1
|
Vaishnav P, Kondo HS, Gadsby JR, Blake TCA, Dobramysl U, Mason J, Atherton J, Gallop JL. Membrane composition and curvature in SNX9-mediated actin polymerization. Mol Biol Cell 2025; 36:ar54. [PMID: 40105919 DOI: 10.1091/mbc.e24-09-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Sorting nexin 9 (SNX9) is a membrane-binding scaffold protein that contributes to viral uptake and inflammation and is associated with worse outcomes in several cancers. It is involved in endocytosis of epidermal growth factor receptors, β1-integrin and membrane type 1 matrix metalloprotease, and formation of mitochondrial-derived vesicles. The SNX9 Bin-Amphiphysin-Rvs (BAR)-Phox homology (PX) domains bind phosphoinositide lipids and the Src homology 3 (SH3) domain interacts with dynamin and Neural-Wiskott Aldrich syndrome protein (N-WASP) to stimulate Arp2/3 complex-mediated actin polymerization. Here we use biolayer interferometry, cell-free reconstitution, and superresolution microscopy to analyze the specificity and activities of SNX9 at membranes. We find that more SNX9 can bind liposomes containing phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) and phosphatidylinositol (3)-phosphate (PI(3)P) compared with phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P2), despite similar affinities. Actin assembly requires the network of both PX-BAR and SH3 interactions. Three-dimensional direct stochastic optical reconstruction microscopy on filopodia-like reconstitutions shows that SNX9 and related protein transducer of Cdc42-dependent actin assembly-1 (TOCA-1) can form both flat and ∼0.5 µm curved assemblies at actin incorporation sites. Finally, using cryo-electron tomography, we show that SNX9 builds both branched and bundled actin networks demonstrating its potential for multifunctional roles in actin remodeling.
Collapse
Affiliation(s)
- Pankti Vaishnav
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Hanae Shimo Kondo
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Jonathan R Gadsby
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Thomas C A Blake
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Ulrich Dobramysl
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Julia Mason
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King's College, London SE1 1YR, United Kingdom
| | - Jennifer L Gallop
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
2
|
Robleto VL, Zhuo Y, Crecelius JM, Benzow S, Marchese A. SNX9 family mediates βarrestin-independent GPCR endocytosis. Commun Biol 2024; 7:1455. [PMID: 39511325 PMCID: PMC11544122 DOI: 10.1038/s42003-024-07157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Agonist-stimulated GPCR endocytosis typically occurs via the multi-faceted adaptor proteins known as βarrestins. However, endocytosis of several GPCRs occurs independently of β-arrestins, suggesting an additional mode of GPCR endocytosis, but the mechanisms remain unknown. Here we provide evidence that sorting nexin 9 (SNX9), a previously described endocytic remodeling protein, functions as a novel cargo adaptor that promotes agonist-stimulated GPCR endocytosis. We show that SNX9 and SNX18, but not β-arrestins, are necessary for endocytosis of the chemokine receptor CXCR4. SNX9 is recruited to CXCR4 at the plasma membrane and interacts directly with the carboxyl-terminal tail of the receptor in a phosphorylation-dependent manner. We also provide evidence that some receptors do not require SNX9 and SNX18 nor β-arrestins for endocytosis, suggesting additional modes for GPCR endocytosis. These results provide novel insights into the mechanisms regulating GPCR trafficking and broaden our overall understanding of GPCR regulation.
Collapse
Affiliation(s)
- Valeria L Robleto
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph M Crecelius
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sara Benzow
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
AmeliMojarad M, AmeliMojarad M, Wang J, Tavakolpour V, Shariati P. A pan-cancer study of ADAM9's immunological function and prognostic value particularly in liver cancer. Sci Rep 2024; 14:26862. [PMID: 39505907 PMCID: PMC11541887 DOI: 10.1038/s41598-024-76049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
A pan-cancer analysis summarizing the overall changes in mRNA and protein stability of ADM9, as well as its oncogenic function on immune cell line modulation and checkpoints within the tumor microenvironment (TME), is lacking, despite the fact that ADM9 up-regulation is correlated with the progression of many cancers. Therefore, in this study, we comprehensively analyzed the role of ADAM9 expression and its prognostic value in different cancers to fill this gap. Multiple bioinformatics databases such as Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were used to evaluate the ADAM9 genetic alternation, phosphorylation, and methylation, and indicated highly positive correlated genes that might play a critical interaction with ADAM9 and their molecular function with GO analysis. We also evaluate the effect of higher ADAM9 with prominent immune modulatory genes and immune infiltration especially in liver cancer pathogenesis stimulates lower NK cell effector functions based on its role in MICA shedding and increasing the Tregs infiltration. Immunohistochemistry (IHC) staining from 90 pathologically verified samples proved the positive correlation between ADAM9 and tumor stages and proved the higher expression of ADAM9 correlated genes (SNX9, APP, TNF, CDH1, ITGAV, MAD2L2) in HCC pathogenesis. In conclusion, this pan-cancer study provides a comprehensive understanding of the prognostic value of ADAM9 in various tumors emphasizing its importance to be considered as an innovative treatment approach, especially in tumor immunity shortly.
Collapse
Affiliation(s)
- Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Jiang Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Vahid Tavakolpour
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnolog, Tehran, Iran
- Stem cell Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Shariati
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
4
|
Wang J, Ji Y, Cao X, Shi R, Lu X, Wang Y, Zhang CY, Li J, Jiang X. Characterization and analysis of extracellular vesicle-derived miRNAs from different adipose tissues in mice. Heliyon 2024; 10:e39149. [PMID: 39640764 PMCID: PMC11620040 DOI: 10.1016/j.heliyon.2024.e39149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Adipose tissue is traditionally classified into two main types based on their functions: brown adipose tissue (BAT) and white adipose tissue (WAT). Each type plays a distinct role in the body's energy metabolism. Additionally, a third type, beige adipose tissue, can develop within subcutaneous WAT (including inguinal WAT, iWAT) in response to specific stimuli and exhibits characteristics of both BAT and WAT. Extracellular vesicles (EVs) are crucial for intercellular communication, carrying a diverse array of biomolecules such as proteins, lipids, and nucleic acids. While the functional diversity and endocrine roles of adipose tissues are well-documented, a comparative analysis of the functions of EVs released by different adipose tissues from mice housed at room temperature has not been thoroughly explored. MicroRNAs (miRNAs), which are highly enriched in small extracellular vesicles (sEVs), offer a promising avenue for investigating the complex functions and unique roles of various adipose tissues. In this study, we isolated sEVs from different adipose tissues under basal conditions and performed a comprehensive analysis of their miRNA content. By comparing miRNA profiles across different adipose tissues, we aim to elucidate the potential roles of sEV-derived miRNAs in mediating intercellular communication and the distinct physiological functions of adipose tissues. Understanding the molecular features of miRNAs in adipose tissue EVs could reveal new aspects of adipose tissue biology and lay the groundwork for further research into their physiological significance.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuan Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaoqin Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ruixue Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaohui Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| |
Collapse
|
5
|
Henry WS, Müller S, Yang JS, Innes-Gold S, Das S, Reinhardt F, Sigmund K, Phadnis VV, Wan Z, Eaton E, Sampaio JL, Bell GW, Viravalli A, Hammond PT, Kamm RD, Cohen AE, Boehnke N, Hsu VW, Levental KR, Rodriguez R, Weinberg RA. Ether lipids influence cancer cell fate by modulating iron uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585922. [PMID: 38562716 PMCID: PMC10983928 DOI: 10.1101/2024.03.20.585922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cancer cell fate has been widely ascribed to mutational changes within protein-coding genes associated with tumor suppressors and oncogenes. In contrast, the mechanisms through which the biophysical properties of membrane lipids influence cancer cell survival, dedifferentiation and metastasis have received little scrutiny. Here, we report that cancer cells endowed with a high metastatic ability and cancer stem cell-like traits employ ether lipids to maintain low membrane tension and high membrane fluidity. Using genetic approaches and lipid reconstitution assays, we show that these ether lipid-regulated biophysical properties permit non-clathrin-mediated iron endocytosis via CD44, leading directly to significant increases in intracellular redox-active iron and enhanced ferroptosis susceptibility. Using a combination of in vitro three-dimensional microvascular network systems and in vivo animal models, we show that loss of ether lipids also strongly attenuates extravasation, metastatic burden and cancer stemness. These findings illuminate a mechanism whereby ether lipids in carcinoma cells serve as key regulators of malignant progression while conferring a unique vulnerability that can be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Whitney S Henry
