNAc, N-acetylglucosamine
- GlcUA, glucuronic acid
- HPLC
- HPLC, high performance liquid chromatography
- Man, Mannose
- NeuAc, sialic acid
- SPE, solid phase extraction
- Sugar nucleotide analysis by SPE and FACE
- Sugar nucleotides
- TEAA, triethylamine acetate
- TEMED, N′,N′,N′N′-tetramethylenediamine
- UDP, uridine diphosphate
Collapse
|
29
|
Parkinson WM, Dookwah M, Dear ML, Gatto CL, Aoki K, Tiemeyer M, Broadie K. Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model. Dis Model Mech 2016; 9:513-27. [PMID: 26940433 PMCID: PMC4892659 DOI: 10.1242/dmm.022939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Congenital disorders of glycosylation (CDGs) constitute a rapidly growing family of human diseases resulting from heritable mutations in genes driving the production and modification of glycoproteins. The resulting symptomatic hypoglycosylation causes multisystemic defects that include severe neurological impairments, revealing a particularly critical requirement for tightly regulated glycosylation in the nervous system. The most common CDG, CDG-Ia (PMM2-CDG), arises from phosphomannomutase type 2 (PMM2) mutations. Here, we report the generation and characterization of the first Drosophila CDG-Ia model. CRISPR-generated pmm2-null Drosophila mutants display severely disrupted glycosylation and early lethality, whereas RNAi-targeted knockdown of neuronal PMM2 results in a strong shift in the abundance of pauci-mannose glycan, progressive incoordination and later lethality, closely paralleling human CDG-Ia symptoms of shortened lifespan, movement impairments and defective neural development. Analyses of the well-characterized Drosophila neuromuscular junction (NMJ) reveal synaptic glycosylation loss accompanied by defects in both structural architecture and functional neurotransmission. NMJ synaptogenesis is driven by intercellular signals that traverse an extracellular synaptomatrix and are co-regulated by glycosylation and matrix metalloproteinases (MMPs). Specifically, trans-synaptic signaling by the Wnt protein Wingless (Wg) depends on the heparan sulfate proteoglycan (HSPG) co-receptor Dally-like protein (Dlp), which is regulated by synaptic MMP activity. Loss of synaptic MMP2, Wg ligand, Dlp co-receptor and downstream trans-synaptic signaling occurs with PMM2 knockdown. Taken together, this Drosophila CDG disease model provides a new avenue for the dissection of cellular and molecular mechanisms underlying neurological impairments and is a means by which to discover and test novel therapeutic treatment strategies. Drosophila Collection: This work generates a new Drosophila congenital disorder of glycosylation model for the most common disease category, caused by phosphomannomutase-2 mutation, and reveals a synaptic mechanism underlying associated neurological impairments.
Collapse
Affiliation(s)
- William M Parkinson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Michelle Dookwah
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Mary Lynn Dear
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Cheryl L Gatto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Michael Tiemeyer
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, USA Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
30
|
Thiesler CT, Cajic S, Hoffmann D, Thiel C, van Diepen L, Hennig R, Sgodda M, Weiβmann R, Reichl U, Steinemann D, Diekmann U, Huber NMB, Oberbeck A, Cantz T, Kuss AW, Körner C, Schambach A, Rapp E, Buettner FFR. Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation (PMM2-CDG). Mol Cell Proteomics 2016; 15:1435-52. [PMID: 26785728 PMCID: PMC4824866 DOI: 10.1074/mcp.m115.054122] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/08/2023] Open
Abstract
PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors and in vitro differentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCs in vitro. Knock-down of PMM2 by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.
Collapse
Affiliation(s)
- Christina T Thiesler
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Samanta Cajic
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Dirk Hoffmann
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Thiel
- **Center for Child and Adolescent Medicine, Department Kinderheilkunde I, 69120 Heidelberg, Germany
| | - Laura van Diepen
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - René Hennig
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; §§glyXera GmbH, 39120 Magdeburg, Germany
| | - Malte Sgodda
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ¶¶Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Weiβmann
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - Udo Reichl
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Doris Steinemann
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖‖Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Nicolas M B Huber
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Astrid Oberbeck
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Tobias Cantz
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ¶¶Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas W Kuss
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - Christian Körner
- **Center for Child and Adolescent Medicine, Department Kinderheilkunde I, 69120 Heidelberg, Germany
| | - Axel Schambach
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Erdmann Rapp
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; §§glyXera GmbH, 39120 Magdeburg, Germany
| | - Falk F R Buettner
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
31
|
Himmelreich N, Kaufmann LT, Steinbeisser H, Körner C, Thiel C. Lack of phosphomannomutase 2 affects Xenopus laevis morphogenesis and the non-canonical Wnt5a/Ror2 signalling. J Inherit Metab Dis 2015; 38:1137-46. [PMID: 26141167 DOI: 10.1007/s10545-015-9874-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023]
Abstract
Reduced phosphomannomutase 2 activity in man leads to hypoglycosylation of glycoconjugates causing PMM2-CDG, the most common type of congenital disorders of glycosylation. Here we show that an antisense morpholino-mediated knockdown of the Xenopus laevis phosphomannomutase 2 gene provoked a general underglycosylation in frog embryos, which led to an altered phenotype and reduced glycosylation of Wnt5a as member of the non-canonical Wnt signalling. Loss of function experiments in hemi-sectioned embryos proved that due to the phosphomannomutase 2 knockdown expression of the Wnt5a/Ror2 target gene paraxial protocadherin was significantly decreased. Regarding the expression of paraxial protocadherin, a gain of function could only be achieved by injections of wnt5a and ror2 in dorsal neighbouring blastomeres, while a parallel injection of phosphomannomutase 2 morpholino led to a significant reduced level of expression. Our data show for the first time that a knockdown of phosphomannomutase 2 influences in vivo the non-canonical Wnt signalling during early embryogenesis.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Center for Child- and Adolescent Medicine and Center for Metabolic Diseases Heidelberg, Department I, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Lilian T Kaufmann
- Institute of Human Genetics, Division of Developmental Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Herbert Steinbeisser
- Institute of Human Genetics, Division of Developmental Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Christian Körner
- Center for Child- and Adolescent Medicine and Center for Metabolic Diseases Heidelberg, Department I, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Christian Thiel
- Center for Child- and Adolescent Medicine and Center for Metabolic Diseases Heidelberg, Department I, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Hasan M, Fermaintt CS, Gao N, Sakai T, Miyazaki T, Jiang S, Li QZ, Atkinson JP, Morse HC, Lehrman MA, Yan N. Cytosolic Nuclease TREX1 Regulates Oligosaccharyltransferase Activity Independent of Nuclease Activity to Suppress Immune Activation. Immunity 2015; 43:463-74. [PMID: 26320659 DOI: 10.1016/j.immuni.2015.07.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/04/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Abstract
TREX1 is an endoplasmic reticulum (ER)-associated negative regulator of innate immunity. TREX1 mutations are associated with autoimmune and autoinflammatory diseases. Biallelic mutations abrogating DNase activity cause autoimmunity by allowing immunogenic self-DNA to accumulate, but it is unknown how dominant frameshift (fs) mutations that encode DNase-active but mislocalized proteins cause disease. We found that the TREX1 C terminus suppressed immune activation by interacting with the ER oligosaccharyltransferase (OST) complex and stabilizing its catalytic integrity. C-terminal truncation of TREX1 by fs mutations dysregulated the OST complex, leading to free glycan release from dolichol carriers, as well as immune activation and autoantibody production. A connection between OST dysregulation and immune disorders was demonstrated in Trex1(-/-) mice, TREX1-V235fs patient lymphoblasts, and TREX1-V235fs knock-in mice. Inhibiting OST with aclacinomycin corrects the glycan and immune defects associated with Trex1 deficiency or fs mutation. This function of the TREX1 C terminus suggests a potential therapeutic option for TREX1-fs mutant-associated diseases.
Collapse
Affiliation(s)
- Maroof Hasan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles S Fermaintt
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningguo Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tomomi Sakai
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Takuya Miyazaki
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Sixin Jiang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Nan Yan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Yuste-Checa P, Gámez A, Brasil S, Desviat LR, Ugarte M, Pérez-Cerdá C, Pérez B. The Effects of PMM2-CDG-Causing Mutations on the Folding, Activity, and Stability of the PMM2 Protein. Hum Mutat 2015; 36:851-60. [PMID: 26014514 DOI: 10.1002/humu.22817] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/19/2015] [Indexed: 02/05/2023]
Abstract
Congenital disorder of glycosylation type Ia (PMM2-CDG), the most common form of CDG, is caused by mutations in the PMM2 gene that reduce phosphomannomutase 2 (PMM2) activity. No curative treatment is available. The present work describes the functional analysis of nine human PMM2 mutant proteins frequently found in PMM2-CDG patients and also two murine Pmm2 mutations carried by the unique PMM2-CDG mouse model described to overcome embryonic lethality. The effects of the mutations on PMM2/Pmm2 stability, oligomerization, and enzyme activity were explored in an optimized bacterial system. The mutant proteins were associated with an enzymatic activity of up to 47.3% as compared with wild type (WT). Stability analysis performed using differential scanning fluorimetry and a bacterial transcription-translation-coupled system allowed the identification of several destabilizing mutations (p.V44A, p.D65Y, p.R123Q, p.R141H, p.R162W, p.F207S, p.T237M, p.C241S). Exclusion chromatography identified one mutation, p.P113L, that affected dimer interaction. Expression analysis of the p.V44A, p.D65Y, p.R162W, and p.T237M mutations in a eukaryotic expression system under permissive folding conditions showed the possibility of recovering their associated PMM2 activity. Together, the results suggest that some loss-of-function mutations detected in PMM2-CDG patients could be destabilizing, and therefore PMM2 activity could be, in certain cases, rescuable via the use of synergetic proteostasis modulators and/or chaperones.
Collapse
Affiliation(s)
- Patricia Yuste-Checa
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Alejandra Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Sandra Brasil
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Celia Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| |
Collapse
|
34
|
Abstract
This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.
Collapse
|
35
|
Sharma V, Ichikawa M, Freeze HH. Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun 2014; 453:220-8. [PMID: 24931670 PMCID: PMC4252654 DOI: 10.1016/j.bbrc.2014.06.021] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022]
Abstract
Mannose is a simple sugar with a complex life. It is a welcome therapy for genetic and acquired human diseases, but it kills honeybees and blinds baby mice. It could cause diabetic complications. Mannose chemistry, metabolism, and metabolomics in cells, tissues and mammals can help explain these multiple systemic effects. Mannose has good, bad or ugly outcomes depending on its steady state levels and metabolic flux. This review describes the role of mannose at cellular level and its impact on organisms.
Collapse
Affiliation(s)
- Vandana Sharma
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Mie Ichikawa
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
36
|
Jumbo-Lucioni P, Parkinson W, Broadie K. Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model. Dis Model Mech 2014; 7:1365-78. [PMID: 25326312 PMCID: PMC4257005 DOI: 10.1242/dmm.017137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Classic galactosemia (CG) is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT), which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP)-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG), showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT) greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ). Dietary galactose and mutation of galactokinase (dGALK) or UDP-glucose dehydrogenase (sugarless) genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP) moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG) co-receptor and Wnt ligand levels, which are also corrected by dGALK co-removal and sugarless overexpression. These results reveal synaptomatrix glycosylation losses, altered trans-synaptic signaling pathway components, defective synaptogenesis and impaired coordinated movement in a CG neurological disease model.
Collapse
Affiliation(s)
- Patricia Jumbo-Lucioni
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Gao N, Holmes J, Lehrman MA. Letter to the Glycoforum: Improved protocols for preparing lipid-linked and related saccharides for Fluorophore-Assisted Carbohydrate Electrophoresis (FACE). Glycobiology 2014; 23:1111. [PMID: 24014203 DOI: 10.1093/glycob/cwt067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ningguo Gao
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, 6001 Forest Park Rd. Dallas, TX 75390-9041
| | | | | |
Collapse
|
38
|
Vacaru AM, Unlu G, Spitzner M, Mione M, Knapik EW, Sadler KC. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease. J Cell Sci 2014; 127:485-95. [PMID: 24481493 PMCID: PMC4007761 DOI: 10.1242/jcs.140194] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.
Collapse
Affiliation(s)
- Ana M. Vacaru
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Gokhan Unlu
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marie Spitzner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ela W. Knapik
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten C. Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
39
|
Sharma V, Nayak J, DeRossi C, Charbono A, Ichikawa M, Ng BG, Grajales-Esquivel E, Srivastava A, Wang L, He P, Scott DA, Russell J, Contreras E, Guess CM, Krajewski S, Del Rio-Tsonis K, Freeze HH. Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice. FASEB J 2014; 28:1854-69. [PMID: 24421398 DOI: 10.1096/fj.13-245514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patients with congenital disorder of glycosylation (CDG), type Ib (MPI-CDG or CDG-Ib) have mutations in phosphomannose isomerase (MPI) that impair glycosylation and lead to stunted growth, liver dysfunction, coagulopathy, hypoglycemia, and intestinal abnormalities. Mannose supplements correct hypoglycosylation and most symptoms by providing mannose-6-P (Man-6-P) via hexokinase. We generated viable Mpi hypomorphic mice with residual enzymatic activity comparable to that of patients, but surprisingly, these mice appeared completely normal except for modest (~15%) embryonic lethality. To overcome this lethality, pregnant dams were provided 1-2% mannose in their drinking water. However, mannose further reduced litter size and survival to weaning by 40 and 66%, respectively. Moreover, ~50% of survivors developed eye defects beginning around midgestation. Mannose started at birth also led to eye defects but had no effect when started after eye development was complete. Man-6-P and related metabolites accumulated in the affected adult eye and in developing embryos and placentas. Our results demonstrate that disturbing mannose metabolic flux in mice, especially during embryonic development, induces a highly specific, unanticipated pathological state. It is unknown whether mannose is harmful to human fetuses during gestation; however, mothers who are at risk for having MPI-CDG children and who consume mannose during pregnancy hoping to benefit an affected fetus in utero should be cautious.
Collapse
Affiliation(s)
- Vandana Sharma
- 2Sanford-Burnham Medical Research Institute (SBMRI), 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee Y, Kim YH, Yun JS, Lee CJ. Valproic acid decreases the proliferation of telencephalic cells in zebrafish larvae. Neurotoxicol Teratol 2013; 39:91-9. [DOI: 10.1016/j.ntt.2013.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
41
|
Hosen MJ, Vanakker OM, Willaert A, Huysseune A, Coucke P, De Paepe A. Zebrafish models for ectopic mineralization disorders: practical issues from morpholino design to post-injection observations. Front Genet 2013; 4:74. [PMID: 23760765 PMCID: PMC3669896 DOI: 10.3389/fgene.2013.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/15/2013] [Indexed: 01/06/2023] Open
Abstract
Zebrafish (ZF, Danio rerio) has emerged as an important and popular model species to study different human diseases. Key regulators of skeletal development and calcium metabolism are highly conserved between mammals and ZF. The corresponding orthologs share significant sequence similarities and an overlap in expression patterns when compared to mammals, making ZF a potential model for the study of mineralization-related disorders and soft tissue mineralization. To characterize the function of early mineralization-related genes in ZF, these genes can be knocked down by injecting morpholinos into early stage embryos. Validation of the morpholino needs to be performed and the concern of aspecific effects can be addressed by applying one or more independent techniques to knock down the gene of interest. Post-injection assessment of early mineralization defects can be done using general light microscopy, calcein staining, Alizarin red staining, Alizarin red-Alcian blue double staining, and by the use of transgenic lines. Examination of general molecular defects can be done by performing protein and gene expression analysis, and more specific processes can be explored by investigating ectopic mineralization-related mechanisms such as apoptosis and mitochondrial dysfunction. In this paper, we will discuss all details about the aforementioned techniques; shared knowledge will be very useful for the future investigation of ZF models for ectopic mineralization disorders and to understand the underlying pathways involved in soft tissue calcification.
Collapse
Affiliation(s)
- Mohammad Jakir Hosen
- Center for Medical Genetics, Ghent University Hospital Ghent, Belgium ; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology Sylhet, Bangladesh
| | | | | | | | | | | |
Collapse
|
42
|
Freeze HH. Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 2013; 288:6936-45. [PMID: 23329837 DOI: 10.1074/jbc.r112.429274] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nearly 70 inherited human glycosylation disorders span a breathtaking clinical spectrum, impacting nearly every organ system and launching a family-driven diagnostic odyssey. Advances in genetics, especially next generation sequencing, propelled discovery of many glycosylation disorders in single and multiple pathways. Interpretation of whole exome sequencing results, insights into pathological mechanisms, and possible therapies will hinge on biochemical analysis of patient-derived materials and animal models. Biochemical diagnostic markers and readouts offer a physiological context to confirm candidate genes. Recent discoveries suggest novel perspectives for textbook biochemistry and novel research opportunities. Basic science and patients are the immediate beneficiaries of this bidirectional collaboration.
Collapse
Affiliation(s)
- Hudson H Freeze
- Genetic Disease Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| |
Collapse
|