1
|
Wurtz NR, Shirude PS, Cheney DL, Lupisella JA, Chattopadhyay AK, Baligar V, Seshadri B, Anjanappa P, Viet A, Valente MN, Hsu MY, Abousleiman M, Sarodaya S, Tagore DM, Dudhgaonkar S, Putlur S, Dierks EA, Ostrowski J, Wexler RR, Garcia R, Kick EK. Discovery and Optimization of Aryl Piperidinone Ureas as Selective Formyl Peptide Receptor 2 Agonists. ACS Med Chem Lett 2024; 15:1500-1505. [PMID: 39291022 PMCID: PMC11403750 DOI: 10.1021/acsmedchemlett.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
We report the discovery and optimization of aryl piperidinone urea formyl peptide receptor 2 (FPR2) agonists from a weakly active high-throughput screening (HTS) hit to potent and selective agonists with favorable efficacy in acute in vivo models. A basis for the selectivity for FPR2 over FPR1 is proposed based on docking molecules into recently reported FPR2 and FPR1 cryoEM structures. Compounds from the new scaffold reported in this study exhibited superior potency and selectivity and favorable ADME profiles. Furthermore, select compounds were evaluated in an acute rat lipopolysaccharide (LPS) inflammation model and demonstrated robust dose-dependent induction of IL10, a marker for inflammation resolution, providing a valuable proof of concept for this class of FPR2 agonists.
Collapse
Affiliation(s)
- Nicholas R Wurtz
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | | | - Daniel L Cheney
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - John A Lupisella
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | | | | | - Balaji Seshadri
- Biocon Bristol Myers Squibb Research Center (BBRC), Bangalore, Karnataka 560099, India
| | | | - Andrew Viet
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Meriah N Valente
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Mei-Yin Hsu
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | | | - Sanket Sarodaya
- Biocon Bristol Myers Squibb Research Center (BBRC), Bangalore, Karnataka 560099, India
| | | | | | - Sivaprasad Putlur
- Biocon Bristol Myers Squibb Research Center (BBRC), Bangalore, Karnataka 560099, India
| | | | - Jacek Ostrowski
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Ruth R Wexler
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Ricardo Garcia
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Ellen K Kick
- Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| |
Collapse
|
2
|
Winer BY, Settle AH, Yakimov AM, Jeronimo C, Lazarov T, Tipping M, Saoi M, Sawh A, Sepp ALL, Galiano M, Perry JSA, Wong YY, Geissmann F, Cross J, Zhou T, Kam LC, Pasolli HA, Hohl T, Cyster JG, Weiner OD, Huse M. Plasma membrane abundance dictates phagocytic capacity and functional cross-talk in myeloid cells. Sci Immunol 2024; 9:eadl2388. [PMID: 38848343 PMCID: PMC11485225 DOI: 10.1126/sciimmunol.adl2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Professional phagocytes like neutrophils and macrophages tightly control what they consume, how much they consume, and when they move after cargo uptake. We show that plasma membrane abundance is a key arbiter of these cellular behaviors. Neutrophils and macrophages lacking the G protein subunit Gβ4 exhibited profound plasma membrane expansion, accompanied by marked reduction in plasma membrane tension. These biophysical changes promoted the phagocytosis of bacteria, fungus, apoptotic corpses, and cancer cells. We also found that Gβ4-deficient neutrophils are defective in the normal inhibition of migration following cargo uptake. Sphingolipid synthesis played a central role in these phenotypes by driving plasma membrane accumulation in cells lacking Gβ4. In Gβ4 knockout mice, neutrophils not only exhibited enhanced phagocytosis of inhaled fungal conidia in the lung but also increased trafficking of engulfed pathogens to other organs. Together, these results reveal an unexpected, biophysical control mechanism central to myeloid functional decision-making.
Collapse
Affiliation(s)
- Benjamin Y. Winer
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA, USA
| | - Alexander H. Settle
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | | | - Carlos Jeronimo
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Murray Tipping
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Michelle Saoi
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | | | - Anna-Liisa L. Sepp
- Department of Biomedical Engineering, Columbia University; New York, NY, USA
| | - Michael Galiano
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Justin S. A. Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yung Yu Wong
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Justin Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Ting Zhou
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University; New York, NY, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University; New York, NY, USA
| | - Tobias Hohl
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, CA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
3
|
Zhangsun Z, Dong Y, Tang J, Jin Z, Lei W, Wang C, Cheng Y, Wang B, Yang Y, Zhao H. FPR1: A critical gatekeeper of the heart and brain. Pharmacol Res 2024; 202:107125. [PMID: 38438091 DOI: 10.1016/j.phrs.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
G protein-coupled receptors (GPCRs) are currently the most widely focused drug targets in the clinic, exerting their biological functions by binding to chemicals and activating a series of intracellular signaling pathways. Formyl-peptide receptor 1 (FPR1) has a typical seven-transmembrane structure of GPCRs and can be stimulated by a large number of endogenous or exogenous ligands with different chemical properties, the first of which was identified as formyl-methionine-leucyl-phenylalanine (fMLF). Through receptor-ligand interactions, FPR1 is involved in inflammatory response, immune cell recruitment, and cellular signaling regulation in key cell types, including neutrophils, neural stem cells (NSCs), and microglia. This review outlines the critical roles of FPR1 in a variety of heart and brain diseases, including myocardial infarction (MI), ischemia/reperfusion (I/R) injury, neurodegenerative diseases, and neurological tumors, with particular emphasis on the milestones of FPR1 agonists and antagonists. Therefore, an in-depth study of FPR1 contributes to the research of innovative biomarkers, therapeutic targets for heart and brain diseases, and clinical applications.
Collapse
Affiliation(s)
- Ziyin Zhangsun
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Institute of Neuroscience, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Medical University, 127 Changle West Road, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Medical University, 127 Changle West Road, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Changyu Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Ying Cheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Baoying Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|
4
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Winer BY, Settle AH, Yakimov AM, Jeronimo C, Lazarov T, Tipping M, Saoi M, Sawh A, Sepp ALL, Galiano M, Wong YY, Perry JSA, Geissmann F, Cross J, Zhou T, Kam LC, Pasoli HA, Hohl T, Cyster JG, Weiner OD, Huse M. Plasma membrane abundance dictates phagocytic capacity and functional crosstalk in myeloid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556572. [PMID: 37745515 PMCID: PMC10515848 DOI: 10.1101/2023.09.12.556572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Professional phagocytes like neutrophils and macrophages tightly control what they eat, how much they eat, and when they move after eating. We show that plasma membrane abundance is a key arbiter of these cellular behaviors. Neutrophils and macrophages lacking the G-protein subunit Gb4 exhibit profound plasma membrane expansion due to enhanced production of sphingolipids. This increased membrane allocation dramatically enhances phagocytosis of bacteria, fungus, apoptotic corpses, and cancer cells. Gb4 deficient neutrophils are also defective in the normal inhibition of migration following cargo uptake. In Gb4 knockout mice, myeloid cells exhibit enhanced phagocytosis of inhaled fungal conidia in the lung but also increased trafficking of engulfed pathogens to other organs. These results reveal an unexpected, biophysical control mechanism lying at the heart of myeloid functional decision-making.
Collapse
Affiliation(s)
- Benjamin Y Winer
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA, USA
| | - Alexander H Settle
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | | | - Carlos Jeronimo
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Murray Tipping
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Michelle Saoi
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | | | - Anna-Liisa L Sepp
- Department of Biomedical Engineering, Columbia University; New York, NY, USA
| | - Michael Galiano
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yung Yu Wong
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Justin Cross
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Ting Zhou
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University; New York, NY, USA
| | - Hilda Amalia Pasoli
- Electron Microscopy Resource Center, The Rockefeller University; New York, NY, USA
| | - Tobias Hohl
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California San Francisco; San Francisco, CA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
6
|
Chang Y, Hummel SN, Watson MN, Jin G, Lian XL, Bao X. Engineered Artificial Human Neutrophils Exhibit Mature Functional Performance. ACS Synth Biol 2023; 12:2262-2270. [PMID: 37523468 PMCID: PMC11070884 DOI: 10.1021/acssynbio.3c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Neutrophils, a key innate immune component, are powerful effector leukocytes for mediating opposing effects on tumor progression and ameliorating pathogen infections. However, their short lifespan and complex purification process have limited neutrophil clinical applications. Here we combined genetic engineering technology with a nanodrug system to construct artificial neutrophils that display functions similar to those of native neutrophils. K562 and HL60 human leukemia cells were engineered to express the human G protein-coupled receptor hM4Di. Compared to the parental cells, engineered hM4Di-K562 and hM4Di-HL60 cells exhibited excellent chemotaxis ability towards clozapine-N-oxide (CNO) and superior bacteria phagocytic behavior, resembling native neutrophils. The antibacterial ability of the hM4Di-K562 cells was further enhanced by loading them with the glycopeptide vancomycin via mesoporous silica nanoparticles (Nano@Van). Our proposed artificial cell engineering platform provides a new avenue to investigate the physiological properties of neutrophils.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| | - Sydney N. Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Monique N. Watson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institutes of the Life Sciences, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| |
Collapse
|
7
|
Bento-Lopes L, Cabaço LC, Charneca J, Neto MV, Seabra MC, Barral DC. Melanin's Journey from Melanocytes to Keratinocytes: Uncovering the Molecular Mechanisms of Melanin Transfer and Processing. Int J Mol Sci 2023; 24:11289. [PMID: 37511054 PMCID: PMC10379423 DOI: 10.3390/ijms241411289] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.B.-L.); (L.C.C.); (J.C.); (M.V.N.); (M.C.S.)
| |
Collapse
|
8
|
Gal Y, Marcus H, Mamroud E, Aloni-Grinstein R. Mind the Gap-A Perspective on Strategies for Protecting against Bacterial Infections during the Period from Infection to Eradication. Microorganisms 2023; 11:1701. [PMID: 37512874 PMCID: PMC10386665 DOI: 10.3390/microorganisms11071701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria is a pressing public health concern, highlighting the need for alternative approaches to control bacterial infections. Promising approaches include the development of therapeutic vaccines and the utilization of innate immune activation techniques, which may prove useful in conjunction with antibiotics, as well as other antibacterial modalities. However, innate activation should be fast and self- or actively- contained to prevent detrimental consequences. TLR ligand adjuvants are effective at rapidly activating, within minutes to hours, the innate immune system by inducing cytokine production and other signaling molecules that bolster the host's immune response. Neutrophils serve as the first line of defense against invading pathogens by capturing and destroying them through various mechanisms, such as phagocytosis, intracellular degradation, and the formation of NETs. Nutritional immunity is another host defense mechanism that limits the availability of essential metals, such as iron, from invading bacterial pathogens. Thus, iron starvation has been proposed as a potential antibacterial strategy. In this review, we focus on approaches that have the potential to enhance rapid and precise antibacterial responses, bridging the gap between the onset of infection and the elimination of bacteria, hence limiting the infection by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hadar Marcus
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
9
|
Formyl peptide receptor 2 as a potential therapeutic target for inflammatory bowel disease. Acta Pharmacol Sin 2023; 44:19-31. [PMID: 35840658 DOI: 10.1038/s41401-022-00944-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 01/18/2023]
Abstract
Inflammatory bowel disease (IBD) is a global health burden whose existing treatment is largely dependent on anti-inflammatory agents. Despite showing some therapeutic actions, their clinical efficacy and adverse events are unacceptable. Resolution as an active and orchestrated phase of inflammation involves improper inflammatory response with three key triggers, specialized pro-resolving mediators (SPMs), neutrophils and phagocyte efferocytosis. The formyl peptide receptor 2 (FPR2/ALX) is a human G protein-coupled receptor capable of binding SPMs and participates in the resolution process. This receptor has been implicated in several inflammatory diseases and its association with mouse model of IBD was established in some resolution-related studies. Here, we give an overview of three reported FPR2/ALX agonists highlighting their respective roles in pro-resolving strategies.
Collapse
|
10
|
Knepp B, Ander BP, Jickling GC, Hull H, Yee AH, Ng K, Rodriguez F, Carmona-Mora P, Amini H, Zhan X, Hakoupian M, Alomar N, Sharp FR, Stamova B. Gene expression changes implicate specific peripheral immune responses to Deep and Lobar Intracerebral Hemorrhages in humans. BRAIN HEMORRHAGES 2022; 3:155-176. [PMID: 36936603 PMCID: PMC10019834 DOI: 10.1016/j.hest.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The peripheral immune system response to Intracerebral Hemorrhage (ICH) may differ with ICH in different brain locations. Thus, we investigated peripheral blood mRNA expression of Deep ICH, Lobar ICH, and vascular risk factor-matched control subjects (n = 59). Deep ICH subjects usually had hypertension. Some Lobar ICH subjects had cerebral amyloid angiopathy (CAA). Genes and gene networks in Deep ICH and Lobar ICH were compared to controls. We found 774 differentially expressed genes (DEGs) and 2 co-expressed gene modules associated with Deep ICH, and 441 DEGs and 5 modules associated with Lobar ICH. Pathway enrichment showed some common immune/inflammatory responses between locations including Autophagy, T Cell Receptor, Inflammasome, and Neuroinflammation Signaling. Th2, Interferon, GP6, and BEX2 Signaling were unique to Deep ICH. Necroptosis Signaling, Protein Ubiquitination, Amyloid Processing, and various RNA Processing terms were unique to Lobar ICH. Finding amyloid processing pathways in blood of Lobar ICH patients suggests peripheral immune cells may participate in processes leading to perivascular/vascular amyloid in CAA vessels and/or are involved in its removal. This study identifies distinct peripheral blood transcriptome architectures in Deep and Lobar ICH, emphasizes the need for considering location in ICH studies/clinical trials, and presents potential location-specific treatment targets.
Collapse
Affiliation(s)
- Bodie Knepp
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Bradley P. Ander
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Glen C. Jickling
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Heather Hull
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Alan H. Yee
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Kwan Ng
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Fernando Rodriguez
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Paulina Carmona-Mora
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Hajar Amini
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Marisa Hakoupian
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Noor Alomar
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Frank R. Sharp
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Boryana Stamova
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
11
|
Payne JAE, Tailhades J, Ellett F, Kostoulias X, Fulcher AJ, Fu T, Leung R, Louch S, Tran A, Weber SA, Schittenhelm RB, Lieschke GJ, Qin CH, Irima D, Peleg AY, Cryle MJ. Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nat Commun 2021; 12:6157. [PMID: 34697316 PMCID: PMC8546149 DOI: 10.1038/s41467-021-26244-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
The pathogen Staphylococcus aureus can readily develop antibiotic resistance and evade the human immune system, which is associated with reduced levels of neutrophil recruitment. Here, we present a class of antibacterial peptides with potential to act both as antibiotics and as neutrophil chemoattractants. The compounds, which we term 'antibiotic-chemoattractants', consist of a formylated peptide (known to act as chemoattractant for neutrophil recruitment) that is covalently linked to the antibiotic vancomycin (known to bind to the bacterial cell wall). We use a combination of in vitro assays, cellular assays, infection-on-a-chip and in vivo mouse models to show that the compounds improve the recruitment, engulfment and killing of S. aureus by neutrophils. Furthermore, optimizing the formyl peptide sequence can enhance neutrophil activity through differential activation of formyl peptide receptors. Thus, we propose antibiotic-chemoattractants as an alternate approach for antibiotic development.
Collapse
Affiliation(s)
- Jennifer A E Payne
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia.
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.
| | - Julien Tailhades
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Felix Ellett
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xenia Kostoulias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Ting Fu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Ryan Leung
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stephanie Louch
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Amy Tran
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Severin A Weber
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Chengxue Helena Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Daniel Irima
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, 3004, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Max J Cryle
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia.
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
12
|
Melanin of Sporothrix globosa affects the function of THP-1 macrophages and modulates the expression of TLR2 and TLR4. Microb Pathog 2021; 159:105158. [PMID: 34454025 DOI: 10.1016/j.micpath.2021.105158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Melanin is an important virulence factor for Sporothrix globosa, the causative agent of sporotrichosis, a subcutaneous mycosis that occurs worldwide. Although previous research suggests that melanin is involved in the pathogenesis of sporotrichosis, little is known about its influence on the macrophages that represent the frontline components of innate immunity. OBJECTIVES To evaluate the effects of melanin on phagocytic activity and the expression of Toll-like receptor (TLR)2 and TLR4 during S. globosa infection of macrophages in vitro. METHODS To compare phagocytic activity and survival rates, THP-1 macrophages and primary mouse peritoneal macrophages were co-cultured with a wild-type S. globosa strain (Mel+), an albino mutant strain (Mel-), a tricyclazole-treated Mel + strain (TCZ-Mel+), or melanin ghosts extracted from S. globosa conidia. Reactive oxygen species (ROS), nitric oxide (NO) generation, tumor necrosis factor (TNF)-α and interleukin (IL)-6 were assayed in THP-1 cells infected with S. globosa conidia. Quantitative PCR and western blotting were used to observe the effect of melanin on TLR2 and TLR4 expression. Knockdown of TLR2/4 expression with small interfering RNA was performed to further verify the role of these receptors during infection. RESULTS Macrophages infected with Mel + conidia showed a lower phagocytosis index and a higher survival rate than TCZ-Mel+ and Mel- in vitro. After incubation with S. globosa, the release of ROS, NO, TNF-α and IL-6 by THP-1 were decreased in the presence of melanin. Increased mRNA and protein expression of TLR2 and TLR4 occurred upon S. globosa infection in THP-1, whereas the presence of melanin suppressed TLR2 and TLR4. Moreover, TLR2 or TLR4 knockdown showed a trend toward reducing the pernicious effect of S. globosa conidia on THP-1 cells in vitro. CONCLUSIONS Collectively, our results indicated that melanin inhibits the phagocytosis of S. globosa and guards against macrophage attack by providing protection from oxygen- and nitrogen-derived radicals, as well as suppressing the host pro-inflammatory cytokine response (TNF-α and IL-6). Melanin was also involved in modulating TLR2 and TLR4 receptor expression, weakening the killing efficiency of S. globosa.
Collapse
|
13
|
Xu X, Pan M, Jin T. How Phagocytes Acquired the Capability of Hunting and Removing Pathogens From a Human Body: Lessons Learned From Chemotaxis and Phagocytosis of Dictyostelium discoideum (Review). Front Cell Dev Biol 2021; 9:724940. [PMID: 34490271 PMCID: PMC8417749 DOI: 10.3389/fcell.2021.724940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022] Open
Abstract
How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms-protozoans-appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals-metazoans-appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae Dictyostelium discoideum are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.
Collapse
Affiliation(s)
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, United States
| |
Collapse
|
14
|
Chen C, Zhu S, Bai L, Sui M, Chen D. The Role of Formyl Peptide Receptor 1 in Uterine Contraction During Parturition. Front Pharmacol 2021; 12:696697. [PMID: 34393780 PMCID: PMC8358927 DOI: 10.3389/fphar.2021.696697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Parturition involves the transformation of the quiescent myometrium into a highly excitable and contractile state, a process that is driven by changes in myometrial gene expression. This study aimed to identify myometrial transcriptomic signatures and potential novel hub genes in parturition, which have great significance for understanding the underlying mechanisms of successful parturition and treating labor-associated pathologies such as preterm birth. In our study, comparative transcriptome analysis was carried out on human myometrial tissues collected from women undergoing caesarean section at term in the presence (TL = 8) and absence of labor (TNL = 8). A total of 582 differentially expressed genes (DEGs) between TL and TNL tissues were identified. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA) revealed that the DEGs were enriched in signal transduction, regulation of signaling receptor activity, inflammatory response, cytokine-cytokine receptor interaction, IL-17 signaling pathway, TNF signaling pathway, among others. Thus, transcriptome analysis of the myometrium during term labor revealed that labor onset was associated with an inflammatory response. Moreover, protein-protein interactions network analysis identified FPR1, CXCL8, CXCL1, BDKRB2, BDKRB1, and CXCL2 as the hub genes associated with onset of labor. Formyl peptide receptor 1 (FPR1) was highly expressed in laboring myometrial tissues, with the activation of FPR1 in vitro experiments resulting in increased myometrial contraction. Our findings demonstrate the novel role of FPR1 as a modulator of myometrial contraction.
Collapse
Affiliation(s)
- Chaolu Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuaiying Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meihua Sui
- School of Basic Medical Sciences and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Danqing Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Kienle K, Glaser KM, Eickhoff S, Mihlan M, Knöpper K, Reátegui E, Epple MW, Gunzer M, Baumeister R, Tarrant TK, Germain RN, Irimia D, Kastenmüller W, Lämmermann T. Neutrophils self-limit swarming to contain bacterial growth in vivo. Science 2021; 372:372/6548/eabe7729. [PMID: 34140358 DOI: 10.1126/science.abe7729] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
Neutrophils communicate with each other to form swarms in infected organs. Coordination of this population response is critical for the elimination of bacteria and fungi. Using transgenic mice, we found that neutrophils have evolved an intrinsic mechanism to self-limit swarming and avoid uncontrolled aggregation during inflammation. G protein-coupled receptor (GPCR) desensitization acts as a negative feedback control to stop migration of neutrophils when they sense high concentrations of self-secreted attractants that initially amplify swarming. Interference with this process allows neutrophils to scan larger tissue areas for microbes. Unexpectedly, this does not benefit bacterial clearance as containment of proliferating bacteria by neutrophil clusters becomes impeded. Our data reveal how autosignaling stops self-organized swarming behavior and how the finely tuned balance of neutrophil chemotaxis and arrest counteracts bacterial escape.
