1
|
Wang XN, Liu JQ, Ji WL, Huo ZL, Liu LF, Zheng JY. Characterization of trimethylamine metabolic pathways using pseudo-targeted metabolomics. J Pharm Biomed Anal 2025; 258:116737. [PMID: 39919464 DOI: 10.1016/j.jpba.2025.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Trimethylamine (TMA) metabolism comprises choline-containing compounds' metabolization, TMA production and trimethylamine N-oxide (TMAO) generation. However, the presence of numerous compounds in the carnitine and phosphatidylcholine (PC) pool compositions complicates profiling work significantly. This study is aimed at developing an efficient method for profiling TMA metabolic pathways, including quantifying known compounds and semi-quantifying the differential metabolites in the carnitine and PC pool compositions. Pseudo-targeted metabolomics is applicable for characterization. Firstly, multivariate statistics were performed to identify valuable metabolites (variable importance in the projection >1) from quality control biological samples. Given that TMA metabolism involved in host-gut microbiota interaction, co-metabolites were defined as the intersections of valuable metabolites from different biological samples (serum, liver, and intestinal contents) and further screened. Finally, alterations in TMA metabolism were observed in dextran sulfate sodium-induced colitis, with semi-quantitative analysis for excavated co-metabolites including 11 PCs, 6 lyso-phosphatidylcholines, and 2 acylcarnitines and quantitative analysis for 10 known metabolites. The findings revealed increased TMA production and accumulation of choline-containing compounds in the gut during ulcerative colitis exacerbation. Correspondingly, the circulating level of TMAO was elevated in the colitis group. A comprehensive understanding of TMA metabolism can contribute to disease differential diagnoses and potential mechanism studies.
Collapse
Affiliation(s)
- Xin-Nan Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 818 Xingwan Road, Nanchang, Jiangxi 330004, China
| | - Wen-Liang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Zong-Li Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
2
|
Peng S, Zhu Y, Zhu J, Chen Z, Tao Y. Plasma-based untargeted metabolomics reveals potential biomarkers for screening and distinguishing of ovarian tumors. Clin Chim Acta 2025; 572:120246. [PMID: 40107594 DOI: 10.1016/j.cca.2025.120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Ovarian cancer (OC), a leading cause of gynecological cancer mortality, is frequently detected at advanced stages due to asymptomatic early progression. This study investigates plasma-based untargeted metabolomics for identifying biomarkers to screen and differentiate ovarian tumors (OT). Plasma samples from OC, benign ovarian tumors (BOT), and healthy controls (HC) were analyzed. Samples were randomized into train and test sets, with differential metabolites screened via two-tailed Student's t-test and partial least squares discriminant analysis. ROC models evaluated discriminatory capacity. Key metabolites demonstrated high predictive value: TMAO and hippuric acid distinguished OT from HC (AUC > 0.95), while linoleic acid, alpha-linolenic acid, and arachidonic acid (AUC > 0.9) further supported OT screening. Kynurenine differentiated OC from BOT (AUC = 0.808). Reduced levels of specific lysophosphatidylcholines (LPC (17:0/0:0), LPC (15:0/0:0)) also distinguished OT from HC (AUC = 0.771-0.89). These findings suggest plasma metabolomics holds promise for noninvasive biomarker discovery in OT screening and distinguishing between malignant and benign cases, though further validation of metabolite quantification is warranted prior to clinical application.
Collapse
Affiliation(s)
- Shen Peng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yiming Zhu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jing Zhu
- Department of Clinical Laboratory, Zhenjiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Zhongjian Chen
- Experimental Research Center, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | - Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
3
|
Zhou Y, Zhang L, Lin L, Liu Y, Li Q, Zhao Y, Zhang Y. Associations of prenatal organophosphate esters exposure with risk of eczema in early childhood, mediating role of gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137250. [PMID: 39827805 DOI: 10.1016/j.jhazmat.2025.137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Few epidemiological evidence has focused on the impact of organophosphate esters (OPEs) and the risk of eczema, and underlying role of gut microbiota. Based on the Shanghai Maternal-Child Pairs Cohort, a nested case-control study including 332 eczema cases and 332 controls was conducted. Umbilical cord blood and stools were collected for OPEs detection and gut microbiota sequencing, separately. Eczema cases were identified using the International Study of Asthma and Allergies in Childhood core questionnaire and clinical diagnosis. The environmental risk score (ERS) for OPEs was developed to quantify OPEs burden. Conditional logistic regression models, multivariate analysis by linear models, negative-binomial hurdle regression, and mediation analysis were employed. Tris(2-butoxyethyl) phosphate (TBP), tris (2-butoxy ethyl) phosphate (TBEP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) had detection rates > 50 %, with median concentrations ranged from 0.11 to 2.71 μg/L. TBP (OR = 1.12, 95 % CI: 1.01, 1.25), TDCPP (OR = 1.32, 95 % CI: 1.09, 1.59), and ERS (OR = 6.44, 95 % CI: 3.47, 11.94) were associated with elevated risk of eczema. OPEs exposure was correlated with increased alpha diversity and the abundance of several pathogenic bacteria, such as Klebsiella. Negative associations were observed between OPEs exposure and the abundances of Lachnospiraceae genera. Additionally, a positive correlation was identified between alpha diversity and the risk of eczema during childhood. Alpha diversity indices and Lachnospiraceae serve as significant mediators in this relationship. Results of this study indicate that prenatal exposure to OPEs is linked to an elevated risk of eczema and gut microbiota dysbiosis, potentially contributing to immunotoxicity of OPEs during early life.