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe Labellisée Ligue Contre le Cancer, Paris 75005, France
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Dept. of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Innes-Gold
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sunny Das
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kim Sigmund
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Vaishnavi V Phadnis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Dept. of Biology, MIT, Cambridge, MA 02139, USA
| | - Zhengpeng Wan
- Dept. of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Elinor Eaton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Julio L Sampaio
- Institut Curie, INSERM, Mines ParisTech, Paris 75005, France
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Amartya Viravalli
- Dept. of Chemical Engineering and Materials Science, University of Minnesota Minneapolis, MN 55455, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Dept. of Chemical Engineering, MIT, Cambridge, MA 02139, USA
- Senior author
| | - Roger D Kamm
- Dept. of Biological Engineering, MIT, Cambridge, MA 02139, USA
- Dept. of Physics, Harvard University, Cambridge, MA 02138, USA
- Senior author
| | - Adam E Cohen
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Dept. of Physics, Harvard University, Cambridge, MA 02138, USA
- Senior author
| | - Natalie Boehnke
- Dept. of Chemical Engineering and Materials Science, University of Minnesota Minneapolis, MN 55455, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Senior author
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Dept. of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Senior author
| | - Kandice R Levental
- Dept. of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
- Senior author
| | - Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe Labellisée Ligue Contre le Cancer, Paris 75005, France
- Senior author
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Dept. of Biology, MIT, Cambridge, MA 02139, USA
- Ludwig Center for Molecular Oncology, Cambridge, MA 02139, USA
- Senior author
| |
Collapse
|
6
|
Meyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, Sutton R, Venn NC, Cazzaniga G, Corral Abascal L, Tsaur G, Fechina L, Emerenciano M, Pombo-de-Oliveira MS, Lund-Aho T, Lundán T, Montonen M, Juvonen V, Zuna J, Trka J, Ballerini P, Lapillonne H, Van der Velden VHJ, Sonneveld E, Delabesse E, de Matos RRC, Silva MLM, Bomken S, Katsibardi K, Keernik M, Grardel N, Mason J, Price R, Kim J, Eckert C, Lo Nigro L, Bueno C, Menendez P, Zur Stadt U, Gameiro P, Sedék L, Szczepański T, Bidet A, Marcu V, Shichrur K, Izraeli S, Madsen HO, Schäfer BW, Kubetzko S, Kim R, Clappier E, Trautmann H, Brüggemann M, Archer P, Hancock J, Alten J, Möricke A, Stanulla M, Lentes J, Bergmann AK, Strehl S, Köhrer S, Nebral K, Dworzak MN, Haas OA, Arfeuille C, Caye-Eude A, Cavé H, Marschalek R. The KMT2A recombinome of acute leukemias in 2023. Leukemia 2023; 37:988-1005. [PMID: 37019990 PMCID: PMC10169636 DOI: 10.1038/s41375-023-01877-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.
Collapse
Affiliation(s)
- C Meyer
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - P Larghero
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - B Almeida Lopes
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - T Burmeister
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - D Gröger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - R Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - N C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - G Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - L Corral Abascal
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - G Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - L Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - M Emerenciano
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | | | - T Lund-Aho
- Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
| | - T Lundán
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - M Montonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - V Juvonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - J Zuna
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Trka
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - P Ballerini
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - H Lapillonne
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - V H J Van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - E Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - E Delabesse
- Institut Universitaire du Cancer de Toulouse, Toulouse Cedex 9, France
| | - R R C de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - M L M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - S Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - K Katsibardi
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - M Keernik
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - N Grardel
- Department of Hematology, CHU Lille, France
| | - J Mason
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - R Price
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - J Kim
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Department of Laboratory Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - C Eckert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology/Hematology, Berlin, Germany
| | - L Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - C Bueno
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); Department of Biomedicine. University of Barcelona; and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Menendez
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - U Zur Stadt
- Pediatric Hematology and Oncology and CoALL Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Gameiro
- Instituto Português de Oncologia, Departament of Hematology, Lisbon, Portugal
| | - L Sedék
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - T Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - A Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - V Marcu
- Hematology Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - K Shichrur
- Molecular Oncology Laboratory, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - S Izraeli
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B W Schäfer
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - S Kubetzko
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - R Kim
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - E Clappier
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - H Trautmann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Brüggemann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - P Archer
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Hancock
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Alten
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Möricke
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, MHH, Hanover, Germany
| | - J Lentes
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - A K Bergmann
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - S Strehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - S Köhrer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - K Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - M N Dworzak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - O A Haas
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - C Arfeuille
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
| | - A Caye-Eude
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - H Cavé
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - R Marschalek
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
7
|
Longitudinal bioluminescence imaging to monitor breast tumor growth and treatment response using the chick chorioallantoic membrane model. Sci Rep 2022; 12:17192. [PMID: 36229503 PMCID: PMC9562337 DOI: 10.1038/s41598-022-20854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
The development of successful treatment regimens for breast cancer requires strong pre-clinical data generated in physiologically relevant pre-clinical models. Here we report the development of the chick embryo chorioallantoic membrane (CAM) model to study tumor growth and angiogenesis using breast cancer cell lines. MDA-MB-231 and MCF7 tumor cell lines were engrafted onto the chick embryo CAM to study tumor growth and treatment response. Tumor growth was evaluated through bioluminescence imaging and a significant increase in tumor size and vascularization was found over a 9-day period. We then evaluated the impact of anti-angiogenic drugs, axitinib and bevacizumab, on tumor growth and angiogenesis. Drug treatment significantly reduced tumor vascularization and size. Overall, our findings demonstrate that the chick embryo CAM is a clinically relevant model to monitor therapeutic response in breast cancer and can be used as a platform for drug screening to evaluate not only gross changes in tumor burden but physiological processes such as angiogenesis.
Collapse
|
8
|
Bending over backwards: BAR proteins and the actin cytoskeleton in mammalian receptor-mediated endocytosis. Eur J Cell Biol 2022; 101:151257. [PMID: 35863103 DOI: 10.1016/j.ejcb.2022.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.
