1
|
Kæstel-Hansen J, de Sautu M, Saminathan A, Scanavachi G, Bango Da Cunha Correia RF, Juma Nielsen A, Bleshøy SV, Tsolakidis K, Boomsma W, Kirchhausen T, Hatzakis NS. Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function. Nat Methods 2025; 22:1091-1100. [PMID: 40341204 DOI: 10.1038/s41592-025-02665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2025] [Indexed: 05/10/2025]
Abstract
Subcellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with unprecedented precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the subcellular environment is labor intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework integrated in an analysis software, to interpret the diffusional two- or three-dimensional temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying endosomal organelles, clathrin-coated pits and vesicles among others with F1 scores of 81%, 82% and 95%, respectively, and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone illustrates that besides structure, motion encodes function at the molecular and subcellular level.
Collapse
Affiliation(s)
- Jacob Kæstel-Hansen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for 4D cellular dynamics, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Optimised Oligo Escape, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Marilina de Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anand Saminathan
- Department of Cell Biology, Harvard Medical School, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA
| | - Ricardo F Bango Da Cunha Correia
- Department of Cell Biology, Harvard Medical School, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA
| | - Annette Juma Nielsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for 4D cellular dynamics, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Optimised Oligo Escape, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Sara Vogt Bleshøy
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for 4D cellular dynamics, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Optimised Oligo Escape, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Konstantinos Tsolakidis
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for 4D cellular dynamics, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Optimised Oligo Escape, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Kirchhausen
- Novo Nordisk Center for Optimised Oligo Escape, University of Copenhagen, Copenhagen, Denmark.
- Department of Cell Biology, Harvard Medical School, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA.
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA.
| | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
- Center for 4D cellular dynamics, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Center for Optimised Oligo Escape, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
MacDonald E, Forrester A, Valades-Cruz CA, Madsen TD, Hetmanski JHR, Dransart E, Ng Y, Godbole R, Shp AA, Leconte L, Chambon V, Ghosh D, Pinet A, Bhatia D, Lombard B, Loew D, Larsen MR, Leffler H, Lefeber DJ, Clausen H, Blangy A, Caswell P, Shafaq-Zadah M, Mayor S, Weigert R, Wunder C, Johannes L. Growth factor-triggered de-sialylation controls glycolipid-lectin-driven endocytosis. Nat Cell Biol 2025; 27:449-463. [PMID: 39984654 DOI: 10.1038/s41556-025-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025]
Abstract
Glycolipid-lectin-driven endocytosis controls the formation of clathrin-independent carriers and the internalization of various cargos such as β1 integrin. Whether this process is regulated in a dynamic manner remained unexplored. Here we demonstrate that, within minutes, the epidermal growth factor triggers the galectin-driven endocytosis of cell-surface glycoproteins, such as integrins, that are key regulators of cell adhesion and migration. The onset of this process-mediated by the Na+/H+ antiporter NHE1 as well as the neuraminidases Neu1 and Neu3-requires the pH-triggered enzymatic removal of sialic acids whose presence otherwise prevents galectin binding. De-sialylated glycoproteins are then retrogradely transported to the Golgi apparatus where their glycan make-up is reset to regulate EGF-dependent invasive-cell migration. Further evidence is provided for a role of neuraminidases and galectin-3 in acidification-dependent bone resorption. Glycosylation at the cell surface thereby emerges as a dynamic and reversible regulatory post-translational modification that controls a highly adaptable trafficking pathway.
Collapse
Affiliation(s)
- Ewan MacDonald
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Montpellier Cell Biology Research Center, CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Alison Forrester
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- WEL Research Institute, Wavre, Belgium
- Université de Namur ASBL, Namur, Belgium
| | - Cesar A Valades-Cruz
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, Brunel University London, London, UK
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rashmi Godbole
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Ananthan Akhil Shp
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ludovic Leconte
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
| | - Valérie Chambon
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Debarpan Ghosh
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Alexis Pinet
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Dhiraj Bhatia
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Clausen
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Blangy
- Montpellier Cell Biology Research Center (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Satyajit Mayor
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Warwick, UK
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Sarkar S, Liu HY, Yuan F, Malady BT, Wang L, Perez J, Lafer EM, Huibregtse JM, Stachowiak JC. Epsin1 enforces a condensation-dependent checkpoint for ubiquitylated cargo during clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637885. [PMID: 39990390 PMCID: PMC11844442 DOI: 10.1101/2025.02.12.637885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Clathrin-mediated endocytosis internalizes proteins and lipids from the cell surface, supporting nutrient uptake, signaling, and membrane trafficking. Recent work has demonstrated that a flexible, liquid-like network of initiator proteins is responsible for catalyzing assembly of clathrin-coated vesicles in diverse organisms including yeast, mammals, and plants. How do cells regulate the assembly of this dynamic network to produce cargo-loaded vesicles? Here we reveal the ability of an endocytic adaptor protein, Epsin1, to conditionally stabilize the initiator protein network, creating a cargo-dependent checkpoint during clathrin-mediated endocytosis. Epsin1 is known to recruit ubiquitylated transmembrane proteins to endocytic sites. Using in vitro assays, we demonstrate that Epsin1 uses competitive binding and steric repulsion to destabilize condensation of initiator proteins in the absence of ubiquitin. However, when polyubiquitin is present, Epsin1 binds to both ubiquitin and initiator proteins, creating attractive interactions that stabilize condensation. Similarly, in mammalian cells, endocytic dynamics and ligand uptake are disrupted by removal of either ubiquitin or Epsin1. Surprisingly, when Epsin1 and ubiquitin are removed simultaneously, endocytic defects are rescued to near wildtype levels, although endocytic sites lose the ability to distinguish between ubiquitylated and non-ubiquitylated cargos. Taken together, these results suggest that Epsin1 tunes protein condensation to ensure the presence of ubiquitylated cargo during assembly of clathrin-coated vesicles. More broadly, these findings illustrate how a balance of attractive and repulsive molecular interactions controls the stability of liquid-like protein networks, providing dynamic control over key cellular events.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Hao-Yang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Brandon T. Malady
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jessica Perez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jon M. Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
4
|
Sanyal A, Scanavachi G, Somerville E, Saminathan A, Nair A, Bango Da Cunha Correia RF, Aylan B, Sitarska E, Oikonomou A, Hatzakis NS, Kirchhausen T. Neuronal constitutive endolysosomal perforations enable α-synuclein aggregation by internalized PFFs. J Cell Biol 2025; 224:e202401136. [PMID: 39714357 DOI: 10.1083/jcb.202401136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Endocytosis, required for the uptake of receptors and their ligands, can also introduce pathological aggregates such as α-synuclein (α-syn) in Parkinson's Disease. We show here the unexpected presence of intrinsically perforated endolysosomes in neurons, suggesting involvement in the genesis of toxic α-syn aggregates induced by internalized preformed fibrils (PFFs). Aggregation of endogenous α-syn in late endosomes and lysosomes of human iPSC-derived neurons (iNs), seeded by internalized α-syn PFFs, caused the death of the iNs but not of the parental iPSCs and non-neuronal cells. Live-cell imaging of iNs showed constitutive perforations in ∼5% of their endolysosomes. These perforations, identified by 3D electron microscopy in iNs and CA1 pyramidal neurons and absent in non-neuronal cells, may facilitate cytosolic access of endogenous α-syn to PFFs in the lumen of endolysosomes, triggering aggregation. Inhibiting the PIKfyve phosphoinositol kinase reduced α-syn aggregation and associated iN death, even with ongoing PFF endolysosomal entry, suggesting that maintaining endolysosomal integrity might afford a therapeutic strategy to counteract synucleinopathies.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Anand Saminathan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Athul Nair
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Ricardo F Bango Da Cunha Correia
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Beren Aylan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Ewa Sitarska
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | | | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Bertaccini GA, Casanellas I, Evans EL, Nourse JL, Dickinson GD, Liu G, Seal S, Ly AT, Holt JR, Wijerathne TD, Yan S, Hui EE, Lacroix JJ, Panicker MM, Upadhyayula S, Parker I, Pathak MM. Visualizing PIEZO1 Localization and Activity in hiPSC-Derived Single Cells and Organoids with HaloTag Technology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.22.573117. [PMID: 38187535 PMCID: PMC10769387 DOI: 10.1101/2023.12.22.573117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with advanced imaging, our chemogenetic platform allows precise visualization of PIEZO1 localization dynamics in various cell types. Furthermore, the PIEZO1-HaloTag hiPSC technology facilitates the non-invasive monitoring of channel activity across diverse cell types using Ca2+-sensitive HaloTag ligands, achieving temporal resolution approaching that of patch clamp electrophysiology. Finally, we used lightsheet imaging of hiPSC-derived neural organoids to achieve molecular scale imaging of PIEZO1 in three-dimensional tissue organoids. Our advances offer a novel platform for studying PIEZO1 mechanotransduction in human cells and tissues, with potential for elucidating disease mechanisms and targeted therapeutic development.