Collapse
Affiliation(s)
- Yuhan Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ling Lin
- Nantong Center for Disease Control & Prevention, Jiangsu 226007, China
| | - Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Guo S, Bai H, Han Y, Wu Y, Peng R, Zhang X, Liang B, Zhao Q, Ma M, Zhang P, Zheng L. Association of the gut microbe-dependent trimethylamine N-oxide and its precursors with risk of hypertension: a cross-sectional study in rural northeastern China. Nutr Metab Cardiovasc Dis 2025:104032. [PMID: 40287312 DOI: 10.1016/j.numecd.2025.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/14/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND AND AIM This study investigated the relationship between trimethylamine N-oxide (TMAO), its precursors (choline, betaine, and carnitine), and the prevalence of hypertension in rural northeastern China. METHODS AND RESULTS Conducted in 2019, the cross-sectional study involved 1,899 adults aged 35 and older, with serum levels of TMAO and its precursors quantified using high-performance liquid chromatography-mass spectrometry. Hypertension was defined according to blood pressure measurements or the use of antihypertensive medications, based on the 2018 Chinese Hypertension Guidelines. Logistic regression models were utilized to assess the associations between TMAO, its precursors, and hypertension, adjusting for potential confounders such as age, sex, smoking status, and physical activity. The results revealed a significant association between TMAO concentrations and the prevalence of hypertension. Participants in the highest quartile of TMAO (>7.75 μmol/L) exhibited a 36 % increased risk of hypertension (OR = 1.360, 95 % CI: 1.043-1.772, P = 0.023). Choline also showed a positive association with hypertension (OR = 1.426, 95 % CI: 1.092-1.863, P = 0.009), while no significant association was found for betaine. Conversely, carnitine was negatively associated with hypertension risk in the highest quartile. Subgroup analyses indicated that these associations varied by age, gender, and education level. CONCLUSIONS Elevated serum levels of TMAO and choline were associated with an increased risk of hypertension. Modulating TMAO metabolism could aid in the prevention of hypertension in the future.
Collapse
Affiliation(s)
- Siyao Guo
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China; Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China; Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - He Bai
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanlin Han
- Department of Cardiovascular Medicine, Fenyang Hospital Affiliated with Shanxi Medical University, Fenyang, Shanxi, China.
| | - Yani Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruiheng Peng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaohong Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Liang
- Department of Cardiovascular Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Qiyu Zhao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Radiation Protection, Taiyuan Center for Disease Control and Prevention, Taiyuan, Shanxi, China.
| | - Mingfeng Ma
- Department of Cardiovascular Medicine, Fenyang Hospital Affiliated with Shanxi Medical University, Fenyang, Shanxi, China.
| | - Ping Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China; Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Liqiang Zheng
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Kemp JA, Schultz J, Modolon F, Ribeiro-Alves M, Rosado AS, Mafra D. Is there a correlation between TMAO plasma levels and archaea in the gut of patients undergoing hemodialysis? Int Urol Nephrol 2025; 57:1269-1275. [PMID: 39562414 DOI: 10.1007/s11255-024-04273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Patients with chronic kidney disease (CKD) present high plasma levels of trimethylamine N-oxide (TMAO), a uremic toxin produced by gut microbiota associated with atherogenesis. Experimental studies have shown that certain methanogenic archaea members use trimethylamine (TMA), the TMAO precursor in the human gut, to produce methane, suggesting a potential strategy to reduce TMAO levels in patients with CKD. Hence, this study aimed to evaluate the association of Archaea in the gut microbiota and TMAO plasma levels in patients with CKD undergoing hemodialysis. METHODS Twenty-five patients were enrolled in the study (15 women, 53 (18) years, BMI, 25.8 (6.75) kg/m2). TMAO plasma levels were evaluated using the HPLC-EM/EM method. Fecal DNA was extracted using a commercial kit. Subsequently, we sequenced the V4 region of the 16S rRNA gene to characterize the microbial composition. NCT04600258 was retrospectively registered in September 2022. RESULTS According to the reference values in the European Uremic Toxins Work Group (EUTox) database, the patients exhibited high TMAO plasma levels, as expected. The most abundant Archaea members were assigned to the Euryarchaeota phylum, the Methanobacteriaceae family, and the genus Methanobrevibacter. A significant negative correlation between TMAO and Methanobrevibacter was observed. CONCLUSIONS To our knowledge, this study represents the first investigation into the correlation between TMAO levels and the prevalence of Archaea in patients with CKD. Our findings support the archaebiotic hypothesis, suggesting that specific members of the archaea community could play a crucial role in reducing TMA production in the human gut, potentially decreasing TMAO synthesis in CKD patients.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Post-Graduate Program in Nutrition Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - Júnia Schultz
- Biological and Environmental Science and Engineering (BESE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fluvio Modolon
- Oceanographic Institute, University of Sao Paulo, São Paulo, SP, Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology Evandro Chagas (INI/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Alexandre S Rosado
- Biological and Environmental Science and Engineering (BESE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denise Mafra
- Post-Graduate Program in Nutrition Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Rondinella D, Raoul PC, Valeriani E, Venturini I, Cintoni M, Severino A, Galli FS, Mora V, Mele MC, Cammarota G, Gasbarrini A, Rinninella E, Ianiro G. The Detrimental Impact of Ultra-Processed Foods on the Human Gut Microbiome and Gut Barrier. Nutrients 2025; 17:859. [PMID: 40077728 PMCID: PMC11901572 DOI: 10.3390/nu17050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Ultra-processed foods (UPFs) have become a widely consumed food category in modern diets. However, their impact on gut health is raising increasing concerns. This review investigates how UPFs impact the gut microbiome and gut barrier, emphasizing gut dysbiosis and increased gut permeability. UPFs, characterized by a high content of synthetic additives and emulsifiers, and low fiber content, are associated with a decrease in microbial diversity, lower levels of beneficial bacteria like Akkermansia muciniphila and Faecalibacterium prausnitzii, and an increase in pro-inflammatory microorganisms. These alterations in the microbial community contribute to persistent inflammation, which is associated with various chronic disorders including metabolic syndrome, irritable bowel syndrome, type 2 diabetes, and colorectal cancer. In addition, UPFs may alter the gut-brain axis, potentially affecting cognitive function and mental health. Dietary modifications incorporating fiber, fermented foods, and probiotics can help mitigate the effects of UPFs. Furthermore, the public needs stricter regulations for banning UPFs, along with well-defined food labels. Further studies are necessary to elucidate the mechanisms connecting UPFs to gut dysbiosis and systemic illnesses, thereby informing evidence-based dietary guidelines.
Collapse
Affiliation(s)
- Debora Rondinella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Pauline Celine Raoul
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Eleonora Valeriani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Sofia Galli
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzina Mora
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Su Z, Liu L, Zhang J, Guo J, Wang G, Zeng X. A scientometric visualization analysis of the gut microbiota and gestational diabetes mellitus. Front Microbiol 2025; 16:1485560. [PMID: 39980689 PMCID: PMC11841407 DOI: 10.3389/fmicb.2025.1485560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Background The prevalence of gestational diabetes mellitus (GDM), a condition that is widespread globally, is increasing. The relationship between the gut microbiota and GDM has been a subject of research for nearly two decades, yet there has been no bibliometric analysis of this correlation. This study aimed to use bibliometrics to explore the relationship between the gut microbiota and GDM, highlighting emerging trends and current research hotspots in this field. Results A total of 394 papers were included in the analysis. China emerged as the preeminent nation in terms of the number of publications on the subject, with 128 papers (32.49%), whereas the United States had the most significant impact, with 4,874 citations. The University of Queensland emerged as the most prolific institution, contributing 18 publications. Marloes Dekker Nitert was the most active author with 16 publications, and Omry Koren garnered the most citations, totaling 154. The journal Nutrients published the most studies (28 publications, 7.11%), whereas PLoS One was the most commonly co-cited journal, with a total of 805 citations. With respect to keywords, research focuses can be divided into 4 clusters, namely, "the interrelationship between the gut microbiota and pregnancy, childbirth," "the relationship between adverse metabolic outcomes and GDM," "the gut microbiota composition and metabolic mechanisms" and "microbiota and ecological imbalance." Key areas of focus include the interactions between the gut microbiota and individuals with GDM, as well as the formation and inheritance of the gut microbiota. Increasing attention has been given to the impact of probiotic supplementation on metabolism and pregnancy outcomes in GDM patients. Moreover, ongoing research is exploring the potential of the gut microbiota as a biomarker for GDM. These topics represent both current and future directions in this field. Conclusion This study provides a comprehensive knowledge map of the gut microbiota and GDM, highlights key research areas, and outlines potential future directions.
Collapse
Affiliation(s)
- Zehao Su
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Lina Liu
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jingjing Guo
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Guan Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Amaro-da-Cruz A, Rubio-Tomás T, Álvarez-Mercado AI. Specific microbiome patterns and their association with breast cancer: the intestinal microbiota as a potential biomarker and therapeutic strategy. Clin Transl Oncol 2025; 27:15-41. [PMID: 38890244 PMCID: PMC11735593 DOI: 10.1007/s12094-024-03554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer (BC) is one of the most diagnosed cancers in women. Based on histological characteristics, they are classified as non-invasive, or in situ (tumors located within the milk ducts or milk lobules) and invasive. BC may develop from in situ carcinomas over time. Determining prognosis and predicting response to treatment are essential tools to manage this disease and reduce its incidence and mortality, as well as to promote personalized therapy for patients. However, over half of the cases are not associated with known risk factors. In addition, some patients develop resistance to treatment and relapse. Therefore, it is necessary to identify new biomarkers and treatment strategies that improve existing therapies. In this regard, the role of the microbiome is being researched as it could play a role in carcinogenesis and the efficacy of BC therapies. This review aims to describe specific microbiome patterns associated with BC. For this, a literature search was carried out in PubMed database using the MeSH terms "Breast Neoplasms" and "Gastrointestinal Microbiome", including 29 publications. Most of the studies have focused on characterizing the gut or breast tissue microbiome of the patients. Likewise, studies in animal models and in vitro that investigated the impact of gut microbiota (GM) on BC treatments and the effects of the microbiome on tumor cells were included. Based on the results of the included articles, BC could be associated with an imbalance in the GM. This imbalance varied depending on molecular type, stage and grade of cancer, menopause, menarche, body mass index, and physical activity. However, a specific microbial profile could not be identified as a biomarker. On the other hand, some studies suggest that the GM may influence the efficacy of BC therapies. In addition, some microorganisms and bacterial metabolites could improve the effects of therapies or influence tumor development.
Collapse
Affiliation(s)
- Alba Amaro-da-Cruz
- Department of Chemical Engineering, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Ana I Álvarez-Mercado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014, Granada, Spain.
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016, Armilla, Spain.
- Department of Pharmacology School of Pharmacy, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
9
|
Bai H, Zhang Y, Tian P, Wu Y, Peng R, Liang B, Ruan W, Cai E, Lu Y, Ma M, Zheng L. Serum trimethylamine N-oxide and its precursors are associated with the occurrence of mild cognition impairment as well as changes in neurocognitive status. Front Nutr 2024; 11:1461942. [PMID: 39668903 PMCID: PMC11634597 DOI: 10.3389/fnut.2024.1461942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Background This study aims to examine the association between gut microbe-dependent trimethylamine N-oxide (TMAO) and its precursors (choline, betaine, and carnitine) levels and mild cognition impairment (MCI), alongside changes in the Chinese version of the Montreal Cognitive Assessment-Basic (ΔMoCA-BC) score in rural adults. Methods Drawing data from a large-scale epidemiological study conducted in rural areas of Fuxin County, Liaoning Province, China. 1,535 participants free from brain-related ailments were initially surveyed. MCI was assessed through the MoCA-BC score. Logistic regression models and restricted cubic spline were used to investigate the association between TMAO and its precursors levels and MCI. Additionally, the association between TMAO and its precursors levels and ΔMoCA-BC was analyzed using a generalized linear model in the longitudinal study. Results The average age of the study participants was 58.6 ± 9.4 years and the prevalence rate of MCI was 34.5%. With the second quartile as the reference in the logistic regression model, the OR for risk of MCI in the highest quartile for TMAO, betaine, and carnitine was 1.685 (95% CI: 1.232-2.303, p = 0.001), 2.367 (95% CI: 1.722-3.255, p < 0.001), and 2.239 (95% CI: 1.742-3.295, p < 0.001), respectively. The OR of choline for the highest versus lowest quartile was 2.711 (95% CI: 2.012-3.817, p < 0.001) for the risk of MCI. We find a J-shaped association between betaine (P non-linear = 0.001) and carnitine (P non-linear = 0.003) levels and MCI. Furthermore, TMAO and its precursors levels were associated with ