1
|
Chen Y, Gilliland A, Liang Q, Han X, Yang H, Chan J, Lévesque D, Moon KM, Daneshgar P, Boisvert FM, Foster L, Zandberg WF, Bergstrom K, Yu HB, Vallance BA. Defining enteric bacterial pathogenesis using organoids: Citrobacter rodentium uses EspC, an atypical mucinolytic protease, to penetrate mouse colonic mucus. Gut Microbes 2025; 17:2494717. [PMID: 40323239 PMCID: PMC12054374 DOI: 10.1080/19490976.2025.2494717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses remain to be fully defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy appears to involve penetration of the colonic mucus barrier to reach the underlying epithelium. To better define these interactions, we grew colonoids under air-liquid interface (ALI) conditions, producing a thick mucus layer that mimicked in vivo mucus composition and glycosylation. C. rodentium's penetration of ALI-derived mucus was dramatically enhanced upon exposure to sialic acid, in concert with the secretion of two serine protease autotransporter of Enterobacteriaceae (SPATE) proteins, Pic and EspC. Despite Pic being a class II SPATE, and already recognized as a mucinase, it was EspC, a class I SPATE family member, that degraded ALI-derived mucus, despite class I SPATEs not previously shown to possess mucinase activity. Confirming this finding, E. coli DH5α carrying a plasmid that expresses C. rodentium-derived EspC was able to degrade the mucus. Moreover, recombinant EspC alone also displayed mucinolytic activity in a dose-dependent manner. Collectively, our results reveal the utility of ALI-derived mucus in modeling microbe-host interactions at the intestinal mucosal surface, as well as identify EspC as an atypical class I SPATE that shows significant mucinolytic activity toward ALI-derived mucus.
Collapse
Affiliation(s)
- Yan Chen
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Qiaochu Liang
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Xiao Han
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Jocelyn Chan
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Parandis Daneshgar
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | | | - Leonard Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Wesley F. Zandberg
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Kirk Bergstrom
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Hong B. Yu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas, USA
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Barbosa AMS, Carvalho MPS, Naves LDP, da Motta SAB, Chaves RF, Resende M, Lima DD, Hansen LHB, Cantarelli VDS. Performance and Health Parameters of Sows and Their Litters Using a Probiotic Supplement Composed of Bacillus subtilis 541 and Bacillus amyloliquefaciens 516. Animals (Basel) 2024; 14:3511. [PMID: 39682476 DOI: 10.3390/ani14233511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated the efficacy of using probiotics on the performance and health parameters of sows and their litters. A randomized block design was used with 584 sows and 292 replications, with two dietary treatments: the control group (basal diet without probiotics) and the probiotic group (basal diet supplemented with 400 g/ton of a probiotic composed of Bacillus subtilis (B. subtilis) 541 and Bacillus amyloliquefaciens (B. amyloliquefaciens) 516). Feed intake was evaluated throughout the experimental period. Bodyweight and backfat thickness of the sows were measured at the beginning and end of each phase. Piglets were weighed individually at birth and at weaning. Performance variables and physiological parameters were analyzed. Sows that received the probiotic supplement exhibited increased milk production (p = 0.05) and bodyweight loss, along with reduced postpartum cortisol levels (p < 0.05). The piglets from the probiotic treatment group had higher (p < 0.001) weaning weight and fewer (p < 0.05) crushing deaths, received fewer (p < 0.001) medications, and had lower (p < 0.05) excretion of pathogenic bacteria and lower (p < 0.05) excretion of fecal Lactobacillus sp. They also had higher (p < 0.05) concentration of fecal myeloperoxidase (MPO) close to weaning and improved ileal histomorphometric measures. In conclusion, supplementation with the probiotic product improves performance and promotes health parameters of the sows their litters.
Collapse
Affiliation(s)
- Aline Maria Silva Barbosa
- Faculty of Medicine Veterinary and Animal Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Maria Paula Souza Carvalho
- Faculty of Medicine Veterinary and Animal Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Luciana de Paula Naves
- Faculty of Medicine Veterinary and Animal Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | | | - Rhuan Filipe Chaves
- Animalnutri Ciência e Tecnologia, José de Santana, Centro, 520, Patos de Minas 38700-052, MG, Brazil
| | - Maíra Resende
- Animalnutri Ciência e Tecnologia, José de Santana, Centro, 520, Patos de Minas 38700-052, MG, Brazil
| | | | | | | |
Collapse
|
3
|
Guo J, Wang L, Han N, Yuan C, Yin Y, Wang T, Sun J, Jin P, Liu Y, Jia Z. People are an organic unity: Gut-lung axis and pneumonia. Heliyon 2024; 10:e27822. [PMID: 38515679 PMCID: PMC10955322 DOI: 10.1016/j.heliyon.2024.e27822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
People are an organic unity. Every organ of our body doesn't exist alone. They are a part of our body and have important connections with other tissues or organs. The gut-lung axis is a typical example. Here, we reviewed the current research progress of the gut-lung axis. The main cross-talk between the intestine and lungs was sorted out, i.e. the specific interaction content contained in the gut-lung axis. We determine a relatively clear concept for the gut-lung axis, that is, the gut-lung axis is a cross-talk that the gut and lungs interact with each other through microorganisms and the immune system to achieve bidirectional regulation. The gut and lungs communicate with each other mainly through the immune system and symbiotic microbes, and these two pathways influence each other. The portal vein system and mesenteric lymphatics are the primary communication channels between the intestine and lungs. We also summarized the effects of pneumonia, including Coronavirus disease 2019 (COVID-19) and Community-Acquired Pneumonia (CAP), on intestinal microbes and immune function through the gut-lung axis, and discussed the mechanism of this effect. Finally, we explored the value of intestinal microbes and the gut-lung axis in the treatment of pneumonia through the effect of intestinal microbes on pneumonia.
Collapse
Affiliation(s)
- Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Le Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Caiyun Yuan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Yujie Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Tongxing Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| |
Collapse
|
4
|
Fredua-Agyeman M, Stapleton P, Gaisford S. Growth assessment of mixed cultures of probiotics and common pathogens. Anaerobe 2023; 84:102790. [PMID: 39492420 DOI: 10.1016/j.anaerobe.2023.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
OBJECTIVES In this work, an isothermal microcalorimeter was applied to investigate the antipathogenic activity of three probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium bifidum) against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli using the probiotics in mixed culture with the pathogenic microorganisms. METHODS A microcalorimeter was used to monitor the growth of the microorganisms as pure cultures and as co-cultures at 37 °C. Relative growths of the probiotics and pathogenic species were determined after microcalorimetric measurements by serial dilution and plate incubation. Relative growth of mixed cultures of E. coli with L. acidophilus or B. lactis was also determined by traditional plate growth assay for 5.5 h. RESULTS The results showed growth profiles of the microorganisms that were characteristic and showed different lag and peak times for the species. The pathogenic species grew faster than the probiotic species. In the co-cultures, the growth profile of both pathogenic species and probiotics could be identified with the microcalorimeter. Although the pathogenic species grew faster, at the end of the assay, the results showed that the pathogenic species were inhibited in growth by the probiotics as no viable growth of the pathogenic species was detected whereas 107-108 CFU/mL of the probiotics were enumerated after the microcalorimetric assay. Using the traditional plate assay, the data confirmed co-growth of the probiotics and E. coli although cell numbers of E. coli were higher than the probiotics during 5.5 hours of co-culture incubation when both were inoculated at 106 CFU/mL. CONCLUSION The results demonstrate the antipathogenic effects of probiotics and highlights the potential of microcalorimetry in live mixed culture assays and its limitation.