Collapse
Affiliation(s)
- Gabriella A Bertaccini
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Ignasi Casanellas
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Elizabeth L Evans
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Jamison L Nourse
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - George D Dickinson
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Gaoxiang Liu
- Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Sayan Seal
- Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Alan T Ly
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Jesse R Holt
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Tharaka D Wijerathne
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Shijun Yan
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Elliot E Hui
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Jerome J Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Mitradas M Panicker
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Medha M Pathak
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Ruan X, Mueller M, Liu G, Görlitz F, Fu TM, Milkie DE, Lillvis JL, Kuhn A, Gan Chong J, Hong JL, Herr CYA, Hercule W, Nienhaus M, Killilea AN, Betzig E, Upadhyayula S. Image processing tools for petabyte-scale light sheet microscopy data. Nat Methods 2024; 21:2342-2352. [PMID: 39420143 PMCID: PMC11621031 DOI: 10.1038/s41592-024-02475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Light sheet microscopy is a powerful technique for high-speed three-dimensional imaging of subcellular dynamics and large biological specimens. However, it often generates datasets ranging from hundreds of gigabytes to petabytes in size for a single experiment. Conventional computational tools process such images far slower than the time to acquire them and often fail outright due to memory limitations. To address these challenges, we present PetaKit5D, a scalable software solution for efficient petabyte-scale light sheet image processing. This software incorporates a suite of commonly used processing tools that are optimized for memory and performance. Notable advancements include rapid image readers and writers, fast and memory-efficient geometric transformations, high-performance Richardson-Lucy deconvolution and scalable Zarr-based stitching. These features outperform state-of-the-art methods by over one order of magnitude, enabling the processing of petabyte-scale image data at the full teravoxel rates of modern imaging cameras. The software opens new avenues for biological discoveries through large-scale imaging experiments.
Collapse
Affiliation(s)
- Xiongtao Ruan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US.
| | - Matthew Mueller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
- Howard Hughes Medical Institute, Berkeley, CA, US
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Frederik Görlitz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Tian-Ming Fu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, US
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US
| | - Joshua L Lillvis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US
| | | | - Johnny Gan Chong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Jason Li Hong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Chu Yi Aaron Herr
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Wilmene Hercule
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | | | - Alison N Killilea
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US
| | - Eric Betzig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US.
- Howard Hughes Medical Institute, Berkeley, CA, US.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US.
- Department of Physics, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, US.
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, US.
- Chan Zuckerberg Biohub, San Francisco, CA, US.
| |
Collapse
|
7
|
Heydecker M, Shitara A, Chen D, Tran DT, Masedunskas A, Tora MS, Ebrahim S, Appaduray MA, Galeano Niño JL, Bhardwaj A, Narayan K, Hardeman EC, Gunning PW, Weigert R. Coordination of force-generating actin-based modules stabilizes and remodels membranes in vivo. J Cell Biol 2024; 223:e202401091. [PMID: 39172125 PMCID: PMC11344176 DOI: 10.1083/jcb.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.
Collapse
Affiliation(s)
- Marco Heydecker
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Akiko Shitara
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology, Asahi University School of Dentistry, Gifu, Japan
| | - Desu Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duy T. Tran
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrius Masedunskas
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Muhibullah S. Tora
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seham Ebrahim
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark A. Appaduray
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Jorge Luis Galeano Niño
- EMBL Australia, Single Molecule Science node, University of New South Wales Sydney, Sydney, Australia
| | - Abhishek Bhardwaj
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Edna C. Hardeman
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Peter W. Gunning
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Zhu E, Li YR, Margolis S, Wang J, Wang K, Zhang Y, Wang S, Park J, Zheng C, Yang L, Chu A, Zhang Y, Gao L, Hsiai TK. Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multi-organ imaging. VIEW 2024; 5:20230087. [PMID: 39478956 PMCID: PMC11521201 DOI: 10.1002/viw.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 11/02/2024] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3-D imaging of large-scale biological tissues and 4-D (space + time) imaging of small live animals. The large data associated with LSFM requires efficient imaging acquisition and analysis with the use of artificial intelligence (AI)/machine learning (ML) algorithms. To this end, AI/ML-directed LSFM is an emerging area for multi-organ imaging and tumor diagnostics. This review will present the development of LSFM and highlight various LSFM configurations and designs for multi-scale imaging. Optical clearance techniques will be compared for effective reduction in light scattering and optimal deep-tissue imaging. This review will further depict a diverse range of research and translational applications, from small live organisms to multi-organ imaging to tumor diagnosis. In addition, this review will address AI/ML-directed imaging reconstruction, including the application of convolutional neural networks (CNNs) and generative adversarial networks (GANs). In summary, the advancements of LSFM have enabled effective and efficient post-imaging reconstruction and data analyses, underscoring LSFM's contribution to advancing fundamental and translational research.
Collapse
Affiliation(s)
- Enbo Zhu
- Department of Bioengineering, UCLA, California, 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
| | - Samuel Margolis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Jing Wang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
| | - Yaran Zhang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Shaolei Wang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Jongchan Park
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Charlie Zheng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, California, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, California, 90095, USA
- Molecular Biology Institute, UCLA, California, 90095, USA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Yuhua Zhang
- Doheny Eye Institute, Department of Ophthalmology, UCLA, California, 90095, USA
| | - Liang Gao
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Tzung K. Hsiai
- Department of Bioengineering, UCLA, California, 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
| |
Collapse
|
9
|
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet LM, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun 2024; 15:8479. [PMID: 39353909 PMCID: PMC11445543 DOI: 10.1038/s41467-024-52773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Gregory W Busey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wesley H Iobst
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Chloe Renken
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hansa Doppalapudi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marta E Stremska
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Mohan C Manjegowda
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Weiming Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Nikegen Inc., Shanghai, China
| | - Shardul Naphade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Kennedy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Eric J Stipes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Wang X, Berro J, Ma R. Vesiculation pathways in clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607731. [PMID: 39185216 PMCID: PMC11343097 DOI: 10.1101/2024.08.13.607731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
During clathrin-mediated endocytosis, a patch of flat plasma membrane is internalized to form a vesicle. In mammalian cells, how the clathrin coat deforms the membrane into a vesicle remains unclear and two main hypotheses have been debated. The "constant area" hypothesis assumes that clathrin molecules initially form a flat lattice on the membrane and deform the membrane by changing its intrinsic curvature while keeping the coating area constant. The alternative "constant curvature" hypothesis assumes that the intrinsic curvature of the clathrin lattice remains constant during the formation of a vesicle while the surface area it covers increases. Previous experimental studies were unable to unambiguously determine which hypothesis is correct. In this paper, we show that these two hypotheses are only two extreme cases of a continuum of vesiculation pathways if we account for the free energies associated with clathrin assembly and curvature generation. By tracing the negative gradient of the free energy, we define vesiculation pathways in the phase space of the coating area and the intrinsic curvature of clathrin coat. Our results show that, overall, the differences in measurable membrane morphology between the different models are not as big as expected, and the main differences are most salient at the early stage of endocytosis. Furthermore, the best fitting pathway to experimental data is not compatible with the constant-curvature model and resembles a constant-area-like pathway where the coating area initially expands with minor changes in the intrinsic curvature, later followed by a dramatic increase in the intrinsic curvature and minor change in the coating area. Our results also suggest that experimental measurement of the tip radius and the projected area of the clathrin coat will be the key to distinguish between models.
Collapse
Affiliation(s)
- Xinran Wang
- Department of Physics, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, 361005, China
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rui Ma
- Department of Physics, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, 361005, China
| |
Collapse
|
11
|
Yuan F, Gollapudi S, Day KJ, Ashby G, Sangani A, Malady BT, Wang L, Lafer EM, Huibregtse JM, Stachowiak JC. Ubiquitin-driven protein condensation stabilizes clathrin-mediated endocytosis. PNAS NEXUS 2024; 3:pgae342. [PMID: 39253396 PMCID: PMC11382290 DOI: 10.1093/pnasnexus/pgae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live-cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live-cell settings, dynamic exchange of Eps15 proteins, a measure of protein network stability, was decreased by Eps15-ubiquitin interactions and increased by loss of ubiquitin. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic internalization.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Sangani
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brandon T Malady
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
13
|
Wu Z, Du Y, Kirchhausen T, He K. Probing and imaging phospholipid dynamics in live cells. LIFE METABOLISM 2024; 3:loae014. [PMID: 39872507 PMCID: PMC11749120 DOI: 10.1093/lifemeta/loae014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 01/30/2025]
Abstract
Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels. Herein, we summarize the latest developments in phospholipid biosensor design and application, emphasizing the contribution of cutting-edge imaging techniques to elucidating phospholipid dynamics and distribution with unparalleled spatiotemporal precision.
Collapse
Affiliation(s)
- Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
15
|
Kural MH, Djakbarova U, Cakir B, Tanaka Y, Chan ET, Arteaga Muniz VI, Madraki Y, Qian H, Park J, Sewanan LR, Park IH, Niklason LE, Kural C. Mechano-inhibition of endocytosis sensitizes cancer cells to Fas-induced Apoptosis. Cell Death Dis 2024; 15:440. [PMID: 38909035 PMCID: PMC11193792 DOI: 10.1038/s41419-024-06822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.
Collapse
Affiliation(s)
- Mehmet H Kural
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | | | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, H1T 2M4, Canada
| | - Emily T Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Qian
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
- Humacyte Inc., Durham, NC, 27213, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Lorenzo R Sewanan
- Department of Internal Medicine, Columbia University, New York, NY, 10032, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Laura E Niklason
- Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA.
- Humacyte Inc., Durham, NC, 27213, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Tveriakhina L, Scanavachi G, Egan ED, Da Cunha Correia RB, Martin AP, Rogers JM, Yodh JS, Aster JC, Kirchhausen T, Blacklow SC. Temporal dynamics and stoichiometry in human Notch signaling from Notch synaptic complex formation to nuclear entry of the Notch intracellular domain. Dev Cell 2024; 59:1425-1438.e8. [PMID: 38574735 DOI: 10.1016/j.devcel.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Mammalian Notch signaling occurs when the binding of Delta or Jagged to Notch stimulates the proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to control target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded the entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with spatiotemporal precision.
Collapse
Affiliation(s)
- Lena Tveriakhina
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emily D Egan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo Bango Da Cunha Correia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy S Yodh
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
18
|
Sinclair R, Wang M, Jawaid MZ, Longkumer T, Aaron J, Rossetti B, Wait E, McDonald K, Cox D, Heddleston J, Wilkop T, Drakakaki G. Four-dimensional quantitative analysis of cell plate development in Arabidopsis using lattice light sheet microscopy identifies robust transition points between growth phases. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2829-2847. [PMID: 38436428 PMCID: PMC11282576 DOI: 10.1093/jxb/erae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Minmin Wang
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Muhammad Zaki Jawaid
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | | | | | - Eric Wait
- Janelia Research Campus, Ashburn, VA, USA
| | - Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Daniel Cox
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | - Thomas Wilkop
- Department of Molecular and Cellular Biology, Light Microscopy Imaging Facility, University of California Davis, Davis, CA, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
19
|
Yuan F, Gollapudi S, Day K, Ashby G, Sangani A, Malady B, Wang L, Lafer EM, Huibregtse J, Stachowiak J. Ubiquitin-driven protein condensation initiates clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.21.554139. [PMID: 37662320 PMCID: PMC10473642 DOI: 10.1101/2023.08.21.554139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live cell settings, dynamic exchange of Eps15 proteins, a hallmark of liquidlike systems, was modulated by Eps15-Ub interactions. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic recycling.
Collapse
|
20
|
Ashby G, Keng KE, Hayden CC, Stachowiak JC. A live cell imaging-based assay for tracking particle uptake by clathrin-mediated endocytosis. Methods Enzymol 2024; 700:413-454. [PMID: 38971609 PMCID: PMC11609598 DOI: 10.1016/bs.mie.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
A popular strategy for therapeutic delivery to cells and tissues is to encapsulate therapeutics inside particles that cells internalize via endocytosis. The efficacy of particle uptake by endocytosis is often studied in bulk using flow cytometry and Western blot analysis and confirmed using confocal microscopy. However, these techniques do not reveal the detailed dynamics of particle internalization and how the inherent heterogeneity of many types of particles may impact their endocytic uptake. Toward addressing these gaps, here we present a live-cell imaging-based method that utilizes total internal reflection fluorescence microscopy to track the uptake of a large ensemble of individual particles in parallel, as they interact with the cellular endocytic machinery. To analyze the resulting data, we employ an open-source tracking algorithm in combination with custom data filters. This analysis reveals the dynamic interactions between particles and endocytic structures, which determine the probability of particle uptake. In particular, our approach can be used to examine how variations in the physical properties of particles (size, targeting, rigidity), as well as heterogeneity within the particle population, impact endocytic uptake. These data impact the design of particles toward more selective and efficient delivery of therapeutics to cells.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Kayla E Keng
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin; Department of Chemical Engineering, The University of Texas at Austin.
| |
Collapse
|
21
|
Hatzakis N, Kaestel-Hansen J, de Sautu M, Saminathan A, Scanavachi G, Correia R, Nielsen AJ, Bleshoey S, Boomsma W, Kirchhausen T. Deep learning assisted single particle tracking for automated correlation between diffusion and function. RESEARCH SQUARE 2024:rs.3.rs-3716053. [PMID: 38352328 PMCID: PMC10862944 DOI: 10.21203/rs.3.rs-3716053/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Sub-cellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with an unprecedented level of precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the sub-cellular environment, is labor-intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework to interpret the diffusional 2D or 3D temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying distinct types of endosomal organelles, and clathrin-coated pits and vesicles with up to 95% accuracy and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone illustrates that besides structure, motion encodes function at the molecular and subcellular level.
Collapse
|
22
|
Sanyal A, Scanavachi G, Somerville E, Saminathan A, Nair A, Oikonomou A, Hatzakis NS, Kirchhausen T. Constitutive Endolysosomal Perforation in Neurons allows Induction of α-Synuclein Aggregation by Internalized Pre-Formed Fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573738. [PMID: 38260258 PMCID: PMC10802249 DOI: 10.1101/2023.12.30.573738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endocytic pathway is both an essential route of molecular uptake in cells and a potential entry point for pathology-inducing cargo. The cell-to-cell spread of cytotoxic aggregates, such as those of α-synuclein (α-syn) in Parkinson's Disease (PD), exemplifies this duality. Here we used a human iPSC-derived induced neuronal model (iNs) prone to death mediated by aggregation in late endosomes and lysosomes of endogenous α-syn, seeded by internalized pre-formed fibrils of α-syn (PFFs). This PFF-mediated death was not observed with parental iPSCs or other non-neuronal cells. Using live-cell optical microscopy to visualize the read out of biosensors reporting endo-lysosome wounding, we discovered that up to about 10% of late endosomes and lysosomes in iNs exhibited spontaneous constitutive perforations, regardless of the presence of internalized PFFs. This wounding, absent in parental iPSCs and non-neuronal cells, corresponded to partial damage by nanopores in the limiting membranes of a subset of endolysosomes directly observed by volumetric focused ion beam scanning electron microscopy (FIB-SEM) in iNs and in CA1 pyramidal neurons from mouse brain, and not found in iPSCs or in other non-neuronal cells in culture or in mouse liver and skin. We suggest that the compromised limiting membranes in iNs and neurons in general are the primary conduit for cytosolic α-syn to access PFFs entrapped within endo-lysosomal lumens, initiating PFF-mediated α-syn aggregation. Significantly, eradicating the intrinsic endolysosomal perforations in iNs by inhibiting the endosomal Phosphatidylinositol-3-Phosphate/Phosphatidylinositol 5-Kinase (PIKfyve kinase) using Apilimod or Vacuolin-1 markedly reduced PFF-induced α-syn aggregation, despite PFFs continuing to enter the endolysosomal compartment. Crucially, this intervention also diminished iN death associated with PFF incubation. Our results reveal the surprising presence of intrinsically perforated endo-lysosomes in neurons, underscoring their crucial early involvement in the genesis of toxic α-syn aggregates induced by internalized PFFs. This discovery offers a basis for employing PIKfyve kinase inhibition as a potential therapeutic strategy to counteract synucleinopathies.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Anand Saminathan
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | - Athul Nair
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
| | | | - Nikos S. Hatzakis
- Department of Chemistry University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, 200 Longwood Ave, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
23
|
Heydecker M, Shitara A, Chen D, Tran D, Masedunskas A, Tora M, Ebrahim S, Appaduray MA, Galeano Niño JL, Bhardwaj A, Narayan K, Hardeman EC, Gunning PW, Weigert R. Spatial and Temporal Coordination of Force-generating Actin-based Modules Drives Membrane Remodeling In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569944. [PMID: 38168275 PMCID: PMC10760165 DOI: 10.1101/2023.12.04.569944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that: a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane; and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.
Collapse
|
24
|
Kæstel-Hansen J, de Sautu M, Saminathan A, Scanavachi G, Da Cunha Correia RFB, Nielsen AJ, Bleshøy SV, Boomsma W, Kirchhausen T, Hatzakis NS. Deep learning assisted single particle tracking for automated correlation between diffusion and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567393. [PMID: 38014323 PMCID: PMC10680793 DOI: 10.1101/2023.11.16.567393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sub-cellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with an unprecedented level of precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the sub-cellular environment, is labor-intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework to interpret the diffusional 2D or 3D temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying distinct types of endosomal organelles, and clathrin-coated pits and vesicles with up to 95% accuracy and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone indicates that besides structure, motion encodes function at the molecular and subcellular level.
Collapse
Affiliation(s)
- Jacob Kæstel-Hansen
- Department of Chemistry University of Copenhagen
- Center for 4D cellular dynamics, Department of Chemistry University of Copenhagen
- Novo Nordisk Center for Optimised Oligo Escape
- Novo Nordisk foundation Center for Protein Research
| | - Marilina de Sautu
- Biological Chemistry and Molecular Pharmaceutics Harvard Medical School
- Laboratory of Molecular Medicine Boston Children's Hospital
| | - Anand Saminathan
- Department of Cell Biology Harvard Medical School
- Department of Pediatrics Harvard Medical School
- Program in Cellular and Molecular Medicine Boston Children's Hospital
| | - Gustavo Scanavachi
- Department of Cell Biology Harvard Medical School
- Department of Pediatrics Harvard Medical School
- Program in Cellular and Molecular Medicine Boston Children's Hospital
| | - Ricardo F Bango Da Cunha Correia
- Department of Cell Biology Harvard Medical School
- Department of Pediatrics Harvard Medical School
- Program in Cellular and Molecular Medicine Boston Children's Hospital
| | - Annette Juma Nielsen
- Department of Chemistry University of Copenhagen
- Center for 4D cellular dynamics, Department of Chemistry University of Copenhagen
- Novo Nordisk Center for Optimised Oligo Escape
- Novo Nordisk foundation Center for Protein Research
| | - Sara Vogt Bleshøy
- Department of Chemistry University of Copenhagen
- Center for 4D cellular dynamics, Department of Chemistry University of Copenhagen
- Novo Nordisk Center for Optimised Oligo Escape
- Novo Nordisk foundation Center for Protein Research
| | | | - Tom Kirchhausen
- Department of Cell Biology Harvard Medical School
- Department of Pediatrics Harvard Medical School
- Program in Cellular and Molecular Medicine Boston Children's Hospital
| | - Nikos S Hatzakis
- Department of Chemistry University of Copenhagen
- Center for 4D cellular dynamics, Department of Chemistry University of Copenhagen
- Novo Nordisk Center for Optimised Oligo Escape
- Novo Nordisk foundation Center for Protein Research
| |
Collapse
|
25
|
Ashby G, Keng KE, Hayden CC, Gollapudi S, Houser JR, Jamal S, Stachowiak JC. Selective Endocytic Uptake of Targeted Liposomes Occurs within a Narrow Range of Liposome Diameters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49988-50001. [PMID: 37862704 PMCID: PMC11165932 DOI: 10.1021/acsami.3c09399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Cell surface receptors facilitate signaling and nutrient uptake. These processes are dynamic, requiring receptors to be actively recycled by endocytosis. Due to their differential expression in disease states, receptors are often the target of drug-carrier particles, which are adorned with ligands that bind specifically to receptors. These targeted particles are taken into the cell by multiple routes of internalization, where the best-characterized pathway is clathrin-mediated endocytosis. Most studies of particle uptake have utilized bulk assays rather than observing individual endocytic events. As a result, the detailed mechanisms of particle uptake remain obscure. To address this gap, we employed a live-cell imaging approach to study the uptake of individual liposomes as they interact with clathrin-coated structures. By tracking individual internalization events, we find that the size of liposomes rather than the density of the ligands on their surfaces primarily determines their probability of uptake. Interestingly, targeting has the greatest impact on endocytosis of liposomes of intermediate diameters, with the smallest and largest liposomes being internalized or excluded, respectively, regardless of whether they are targeted. These findings, which highlight a previously unexplored limitation of targeted delivery, can be used to design more effective drug carriers.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Kayla E. Keng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Carl C. Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Justin R. Houser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Sabah Jamal
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| |
Collapse
|
26
|
Kreplin LZ, Arumugam S. High-resolution light-sheet microscopy for whole-cell sub-cellular dynamics. Curr Opin Cell Biol 2023; 85:102272. [PMID: 39491307 DOI: 10.1016/j.ceb.2023.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
Research in the areas of organelle dynamics, cytoskeletal interactions, membrane protrusions, and cell motility relies heavily on live-cell imaging. These structures continuously move about in complex patterns and imaging them live at sufficient temporal resolutions as well as for durations long enough to extract significant number of events is an absolute necessity. Capturing most of the sub-cellular dynamics in whole cell volumes was beyond reach due to the lack of balance between reduced photo-toxicity, time resolution, and the required spatial resolution in dominant imaging modalities like point scanning confocal and spinning disc confocal microscopy. In the last few years, a plethora of light-sheet geometries have emerged, pushing the limits of measurements. In this review, we will focus on a subset of light-sheet modalities that are most suited to studying live, sub-cellular dynamics in whole-cell volumes.
Collapse
Affiliation(s)
- Laura Zoe Kreplin
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
27
|
Watson JL, Krüger LK, Ben-Sasson AJ, Bittleston A, Shahbazi MN, Planelles-Herrero VJ, Chambers JE, Manton JD, Baker D, Derivery E. Synthetic Par polarity induces cytoskeleton asymmetry in unpolarized mammalian cells. Cell 2023; 186:4710-4727.e35. [PMID: 37774705 PMCID: PMC10765089 DOI: 10.1016/j.cell.2023.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Polarized cells rely on a polarized cytoskeleton to function. Yet, how cortical polarity cues induce cytoskeleton polarization remains elusive. Here, we capitalized on recently established designed 2D protein arrays to ectopically engineer cortical polarity of virtually any protein of interest during mitosis in various cell types. This enables direct manipulation of polarity signaling and the identification of the cortical cues sufficient for cytoskeleton polarization. Using this assay, we dissected the logic of the Par complex pathway, a key regulator of cytoskeleton polarity during asymmetric cell division. We show that cortical clustering of any Par complex subunit is sufficient to trigger complex assembly and that the primary kinetic barrier to complex assembly is the relief of Par6 autoinhibition. Further, we found that inducing cortical Par complex polarity induces two hallmarks of asymmetric cell division in unpolarized mammalian cells: spindle orientation, occurring via Par3, and central spindle asymmetry, depending on aPKC activity.
Collapse
Affiliation(s)
- Joseph L Watson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Lara K Krüger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Ariel J Ben-Sasson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alice Bittleston
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Marta N Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | | | - Joseph E Chambers
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Hills Rd, Cambridge, UK
| | - James D Manton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
28
|
Tveriakhina L, Scanavachi G, Egan ED, Correia RBDC, Martin AP, Rogers JM, Yodh JS, Aster JC, Kirchhausen T, Blacklow SC. Temporal Dynamics and Stoichiometry in Notch Signaling - from Notch Synaptic Complex Formation to NICD Nuclear Entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559780. [PMID: 37808809 PMCID: PMC10557745 DOI: 10.1101/2023.09.27.559780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mammalian Notch signaling occurs when binding of Delta or Jagged to Notch stimulates proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to regulate target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with unprecedented spatiotemporal precision.
Collapse
|
29
|
Ashby G, Keng KE, Hayden CC, Gollapudi S, Houser JR, Jamal S, Stachowiak JC. Selective endocytic uptake of targeted liposomes occurs within a narrow range of liposome diameter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548000. [PMID: 37461728 PMCID: PMC10350051 DOI: 10.1101/2023.07.06.548000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cell surface receptors facilitate signaling and nutrient uptake. These processes are dynamic, requiring receptors to be actively recycled by endocytosis. Due to their differential expression in disease states, receptors are often the target of drug-carrier particles, which are adorned with ligands that bind specifically to receptors. These targeted particles are taken into the cell by multiple routes of internalization, where the best-characterized pathway is clathrin-mediated endocytosis. Most studies of particle uptake have utilized bulk assays, rather than observing individual endocytic events. As a result, the detailed mechanisms of particle uptake remain obscure. To address this gap, we have employed a live-cell imaging approach to study the uptake of individual liposomes as they interact with clathrin-coated structures. By tracking individual internalization events, we find that the size of liposomes, rather than the density of the ligands on their surfaces, primarily determines their probability of uptake. Interestingly, targeting has the greatest impact on endocytosis of liposomes of intermediate diameters, with the smallest and largest liposomes being internalized or excluded, respectively, regardless of whether they are targeted. These findings, which highlight a previously unexplored limitation of targeted delivery, can be used to design more effective drug carriers.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Kayla E Keng
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Sabah Jamal
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin
- Department of Chemical Engineering, The University of Texas at Austin
| |
Collapse
|
30
|
Lemaigre C, Ceuppens A, Valades-Cruz CA, Ledoux B, Vanbeneden B, Hassan M, Zetterberg FR, Nilsson UJ, Johannes L, Wunder C, Renard HF, Morsomme P. N-BAR and F-BAR proteins-endophilin-A3 and PSTPIP1-control clathrin-independent endocytosis of L1CAM. Traffic 2023; 24:190-212. [PMID: 36843549 DOI: 10.1111/tra.12883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.