Collapse
|
9
|
Ramirez NGP, Lee J, Zheng Y, Li L, Dennis B, Chen D, Challa A, Planelles V, Westover KD, Alto NM, D'Orso I. ADAP1 promotes latent HIV-1 reactivation by selectively tuning KRAS-ERK-AP-1 T cell signaling-transcriptional axis. Nat Commun 2022; 13:1109. [PMID: 35232997 PMCID: PMC8888757 DOI: 10.1038/s41467-022-28772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/11/2022] [Indexed: 12/29/2022] Open
Abstract
Immune stimulation fuels cell signaling-transcriptional programs inducing biological responses to eliminate virus-infected cells. Yet, retroviruses that integrate into host cell chromatin, such as HIV-1, co-opt these programs to switch between latent and reactivated states; however, the regulatory mechanisms are still unfolding. Here, we implemented a functional screen leveraging HIV-1's dependence on CD4+ T cell signaling-transcriptional programs and discovered ADAP1 is an undescribed modulator of HIV-1 proviral fate. Specifically, we report ADAP1 (ArfGAP with dual PH domain-containing protein 1), a previously thought neuronal-restricted factor, is an amplifier of select T cell signaling programs. Using complementary biochemical and cellular assays, we demonstrate ADAP1 inducibly interacts with the immune signalosome to directly stimulate KRAS GTPase activity thereby augmenting T cell signaling through targeted activation of the ERK-AP-1 axis. Single cell transcriptomics analysis revealed loss of ADAP1 function blunts gene programs upon T cell stimulation consequently dampening latent HIV-1 reactivation. Our combined experimental approach defines ADAP1 as an unexpected tuner of T cell programs facilitating HIV-1 latency escape.
Collapse
Affiliation(s)
- Nora-Guadalupe P Ramirez
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yue Zheng
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bryce Dennis
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Didi Chen
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Kenneth D Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neal M Alto
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Wu GJ, Ren K, He M, Xu JX, Li ZQ, Bo D, Xue Q. SNX20 Expression Correlates with Immune Cell Infiltration and Can Predict Prognosis in Lung Adenocarcinoma. Int J Gen Med 2021; 14:7599-7611. [PMID: 34764676 PMCID: PMC8575493 DOI: 10.2147/ijgm.s337198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
Background Sorting nexin-20 (SNX20) is a member of the sorting nexin family of proteins. It plays a crucial role in the regulation of innate immunity. However, the prognostic risk, potential mechanisms, immunotherapy, and other functions of SNX20 in lung adenocarcinoma (LUAD) remain unclear. Methods We analyzed and validated the expression and prognostic role of SNX20 in LUAD through a combination of The Cancer Genome Atlas, Gene Expression Omnibus, Oncomine, TIMER, and Human Protein Atlas databases. Further, we analyzed the correlation between SNX20 expression and clinical characteristics of LUAD, and the prognostic value of SNX20 in LUAD was evaluated. Using fitted SNX20 expression and other clinical parameters, a predictive model with predictive performance for the overall survival of patients with LUAD was constructed. The potential biological function of SNX20 in LUAD was explored using gene set enrichment analysis. In addition, we analyzed the correlation between SNX20 expression and the immune microenvironment and survival. Results SNX20 was downregulated in most cancer types, was associated with poor prognosis in LUAD and could be an independent prognostic factor for patients with LUAD. The predictive model developed by us had good predictive power for determining the overall survival of patients with LUAD. Biofunctional analysis revealed that genes co-expressed with SNX20 mainly promoted the immune process and inhibited the cell proliferation process in LUAD. We observed that high expression of SNX20 was accompanied by a better immune microenvironment and survival in patients with LUAD. Furthermore, the LUAD immune response was elevated with an increase in SNX20 expression. Finally, we found that SNX20 expression was significantly associated with various tumor-infiltrating immune cells, and it was widely involved in regulating various immune molecules in LUAD and affecting immune infiltration in the tumor microenvironment. Conclusion Our results suggested that SNX20 is a potential immune-related biomarker and therapeutic target associated with the prognosis of patients with LUAD. This provided a new strategy for the development of immunotherapeutic and prognostic markers in LUAD.
Collapse
Affiliation(s)
- Gu Jie Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Kuan Ren
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Min He
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jian Xun Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhen Qing Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ding Bo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| |
Collapse
|
11
|
Guardia T, Eason M, Kontrogianni-Konstantopoulos A. Obscurin: A multitasking giant in the fight against cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188567. [PMID: 34015411 PMCID: PMC8349851 DOI: 10.1016/j.bbcan.2021.188567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Giant obscurins (720-870 kDa), encoded by OBSCN, were originally discovered in striated muscles as cytoskeletal proteins with scaffolding and regulatory roles. Recently though, they have risen to the spotlight as key players in cancer development and progression. Herein, we provide a timely prudent synopsis of the expanse of OBSCN mutations across 16 cancer types. Given the extensive work on OBSCN's role in breast epithelium, we summarize functional studies implicating obscurins as potent tumor suppressors in breast cancer and delve into an in silico analysis of its mutational profile and epigenetic (de)regulation using different dataset platforms and sophisticated computational tools. Lastly, we formally describe the OBSCN-Antisense-RNA-1 gene, which belongs to the long non-coding RNA family and discuss its potential role in modulating OBSCN expression in breast cancer. Collectively, we highlight the escalating involvement of obscurins in cancer biology and outline novel potential mechanisms of OBSCN (de)regulation that warrant further investigation.
Collapse
Affiliation(s)
- Talia Guardia
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew Eason
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, USA.
| |
Collapse
|
12
|
Chen Z, Mino RE, Mettlen M, Michaely P, Bhave M, Reed DK, Schmid SL. Wbox2: A clathrin terminal domain-derived peptide inhibitor of clathrin-mediated endocytosis. J Cell Biol 2021; 219:151850. [PMID: 32520988 PMCID: PMC7480105 DOI: 10.1083/jcb.201908189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) occurs via the formation of clathrin-coated vesicles from clathrin-coated pits (CCPs). Clathrin is recruited to CCPs through interactions between the AP2 complex and its N-terminal domain, which in turn recruits endocytic accessory proteins. Inhibitors of CME that interfere with clathrin function have been described, but their specificity and mechanisms of action are unclear. Here we show that overexpression of the N-terminal domain with (TDD) or without (TD) the distal leg inhibits CME and CCP dynamics by perturbing clathrin interactions with AP2 and SNX9. TDD overexpression does not affect clathrin-independent endocytosis or, surprisingly, AP1-dependent lysosomal trafficking from the Golgi. We designed small membrane–permeant peptides that encode key functional residues within the four known binding sites on the TD. One peptide, Wbox2, encoding residues along the W-box motif binding surface, binds to SNX9 and AP2 and potently and acutely inhibits CME.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Rosa E Mino
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Madhura Bhave
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Dana Kim Reed
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, TX
| |
Collapse
|
13
|
Lucken-Ardjomande Häsler S, Vallis Y, Pasche M, McMahon HT. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR ΔF508. J Cell Biol 2021; 219:151714. [PMID: 32344433 PMCID: PMC7199855 DOI: 10.1083/jcb.201811014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mathias Pasche
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
14
|
Jarsch IK, Gadsby JR, Nuccitelli A, Mason J, Shimo H, Pilloux L, Marzook B, Mulvey CM, Dobramysl U, Bradshaw CR, Lilley KS, Hayward RD, Vaughan TJ, Dobson CL, Gallop JL. A direct role for SNX9 in the biogenesis of filopodia. J Cell Biol 2020; 219:151579. [PMID: 32328641 PMCID: PMC7147113 DOI: 10.1083/jcb.201909178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Filopodia are finger-like actin-rich protrusions that extend from the cell surface and are important for cell-cell communication and pathogen internalization. The small size and transient nature of filopodia combined with shared usage of actin regulators within cells confounds attempts to identify filopodial proteins. Here, we used phage display phenotypic screening to isolate antibodies that alter the actin morphology of filopodia-like structures (FLS) in vitro. We found that all of the antibodies that cause shorter FLS interact with SNX9, an actin regulator that binds phosphoinositides during endocytosis and at invadopodia. In cells, we discover SNX9 at specialized filopodia in Xenopus development and that SNX9 is an endogenous component of filopodia that are hijacked by Chlamydia entry. We show the use of antibody technology to identify proteins used in filopodia-like structures, and a role for SNX9 in filopodia.