Collapse
Affiliation(s)
- Mansa Fredua-Agyeman
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom; School of Pharmacy, University of Ghana, College of Health Sciences, LG43, Legon, Accra, Ghana.
| | - Paul Stapleton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|
5
|
Zhou G, Zhao Y, Ma Q, Li Q, Wang S, Shi H. Manipulation of host immune defenses by effector proteins delivered from multiple secretion systems of Salmonella and its application in vaccine research. Front Immunol 2023; 14:1152017. [PMID: 37081875 PMCID: PMC10112668 DOI: 10.3389/fimmu.2023.1152017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
6
|
Qu SS, Zhang Y, Ren JN, Yang SZ, Li X, Fan G, Pan SY. Effect of different ways of ingesting orange essential oil on blood immune index and intestinal microflora in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:380-388. [PMID: 35894931 DOI: 10.1002/jsfa.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/04/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Studies have found that the addition of plant essential oils to feed had a positive effect on intestinal microflora and immunity in mice. However, the effect of different ways of ingestion of orange essential oil on mice has seldom been reported. In the present study, we investigated the effects of ingestion of orange essential oil by gavage, sniffing and feeding on intestinal microflora and immunity in mice. RESULTS The results obtained showed that a low concentration of essential oil feeding significantly increased the spleen index of mice (P < 0.05). The effect of different ways of ingestion on the thymus index, immunoglobulin G and immunoglobulin M of mice was not significant (P > 0.05). High and medium concentrations of essential oil feeding increased the level of interleukin-2 in mice (P < 0.05). H+ K+ -ATPase activity was significantly increased in mice fed with gavage and different concentrations of essential oil feed compared to the control group (P < 0.05). The analysis of the results of the microflora in the cecum and colon of mice indicated that the medium concentration of essential oil feeding group and the sniffing group significantly changed the structure of the flora and increased the diversity of the intestinal microflora. All three essential oil ingestion methods increased the abundance of Bacteroidetes and Lactobacillus in the intestine of mice. CONCLUSION Compared with gavage and feeding, sniffing had a significant effect on immunoglobulins in mice. All the three ingestion methods could affect the intestinal microflora of mice and increase the abundance of Lactobacillus. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha-Sha Qu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shu-Zhen Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Shahhosseini M, Beshay PE, Akbari E, Roki N, Lucas CR, Avendano A, Song JW, Castro CE. Multiplexed Detection of Molecular Interactions with DNA Origami Engineered Cells in 3D Collagen Matrices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55307-55319. [PMID: 36509424 PMCID: PMC9785045 DOI: 10.1021/acsami.2c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
The interactions of cells with signaling molecules present in their local microenvironment maintain cell proliferation, differentiation, and spatial organization and mediate progression of diseases such as metabolic disorders and cancer. Real-time monitoring of the interactions between cells and their extracellular ligands in a three-dimensional (3D) microenvironment can inform detection and understanding of cell processes and the development of effective therapeutic agents. DNA origami technology allows for the design and fabrication of biocompatible and 3D functional nanodevices via molecular self-assembly for various applications including molecular sensing. Here, we report a robust method to monitor live cell interactions with molecules in their surrounding environment in a 3D tissue model using a microfluidic device. We used a DNA origami cell sensing platform (CSP) to detect two specific nucleic acid sequences on the membrane of B cells and dendritic cells. We further demonstrated real-time detection of biomolecules with the DNA sensing platform on the surface of dendritic cells in a 3D microfluidic tissue model. Our results establish the integration of live cells with membranes engineered with DNA nanodevices into microfluidic chips as a highly capable biosensor approach to investigate subcellular interactions in physiologically relevant 3D environments under controlled biomolecular transport.
Collapse
Affiliation(s)
- Melika Shahhosseini
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Peter E. Beshay
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Ehsan Akbari
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Niksa Roki
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Christopher R. Lucas
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Alex Avendano
- Department
of Biomedical Engineering, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan W. Song
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Hu W, Huang L, Zhou Z, Yin L, Tang J. Diallyl Disulfide (DADS) Ameliorates Intestinal Candida albicans Infection by Modulating the Gut microbiota and Metabolites and Providing Intestinal Protection in Mice. Front Cell Infect Microbiol 2022; 11:743454. [PMID: 35071031 PMCID: PMC8777027 DOI: 10.3389/fcimb.2021.743454] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Diallyl disulfide (DADS), a garlic extract also known as allicin, has been reported to have numerous biological activities, including anticancer, antifungal, and inflammation-inhibiting activities, among others. Although many studies have assessed whether DADS can treat Candida albicans infection in vitro, its in vivo function and the underlying mechanism are still not clear. Accumulated evidence has implicated the gut microbiota as an important factor in the colonization and invasion of C. albicans. Thus, this study aimed to identify the mechanism by which DADS ameliorates dextran sulfate (DSS)-induced intestinal C. albicans infection based on the systematic analysis of the gut microbiota and metabolomics in mice. Here, we determined the body weight, survival, colon length, histological score, and inflammatory cytokine levels in the serum and intestines of experimental mice. Fecal samples were collected for gut microbiota and metabolite analysis by 16S rRNA gene sequencing and LC-MS metabolomics, respectively. DADS significantly alleviated DSS-induced intestinal C. albicans infection and altered the gut microbial community structure and metabolic profile in the mice. The abundances of some pathogenic bacteria, such as Proteobacteria, Escherichia-Shigella, and Streptococcus, were notably decreased after treatment with DADS. In contrast, SCFA-producing bacteria, namely, Ruminiclostridium, Oscillibacter, and Ruminococcaceae_UCG-013, greatly increased in number. The perturbance of metabolites in infectious mice was improved by DADS, with increases in secondary bile acids, arachidonic acid, indoles and their derivatives, which were highly related to the multiple differentially altered metabolic pathways, namely, bile secretion, arachidonic acid metabolism, and tryptophan metabolism. This study indicated that DADS could modulate gut microbiota and metabolites and protect the gut barrier to alleviate DSS-induced intestinal C. albicans infection in mice. Moreover, this work might also provide novel insight into the treatment of C. albicans infection using DADS.
Collapse
Affiliation(s)
| | | | | | | | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Alterations in the gut microbiota and metabolic profiles coincide with intestinal damage in mice with a bloodborne Candida albicans infection. Microb Pathog 2021; 154:104826. [PMID: 33689815 DOI: 10.1016/j.micpath.2021.104826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022]
Abstract
Candida albicans is an opportunistic fungus that can threaten life especially in patients with candidemia. The morbidity and mortality of candidemia originating from a central venous catheter (CVC) and illicit intravenous drug use (IVDU) are increasing. However, the mechanism underlying the bloodborne C. albicans infection remains unclear. Herein, we evaluated the gut microbiome, metabolites and intestinal mucosa by constructing the mouse models with candidemia. Model mice were injected with C. albicans via tail vein. Control mice underwent sham procedures. We observed basic life characteristics, intestinal damage-related alterations using hematoxylin and eosin (H&E) staining, intestinal tight junction protein levels, and intestinal permeability in these mice. Fecal samples were analyzed by performing 16S rRNA gene sequencing of the microbiota and LC-MS metabolomics to reveal the perturbations in intestinal flora and metabolism exacerbating intestinal damage. Weight loss, a decreased survival rate, C. albicans infection spread, and colonic epithelial damage occurred in the model group. Furthermore, the intestinal flora abundance was reduced. Several probiotics, such as Lactobacillus, and butyrate-producing bacteria, including Roseburia, Lachnospiraceae, and Clostridia, were depleted, and some pathogenic bacteria, such as Escherichia-Shigella and Proteus, belonging to the Proteobacteria phylum, and the inflammation mediators Ruminococcus and Parabacteroides were enriched in model mice. Multiple differentially altered metabolic pathways were observed and mainly related to bile acid, arachidonic acid, bile secretion, and arachidonic acid metabolism. This study illustrated the effects of a bloodborne C. albicans on the intestinal microbiota, metabolites, and intestinal barrier, which may provide new insights into tests or treatments for candidemia originating from CVC or IVDU.
Collapse
|
11
|
Administration of direct-fed Bacillus cultures and refined functional carbohydrates to broiler chickens improves growth performance and promotes positive shifts in gastrointestinal microbiota. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Resende M, Chaves RF, Garcia RM, Barbosa JA, Marques AS, Rezende LR, Peconick AP, Garbossa CAP, Mesa D, Silva CC, Fascina VB, Dias FTF, Cantarelli VDS. Benzoic acid and essential oils modify the cecum microbiota composition in weaned piglets and improve growth performance in finishing pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Cao X, Tang L, Zeng Z, Wang B, Zhou Y, Wang Q, Zou P, Li W. Effects of Probiotics BaSC06 on Intestinal Digestion and Absorption, Antioxidant Capacity, Microbiota Composition, and Macrophage Polarization in Pigs for Fattening. Front Vet Sci 2020; 7:570593. [PMID: 33240950 PMCID: PMC7677304 DOI: 10.3389/fvets.2020.570593] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/29/2020] [Indexed: 01/24/2023] Open
Abstract
This study aimed to compare the effects of BaSC06 and antibiotics on growth, digestive functions, antioxidant capacity, macrophage polarization, and intestinal microbiota of pigs for fattening. A total of 117 pigs for fattening with similar weight and genetic basis were divided into 3 groups: Anti group (containing 40 g/t Kitasamycin in the diet), Anti+Ba group (containing 20 g/t Kitasamycin and 0.5 × 108 CFU/kg BaSC06 in the diet) and Ba group (containing 1 × 108 cfu/Kg BaSC06 in the diet without any antibiotics). Each treatment was performed in three replicates with 13 pigs per replicate. Results showed that BaSC06 replacement significantly improved the ADG (P < 0.05), intestinal digestion and absorption function by increasing the activity of intestinal digestive enzymes and the expression of glucose transporters SGLT1 (P < 0.05) and small peptide transporters PEPT1 (P < 0.05). Besides, BaSC06 supplementation enhanced intestinal and body antioxidant capacity by activating the Nrf2/Keap1 antioxidant signaling pathway due to the increased expression of p-Nrf2 (P < 0.05). Notably, BaSC06 alleviated intestinal inflammation by inhibiting the production of pro-inflammatory cytokines, IL-8, IL-6, and MCP1 (P < 0.05), and simultaneously increasing the expression of M1 macrophage marker protein iNOS (P < 0.05) and M2 macrophage marker protein Arg (P < 0.05) in the intestinal mucosa. Moreover, BaSC06 promoted the polarization of macrophages to M2 phenotype by stimulating the STAT3 signaling pathway. It was also noted that BaSC06 improved microbiota composition by enhancing the proportion of Firmicutes, and reducing that of Bacteroidetes and Proteobacteria. Taken together, our results indicate that dietary supplementation of BaSC06 in pigs for fattening improves the growth, mucosal structure, antioxidative capacity, immune functions (including increasing M1 and M2 polarization of macrophage) and composition of intestinal microbiota, which is much better than antibiotics, suggesting that it is an effective alternative to antibiotics in the preparation of pig feed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, and Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
14
|
Beukema M, Faas MM, de Vos P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp Mol Med 2020; 52:1364-1376. [PMID: 32908213 PMCID: PMC8080816 DOI: 10.1038/s12276-020-0449-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
Pectins are dietary fibers with different structural characteristics. Specific pectin structures can influence the gastrointestinal immune barrier by directly interacting with immune cells or by impacting the intestinal microbiota. The impact of pectin strongly depends on the specific structural characteristics of pectin; for example, the degree of methyl-esterification, acetylation and rhamnogalacturonan I or rhamnogalacturonan II neutral side chains. Here, we review the interactions of specific pectin structures with the gastrointestinal immune barrier. The effects of pectin include strengthening the mucus layer, enhancing epithelial integrity, and activating or inhibiting dendritic cell and macrophage responses. The direct interaction of pectins with the gastrointestinal immune barrier may be governed through pattern recognition receptors, such as Toll-like receptors 2 and 4 or Galectin-3. In addition, specific pectins can stimulate the diversity and abundance of beneficial microbial communities. Furthermore, the gastrointestinal immune barrier may be enhanced by short-chain fatty acids. Moreover, pectins can enhance the intestinal immune barrier by favoring the adhesion of commensal bacteria and inhibiting the adhesion of pathogens to epithelial cells. Current data illustrate that pectin may be a powerful dietary fiber to manage and prevent several inflammatory conditions, but additional human studies with pectin molecules with well-defined structures are urgently needed.
Collapse
Affiliation(s)
- Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
15
|
Abstract
The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA.
| | - Annah Lee
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA; Department of Poultry Science, Texas A&M University, College Station, TX, 77845 USA
| | - Elizabeth Santin
- Universidade Federal Do Paraná, Department of Veterinary Medicine, Curitiba, 80035-050 Brazil
| |
Collapse
|
16
|
Bosi G, DePasquale JA, Rossetti E, Dezfuli BS. Differential mucins secretion by intestinal mucous cells of Chelon ramada in response to an enteric helminth Neoechinorhynchus agilis (Acanthocephala). Acta Histochem 2020; 122:151488. [PMID: 31862187 DOI: 10.1016/j.acthis.2019.151488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023]
Abstract
Intestinal mucous cells produce and secrete mucins which hydrate, lubricate and protect the intestinal epithelium from mechanical injuries due to the transition of digesta or action of pathogens. Intestinal mucous cells are considered elements of the innate immune system as they secrete lectins, toxins, immunoglobulins, and anti-microbial peptides. Acid mucins can surround and eliminate many pathogenic microorganisms. We performed a quantitative analysis of the density and mucus composition of different intestinal mucous cell types from mullet (Chelon ramada) that were infected solely with Neoechinorhynchus agilis. Most N. agilis were encountered in the middle region of the intestine. Mucous cell types were identified with Alcian Blue (pH2.5) and Periodic acid-Schiff (PAS) histochemistry, and by staining with a panel of seven lectins. Mucus enriched for high viscosity acid mucins was accumulated near points of worm attachment. Parasites were surrounded by an adherent mucus layer or blanket. Ultrastructural examination showed intestinal mucous cells typically possessed an elongated, basally positioned nucleus and numerous electron dense and lucent vesicles in the cytoplasm. The results show both an increase in mucus production and changes in mucin composition in infected mullet in comparison with uninfected conspecifics.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134, Milan, Italy.
| | | | - Emanuele Rossetti
- Consortium of Fishing Cooperatives of the Polesine, Scardovari, St. Borsa 11, 45018 Rovigo, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
17
|
|
18
|
Wang B, Li J, Wang S, Hao Y, Zhao X, Chen J. Lactobacillus plantarum ameliorates tumour necrosis factor-induced bacterial translocation in Caco-2 cells by regulation of TLR4 expression. J Med Microbiol 2019; 67:982-991. [PMID: 29877788 DOI: 10.1099/jmm.0.000762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose. Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis. In inflammatory conditions, commensal bacteria exploit transcytotic pathways to cross the intestinal epithelium in a TLR4-dependent manner. The aim of this study was to test the hypothesis that Lactobacillus plantarum ameliorates tumour necrosis factor-induced bacterial translocation by regulation of Toll-like receptor-4 expression.Methodology. L. plantarum strains were investigated to determine their capacity to inhibit the initial adhesion of Escherichia coli B5 to Caco-2 cells. The inhibitory effects of L. plantarum on TNF-α-induced E. coli B5 translocation across Caco-2 cells were studied. Barrier function and integrity were simultaneously assessed by transepithelial electrical resistance, HRP permeability, LDH release and distribution of tight junctional proteins. Expression of TLR4 was assessed by RT-PCR.Results/Key findings. Pretreatment of monolayers with L. plantarum L2 led to a significant decrease in E. coli B5 adhesion and cell internalization (P<0.01). Exposure to TNF-α for six hours caused a significant increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability and disruption of tight junction proteins. Manipulations that induced bacterial translocation were associated with a marked increase in TLR4 mRNA expression and IL-8 secretion. L. plantarum L2 significantly abrogated TNF-α-induced bacterial translocation of E. coli B5, and also downregulated expression of TLR4 and IL-8 in intestinal epithelial cells.Conclusion. Live L. plantarum L2 can inhibit TNF-α-induced transcellular bacterial translocation via regulation of TLR4 expression.
Collapse
Affiliation(s)
- Bin Wang
- Jiangsu Academy of Science and Technology for Inspection and Quarantine, Nanjing, Jiangsu 210001, PR China.,Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Jingjing Li
- Department of Ultrasound, Nanjing Hospital of Armed Police Force Corps, Nanjing, Jiangsu 210028, PR China
| | - Shuiming Wang
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Yu Hao
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Xiaoyan Zhao
- Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 211106, PR China
| | - Jun Chen
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu 210002, PR China
| |
Collapse
|
19
|
Hernández I, Vecchi D. The Interactive Construction of Biological Individuality Through Biotic Entrenchment. Front Psychol 2019; 10:2578. [PMID: 31849738 PMCID: PMC6900962 DOI: 10.3389/fpsyg.2019.02578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
In this article, we propose to critically evaluate whether a closure of constraints interpretation can make sense of biotic entrenchment, the process of assimilation and functional integration of environmental elements of biotic origin in development and, eventually, evolution. In order to achieve the aims of our analysis, we shall focus on multi-species partnerships, biological systems characterised by ontogenetic dependencies of various strengths between the partners. Our main research question is to tackle the foundational problem posed by the dynamics of biotic entrenchment characterising multi-species partnerships for the closure of constraints interpretation, namely, to understand for which biological system (i.e., the partners taken individually or the partnership as the encompassing system) closure of constraints is realised. Through the analysis of significant illustrative examples, we shall progressively refine the closure thesis and articulate an answer to our main research question. We shall also propose that biotic entrenchment provides a chief example of the phenomenon of interactive and horizontal construction of biological individuality and inter-identity.