Collapse
Affiliation(s)
- Korbinian Kienle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sarah Eickhoff
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Konrad Knöpper
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Eduardo Reátegui
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, MA, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Maximilian W Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Teresa K Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, MA, USA
| | - Wolfgang Kastenmüller
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
16
|
Ali SG, Shehwar D, Alam MR. Mitoxantrone Inhibits FMLP-Induced Degenerative Changes in Human Neutrophils. Mol Biol 2021. [DOI: 10.1134/s0026893321040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Vergelli C, Khlebnikov AI, Crocetti L, Guerrini G, Cantini N, Kirpotina LN, Schepetkin IA, Cilibrizzi A, Quinn MT, Rossi P, Paoli P, Giovannoni MP. Synthesis, biological evaluation, molecular modeling, and structural analysis of new pyrazole and pyrazolone derivatives as N-formyl peptide receptors agonists. Chem Biol Drug Des 2021; 98:582-603. [PMID: 34148303 PMCID: PMC8446315 DOI: 10.1111/cbdd.13913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 11/27/2022]
Abstract
N‐formyl peptide receptors (FPR1, FPR2, and FPR3) play key roles in the regulation of inflammatory processes, and recently, it was demonstrated that FPR1 and FPR2 have a dual role in the progression/suppression of some cancers. Therefore, FPRs represent an important therapeutic target for the treatment of both cancer and inflammatory diseases. Previously, we identified selective or mixed FPR agonists with pyridazinone or pyridinone scaffolds showing a common 4‐(bromophenyl)acetamide fragment, which was essential for activity. We report here new pyrazole and pyrazolone derivatives as restricted analogues of the above 6‐membered compounds, all exhibiting the same 4‐bromophenylacetamide side chain. Most new products had low or absent FPR agonist activity, suggesting that the pyrazole nucleus was not appropriate for FPR agonists. This hypothesis was confirmed by molecular modeling studies, which highlighted that the five‐membered scaffold was responsible for a worse arrangement of the molecules in the receptor binding site.
Collapse
Affiliation(s)
- Claudia Vergelli
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | | | - Letizia Crocetti
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Gabriella Guerrini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Niccolò Cantini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, Florence, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, Florence, Italy
| | - Maria Paola Giovannoni
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Pan M, Jin T. Imaging GPCR-Mediated Signal Events Leading to Chemotaxis and Phagocytosis. Methods Mol Biol 2021; 2304:207-220. [PMID: 34028719 DOI: 10.1007/978-1-0716-1402-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Eukaryotic phagocytes locate microorganisms via chemotaxis and consume them through phagocytosis. The social amoeba Dictyostelium discoideum is a stereotypical phagocyte and a well-established model to study both processes. Recent studies show that a G-protein-coupled receptor (fAR1) mediate a signaling network to control reorganization of the actin cytoskeleton leading both the directional cell movement and the engulfment of bacteria. Many live cell imaging methods have been developed and applied to monitor these signaling events. In this chapter, we will introduce how to measure GPCR-mediated signaling events for cell migration and phagocytosis in Dictyostelium.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD, USA.
| |
Collapse
|
19
|
Idso MN, Akhade AS, Arrieta-Ortiz ML, Lai BT, Srinivas V, Hopkins JP, Gomes AO, Subramanian N, Baliga N, Heath JR. Antibody-recruiting protein-catalyzed capture agents to combat antibiotic-resistant bacteria. Chem Sci 2020; 11:3054-3067. [PMID: 34122810 PMCID: PMC8157486 DOI: 10.1039/c9sc04842a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistant infections are projected to cause over 10 million deaths by 2050, yet the development of new antibiotics has slowed. This points to an urgent need for methodologies for the rapid development of antibiotics against emerging drug resistant pathogens. We report on a generalizable combined computational and synthetic approach, called antibody-recruiting protein-catalyzed capture agents (AR-PCCs), to address this challenge. We applied the combinatorial protein catalyzed capture agent (PCC) technology to identify macrocyclic peptide ligands against highly conserved surface protein epitopes of carbapenem-resistant Klebsiella pneumoniae, an opportunistic Gram-negative pathogen with drug resistant strains. Multi-omic data combined with bioinformatic analyses identified epitopes of the highly expressed MrkA surface protein of K. pneumoniae for targeting in PCC screens. The top-performing ligand exhibited high-affinity (EC50 ∼50 nM) to full-length MrkA, and selectively bound to MrkA-expressing K. pneumoniae, but not to other pathogenic bacterial species. AR-PCCs that bear a hapten moiety promoted antibody recruitment to K. pneumoniae, leading to enhanced phagocytosis and phagocytic killing by macrophages. The rapid development of this highly targeted antibiotic implies that the integrated computational and synthetic toolkit described here can be used for the accelerated production of antibiotics against drug resistant bacteria.
Collapse
Affiliation(s)
- Matthew N Idso
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Bert T Lai
- Indi Molecular, Inc. 6162 Bristol Parkway Culver City CA 90230 USA
| | - Vivek Srinivas
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James P Hopkins
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Nitin Baliga
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James R Heath
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| |
Collapse
|
20
|
Liang W, Chen K, Gong W, Yoshimura T, Le Y, Wang Y, Wang JM. The Contribution of Chemoattractant GPCRs, Formylpeptide Receptors, to Inflammation and Cancer. Front Endocrinol (Lausanne) 2020; 11:17. [PMID: 32038501 PMCID: PMC6993212 DOI: 10.3389/fendo.2020.00017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
A hallmark of inflammatory responses is leukocyte mobilization, which is mediated by pathogen and host released chemotactic factors that activate Gi-protein-coupled seven-transmembrane receptors (GPCRs) on host cell surface. Formylpeptide receptors (FPRs, Fprs in mice) are members of the chemoattractant GPCR family, shown to be critical in myeloid cell trafficking during infection, inflammation, immune responses, and cancer progression. Accumulating evidence demonstrates that both human FPRs and murine Fprs are involved in a number of patho-physiological processes because of their expression on a wide variety of cell types in addition to myeloid cells. The unique capacity of FPRs (Fprs) to interact with numerous structurally unrelated chemotactic ligands enables these receptors to participate in orchestrated disease initiation, progression, and resolution. One murine Fpr member, Fpr2, and its endogenous agonist peptide, Cathelicidin-related antimicrobial peptide (CRAMP), have been demonstrated as key mediators of colon mucosal homeostasis and protection from inflammation and associated tumorigenesis. Recent availability of genetically engineered mouse models greatly expanded the understanding of the role of FPRs (Fprs) in pathophysiology that places these molecules in the list of potential targets for therapeutic intervention of diseases.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
21
|
Liang X, Liu T, Zhang Z, Yu Z. Airway Inflammation Biomarker for Precise Management of Neutrophil-Predominant COPD. Methods Mol Biol 2020; 2204:181-191. [PMID: 32710325 DOI: 10.1007/978-1-0716-0904-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) course can be divided into stable stage and acute exacerbation. Deepen the understanding to the function and role of airway inflammatory cells in stable COPD is important for developing new therapies to restore airway dysfunction and preventing stable stage COPD progress to acute exacerbation COPD. Neutrophil is a feature of lower airways and lung inflammation in majority COPD patients at stable stage and increased neutrophils usually means COPD patients are in a more serious stage. Neutrophil-predominant COPD always accompanied by increased numbers of macrophages, lymphocytes, and dendritic cells. The composition proportion of different inflammatory cells are changed with disease severity. Recently, neutrophilic inflammation has been proved to be correlated with the disturbance of airway resident microbiota, which promote neutrophil influx and exacerbates inflammation. Consequently, understanding the details of increased neutrophils and dysbacteriosis in COPD is necessary for making precise management strategy against neutrophil-associated COPD.
Collapse
Affiliation(s)
- Xue Liang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China.