Collapse
Affiliation(s)
- Camille Lemaigre
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Apolline Ceuppens
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Cesar Augusto Valades-Cruz
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France.,SERPICO Project Team, UMR144 CNRS Institut Curie, PSL Research University, Paris, France.,SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Campus Universitaire de Beaulieu, Rennes, France
| | - Benjamin Ledoux
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Bastien Vanbeneden
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Christian Wunder
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Henri-François Renard
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Namur, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| |
Collapse
|
31
|
Zhang L, Liang X, Takáč T, Komis G, Li X, Zhang Y, Ovečka M, Chen Y, Šamaj J. Spatial proteomics of vesicular trafficking: coupling mass spectrometry and imaging approaches in membrane biology. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:250-269. [PMID: 36204821 PMCID: PMC9884029 DOI: 10.1111/pbi.13929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In plants, membrane compartmentalization requires vesicle trafficking for communication among distinct organelles. Membrane proteins involved in vesicle trafficking are highly dynamic and can respond rapidly to changes in the environment and to cellular signals. Capturing their localization and dynamics is thus essential for understanding the mechanisms underlying vesicular trafficking pathways. Quantitative mass spectrometry and imaging approaches allow a system-wide dissection of the vesicular proteome, the characterization of ligand-receptor pairs and the determination of secretory, endocytic, recycling and vacuolar trafficking pathways. In this review, we highlight major proteomics and imaging methods employed to determine the location, distribution and abundance of proteins within given trafficking routes. We focus in particular on methodologies for the elucidation of vesicle protein dynamics and interactions and their connections to downstream signalling outputs. Finally, we assess their biological applications in exploring different cellular and subcellular processes.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
- College of Life ScienceHenan Normal UniversityXinxiangChina
| | - Xinlin Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
| | - George Komis
- Department of Cell Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
| | - Xiaojuan Li
- College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuan Zhang
- College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
| | - Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
| |
Collapse
|
32
|
Malivert M, Harms F, Veilly C, Legrand J, Li Z, Bayer E, Choquet D, Ducros M. Active image optimization for lattice light sheet microscopy in thick samples. BIOMEDICAL OPTICS EXPRESS 2022; 13:6211-6228. [PMID: 36589592 PMCID: PMC9774867 DOI: 10.1364/boe.471757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 05/02/2023]
Abstract
Lattice light-sheet microscopy (LLSM) is a very efficient technique for high resolution 3D imaging of dynamic phenomena in living biological samples. However, LLSM imaging remains limited in depth due to optical aberrations caused by sample-based refractive index mismatch. Here, we propose a simple and low-cost active image optimization (AIO) method to recover high resolution imaging inside thick biological samples. AIO is based on (1) a light-sheet autofocus step (AF) followed by (2) an adaptive optics image-based optimization. We determine the optimum AIO parameters to provide a fast, precise and robust aberration correction on biological samples. Finally, we demonstrate the performances of our approach on sub-micrometric structures in brain slices and plant roots.
Collapse
Affiliation(s)
- Maxime Malivert
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), UAR 3420, US 4, F-33000 Bordeaux, France
- Imagine Optic, F-91400 Orsay, France
| | | | | | | | - Ziqiang Li
- Université de Bordeaux, CNRS, Laboratory of Membrane Biogenesis (LBM), UMR 5200, F-33140 Villenave d’Ornon, France
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratory of Membrane Biogenesis (LBM), UMR 5200, F-33140 Villenave d’Ornon, France
| | - Daniel Choquet
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), UAR 3420, US 4, F-33000 Bordeaux, France
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Mathieu Ducros
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), UAR 3420, US 4, F-33000 Bordeaux, France
| |
Collapse
|
33
|
Abstract
For the past 40 years, minimal reconstituted systems have helped cell biologists to understand the mechanisms that underlie membrane traffic. Having progressed from minimal synthetic and cell-derived ensembles to direct comparison with living systems, reconstitution is poised for ever more precise and informative understanding of membrane biology.
Collapse
Affiliation(s)
- Jeanne C. Stachowiak
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA,
| | - Tomas Kirchhausen
- Harvard Medical School, Department of Cell Biology, Boston, MA, USA,Harvard Medical School, Department of Pediatrics, Boston, MA, USA
| |
Collapse
|
34
|
Luo S, Zhang J, Kreutzberger AJ, Eaton A, Edwards RJ, Jing C, Dai HQ, Sempowski GD, Cronin K, Parks R, Ye AY, Mansouri K, Barr M, Pishesha N, Williams AC, Vieira Francisco L, Saminathan A, Peng H, Batra H, Bellusci L, Khurana S, Alam SM, Montefiori DC, Saunders KO, Tian M, Ploegh H, Kirchhausen T, Chen B, Haynes BF, Alt FW. An antibody from single human V H-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion. Sci Immunol 2022; 7:eadd5446. [PMID: 35951767 PMCID: PMC9407951 DOI: 10.1126/sciimmunol.add5446] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 Omicron subvariants have generated a worldwide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron subvariants and prepare for new ones, additional means of isolating broad and potent humanized SARS-CoV-2 neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human VH1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact CDR3 sequences generated by nontemplated junctional modifications during V(D)J recombination. Immunizing this mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several VH1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior patient-derived VH1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding motif via a CDR3-dominated recognition mode. Lattice light-sheet microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and nontraditional mechanism of action suggest that it might have therapeutic potential. Likewise, the SP1-77 binding epitope may inform vaccine strategies. Last, the type of humanized mouse models that we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens.
Collapse
Affiliation(s)
- Sai Luo
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alex J.B. Kreutzberger
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Changbin Jing
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Aimee Chapdelaine Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas Vieira Francisco
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anand Saminathan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Himanshu Batra
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hidde Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Akatay AA, Wu T, Djakbarova U, Thompson C, Cocucci E, Zandi R, Rudnick J, Kural C. Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension. Front Mol Biosci 2022; 9:959737. [PMID: 36213118 PMCID: PMC9532848 DOI: 10.3389/fmolb.2022.959737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.
Collapse
Affiliation(s)
- Ahmet Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Umidahan Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Cristopher Thompson
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA, United States
| | - Joseph Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, CA, United States
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Comert Kural,
| |
Collapse
|
36
|
Kreutzberger AJB, Sanyal A, Saminathan A, Bloyet LM, Stumpf S, Liu Z, Ojha R, Patjas MT, Geneid A, Scanavachi G, Doyle CA, Somerville E, Correia RBDC, Di Caprio G, Toppila-Salmi S, Mäkitie A, Kiessling V, Vapalahti O, Whelan SPJ, Balistreri G, Kirchhausen T. SARS-CoV-2 requires acidic pH to infect cells. Proc Natl Acad Sci U S A 2022; 119:e2209514119. [PMID: 36048924 PMCID: PMC9499588 DOI: 10.1073/pnas.2209514119] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) protein-catalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.
Collapse
Affiliation(s)
- Alex J. B. Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Anand Saminathan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
| | - Markku T. Patjas
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00290 Finland
| | - Ahmed Geneid
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00290 Finland
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Catherine A. Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903
| | - Elliott Somerville
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Ricardo Bango Da Cunha Correia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Giuseppe Di Caprio
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Sanna Toppila-Salmi
- Department of Allergy, University of Helsinki and Helsinki University Hospital, Helsinki, 00290 Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00290 Finland
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, 00290 Finland
- Virology and Immunology, Helsinki University Hospital Diagnostic Center, Helsinki, 00290 Finland
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63110
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, 00290 Finland
- The Queensland Brain Institute, University of Queensland, Brisbane, 4072 Australia
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
37
|
Sheu SH, Upadhyayula S, Dupuy V, Pang S, Deng F, Wan J, Walpita D, Pasolli HA, Houser J, Sanchez-Martinez S, Brauchi SE, Banala S, Freeman M, Xu CS, Kirchhausen T, Hess HF, Lavis L, Li Y, Chaumont-Dubel S, Clapham DE. A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility. Cell 2022; 185:3390-3407.e18. [PMID: 36055200 PMCID: PMC9789380 DOI: 10.1016/j.cell.2022.07.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 12/27/2022]
Abstract
Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.
Collapse
Affiliation(s)
- Shu-Hsien Sheu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Department of Pathology, Boston, MA, USA; Howard Huges Medical Institute, Boston Children's Hospital, Department of Cardiology, Boston, MA, USA.
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, University of California at Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fei Deng
- School of Life Sciences, Peking University, Beijing, China
| | - Jinxia Wan
- School of Life Sciences, Peking University, Beijing, China
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Justin Houser
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Sebastian E Brauchi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Sambashiva Banala
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing, China
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - David E Clapham
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Harvard Medical School, Boston, MA, USA; Howard Huges Medical Institute, Boston Children's Hospital, Department of Cardiology, Boston, MA, USA.
| |
Collapse
|
38
|
SARS-CoV-2 requires acidic pH to infect cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35702155 PMCID: PMC9196115 DOI: 10.1101/2022.06.09.495472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 cell entry starts with membrane attachment and ends with spike-protein (S) catalyzed membrane fusion depending on two cleavage steps, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time 3D single virion tracking, we show fusion and genome penetration requires virion exposure to an acidic milieu of pH 6.2-6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2 overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2 expressing cells in the acidic milieu of the nasal cavity. Significance Statement Infection by SARS-CoV-2 depends upon the S large spike protein decorating the virions and is responsible for receptor engagement and subsequent fusion of viral and cellular membranes allowing release of virion contents into the cell. Using new single particle imaging tools, to visualize and track the successive steps from virion attachment to fusion, combined with chemical and genetic perturbations of the cells, we provide the first direct evidence for the cellular uptake routes of productive infection in multiple cell types and their dependence on proteolysis of S by cell surface or endosomal proteases. We show that fusion and content release always require the acidic environment from endosomes, preceded by liberation of the S1 fragment which depends on ACE2 receptor engagement. One sentence summary Detailed molecular snapshots of the productive infectious entry pathway of SARS-CoV-2 into cells.
Collapse
|
39
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
40
|
Cortesi M, Giordano E. Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ 2022; 10:e13338. [PMID: 35582620 PMCID: PMC9107788 DOI: 10.7717/peerj.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
3D cell cultures are becoming the new standard for cell-based in vitro research, due to their higher transferrability toward in vivo biology. The lack of established techniques for the non-destructive quantification of relevant variables, however, constitutes a major barrier to the adoption of these technologies, as it increases the resources needed for the experimentation and reduces its accuracy. In this review, we aim at addressing this limitation by providing an overview of different non-destructive approaches for the evaluation of biological features commonly quantified in a number of studies and applications. In this regard, we will cover cell viability, gene expression, population distribution, cell morphology and interactions between the cells and the environment. This analysis is expected to promote the use of the showcased technologies, together with the further development of these and other monitoring methods for 3D cell cultures. Overall, an extensive technology shift is required, in order for monolayer cultures to be superseded, but the potential benefit derived from an increased accuracy of in vitro studies, justifies the effort and the investment.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, Australia
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Shan H, Dai H, Chen X. Monitoring Various Bioactivities at the Molecular, Cellular, Tissue, and Organism Levels via Biological Lasers. SENSORS (BASEL, SWITZERLAND) 2022; 22:3149. [PMID: 35590841 PMCID: PMC9102053 DOI: 10.3390/s22093149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The laser is considered one of the greatest inventions of the 20th century. Biolasers employ high signal-to-noise ratio lasing emission rather than regular fluorescence as the sensing signal, directional out-coupling of lasing and excellent biocompatibility. Meanwhile, biolasers can also be micro-sized or smaller lasers with embedded/integrated biological materials. This article presents the progress in biolasers, focusing on the work done over the past years, including the molecular, cellular, tissue, and organism levels. Furthermore, biolasers have been utilized and explored for broad applications in biosensing, labeling, tracking, bioimaging, and biomedical development due to a number of unique advantages. Finally, we provide the possible directions of biolasers and their applications in the future.
Collapse
Affiliation(s)
- Hongrui Shan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Hailang Dai
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
42
|
Zhang MJ, Stear JH, Jacques DA, Böcking T. Insights into HIV uncoating from single-particle imaging techniques. Biophys Rev 2022; 14:23-32. [PMID: 35340594 PMCID: PMC8921429 DOI: 10.1007/s12551-021-00922-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) is the most extensively researched human pathogen. Despite this massive scientific endeavour, several fundamental viral processes remain enigmatic. One such critical process is uncoating-the event that releases the viral genome from the proteinaceous shell of the capsid during infection. While this process is conceptually simple, the molecular underpinnings, timing, regulation, and cellular location of uncoating remain contentious. This review describes the hurdles that have limited our understanding in this area and presents recently deployed in vitro and in cellulo techniques that have been developed expressly with the aim of directly visualising capsid uncoating at the single-particle level and understanding the mechanics behind this essential aspect of HIV infection.