Collapse
Affiliation(s)
- Isaac Hernández
- Laboratoire de Recherche ERRAPHIS, Département de Philosophie, Université Toulouse Jean Jaurès, Toulouse, France
| | - Davide Vecchi
- Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Aggeletopoulou I, Konstantakis C, Assimakopoulos SF, Triantos C. The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microb Pathog 2019; 137:103774. [PMID: 31586663 DOI: 10.1016/j.micpath.2019.103774] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
The human intestinal microbiota coevolves with its host through a symbiotic relationship and exerts great influence on substantial functions including aspects of physiology, metabolism, nutrition and regulation of immune responses leading to physiological homeostasis. Over the last years, several studies have been conducted toward the assessment of the host-gut microbiota interaction, aiming to elucidate the mechanisms underlying the pathogenesis of several diseases. A defect on the microbiota-host crosstalk and the concomitant dysregulation of immune responses combined with genetic and environmental factors have been implicated in the pathogenesis of inflammatory bowel diseases (IBD). To this end, novel therapeutic options based on the gut microbiota modulation have been an area of extensive research interest. In this review we present the recent findings on the association of dysbiosis with IBD pathogenesis, we focus on the role of gut microbiota on the treatment of IBD and discuss the novel and currently available therapeutic strategies in manipulating the composition and function of gut microbiota in IBD patients. Applicable and emerging microbiota treatment modalities, such as the use of antibiotics, prebiotics, probiotics, postbiotics, synbiotics and fecal microbiota transplantation (FMT) constitute promising therapeutic options. However, the therapeutic potential of the aforementioned approaches is a topic of investigation and further studies are needed to elucidate their position in the present treatment algorithms of IBD.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, 26504, Greece.
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, 26504, Greece.
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, 26504, Greece.
| |
Collapse
|
21
|
Wang F, Zhang J, Zhu B, Wang J, Wang Q, Zheng M, Wen J, Li Q, Zhao G. Transcriptome Analysis of the Cecal Tonsil of Jingxing Yellow Chickens Revealed the Mechanism of Differential Resistance to Salmonella. Genes (Basel) 2019; 10:genes10120979. [PMID: 31795199 PMCID: PMC6947646 DOI: 10.3390/genes10120979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
Salmonella is one of the most common food-borne pathogens. It can be transmitted between chickens, as well as to people by contaminated poultry products. In our study, we distinguished chickens with different resistances mainly based on bacterial loads. We compared the cecal tonsil transcriptomes between the susceptible and resistant chickens after Salmonella infection, aiming to identify the crucial genes participating in the antibacterial activity in the cecal tonsil. A total of 3214 differentially expressed genes (DEGs), including 2092 upregulated and 1122 downregulated genes, were identified between the two groups (fold change ≥ 2.0, padj < 0.05). Many DEGs were mainly involved in the regulation of two biological processes: crosstalk between the cecal tonsil epithelium and pathogenic bacteria, such as focal adhesion, extracellular-matrix-receptor interaction, and regulation of the actin cytoskeleton and host immune response including the cytokine-receptor interaction. In particular, the challenged resistant birds exhibited strong activation of the intestinal immune network for IgA production, which perhaps contributed to the resistance to Salmonella infection. These findings give insight into the mRNA profile of the cecal tonsil between the two groups after initial Salmonella stimulation, which may extend the known complexity of molecular mechanisms in chicken immune response to Salmonella.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Jin Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Jie Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Qiao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
- Correspondence:
| |
Collapse
|
22
|
Li J, Xun K, Pei K, Liu X, Peng X, Du Y, Qiu L, Tan W. Cell-Membrane-Anchored DNA Nanoplatform for Programming Cellular Interactions. J Am Chem Soc 2019; 141:18013-18020. [PMID: 31626550 DOI: 10.1021/jacs.9b04725] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-cell interactions are mediated through compositions expressed on the membrane. Engineering the cell surface to display functional modules with high biocompatibility, high controllability, and high stability would offer great opportunities for studying and manipulating these intercellular reactions. However, it remains a technical challenge because of the complex and dynamic nature of the cell membrane. Herein, by using three-dimensional (3D) amphiphilic pyramidal DNA as the scaffold, we develop a biocompatible, effective, and versatile strategy for engineering the cell surface with DNA probes. Compared with linear DNA constructs, these pyramidal probes show higher (nearly 100-fold) membrane-anchoring stability and higher (about 2.5-fold) target accessibility. They enable specific, effective, and tunable connections between cells. Meanwhile, our results indicate that connecting cells in close proximity are critical to initiate intercellular communication. By combining high programmability and high diversity of DNA probes, this strategy is expected to provide a powerful and designable membrane-anchored nanoplatform for studying multicellular communication networks.
Collapse
Affiliation(s)
- Jin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Kanyu Xun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Ke Pei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Xiaojing Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Xueyu Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Yulin Du
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, University Health Cancer Center, UF Genetics Institute and McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
23
|
Microbiological evaluation of 10 commercial probiotic products available in Poland. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study was to analyze the quality of 10 commonly available commercial probiotic products used in Poland. These items were tested for the total viable bacterial count, and for identifying the isolated strains. This was performed using the Polymerase Chain Reaction method. The results showed that five of the tested products had not the applicable number of viable bacteria declared by manufacturer. Moreover, not all declared probiotic strains were found in three of the tested products during analyses. It is clear that a regular control of probiotic products needs be introduced that can guarantee its beneficial properties.
Collapse
|
24
|
Costa RJS, Gaskell SK, McCubbin AJ, Snipe RMJ. Exertional-heat stress-associated gastrointestinal perturbations during Olympic sports: Management strategies for athletes preparing and competing in the 2020 Tokyo Olympic Games. Temperature (Austin) 2019; 7:58-88. [PMID: 32166105 PMCID: PMC7053925 DOI: 10.1080/23328940.2019.1597676] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Exercise-induced gastrointestinal syndrome (EIGS) is a common characteristic of exercise. The causes appear to be multifactorial in origin, but stem primarily from splanchnic hypoperfusion and increased sympathetic drive. These primary causes can lead to secondary outcomes that include increased intestinal epithelial injury and gastrointestinal hyperpermeability, systemic endotoxemia, and responsive cytokinemia, and impaired gastrointestinal function (i.e. transit, digestion, and absorption). Impaired gastrointestinal integrity and functional responses may predispose individuals, engaged in strenuous exercise, to gastrointestinal symptoms (GIS), and health complications of clinical significance, both of which may have exercise performance implications. There is a growing body of evidence indicating heat exposure during exercise (i.e. exertional-heat stress) can substantially exacerbate these gastrointestinal perturbations, proportionally to the magnitude of exertional-heat stress, which is of major concern for athletes preparing for and competing in the upcoming 2020 Tokyo Olympic Games. To date, various hydration and nutritional strategies have been explored to prevent or ameliorate exertional-heat stress associated gastrointestinal perturbations. The aims of the current review are to comprehensively explore the impact of exertional-heat stress on markers of EIGS, examine the evidence for the prevention and (or) management of EIGS in relation to exertional-heat stress, and establish best-practice nutritional recommendations for counteracting EIGS and associated GIS in athletes preparing for and competing in Tokyo 2020.
Collapse
Affiliation(s)
- Ricardo J S Costa
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Stephanie K Gaskell
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Alan J McCubbin
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Rhiannon M J Snipe
- Deakin University, Centre for Sport Research, School of Exercise and Nutrition Science, Burwood, Victoria, Australia
| |
Collapse
|
25
|
Dias C, Ribeiro M, Correia-Branco A, Domínguez-Perles R, Martel F, Saavedra MJ, Simões M. Virulence, attachment and invasion of Caco-2 cells by multidrug-resistant bacteria isolated from wild animals. Microb Pathog 2019; 128:230-235. [DOI: 10.1016/j.micpath.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
|
26
|
Yang J, Qian K, Wang C, Wu Y. Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-environment for Pathogen Defense. Probiotics Antimicrob Proteins 2019; 10:243-250. [PMID: 28361445 DOI: 10.1007/s12602-017-9273-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gastrointestinal tract of pigs is densely populated with microorganisms that closely interact with the host and with ingested feed. Gut microbiota benefits the host by providing nutrients from dietary substrates and modulating the development and function of the digestive and immune systems. An optimized gastrointestinal microbiome is crucial for pigs' health, and establishment of the microbiome in piglets is especially important for growth and disease resistance. However, the microbiome in the gastrointestinal tract of piglets is immature and easily influenced by the environment. Supplementing the microbiome of piglets with probiotic bacteria such as Lactobacillus could help create an optimized microbiome by improving the abundance and number of lactobacilli and other indigenous probiotic bacteria. Dominant indigenous probiotic bacteria could improve piglets' growth and immunity through certain cascade signal transduction pathways. The piglet body provides a permissive habitat and nutrients for bacterial colonization and growth. In return, probiotic bacteria produce prebiotics such as short-chain fatty acids and bacteriocins that benefit piglets by enhancing their growth and reducing their risk of enteric infection by pathogens. A comprehensive understanding of the interactions between piglets and members of their gut microbiota will help develop new dietary interventions that can enhance piglets' growth, protect piglets from enteric diseases caused by pathogenic bacteria, and maximize host feed utilization.
Collapse
Affiliation(s)
- Jiajun Yang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui province, People's Republic of China
| | - Kun Qian
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui province, People's Republic of China.
| | - Chonglong Wang
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui province, People's Republic of China
| | - Yijing Wu
- The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, No. 40 Nongke South Road, Hefei, 230031, Anhui province, People's Republic of China
| |
Collapse
|
27
|
Dong X, Xu Q, Wang C, Zou X, Lu J. Supplemental-coated zinc oxide relieves diarrhoea by decreasing intestinal permeability in weanling pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1645673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xinyang Dong
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Qianqian Xu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Chao Wang
- College of Animal Sciences & Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiaoting Zou
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Jianjun Lu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
28
|
Askelson TE, Flores CA, Dunn-Horrocks SL, Dersjant-Li Y, Gibbs K, Awati A, Lee JT, Duong T. Effects of direct-fed microorganisms and enzyme blend co-administration on intestinal bacteria in broilers fed diets with or without antibiotics. Poult Sci 2018; 97:54-63. [PMID: 29077888 DOI: 10.3382/ps/pex270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023] Open
Abstract
Direct-fed microorganisms (DFM) and exogenous enzymes have been demonstrated to improve growth performance in poultry and are potentially important alternatives to antibiotic growth promoters (AGP). We investigated the administration of a feed additive composed of a DFM product containing spores of 3 Bacillus amyloliquefaciens strains and an enzyme blend of endo-xylanase, α-amylase, and serine-protease in diets with or without sub-therapeutic antibiotics in broiler chickens over a 42-d growth period. Evaluation of growth performance determined feed efficiency of broiler chickens which were administered the feed additive was comparable to those fed a diet containing AGPs. Characterization of the gastrointestinal microbiota using culture-dependent methods determined administration of the feed additive increased counts of total Lactic Acid Bacteria (LAB) relative to a negative control and reduced Clostridium perfringens to levels similar to antibiotic administration. Additionally, greater counts of total LAB were observed to be significantly associated with reduced feed conversion ratio, whereas greater counts of C. perfringens were observed to be significantly associated with increased feed conversion ratio. Our results suggest the co-administration of DFMs and exogenous enzymes may be an important component of antibiotic free poultry production programs and LAB and C. perfringens may be important targets in the development of alternatives to AGPs in poultry production.
Collapse
Affiliation(s)
- T E Askelson
- Department of Poultry Science, Texas A&M University
| | - C A Flores
- Department of Poultry Science, Texas A&M University
| | | | - Y Dersjant-Li
- Danisco Animal Nutrition, DuPont Industrial Biosciences, Marlborough, UK
| | - K Gibbs
- Danisco Animal Nutrition, DuPont Industrial Biosciences, Marlborough, UK
| | - A Awati
- Danisco Animal Nutrition, DuPont Industrial Biosciences, Marlborough, UK
| | - J T Lee
- Department of Poultry Science, Texas A&M University
| | - T Duong
- Department of Poultry Science, Texas A&M University
| |
Collapse
|
29
|
Jayashree S, Karthikeyan R, Nithyalakshmi S, Ranjani J, Gunasekaran P, Rajendhran J. Anti-adhesion Property of the Potential Probiotic Strain Lactobacillus fermentum 8711 Against Methicillin-Resistant Staphylococcus aureus (MRSA). Front Microbiol 2018; 9:411. [PMID: 29568290 PMCID: PMC5852077 DOI: 10.3389/fmicb.2018.00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen and one of the leading causes of nosocomial infection worldwide. Probiotic bacteria play a significant role in preventive or therapeutic interventions of gastrointestinal infections in human as well as animals. In this study, we have investigated the adhesion property of the probiotic strain Lactobacillus fermentum MTCC 8711 and its ability to prevent the adhesion of MRSA to human colon adenocarcinoma cells, Caco-2. We have shown that L. fermentum could efficiently adhere to the Caco-2 cells. Also, we have shown that L. fermentum significantly reduced MRSA adhesion to Caco-2 cells. Three types of experiments were performed to assess the anti-adhesion property of L. fermentum against MRSA. Inhibition (Caco-2 cells were pre-treated with L. fermentum, and subsequently MRSA was added), competition (both L. fermentum and MRSA were added to Caco-2 cells simultaneously), and displacement or exclusion (Caco-2 cells were pre-treated with MRSA, and subsequently L. fermentum was added). In all three experiments, adhesion of MRSA was significantly reduced. Interestingly, L. fermentum could efficiently displace the adhered MRSA, and hence this probiotic can be used for therapeutic applications also. In cytotoxicity assay, we found that L. fermentum per se was not cytotoxic, and also significantly reduced the MRSA-induced cytotoxicity. The protective effect occurred without affecting Caco-2 cell morphology and viability.
Collapse
Affiliation(s)
| | - Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Sampath Nithyalakshmi
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Jothi Ranjani
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
30
|
Owrangi B, Masters N, Kuballa A, O'Dea C, Vollmerhausen TL, Katouli M. Invasion and translocation of uropathogenic Escherichia coli isolated from urosepsis and patients with community-acquired urinary tract infection. Eur J Clin Microbiol Infect Dis 2018; 37:833-839. [PMID: 29340897 DOI: 10.1007/s10096-017-3176-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) strains are found in high numbers in the gut of patients with urinary tract infections (UTIs). We hypothesised that in hospitalised patients, UPEC strains might translocate from the gut to the blood stream and that this could be due to the presence of virulence genes (VGs) that are not commonly found in UPEC strains that cause UTI only. To test this, E. coli strains representing 75 dominant clonal groups of UPEC isolated from the blood of hospitalised patients with UTI (urosepsis) (n = 22), hospital-acquired (HA) UTI without blood infection (n = 24) and strains isolated from patients with community-acquired (CA)-UTIs (n = 29) were tested for their adhesion to, invasion and translocation through Caco-2 cells, in addition to the presence of 34 VGs associated with UPEC. Although there were no differences in the rate and degree of translocation among the groups, urosepsis and HA-UTI strains showed significantly higher abilities to adhere (P = 0.0095 and P < 0.0001 respectively) and invade Caco-2 cells than CA-UTI isolates (P = 0.0044, P = 0.0048 respectively). Urosepsis strains also carried significantly more VGs than strains isolated from patients with only UTI and/or CA-UTI isolates. In contrast, the antigen 43 allele RS218 was found more commonly among CA-UTI strains than in the other two groups. These data indicate that UPEC strains, irrespective of their source, are capable of translocating through gut epithelium. However, urosepsis and HA-UTI strains have a much better ability to interact with gut epithelia and have a greater virulence potential than CA-UPEC, which allows them to cause blood infection.
Collapse
Affiliation(s)
- B Owrangi
- Inflammation and Healing Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - N Masters
- Inflammation and Healing Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - A Kuballa
- Inflammation and Healing Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - C O'Dea
- Inflammation and Healing Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - T L Vollmerhausen
- Inflammation and Healing Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.,Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - M Katouli
- Inflammation and Healing Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
| |
Collapse
|
31
|
Gong L, Huang Q, Fu A, Wu Y, Li Y, Xu X, Huang Y, Yu D, Li W. Spores of two probiotic Bacillus species enhance cellular immunity in BALB/C mice. Can J Microbiol 2018; 64:41-48. [DOI: 10.1139/cjm-2017-0373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies found that Bacillus subtilis BS02 and B. subtilis subsp. natto BS04 isolated in our laboratory could activate the immune response of murine macrophages in vitro. This study aims to investigate the effects of dietary supplementation with Bacillus species spores on the systemic cellular immune response in BALB/C mice. Results showed that both B. subtilis BS02 and B. subtilis natto BS04 enhanced the phagocytic function of the mononuclear phagocyte system (MPS) and the cytotoxicity of natural killer (NK) cells. In addition, B. subtilis BS02 could increase the respiratory burst activity of blood phagocytes. Furthermore, B. subtilis BS02 and B. subtilis natto BS04 increased the percentage of gamma-interferon-producing CD4+ cells and CD8+ T-cells, but only BS04 increased the percentage of CD3+ cells and CD3+ CD4+ cells in splenocytes. However, there were no effects on other subsets of splenic lymphocytes and mitogen-induced splenic lymphocyte proliferation. All data suggested that oral administration of B. subtilis BS02 or B. subtilis natto BS04 could significantly enhance cellular immunity in BALB/C mice by increasing phagocytic activity of MPS and cytotoxic activity of NK cells in a strain-specific manner.
Collapse
Affiliation(s)
- Li Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Qin Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
- College of Life Sciences and Ecology, Hainan Tropical Ocean University, Hainan Province, 572022 Sanya, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - YanPing Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Yali Li
- School of Life Sciences, Hunan Normal University, 410006 Changsha, China
| | - Xiaogang Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Yi Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
- College of Animal Science and Technology, Guangxi University, 530005 Nanning, China
| | - Dongyou Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
32
|
Jazayeri O, Daghighi SM, Rezaee F. Lifestyle alters GUT-bacteria function: Linking immune response and host. Best Pract Res Clin Gastroenterol 2017; 31:625-635. [PMID: 29566905 DOI: 10.1016/j.bpg.2017.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023]
Abstract
Microbiota in human is a "mixture society" of different species (i.e. bacteria, viruses, funguses) populations with a different way of relationship classification to Human. Human GUT serves as the host of the majority of different bacterial populations (GUT flora, more than 500 species), which are with us ("from the beginning") in an innate manner known as the commensal (no harm to each other) and symbiotic (mutual benefit) relationship. A homeostatic balance of host-bacteria relationship is very important and vital for a normal health process. However, this beneficial relationship and delicate homeostatic state can be disrupted by the imbalance of microbiome-composition of gut microbiota, expressing a pathogenic state. A strict homeostatic balance of microbiome-composition strongly depends on several factors; 1- lifestyle, 2- geography, 3- ethnicities, 4- "mom" as prime of the type of bacterial colonization in infant and 5- the disease. With such diversity in individuals combined with huge number of different bacterial species and their interactions, it is wise to perform an in-depth systems biology (e.g. genomics, proteomics, glycomics, and etcetera) analysis of personalized microbiome. Only in this way, we are able to generate a map of complete GUT microbiota and, in turn, to determine its interaction with host and intra-interaction with pathogenic bacteria. A specific microbiome analysis provides us the knowledge to decipher the nature of interactions between the GUT microbiota and the host and its response to the invading bacteria in a pathogenic state. The GUT-bacteria composition is independent of geography and ethnicity but lifestyle well affects GUT-bacteria composition and function. Microbiome knowledge obtained by systems biology also helps us to change the behavior of GUT microbiota in response to the pathogenic microbes as protection. Functional microbiome changes in response to environmental factors will be discussed in this review.
Collapse
Affiliation(s)
- Omid Jazayeri
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - S Mojtaba Daghighi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
Hema M, Vasudevan S, Balamurugan P, Adline Princy S. Modulating the Global Response Regulator, LuxO of V. cholerae Quorum Sensing System Using a Pyrazine Dicarboxylic Acid Derivative (PDCA py): An Antivirulence Approach. Front Cell Infect Microbiol 2017; 7:441. [PMID: 29075619 PMCID: PMC5643417 DOI: 10.3389/fcimb.2017.00441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022] Open
Abstract
Vibrio cholerae is a Gram-negative pathogen which causes acute diarrhoeal disease, cholera by the expression of virulence genes through quorum sensing (QS) mechanism. The QS circuit of V. cholerae is controlled by the global quorum regulator, LuxO, which at low cell density (LCD) state produces major virulence factors such as, toxin co-regulated pilus (TCP) and cholera toxin (CT) to mediate infection. On the contrary, at the high cell density (HCD) state the virulent genes are downregulated and the vibrios are detached from the host intestinal epithelial cells, promoted by HapA protease. Hence, targeting the global regulator LuxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. In our earlier studies, LuxO targeted ligand, 2,3 pyrazine dicarboxylic acid (PDCA) and its derivatives having desired pharmacophore properties were chemically synthesized and were shown to have biofilm inhibition as well as synergistic activity with the conventionally used antibiotics. In the present study, the QS modulatory effect of the PDCA derivative with pyrrolidine moiety designated as PDCApy against the V. cholerae virulence gene expression was analyzed at various growth phases. The data significantly showed a several fold reduction in the expression of the genes, tcp and ct whereas the expression of hapR was upregulated at the LCD state. In addition, PDCApy reduced the adhesion and invasion of the vibrios onto the INT407 intestinal cell lines. Collectively, our data suggest that PDCApy could be a potential QS modulator (QSM) for the antivirulence therapeutic approach.
Collapse
Affiliation(s)
- M Hema
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - P Balamurugan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| |
Collapse
|
34
|
Yang X, Liu L, Chen J, Xiao A. Response of Intestinal Bacterial Flora to the Long-term Feeding of Aflatoxin B1 (AFB1) in Mice. Toxins (Basel) 2017; 9:toxins9100317. [PMID: 29023377 PMCID: PMC5666364 DOI: 10.3390/toxins9100317] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022] Open
Abstract
In order to investigate the influence of aflatoxin B1 (AFB1) on intestinal bacterial flora, 24 Kunming mice (KM mice) were randomly placed into four groups, which were labeled as control, low-dose, medium-dose, and high-dose groups. They were fed intragastrically with 0.4 mL of 0 mg/L, 2.5 mg/L, 4 mg/L, or 10 mg/L of AFB1 solutions, twice a day for 2 months. The hypervariable region V3 + V4 on 16S rDNA of intestinal bacterial flora was sequenced by the use of a high-flux sequencing system on a Miseq Illumina platform; then, the obtained sequences were analyzed. The results showed that, when compared with the control group, both genera and phyla of intestinal bacteria in the three treatment groups decreased. About one third of the total genera and one half of the total phyla remained in the high-dose group. The dominant flora were Lactobacillus and Bacteroides in all groups. There were significant differences in the relative abundance of intestinal bacterial flora among groups. Most bacteria decreased as a whole from the control to the high-dose groups, but several beneficial and pathogenic bacterial species increased significantly with increasing dose of AFB1. Thus, the conclusion was that intragastric feeding with 2.5~10 mg/mL AFB1 for 2 months could decrease the majority of intestinal bacterial flora and induce the proliferation of some intestinal bacteria flora.
Collapse
Affiliation(s)
- Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Jing Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
35
|
Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major). PLoS One 2017; 12:e0179945. [PMID: 28662106 PMCID: PMC5491070 DOI: 10.1371/journal.pone.0179945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract of vertebrates is inhabited by diverse bacterial communities that induce marked effects on the host physiology and health status. The composition of the gastrointestinal microbiota is characterized by pronounced taxonomic and functional variability among different regions of the vertebrate gastrointestinal tract. Despite the relatively solid knowledge on the among-region variations of the gastrointestinal microbiota in model mammalian species, there are only a few studies concerning among-region variations of the gastrointestinal microbiota in free-living non-mammalian vertebrate taxa. We used Illumina MiSeq sequencing of bacterial 16S rRNA amplicons to compare the diversity as well as taxonomic composition of bacterial communities in proximal vs. distal parts of the gastrointestinal tract (represented by oral swabs and faecal samples, respectively) in a wild passerine bird, the great tit (Parus major). The diversity of the oral microbiota was significantly higher compared to the faecal microbiota, whereas interindividual variation was higher in faecal than in oral samples. We also observed a pronounced difference in taxonomic content between the oral and faecal microbiota. Bacteria belonging to the phyla Proteobacteria, Firmicutes and Actinobacteria typically dominated in both oral and faecal samples. A high abundance of bacteria belonging to Tenericutes was observed only in faecal samples. Surprisingly, we found only a slight correlation between the faecal and oral microbiota at the within-individual level, suggesting that the microbial composition in these body sites is shaped by independent regulatory processes. Given the independence of these two communities at the individual level, we propose that simultaneous sampling of the faecal and oral microbiota will extend our understanding of host vs. microbiota interactions in wild populations.
Collapse
|
36
|
Wang B, Chen J, Wang S, Zhao X, Lu G, Tang X. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells. Benef Microbes 2017; 8:497-505. [PMID: 28441885 DOI: 10.3920/bm2016.0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis and multiple organ dysfunction syndromes. Inflammatory cytokines increase paracellular permeability that allows increased luminal bacteria to translocate across mucosal epithelium and further deteriorate the gut barrier. In order to reduce this risk, the prophylactic use of probiotics has been recently addressed. In this paper, we investigate the protective role toward tumour necrosis factor (TNF)-α induced non-pathogenic Escherichia coli translocation across Caco-2 monolayers of Lactobacillus strains. According to our experimental data, Lactobacillus plantarum L9 and Lactobacillus acidophilus LA have good capacities to adhere to Caco-2 cells. Addition of L. plantarum L9 and L. acidophilus LA to the enterocyte monolayer surface result in significant inhibition of E. coli adhesion and cell internalisation. However, L. plantarum L9 and L. acidophilus LA did not inhibit the growth of the non-pathogenic E. coli B5 after 24 h incubation. Exposure to TNF-α for 6 h caused a dramatic increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability. Pretreatment with L. plantarum L9 prevent TNF-α induced transcellular bacterial translocation and IL-8 production in Caco-2 cells. L. plantarum L9 also did not affect the integrity of the monolayers, as indicated by lactate dehydrogenase release, horseradish peroxidase permeability, and transepithelial electrical resistance. L. plantarum L9 showed the potential to protect enterocytes from an acute inflammatory response and therefore could be good potential prophylactic agents in counteracting bacterial translocation.
Collapse
Affiliation(s)
- B Wang
- 1 Jiangsu Academy of Science and Technology for Inspection and Quarantine, Nanjing, Jiangsu, 210001, China P.R.,2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - J Chen
- 3 Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, 210002, China P.R
| | - S Wang
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - X Zhao
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - G Lu
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| | - X Tang
- 2 Department of Travel Health, Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu, 211106, China P.R
| |
Collapse
|
37
|
Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Lazarenko L, Babenko L, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Bubnov R, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Demchenko O, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Zotsenko V, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Boyko N, Uzhhorod State University of Ministry of Education and Science of Ukraine, Spivak M, Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, LCL Diaprof. Immunobiotics are the Novel Biotech Drugs with Antibacterial and Immunomodulatory Properties. MIKROBIOLOHICHNYI ZHURNAL 2017; 79:66-75. [DOI: 10.15407/microbiolj79.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
|
38
|
Redondo N, Nova E, Gheorghe A, Díaz LE, Hernández A, Marcos A. Evaluation of Lactobacillus coryniformis CECT5711 strain as a coadjuvant in a vaccination process: a randomised clinical trial in healthy adults. Nutr Metab (Lond) 2017; 14:2. [PMID: 28070204 PMCID: PMC5217323 DOI: 10.1186/s12986-016-0154-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the effects of probiotics on the immune system have been extensively evaluated under disease states, their role in healthy situations remains unclear, since changes are hardly expected under immunological homeostasis. EFSA indicates that vaccination protocols could be used to evaluate the potential role of probiotics to improve the immune response against antigen challenges. The aim of the study was to evaluate the effect of Lactobacillus coryniformis CECT5711 (Lc) on the specific immunity of healthy volunteers undergoing vaccination with Hepatitis A virus (HAV). METHODS One hundred twenty-three healthy adults were randomised into three groups to follow a 6-week (wk) intervention and all received an intramuscular HAV vaccine 2 weeks after starting the intervention: 1) PRO1 received Lc for 2weeks (1 capsule/day; 3 × 109 CFU/capsule) and placebo capsules after vaccination; 2) PRO2 received a daily capsule of Lc (3 × 109 cfu/day) before and after the challenge; 3) Control group (C) received a daily placebo capsule before and after the vaccine. Blood samples were collected at the beginning (visit 1; V1) and after 2 (V2) and 6 weeks (V3) of the intervention. At each visit, lymphocyte subset counts and cytokine levels were analysed. Specific HAV antibodies were analysed at V1 and V3. To evaluate differences between groups, one-way ANOVA with Bonferroni post-hoc test were used regarding lymphocyte subset counts and specific HAV antibodies production, and Friedman test of related samples and Kendall concordance coefficient for cytokines production. Chi square test was used to analyse seroconversion rates. RESULTS Specific HAV antibodies were significantly higher in PRO1 (50.54 ± 29.57) compared to C (36.23 ± 16.45) (P = 0.017) and showed an intermediate value in PRO2 (41.61 ± 15.74). Seroconversion rates were similar in the three groups (97.3, 92.3 and 97.4% in C, PRO1 and PRO2 respectively). Memory T-helper lymphocytes increased in V3 vs. V1 (P = 0.032) in PRO2. No differences were found in cytokine concentrations. CONCLUSION Mixed results have been found regarding the usefulness of Lc supplementation to increase the antigen-specific antibody response to an immune challenge. Clinical trial registration number: EudraCT Number 2016-000183-42. Registered 19 January 2016. Retrospectively registered.
Collapse
Affiliation(s)
- Noemí Redondo
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Esther Nova
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Alina Gheorghe
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Ligia Esperanza Díaz
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Aurora Hernández
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| | - Ascensión Marcos
- Immunonutrition Group (Metabolism and Nutrition Department) - Institute of Food Science, Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), José Antonio Novais St. 10, 28040 Madrid, Spain
| |
Collapse
|
39
|
Chen JL, Zheng P, Zhang C, Yu B, He J, Yu J, Luo JQ, Mao XB, Huang ZQ, Chen DW. Benzoic acid beneficially affects growth performance of weaned pigs which was associated with changes in gut bacterial populations, morphology indices and growth factor gene expression. J Anim Physiol Anim Nutr (Berl) 2016; 101:1137-1146. [PMID: 27747941 DOI: 10.1111/jpn.12627] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/24/2016] [Indexed: 12/26/2022]
Abstract
This study was conducted to investigate the effects of benzoic acid (BA) on growth performance, intestinal development and intestinal barrier function in weaned pigs. Ninety weaned pigs were randomly assigned to one of three treatments: a basal diet (CON), the basal diet supplemented with 2000 mg/kg benzoic acid (BA1) and 5000 mg/kg benzoic acid (BA2). At the end of days 14 and 42, six pigs per treatment were randomly selected to collect plasma and intestinal samples. Results showed that BA supplementation not only improved final body weight, daily growth and feed conversion ratio from days 15 to 42 and days 1 to 42, but also decreased the activity of plasma diamine oxidase (day 42) and the pH values of jejunal contents (day 14) (p < 0.05). Ileal Bacillus populations (day 14) were increased by BA, while Escherichia coli counts in the ileum and caecum (day 42) were decreased (p < 0.05). Higher Lactobacillus counts occurred in the ileum (day 14, 42) of BA1-fed piglets as compared to CON and BA2-fed piglets (p < 0.05). In addition, BA supplementation increased the ratio of villus height to crypt depth (day 14, 42) and decreased the crypt depth (day 14) (p < 0.05). Growth-stimulating factors (insulin-like growth factor-1, day 42; insulin-like growth factor-1 receptor, day 14, 42) and tight junction protein (occludin, day 14, 42; zonula occludens-1, day 42)-related gene mRNA levels were upregulated in the jejunum of piglets fed BA diets (p < 0.05). In conclusion, this study provides the first evidence that BA has beneficial effects on intestinal development and intestinal barrier function of weaned pigs, which can partly explain why growth performance of pigs was improved by dietary BA supplementation.
Collapse
Affiliation(s)
- J L Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - P Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - C Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - B Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - J He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - J Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - J Q Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - X B Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Z Q Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - D W Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
40
|
Tan MSF, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions. BMC Microbiol 2016; 16:212. [PMID: 27629769 PMCID: PMC5024418 DOI: 10.1186/s12866-016-0832-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/04/2022] Open
Abstract
Background Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. Results We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Conclusions Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.
Collapse
Affiliation(s)
- Michelle Sze-Fan Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sean C Moore
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton campus, Wellington Road, Clayton, VIC, 3800, Australia
| | - Narelle Fegan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Gary A Dykes
- School of Public Health, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
41
|
Abstract
Probiotics are live micro-organisms that confer a health benefit to the host by providing both a nutritional benefit and protection against pathogens. This is a review of the present state of knowledge concerning probiotics, with emphasis on the criteria used for selection and clinical evidence of their beneficial effects.
Collapse
Affiliation(s)
- J.L. Balcázar
- Department of Animal Pathology, University of Zaragoza, c/. Miguel Servet 177, Zaragoza 50013, Spain
| |
Collapse
|
42
|
Sze-Fan Tan M, Rahman S, Dykes GA. Relationship between cell concentration and Salmonella attachment to plant cell walls. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Khasbiullina NR, Bovin NV. Hypotheses of the origin of natural antibodies: a glycobiologist's opinion. BIOCHEMISTRY (MOSCOW) 2016; 80:820-35. [PMID: 26541997 DOI: 10.1134/s0006297915070032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is generally accepted that the generation of antibodies proceeds due to immunization of an organism by alien antigens, and the level and affinity of antibodies are directly correlated to the presence of immunogen. At the same time, vast experimental material has been obtained providing evidence of antibodies whose level remains unchanged and affinity is constant during a lifetime. In contrast to the first, adaptive immunoglobulins, the latter are named natural antibodies (nAbs). The nAbs are produced by B1 cells, whereas adaptive Abs are produced by B2. This review summarizes general data on nAbs and presents in more detail data on antigens of carbohydrate origin. Hypotheses on the origin of nAbs and their activation mechanisms are discussed. We present our thoughts on this matter supported by our experimental data on nAbs to glycans.
Collapse
Affiliation(s)
- N R Khasbiullina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | |
Collapse
|
44
|
Brüssow H. How stable is the human gut microbiota? And why this question matters. Environ Microbiol 2016; 18:2779-83. [PMID: 27459371 DOI: 10.1111/1462-2920.13473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/24/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Harald Brüssow
- Nestlé Research Center, Nutrition and Health Research, Host-Microbe Interaction, CH-1000 Lausanne 26, Switzerland.
| |
Collapse
|
45
|
Yamashita S, Yokoyama Y, Hashimoto T, Mizuno M. A novel in vitro co-culture model comprised of Caco-2/RBL-2H3 cells to evaluate anti-allergic effects of food factors through the intestine. J Immunol Methods 2016; 435:1-6. [DOI: 10.1016/j.jim.2016.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
46
|
Zhang Z, Cao L, Zhou Y, Wang S, Zhou L. Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae. BMC Microbiol 2016; 16:166. [PMID: 27464596 PMCID: PMC4964059 DOI: 10.1186/s12866-016-0783-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/15/2016] [Indexed: 02/05/2023] Open
Abstract
Background The bacterial community of the small intestine is a key factor that has strong influence on the health of gastrointestinal tract (GIT) in mammals during and shortly after weaning. The aim of this study was to analyze the effects of the diets of supplemented with epidermal growth factor (EGF)-expressed Saccharomyces cerevisiae (S. cerevisiae) on the duodenal microbiotas of weaned piglets. Results Revealed in this study, at day 7, 14 and 21, respectively, the compositional sequencing analysis of the 16S rRNA in the duodenum had no marked difference in microbial diversity from the phylum to species levels between the INVSc1(EV) and other recombinant strains encompassing INVSc1-EE(+), INVSc1-TE(−), and INVSc1-IE(+). Furthermore, the populations of potentially enterobacteria (e.g., Clostridium and Prevotella) and probiotic (e.g., Lactobacilli and Lactococcus) also remained unchanged among recombinant S. cerevisiae groups (P > 0.05). However, the compositional sequencing analysis of the 16S rRNA in the duodenum revealed significant difference in microbial diversity from phylum to species levels between the control group and recombinant S. cerevisiae groups. In terms of the control group (the lack of S. cerevisiae), these data confirmed that dietary exogenous S. cerevisiae had the feasibility to be used as a supplement for enhancing potentially probiotic (e.g., Lactobacilli and Lactococcus) (P < 0.01), and reducing potentially pathogenic bacteria (e.g., Clostridium and Prevotella) (P < 0.01). Conclusion Herein, altered the microbiome effect was really S. cerevisiae, and then different forms of recombinant EGF, including T-EGF, EE-EGF and IE-EGF, did not appear to make a significant difference to the microbiome of weaned piglets. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0783-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lili Cao
- Medical School, Chengdu University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yan Zhou
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shujin Wang
- Human and Animal Physiology, Wageningen University, Wageningen, 6700 AH, The Netherlands.
| | - Lin Zhou
- Shenzhen Premix Inve Nutrition Co., LTD, Shenzhen, 518103, People's Republic of China.
| |
Collapse
|
47
|
Tan MSF, White AP, Rahman S, Dykes GA. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models. PLoS One 2016; 11:e0158311. [PMID: 27355584 PMCID: PMC4927157 DOI: 10.1371/journal.pone.0158311] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/14/2016] [Indexed: 12/29/2022] Open
Abstract
Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.
Collapse
Affiliation(s)
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadequr Rahman
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Gary A. Dykes
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
48
|
Isolation of Lactobacillus strains from shellfish for their potential use as probiotics. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0518-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Effects of dietary supplementation with epidermal growth factor-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. Br J Nutr 2016; 115:1509-20. [PMID: 26983845 DOI: 10.1017/s0007114516000738] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to assess the effects of dietary supplementation with epidermal growth factor (EGF)-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. In total, forty piglets weaned at 21-26 d of age were assigned to one of the five groups that were provided basic diet (control group) or diet supplemented with S. cerevisiae expressing either empty-vector (INVSc1(EV) group), tagged EGF (T-EGF) (INVSc1-TE(-) group), extracellular EGF (EE-EGF) (INVSc1-EE(+) group) or intracellular EGF (IE-EGF) (INVSc1-IE(+) group). All treatments were delivered as 60·00 μg/kg body weight EGF/d. On 0, 7, 14 and 21 d, eight piglets per treatment were sacrificed to analyse the morphology, activities and mRNA expressions of digestive enzymes, as well as Ig levels (IgA, IgM, IgG) in duodenal mucosa. The results showed significant improvement on 7, 14 and 21 d, with respect to average daily gain (P<0·05), mucosa morphology (villus height and crypt depth) (P<0·05), Ig levels (P<0·01), activities and mRNA expressions of digestive enzymes (creatine kinase, alkaline phosphatase, lactate dehydrogenase and sucrase) (P<0·05) and the mRNA expression of EGF-receptor (P<0·01) in NVSc1-TE(-), INVSc1-EE(+) and INVSc1-IE(+) groups compared with control and INVSc1(EV) groups. In addition, a trend was observed in which the INVSc1-IE(+) group showed an improvement in Ig levels (0·05<P<0·10), mRNA expressions of digestive enzymes and EGF-receptor (P<0·05) compared with NVSc1-TE(-) and INVSc1-EE(+) groups. These results indicate that supplementing recombinant EGF-expressing S. cerevisiae to the diet of weaned piglets enhanced duodenal development. Moreover, biological activity (Ig levels, mRNA expressions of digestive enzymes and EGF-receptor) of IE-EGF was better than either EE-EGF or T-EGF.
Collapse
|
50
|
Tan MSF, Rahman S, Dykes GA. Pectin and Xyloglucan Influence the Attachment of Salmonella enterica and Listeria monocytogenes to Bacterial Cellulose-Derived Plant Cell Wall Models. Appl Environ Microbiol 2016; 82:680-8. [PMID: 26567310 PMCID: PMC4711118 DOI: 10.1128/aem.02609-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022] Open
Abstract
Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose cell walls are particularly vulnerable. Little is known about the roles that different structural components (cellulose, pectin, and xyloglucan) of plant cell walls play in the attachment of foodborne bacterial pathogens. Using bacterial cellulose-derived plant cell wall models, we showed that the presence of pectin alone or xyloglucan alone affected the attachment of three Salmonella enterica strains (Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028, and Salmonella enterica subsp. indica M4) and Listeria monocytogenes ATCC 7644. In addition, we showed that this effect was modulated in the presence of both polysaccharides. Assays using pairwise combinations of S. Typhimurium ATCC 14028 and L. monocytogenes ATCC 7644 showed that bacterial attachment to all plant cell wall models was dependent on the characteristics of the individual bacterial strains and was not directly proportional to the initial concentration of the bacterial inoculum. This work showed that bacterial attachment was not determined directly by the plant cell wall model or bacterial physicochemical properties. We suggest that attachment of the Salmonella strains may be influenced by the effects of these polysaccharides on physical and structural properties of the plant cell wall model. Our findings improve the understanding of how Salmonella enterica and Listeria monocytogenes attach to plant cell walls, which may facilitate the development of better ways to prevent the attachment of these pathogens to such surfaces.
Collapse
Affiliation(s)
- Michelle S F Tan
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Gary A Dykes
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia School of Public Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|