Collapse
Affiliation(s)
- Iris K Jarsch
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jonathan R Gadsby
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Annalisa Nuccitelli
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Julia Mason
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hanae Shimo
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ludovic Pilloux
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bishara Marzook
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Claire M Mulvey
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ulrich Dobramysl
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Charles R Bradshaw
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tristan J Vaughan
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Claire L Dobson
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Jennifer L Gallop
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Fan L, Li L, Huang C, Huang S, Deng J, Xiong J. Increased SNX20 and PD-L1 Levels Can Predict the Clinical Response to PD-1 Inhibitors in Lung Adenocarcinoma. Onco Targets Ther 2020; 13:10075-10085. [PMID: 33116590 PMCID: PMC7555289 DOI: 10.2147/ott.s262909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Programmed death ligand 1 (PD-L1) is widely used for predicting immune checkpoint inhibitors but has a limited effect on predicting clinical response. The aim of this study was to examine the prognostic value and PD-1 inhibitor therapeutic efficiency of SNX20 in lung adenocarcinoma. Methods We evaluated the mRNA and protein expression levels of SNX20 and PD-L1 and confirmed their predictive role in clinical response to anti-PD-1 therapy in 56 patients with advanced, refractory lung adenocarcinoma treated with PD-1 inhibitors. The expression of SNX family in different cancer types and the relationship between SNX20 and immune cells were evaluated in TCGA. The protein expression levels of SNX20, PD-L1 in 56 lung adenocarcinoma tissues were evaluated by immunohistochemistry. Results SNX20 mRNA expression has the strongest relationship with CD8a of the sorting nexin (SNX) family in lung adenocarcinoma and is strongly correlated with immune infiltration levels in 30 cancer types, especially in lung adenocarcinoma. A positive correlation between SNX20 and PD-L1 was found based on immunohistochemical data (Pearson’s r=0.3731 and p=0.0466). SNX20 and PD-L1 were also observed to have a significant positive correlation at the mRNA level. According to the receiver operating characteristic (ROC) curve, the best expression differentiation score of SNX20 and PD-L1 between responder versus non-responders in patients with lung adenocarcinoma using PD-1 inhibitors is 5. In univariate logistic regression analysis, both SNX20 (odds ratio [OR]=3.778, p=0.019) and PD-L1 (OR=5.727, p=0.004) expression levels are significant predictors of clinical response in the PD-1 inhibitor responder group, and SNX20 (OR=3.575, p=0.038) and PD-L1 (OR=5.484, p=0.007) are also predictors of the response to PD-1 inhibitors in the multivariate analysis. High SNX20/high PD-L1 expression group had longer overall survival than patients with high SNX20/low PD-L1 expression group or low SNX20/high PD-L1 expression group (p=0.013) and patients with low SNX20/low PD-L1 expression group (p=0.01). Conclusion SNX20 expression can be a promising predictor for therapeutic decision-making and treatment response assessment regarding PD-1 inhibitors, and special attention is required for the subgroup of patients with lung adenocarcinoma whose tumors express both high SNX20 and PD-L1.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|
16
|
Yang L, Tan W, Yang X, You Y, Wang J, Wen G, Zhong J. Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. J Cell Physiol 2020; 236:3317-3335. [PMID: 33090492 DOI: 10.1002/jcp.30093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Sorting nexins (SNXs) are a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins containing the PX domain proteins. The function of SNX proteins in regulating intracellular protein trafficking consists of endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX proteins are demonstrated to be involved in several cancerous/neoplastic diseases. Here, we review the accumulated evidence of the molecular structure and biological function of SNX proteins and discuss the regulatory role of SNX proteins in distinct cancerous/neoplastic diseases. SNX family proteins may be a valuable potential biomarker and therapeutic strategy for diagnostics and treatment of cancerous/neoplastic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weihua Tan
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Emergency Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinzhi Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yong You
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jing Wang
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Shen AW, Fu LL, Lin L, Sun B, Song DX, Wang WT, Wang YH, Yin PR, Yu SQ. SNX9 Inhibits Cell Proliferation and Cyst Development in Autosomal Dominant Polycystic Kidney Disease via Activation of the Hippo-YAP Signaling Pathway. Front Cell Dev Biol 2020; 8:811. [PMID: 32974348 PMCID: PMC7472854 DOI: 10.3389/fcell.2020.00811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a complex process, involving the alteration of multiple genes and signaling pathways, and the pathogenesis of ADPKD remains largely unknown. Here, we demonstrated the suppressive role of sorting nexin 9 (SNX9) during ADPKD development. Sorting nexin 9 expression was detected in the kidney tissues of ADPKD patients, for the first time, and SNX9 expression was also detected in Pkd1 knockout (Pkd1–/–) and control mice. Subsequently, a series of gain- and loss-of-function studies were performed, to explore the biological roles and underlying molecular mechanisms of SNX9 in ADPKD progression. The expression of SNX9 was significantly downregulated in ADPKD patients and Pkd1–/– mice compared with control individuals and wild-type mice (Pkd1+/+), respectively. The ectopic expression of SNX9 significantly inhibited ADPKD cell proliferation, renal cyst formation and enlargement, whereas these effects were promoted by SNX9 silencing. Mechanistically, we found that SNX9 interacted directly with yes-associated protein (YAP) and increased the large tumor suppressor kinase 1-mediated phosphorylation of YAP, resulting in the cytoplasmic retention of YAP, the decreased transcriptional activity of the YAP/TEA domain transcription factor 4 complex, and, consequently, the inhibition of Hippo target gene expression and ADPKD development. Taken together, our findings provided novel insights into the role played by SNX9 during ADPKD pathogenesis and may reveal novel therapeutic approaches for ADPKD and related kidney diseases.
Collapse
Affiliation(s)
- Ai-Wen Shen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Li Fu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lu Lin
- Division of Nephrology, Department of Medicine, The 5th Hospital of Sun Yat-sen University1, Zhuhai, China
| | - Bo Sun
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Dong-Xu Song
- Department of Nephrology, Second People's Hospital of Fuyang City, Fuyang, China
| | - Wu-Tao Wang
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yi-Hao Wang
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Pei-Ran Yin
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng-Qiang Yu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Müller S, Sindikubwabo F, Cañeque T, Lafon A, Versini A, Lombard B, Loew D, Wu TD, Ginestier C, Charafe-Jauffret E, Durand A, Vallot C, Baulande S, Servant N, Rodriguez R. CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nat Chem 2020; 12:929-938. [DOI: 10.1038/s41557-020-0513-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
|
19
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
20
|
Wang X, Chen Z, Mettlen M, Noh J, Schmid SL, Danuser G. DASC, a sensitive classifier for measuring discrete early stages in clathrin-mediated endocytosis. eLife 2020; 9:53686. [PMID: 32352376 PMCID: PMC7192580 DOI: 10.7554/elife.53686] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) in mammalian cells is driven by resilient machinery that includes >70 endocytic accessory proteins (EAP). Accordingly, perturbation of individual EAPs often results in minor effects on biochemical measurements of CME, thus providing inconclusive/misleading information regarding EAP function. Live-cell imaging can detect earlier roles of EAPs preceding cargo internalization; however, this approach has been limited because unambiguously distinguishing abortive coats (ACs) from bona fide clathrin-coated pits (CCPs) is required but unaccomplished. Here, we develop a thermodynamics-inspired method, “disassembly asymmetry score classification (DASC)”, that resolves ACs from CCPs based on single channel fluorescent movies. After extensive verification, we use DASC-resolved ACs and CCPs to quantify CME progression in 11 EAP knockdown conditions. We show that DASC is a sensitive detector of phenotypic variation in CCP dynamics that is uncorrelated to the variation in biochemical measurements of CME. Thus, DASC is an essential tool for uncovering EAP function.
Collapse
Affiliation(s)
- Xinxin Wang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhiming Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
21
|
Identifying Methylation Pattern and Genes Associated with Breast Cancer Subtypes. Int J Mol Sci 2019; 20:ijms20174269. [PMID: 31480430 PMCID: PMC6747348 DOI: 10.3390/ijms20174269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is regarded worldwide as a severe human disease. Various genetic variations, including hereditary and somatic mutations, contribute to the initiation and progression of this disease. The diagnostic parameters of breast cancer are not limited to the conventional protein content and can include newly discovered genetic variants and even genetic modification patterns such as methylation and microRNA. In addition, breast cancer detection extends to detailed breast cancer stratifications to provide subtype-specific indications for further personalized treatment. One genome-wide expression–methylation quantitative trait loci analysis confirmed that different breast cancer subtypes have various methylation patterns. However, recognizing clinically applied (methylation) biomarkers is difficult due to the large number of differentially methylated genes. In this study, we attempted to re-screen a small group of functional biomarkers for the identification and distinction of different breast cancer subtypes with advanced machine learning methods. The findings may contribute to biomarker identification for different breast cancer subtypes and provide a new perspective for differential pathogenesis in breast cancer subtypes.
Collapse
|
22
|
Human Colorectal Cancer Infrastructure Constructed by the Glycocalyx. J Clin Med 2019; 8:jcm8091270. [PMID: 31443371 PMCID: PMC6780787 DOI: 10.3390/jcm8091270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022] Open
Abstract
Cancer cells can survive and grow via angiogenesis. An alternative but controversial theory is cancer cells may grow via vasculogenic mimicry (VM), in which the cancer cells themselves construct vessel-like channels that are considered a leading cause of drug resistance. The dynamic functions of the glycocalyx (GCX), a meshwork composed of proteoglycans and glycoproteins that surrounds cell membranes, have been observed in endothelial cells within tumors. However, the actual structural shape formed by the GCX in human patients remains unclear. Here, we visualized the three-dimensional (3D) network structure constructed by bulky GCX in human colorectal cancer (CRC) patients using scanning electron microscopy with lanthanum nitrate staining. The network structure extended throughout the cancer cell nest, opening into capillaries, with a tunnel channel that exhibited a net- and spongy-like ultrastructure. The expression of endothelial and cancer-specific GCX-binding lectins was dramatically increased in the interstitial spaces between cancer cells. Even accounting for the presence of artifacts resulting from sample preparation methods, the intercellular tunnels appeared to be coated with the bulky GCX. Further, this 3D network structure was also observed in the tumors of ApcMin/+ mice. In conclusion, the bulky GCX modifies the network structure of CRCs in human and mice.
Collapse
|
23
|
Murali VS, Chang BJ, Fiolka R, Danuser G, Cobanoglu MC, Welf ES. An image-based assay to quantify changes in proliferation and viability upon drug treatment in 3D microenvironments. BMC Cancer 2019; 19:502. [PMID: 31138163 PMCID: PMC6537405 DOI: 10.1186/s12885-019-5694-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 05/08/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Every biological experiment requires a choice of throughput balanced against physiological relevance. Most primary drug screens neglect critical parameters such as microenvironmental conditions, cell-cell heterogeneity, and specific readouts of cell fate for the sake of throughput. METHODS Here we describe a methodology to quantify proliferation and viability of single cells in 3D culture conditions by leveraging automated microscopy and image analysis to facilitate reliable and high-throughput measurements. We detail experimental conditions that can be adjusted to increase either throughput or robustness of the assay, and we provide a stand alone image analysis program for users who wish to implement this 3D drug screening assay in high throughput. RESULTS We demonstrate this approach by evaluating a combination of RAF and MEK inhibitors on melanoma cells, showing that cells cultured in 3D collagen-based matrices are more sensitive than cells grown in 2D culture, and that cell proliferation is much more sensitive than cell viability. We also find that cells grown in 3D cultured spheroids exhibit equivalent sensitivity to single cells grown in 3D collagen, suggesting that for the case of melanoma, a 3D single cell model may be equally effective for drug identification as 3D spheroids models. The single cell resolution of this approach enables stratification of heterogeneous populations of cells into differentially responsive subtypes upon drug treatment, which we demonstrate by determining the effect of RAK/MEK inhibition on melanoma cells co-cultured with fibroblasts. Furthermore, we show that spheroids grown from single cells exhibit dramatic heterogeneity to drug response, suggesting that heritable drug resistance can arise stochastically in single cells but be retained by subsequent generations. CONCLUSION In summary, image-based analysis renders cell fate detection robust, sensitive, and high-throughput, enabling cell fate evaluation of single cells in more complex microenvironmental conditions.
Collapse
Affiliation(s)
- Vasanth S. Murali
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX USA
| | - Bo-Jui Chang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX USA
| | - Reto Fiolka
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX USA
| | - Murat Can Cobanoglu
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX USA
| | - Erik S. Welf
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
24
|
Lakoduk AM, Roudot P, Mettlen M, Grossman HM, Schmid SL, Chen PH. Mutant p53 amplifies a dynamin-1/APPL1 endosome feedback loop that regulates recycling and migration. J Cell Biol 2019; 218:1928-1942. [PMID: 31043431 PMCID: PMC6548126 DOI: 10.1083/jcb.201810183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Feedback loops arising from crosstalk between early endocytic trafficking and receptor signaling can be co-opted or amplified in cancer cells to enhance their metastatic abilities. Lakoduk et al. reveal that mutant p53 upregulates dynamin-1 expression and recruitment of the APPL1 signaling scaffold to a spatially localized subpopulation of endosomes to increase receptor recycling and cell migration. Multiple mechanisms contribute to cancer cell progression and metastatic activity, including changes in endocytic trafficking and signaling of cell surface receptors downstream of gain-of-function (GOF) mutant p53. We report that dynamin-1 (Dyn1) is up-regulated at both the mRNA and protein levels in a manner dependent on expression of GOF mutant p53. Dyn1 is required for the recruitment and accumulation of the signaling scaffold, APPL1, to a spatially localized subpopulation of endosomes at the cell perimeter. We developed new tools to quantify peripherally localized early endosomes and measure the rapid recycling of integrins. We report that these perimeter APPL1 endosomes modulate Akt signaling and activate Dyn1 to create a positive feedback loop required for rapid recycling of EGFR and β1 integrins, increased focal adhesion turnover, and cell migration. Thus, Dyn1- and Akt-dependent perimeter APPL1 endosomes function as a nexus that integrates signaling and receptor trafficking, which can be co-opted and amplified in mutant p53–driven cancer cells to increase migration and invasion.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas TX
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX
| | - Heather M Grossman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX.,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas TX
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX
| | - Ping-Hung Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX
| |
Collapse
|
25
|
Tanigawa K, Maekawa M, Kiyoi T, Nakayama J, Kitazawa R, Kitazawa S, Semba K, Taguchi T, Akita S, Yoshida M, Ishimaru K, Watanabe Y, Higashiyama S. SNX9 determines the surface levels of integrin β1 in vascular endothelial cells: Implication in poor prognosis of human colorectal cancers overexpressing SNX9. J Cell Physiol 2019; 234:17280-17294. [PMID: 30784076 PMCID: PMC6617759 DOI: 10.1002/jcp.28346] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels, is involved in a variety of diseases including the tumor growth. In response to various angiogenic stimulations, a number of proteins on the surface of vascular endothelial cells are activated to coordinate cell proliferation, migration, and spreading processes to form new blood vessels. Plasma membrane localization of these angiogenic proteins, which include vascular endothelial growth factor receptors and integrins, are warranted by intracellular membrane trafficking. Here, by using a siRNA library, we screened for the sorting nexin family that regulates intracellular trafficking and identified sorting nexin 9 (SNX9) as a novel angiogenic factor in human umbilical vein endothelial cells (HUVECs). SNX9 was essential for cell spreading on the Matrigel, and tube formation that mimics in vivo angiogenesis in HUVECs. SNX9 depletion significantly delayed the recycling of integrin β1, an essential adhesion molecule for angiogenesis, and reduced the surface levels of integrin β1 in HUVECs. Clinically, we showed that SNX9 protein was highly expressed in tumor endothelial cells of human colorectal cancer tissues. High-level expression of SNX9 messenger RNA significantly correlated with poor prognosis of the patients with colorectal cancer. These results suggest that SNX9 is an angiogenic factor and provide a novel target for the development of new antiangiogenic drugs.
Collapse
Affiliation(s)
- Kazufumi Tanigawa
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine.,Division of Diagnostic Pathology, Ehime University Hospital
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University
| | - Satoshi Akita
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Motohira Yoshida
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Kei Ishimaru
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Yuji Watanabe
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University
| |
Collapse
|
26
|
Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog 2018; 14:e1007051. [PMID: 29727463 PMCID: PMC5955597 DOI: 10.1371/journal.ppat.1007051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Accepted: 04/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogens hijack host endocytic pathways to force their own entry into eukaryotic target cells. Many bacteria either exploit receptor-mediated zippering or inject virulence proteins directly to trigger membrane reorganisation and cytoskeletal rearrangements. By contrast, extracellular C. trachomatis elementary bodies (EBs) apparently employ facets of both the zipper and trigger mechanisms and are only ~400 nm in diameter. Our cryo-electron tomography of C. trachomatis entry revealed an unexpectedly diverse array of host structures in association with invading EBs, suggesting internalisation may progress by multiple, potentially redundant routes or several sequential events within a single pathway. Here we performed quantitative analysis of actin organisation at chlamydial entry foci, highlighting filopodial capture and phagocytic cups as dominant and conserved morphological structures early during internalisation. We applied inhibitor-based screening and employed reporters to systematically assay and visualise the spatio-temporal contribution of diverse endocytic signalling mediators to C. trachomatis entry. In addition to the recognised roles of the Rac1 GTPase and its associated nucleation-promoting factor (NPF) WAVE, our data revealed an additional unrecognised pathway sharing key hallmarks of macropinocytosis: i) amiloride sensitivity, ii) fluid-phase uptake, iii) recruitment and activity of the NPF N-WASP, and iv) the localised generation of phosphoinositide-3-phosphate (PI3P) species. Given their central role in macropinocytosis and affinity for PI3P, we assessed the role of SNX-PX-BAR family proteins. Strikingly, SNX9 was specifically and transiently enriched at C. trachomatis entry foci. SNX9-/- cells exhibited a 20% defect in EB entry, which was enhanced to 60% when the cells were infected without sedimentation-induced EB adhesion, consistent with a defect in initial EB-host interaction. Correspondingly, filopodial capture of C. trachomatis EBs was specifically attenuated in SNX9-/- cells, implicating SNX9 as a central host mediator of filopodial capture early during chlamydial entry. Our findings identify an unanticipated complexity of signalling underpinning cell entry by this major human pathogen, and suggest intriguing parallels with viral entry mechanisms. Chlamydia trachomatis remains the leading bacterial agent of sexually transmitted disease worldwide and causes a form of blindness called trachoma in Developing nations, which is recognised by the World Health Organisation as a neglected tropical disease. Despite this burden, we know comparatively little about how it causes disease at a molecular level. Chlamydia must live inside human cells to survive, and here we study the mechanism of how it enters cells, which is critical to the lifecycle. We study how the bacterium exploits signalling pathways inside the cell to its own advantage to deform the cell membrane by reorganising the underlying cell skeleton, and identify new factors involved in this process. Our findings suggest intriguing similarities with how some viruses enter cells. A better understanding of these processes may help to develop future vaccines and new treatments.
Collapse
|
27
|
Li CF, Shen KH, Chien LH, Huang CH, Wu TF, He HL. Proteomic Identification of the Galectin-1-Involved Molecular Pathways in Urinary Bladder Urothelial Carcinoma. Int J Mol Sci 2018; 19:1242. [PMID: 29671787 PMCID: PMC5979315 DOI: 10.3390/ijms19041242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/04/2023] Open
Abstract
Among various heterogeneous types of bladder tumors, urothelial carcinoma is the most prevalent lesion. Some of the urinary bladder urothelial carcinomas (UBUCs) develop local recurrence and may cause distal invasion. Galectin-1 de-regulation significantly affects cell transformation, cell proliferation, angiogenesis, and cell invasiveness. In continuation of our previous investigation on the role of galectin-1 in UBUC tumorigenesis, in this study, proteomics strategies were implemented in order to find more galectin-1-associated signaling pathways. The results of this study showed that galectin-1 knockdown could induce 15 down-regulated proteins and two up-regulated proteins in T24 cells. These de-regulated proteins might participate in lipid/amino acid/energy metabolism, cytoskeleton, cell proliferation, cell-cell interaction, cell apoptosis, metastasis, and protein degradation. The aforementioned dys-regulated proteins were confirmed by western immunoblotting. Proteomics results were further translated to prognostic markers by analyses of biopsy samples. Results of cohort studies demonstrated that over-expressions of glutamine synthetase, alcohol dehydrogenase (NADP⁺), fatty acid binding protein 4, and toll interacting protein in clinical specimens were all significantly associated with galectin-1 up-regulation. Univariate analyses showed that de-regulations of glutamine synthetase and fatty acid binding protein 4 in clinical samples were respectively linked to disease-specific survival and metastasis-free survival.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
- Departments of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan.
| | - Kun-Hung Shen
- Department of Urology, Chi Mei Medical Center, Tainan 710, Taiwan.
| | - Lan-Hsiang Chien
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan.
| | - Cheng-Hao Huang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Ting-Feng Wu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Hong-Lin He
- Departments of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan.