Collapse
Affiliation(s)
- Margaret J. Zhang
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Jeffrey H. Stear
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - David A. Jacques
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
43
|
Moore RP, O'Shaughnessy EC, Shi Y, Nogueira AT, Heath KM, Hahn KM, Legant WR. A multi-functional microfluidic device compatible with widefield and light sheet microscopy. LAB ON A CHIP 2021; 22:136-147. [PMID: 34859808 PMCID: PMC9022779 DOI: 10.1039/d1lc00600b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a microfluidic device compatible with high resolution light sheet and super-resolution microscopy. The device is a 150 μm thick chamber with a transparent fluorinated ethylene propylene (FEP) cover that has a similar refractive index (1.34) to water (1.33), making it compatible with top-down imaging used in light sheet microscopy. We provide a detailed fabrication protocol and characterize the optical performance of the device. We demonstrate that the device supports long-term imaging of cell growth and differentiation as well as the rapid addition and removal of reagents while simultaneously maintaining sterile culture conditions by physically isolating the sample from the dipping lenses used for imaging. Finally, we demonstrate that the device can be used for super-resolution imaging using lattice light sheet structured illumination microscopy (LLS-SIM) and DNA PAINT. We anticipate that FEP-based microfluidics, as shown here, will be broadly useful to researchers using light sheet microscopy due to the ability to switch reagents, image weakly adherent cells, maintain sterility, and physically isolate the specimen from the optics of the instruments.
Collapse
Affiliation(s)
- Regan P Moore
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Ellen C O'Shaughnessy
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Shi
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Ana T Nogueira
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katelyn M Heath
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Klaus M Hahn
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wesley R Legant
- Joint Biomedical Engineering Department, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, 27599, USA.
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
44
|
Willy NM, Ferguson JP, Akatay A, Huber S, Djakbarova U, Silahli S, Cakez C, Hasan F, Chang HC, Travesset A, Li S, Zandi R, Li D, Betzig E, Cocucci E, Kural C. De novo endocytic clathrin coats develop curvature at early stages of their formation. Dev Cell 2021; 56:3146-3159.e5. [PMID: 34774130 PMCID: PMC11414472 DOI: 10.1016/j.devcel.2021.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 01/09/2023]
Abstract
Sculpting a flat patch of membrane into an endocytic vesicle requires curvature generation on the cell surface, which is the primary function of the endocytosis machinery. Using super-resolved live cell fluorescence imaging, we demonstrate that curvature generation by individual clathrin-coated pits can be detected in real time within cultured cells and tissues of developing organisms. Our analyses demonstrate that the footprint of clathrin coats increases monotonically during the formation of pits at different levels of plasma membrane tension. These findings are only compatible with models that predict curvature generation at the early stages of endocytic clathrin pit formation. We also found that CALM adaptors associated with clathrin plaques form clusters, whereas AP2 distribution is more homogenous. Considering the curvature sensing and driving roles of CALM, we propose that CALM clusters may increase the strain on clathrin lattices locally, eventually giving rise to rupture and subsequent pit completion at the edges of plaques.
Collapse
Affiliation(s)
- Nathan M Willy
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua P Ferguson
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Huber
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | | | - Salih Silahli
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Cemal Cakez
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Farah Hasan
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Ames Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, USA
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Betzig
- Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
45
|
Bernardello M, Gora RJ, Van Hage P, Castro-Olvera G, Gualda EJ, Schaaf MJM, Loza-Alvarez P. Analysis of intracellular protein dynamics in living zebrafish embryos using light-sheet fluorescence single-molecule microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:6205-6227. [PMID: 34745730 PMCID: PMC8547987 DOI: 10.1364/boe.435103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Single-molecule microscopy techniques have emerged as useful tools to image individual molecules and analyze their dynamics inside cells, but their application has mostly been restricted to cell cultures. Here, a light-sheet fluorescence microscopy setup is presented for imaging individual proteins inside living zebrafish embryos. The optical configuration makes this design accessible to many laboratories and a dedicated sample-mounting system ensures sample viability and mounting flexibility. Using this setup, we have analyzed the dynamics of individual glucocorticoid receptors, which demonstrates that this approach creates multiple possibilities for the analysis of intracellular protein dynamics in intact living organisms.
Collapse
Affiliation(s)
- Matteo Bernardello
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
- Equal contribution
| | - Radoslaw J Gora
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Equal contribution
| | - Patrick Van Hage
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gustavo Castro-Olvera
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
| | - Emilio J Gualda
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
| | - Marcel J M Schaaf
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Equal contribution
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
- Equal contribution
| |
Collapse
|
46
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
47
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
48
|
YAP1 nuclear efflux and transcriptional reprograming follow membrane diminution upon VSV-G-induced cell fusion. Nat Commun 2021; 12:4502. [PMID: 34301937 PMCID: PMC8302681 DOI: 10.1038/s41467-021-24708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.
Collapse
|
49
|
Potcoava M, Mann C, Art J, Alford S. Spatio-temporal performance in an incoherent holography lattice light-sheet microscope (IHLLS). OPTICS EXPRESS 2021; 29:23888-23901. [PMID: 34614645 PMCID: PMC8327923 DOI: 10.1364/oe.425069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
We propose an Incoherent holography detection technique for lattice light-sheet (IHLLS) systems for 3D imaging without moving either the sample stage or the detection microscope objective, providing intrinsic instrumental simplicity and high accuracy when compared to the original LLS schemes. The approach is based on a modified dual-lens Fresnel Incoherent Correlation Holography technique to produce a complex hologram and to provide the focal distance needed for the hologram reconstruction. We report such an IHLLS microscope, including characterization of the sensor performance, and demonstrate a significant contrast improvement on beads and neuronal structures within a biological test sample as well as quantitative phase imaging. The IHLLS has similar or better transverse performances when compared to the LLS technique. In addition, the IHLLS allows for volume reconstruction from fewer z-galvo displacements, thus facilitating faster volume acquisition.
Collapse
Affiliation(s)
- Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612, USA
| | - Christopher Mann
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, Arizona 86011, USA
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Jonathan Art
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
50
|
CALM supports clathrin-coated vesicle completion upon membrane tension increase. Proc Natl Acad Sci U S A 2021; 118:2010438118. [PMID: 34155137 DOI: 10.1073/pnas.2010438118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The most represented components of clathrin-coated vesicles (CCVs) are clathrin triskelia and the adaptors clathrin assembly lymphoid myeloid leukemia protein (CALM) and the heterotetrameric complex AP2. Investigation of the dynamics of AP180-amino-terminal-homology (ANTH) recruitment during CCV formation has been hampered by CALM toxicity upon overexpression. We used knock-in gene editing to express a C-terminal-attached fluorescent version of CALM, while preserving its endogenous expression levels, and cutting-edge live-cell microscopy approaches to study CALM recruitment at forming CCVs. Our results demonstrate that CALM promotes vesicle completion upon membrane tension increase as a function of the amount of this adaptor present. Since the expression of adaptors, including CALM, differs among cells, our data support a model in which the efficiency of clathrin-mediated endocytosis is tissue specific and explain why CALM is essential during embryogenesis and red blood cell development.
Collapse
|