- State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Ting Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Zhiming Zhang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziyu Yu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
22
|
Yamaguchi M, Hirose Y, Takemura M, Ono M, Sumitomo T, Nakata M, Terao Y, Kawabata S. Streptococcus pneumoniae Evades Host Cell Phagocytosis and Limits Host Mortality Through Its Cell Wall Anchoring Protein PfbA. Front Cell Infect Microbiol 2019; 9:301. [PMID: 31482074 PMCID: PMC6710382 DOI: 10.3389/fcimb.2019.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium belonging to the oral streptococcus species, mitis group. This pathogen is a leading cause of community-acquired pneumonia, which often evades host immunity and causes systemic diseases, such as sepsis and meningitis. Previously, we reported that PfbA is a β-helical cell surface protein contributing to pneumococcal adhesion to and invasion of human epithelial cells in addition to its survival in blood. In the present study, we investigated the role of PfbA in pneumococcal pathogenesis. Phylogenetic analysis indicated that the pfbA gene is highly conserved in S. pneumoniae and Streptococcus pseudopneumoniae within the mitis group. Our in vitro assays showed that PfbA inhibits neutrophil phagocytosis, leading to pneumococcal survival. We found that PfbA activates NF-κB through TLR2, but not TLR4. In addition, TLR2/4 inhibitor peptide treatment of neutrophils enhanced the survival of the S. pneumoniae ΔpfbA strain as compared to a control peptide treatment, whereas the treatment did not affect survival of a wild-type strain. In a mouse pneumonia model, the host mortality and level of TNF-α in bronchoalveolar lavage fluid were comparable between wild-type and ΔpfbA-infected mice, while deletion of pfbA decreased the bacterial burden in bronchoalveolar lavage fluid. In a mouse sepsis model, the ΔpfbA strain demonstrated significantly increased host mortality and TNF-α levels in plasma, but showed reduced bacterial burden in lung and liver. These results indicate that PfbA may contribute to the success of S. pneumoniae species by inhibiting host cell phagocytosis, excess inflammation, and mortality by interacting with TLR2.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Moe Takemura
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masayuki Ono
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
23
|
Chemotactic Ligands that Activate G-Protein-Coupled Formylpeptide Receptors. Int J Mol Sci 2019; 20:ijms20143426. [PMID: 31336833 PMCID: PMC6678346 DOI: 10.3390/ijms20143426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Leukocyte infiltration is a hallmark of inflammatory responses. This process depends on the bacterial and host tissue-derived chemotactic factors interacting with G-protein-coupled seven-transmembrane receptors (GPCRs) expressed on the cell surface. Formylpeptide receptors (FPRs in human and Fprs in mice) belong to the family of chemoattractant GPCRs that are critical mediators of myeloid cell trafficking in microbial infection, inflammation, immune responses and cancer progression. Both murine Fprs and human FPRs participate in many patho-physiological processes due to their expression on a variety of cell types in addition to myeloid cells. FPR contribution to numerous pathologies is in part due to its capacity to interact with a plethora of structurally diverse chemotactic ligands. One of the murine Fpr members, Fpr2, and its endogenous agonist peptide, Cathelicidin-related antimicrobial peptide (CRAMP), control normal mouse colon epithelial growth, repair and protection against inflammation-associated tumorigenesis. Recent developments in FPR (Fpr) and ligand studies have greatly expanded the scope of these receptors and ligands in host homeostasis and disease conditions, therefore helping to establish these molecules as potential targets for therapeutic intervention.
Collapse
|
24
|
Allen LAH, Criss AK. Cell intrinsic functions of neutrophils and their manipulation by pathogens. Curr Opin Immunol 2019; 60:124-129. [PMID: 31302568 DOI: 10.1016/j.coi.2019.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are a crucial first line of defense against infection, migrating rapidly into tissues where they deploy granule components and toxic oxidants for efficient phagocytosis and microbe killing. Subsequent apoptosis and clearance of dying neutrophils are essential for control of infection and resolution of the inflammatory response. A subset of microbial pathogens survive exposure to neutrophils by manipulating phagocytosis, phagosome-granule fusion, oxidant production, and lifespan. Elucidating how they accomplish this unusual feat provides new insights into normal neutrophil function. In this review, we highlight recent discoveries about the ways in which neutrophils use cell-intrinsic mechanisms to control infection, and how these defenses are subverted by pathogens.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Department of Microbiology and Immunology and Department of Medicine, University of Iowa, Iowa City, IA 52242, United States; The Iowa City VA Health Care System, Iowa City, IA 52246, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0734, United States.
| |
Collapse
|