| |
Collapse
|
28
|
A noncanonical role for dynamin-1 in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells. PLoS Biol 2018; 16:e2005377. [PMID: 29668686 PMCID: PMC5927468 DOI: 10.1371/journal.pbio.2005377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/30/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Dynamin Guanosine Triphosphate hydrolases (GTPases) are best studied for their role in the terminal membrane fission process of clathrin-mediated endocytosis (CME), but they have also been proposed to regulate earlier stages of CME. Although highly enriched in neurons, dynamin-1 (Dyn1) is, in fact, widely expressed along with Dyn2 but inactivated in non-neuronal cells via phosphorylation by glycogen synthase kinase-3 beta (GSK3β) kinase. Here, we study the differential, isoform-specific functions of Dyn1 and Dyn2 as regulators of CME. Endogenously expressed Dyn1 and Dyn2 were fluorescently tagged either separately or together in two cell lines with contrasting Dyn1 expression levels. By quantitative live cell dual- and triple-channel total internal reflection fluorescence microscopy, we find that Dyn2 is more efficiently recruited to clathrin-coated pits (CCPs) than Dyn1, and that Dyn2 but not Dyn1 exhibits a pronounced burst of assembly, presumably into supramolecular collar-like structures that drive membrane scission and clathrin-coated vesicle (CCV) formation. Activation of Dyn1 by acute inhibition of GSK3β results in more rapid endocytosis of transferrin receptors, increased rates of CCP initiation, and decreased CCP lifetimes but did not significantly affect the extent of Dyn1 recruitment to CCPs. Thus, activated Dyn1 can regulate early stages of CME that occur well upstream of fission, even when present at low, substoichiometric levels relative to Dyn2. Under physiological conditions, Dyn1 is activated downstream of epidermal growth factor receptor (EGFR) signaling to alter CCP dynamics. We identify sorting nexin 9 (SNX9) as a preferred binding partner to activated Dyn1 that is partially required for Dyn1-dependent effects on early stages of CCP maturation. Together, we decouple regulatory and scission functions of dynamins and report a scission-independent, isoform-specific regulatory role for Dyn1 in CME. Clathrin-mediated endocytosis (CME), a major route for nutrient uptake, also controls signaling downstream of cell surface receptors. Recent studies have shown that signaling, in turn, can reciprocally regulate CME. CME is initiated by the assembly of clathrin-coated pits (CCPs) that mature to form deeply invaginated buds before the large Guanosine Triphosphate hydrolase (GTPase), dynamin, catalyzes membrane scission and clathrin-coated vesicle release. Here, we characterize an isoform-specific and noncanonical function for dynamin-1 (Dyn1) in regulating early stages of CME and show that Dyn1 and Dyn2 have nonredundant functions in CME. By genetically introducing fluorescent tags and using live-cell fluorescence imaging, we detected, tracked, and analyzed thousands of CCPs comprising up to three endocytic proteins in real time. We find that Dyn1, previously assumed to function only at neurological synapses, is expressed but maintained in an inactive state in non-neuronal cells through phosphorylation by glycogen synthase kinase-3 beta (GSK3β). We show that inhibition of GSK3β by a chemical inhibitor or downstream of epidermal growth factor receptor (EGFR) signaling activates Dyn1 and accelerates CCP assembly and maturation. These early effects are seen even when Dyn1 is barely detectable on CCPs. We conclude that Dyn1 is an important component of cross-communication between endocytosis and signaling.
Collapse
|
29
|
Mygind KJ, Störiko T, Freiberg ML, Samsøe-Petersen J, Schwarz J, Andersen OM, Kveiborg M. Sorting nexin 9 (SNX9) regulates levels of the transmembrane ADAM9 at the cell surface. J Biol Chem 2018; 293:8077-8088. [PMID: 29622675 DOI: 10.1074/jbc.ra117.001077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
ADAM9 is an active member of the family of transmembrane ADAMs (a disintegrin and metalloproteases). It plays a role in processes such as bone formation and retinal neovascularization, and importantly, its expression in human cancers correlates with disease stage and poor prognosis. Functionally, ADAM9 can cleave several transmembrane proteins, thereby shedding their ectodomains from the cell surface. Moreover, ADAM9 regulates cell behavior by binding cell-surface receptors such as integrin and membrane-type matrix metalloproteases. Because these functions are mainly restricted to the cell surface, understanding the mechanisms regulating ADAM9 localization and activity at this site is highly important. To this end, we here investigated how intracellular trafficking regulates ADAM9 availability at the cell surface. We found that ADAM9 undergoes constitutive clathrin-dependent internalization and subsequent degradation or recycling to the plasma membrane. We confirmed previous findings of an interaction between ADAM9 and the intracellular sorting protein, sorting nexin 9 (SNX9), as well as its close homolog SNX18. Knockdown of either SNX9 or SNX18 had no apparent effects on ADAM9 internalization or recycling. However, double knockdown of SNX9 and SNX18 decreased ADAM9 internalization significantly, demonstrating a redundant role in this process. Moreover, SNX9 knockdown revealed a nonredundant effect on overall ADAM9 protein levels, resulting in increased ADAM9 levels at the cell surface, and a corresponding increase in the shedding of Ephrin receptor B4, a well-known ADAM9 substrate. Together, our findings demonstrate that intracellular SNX9-mediated trafficking constitutes an important ADAM9 regulatory pathway.
Collapse
Affiliation(s)
- Kasper J Mygind
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Theresa Störiko
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marie L Freiberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Ole Worms Alle 3, 8000 Aarhus C, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
30
|
Liu C, Zhai X, Du H, Cao Y, Cao H, Wang Y, Yu X, Gao J, Xu Z. Sorting nexin 9 (SNX9) is not essential for development and auditory function in mice. Oncotarget 2018; 7:68921-68932. [PMID: 27655699 PMCID: PMC5356600 DOI: 10.18632/oncotarget.12040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Sorting nexins are a large family of evolutionarily conserved proteins that play fundamental roles in endocytosis, endosomal sorting and signaling. As an important member of sorting nexin family, sorting nexin 9 (SNX9) has been shown to participate in coordinating actin polymerization with membrane tubulation and vesicle formation. We previously showed that SNX9 is expressed in mouse auditory hair cells and might regulate actin polymerization in those cells. To further examine the physiological role of SNX9, we generated Snx9 knockout mice using homologous recombination method. Unexpectedly, Snx9 knockout mice have normal viability and fertility, and are morphologically and behaviorally indistinguishable from control mice. Further investigation revealed that the morphology and function of auditory hair cells are not affected by Snx9 inactivation, and Snx9 knockout mice have normal hearing threshold. In conclusion, our data revealed that Snx9-deficient mice do not show defects in development as well as auditory function, suggesting that SNX9 is not essential for mice development and hearing.
Collapse
Affiliation(s)
- Chengcheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yujie Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Huiren Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiao Yu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P. R. China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
31
|
Morris DC, Popp JL, Tang LK, Gibbs HC, Schmitt E, Chaki SP, Bywaters BC, Yeh AT, Porter WW, Burghardt RC, Barhoumi R, Rivera GM. Nck deficiency is associated with delayed breast carcinoma progression and reduced metastasis. Mol Biol Cell 2017; 28:3500-3516. [PMID: 28954862 PMCID: PMC5683761 DOI: 10.1091/mbc.e17-02-0106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Nck promotes breast carcinoma progression and metastasis by directing the polarized interaction of carcinoma cells with collagen fibrils, decreasing actin turnover, and enhancing the localization and activity of MMP14 at the cell surface through modulation of the spatiotemporal activation of Cdc42 and RhoA. Although it is known that noncatalytic region of tyrosine kinase (Nck) regulates cell adhesion and migration by bridging tyrosine phosphorylation with cytoskeletal remodeling, the role of Nck in tumorigenesis and metastasis has remained undetermined. Here we report that Nck is required for the growth and vascularization of primary tumors and lung metastases in a breast cancer xenograft model as well as extravasation following injection of carcinoma cells into the tail vein. We provide evidence that Nck directs the polarization of cell–matrix interactions for efficient migration in three-dimensional microenvironments. We show that Nck advances breast carcinoma cell invasion by regulating actin dynamics at invadopodia and enhancing focalized extracellular matrix proteolysis by directing the delivery and accumulation of MMP14 at the cell surface. We find that Nck-dependent cytoskeletal changes are mechanistically linked to enhanced RhoA but restricted spatiotemporal activation of Cdc42. Using a combination of protein silencing and forced expression of wild-type/constitutively active variants, we provide evidence that Nck is an upstream regulator of RhoA-dependent, MMP14-mediated breast carcinoma cell invasion. By identifying Nck as an important driver of breast carcinoma progression and metastasis, these results lay the groundwork for future studies assessing the therapeutic potential of targeting Nck in aggressive cancers.
Collapse
Affiliation(s)
- David C Morris
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Julia L Popp
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Leung K Tang
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-4467
| | - Emily Schmitt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Briana C Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-4467
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| |
Collapse
|
32
|
Pagano PC, Tran LM, Bendris N, O'Byrne S, Tse HT, Sharma S, Hoech JW, Park SJ, Liclican EL, Jing Z, Li R, Krysan K, Paul MK, Fontebasso Y, Larsen JE, Hakimi S, Seki A, Fishbein MC, Gimzewski JK, Carlo DD, Minna JD, Walser TC, Dubinett SM. Identification of a Human Airway Epithelial Cell Subpopulation with Altered Biophysical, Molecular, and Metastatic Properties. Cancer Prev Res (Phila) 2017; 10:514-524. [PMID: 28754664 PMCID: PMC5584580 DOI: 10.1158/1940-6207.capr-16-0335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/12/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Lung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant airway epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of the unselected immortalized epithelial cell lines. This enhanced migratory capacity was found to be Rac1-dependent and heritable, as evidenced by maintenance of the phenotype through multiple cell divisions continuing more than 8 weeks after selection. The morphology of this lung epithelial subpopulation was characterized by increased cell protrusion intensity. In a murine model of micrometastatic seeding and pulmonary colonization, the motility-selected premalignant cells exhibit both enhanced survival in short-term assays and enhanced outgrowth of premalignant lesions in longer-term assays, thus overcoming important aspects of "metastatic inefficiency." Overall, our findings indicate that among immortalized premalignant airway epithelial cell lines, subpopulations with heritable motility-related biophysical properties exist, and these may explain micrometastatic seeding occurring early in the pathogenesis of lung cancer. Understanding, targeting, and preventing these critical biophysical traits and their underlying molecular mechanisms may provide a new approach to prevent metastatic behavior. Cancer Prev Res; 10(9); 514-24. ©2017 AACRSee related editorial by Hynds and Janes, p. 491.
Collapse
Affiliation(s)
- Paul C Pagano
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Linh M Tran
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nawal Bendris
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Sean O'Byrne
- Department of Bioengineering, UCLA, Los Angeles, California
| | - Henry T Tse
- Department of Bioengineering, UCLA, Los Angeles, California
| | - Shivani Sharma
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California
- California NanoSystems Institute, Los Angeles, California
| | - Jonathan W Hoech
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Stacy J Park
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elvira L Liclican
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Zhe Jing
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Rui Li
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yari Fontebasso
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jill E Larsen
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shaina Hakimi
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Atsuko Seki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - James K Gimzewski
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California
- California NanoSystems Institute, Los Angeles, California
| | - Dino Di Carlo
- Department of Bioengineering, UCLA, Los Angeles, California
- California NanoSystems Institute, Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and Departments of Medicine and Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Tonya C Walser
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Steven M Dubinett
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- California NanoSystems Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
- VA Greater Los Angeles Health Care System, Los Angeles, California
| |
Collapse
|
33
|
Ganaie IA, Naqvi SH, Jain SK, Wajid S. Reduced expression of SETD2 and SNX9 proteins in chemically induced mammary tumorigenesis in Wistar rats: a prognostic histological and proteomic study. PROTOPLASMA 2017; 254:1451-1466. [PMID: 27766425 DOI: 10.1007/s00709-016-1035-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Breast cancer is a major global health concern, appealing for precise prognostic approaches. Thus, the need is to have studies focusing on the identification and recognition of preliminary events leading to the disease. The present study reports the tracing of precancerous progression and serum proteomic analysis in a breast cancer model developed as a result of 7,12-dimethylbenz[a]anthracene (DMBA) administration. Mammary gland histological changes of prime importance were examined by histopathology, and immunohistochemical analysis with Ki-67 was performed to monitor enhanced cell proliferation, right from the onset of hyperplasia till neoplasia. Serum proteomics (one-dimensional (1D) and two-dimensional (2D) electrophoresis, followed by MALDI-TOF MS characterization) was performed to decipher the differentially expressed serum proteins in animals undergoing tumorigenesis vis-à-vis controls. The significance of our study lies in reporting the significantly reduced expression of two proteins: histone-lysine N-methyltransferase (SETD2) and sorting nexin-9 (SNX9) at very early stage (13 weeks) of tumorigenesis, while the full-fledged tumors developed after 6 months. The reduced expression of SETD2 and SNX9 was validated by western blotting and relative expression analysis using quantitative real-time PCR. These proteins may hence prove as potentially useful tools in search for prognostic markers for the early detection of mammary cancer.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ganaie
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi, 110062, India
| | | | - Swatantra Kumar Jain
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Hamdard University (Jamia Hamdard), New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi, 110062, India.
| |
Collapse
|
34
|
Bendris N, Schmid SL. Endocytosis, Metastasis and Beyond: Multiple Facets of SNX9. Trends Cell Biol 2016; 27:189-200. [PMID: 27989654 DOI: 10.1016/j.tcb.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
Sorting nexin (SNX)9 was first discovered as an endocytic accessory protein involved in clathrin-mediated endocytosis. However, recent data suggest that SNX9 is a multifunctional scaffold that coordinates membrane trafficking and remodeling with changes in actin dynamics to affect diverse cellular processes. Here, we review the accumulated knowledge on SNX9 with an emphasis on its recently identified roles in clathrin-independent endocytic pathways, cell invasion, and cell division, which have implications for SNX9 function in human disease, including cancer.
Collapse
Affiliation(s)
- Nawal Bendris
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sandra L Schmid
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Bendris N, Stearns CJS, Reis CR, Rodriguez-Canales J, Liu H, Witkiewicz AW, Schmid SL. Sorting nexin 9 negatively regulates invadopodia formation and function in cancer cells. J Cell Sci 2016; 129:2804-16. [PMID: 27278018 DOI: 10.1242/jcs.188045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
The ability of cancer cells to degrade the extracellular matrix and invade interstitial tissues contributes to their metastatic potential. We recently showed that overexpression of sorting nexin 9 (SNX9) leads to increased cell invasion and metastasis in animal models, which correlates with increased SNX9 protein expression in metastases from human mammary cancers. Here, we report that SNX9 expression is reduced relative to neighboring normal tissues in primary breast tumors, and progressively reduced in more aggressive stages of non-small-cell lung cancers. We show that SNX9 is localized at invadopodia where it directly binds the invadopodia marker TKS5 and negatively regulates invadopodia formation and function. SNX9 depletion increases invadopodia number and the local recruitment of MT1-MMP by decreasing its internalization. Together, these effects result in increased localized matrix degradation. We further identify SNX9 as a Src kinase substrate and show that this phosphorylation is important for SNX9 activity in regulating cell invasion, but is dispensable for its function in regulating invadopodia. The diversified changes associated with SNX9 expression in cancer highlight its importance as a central regulator of cancer cell behavior.
Collapse
Affiliation(s)
- Nawal Bendris
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
| | - Carrie J S Stearns
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, NY14853, USA
| | - Carlos R Reis
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Hui Liu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA Department of Pathology, Xuzhou Medical College, Province of Jiangsu, China
| | - Agnieszka W Witkiewicz
- Simmons Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX390, USA
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
| |
Collapse
|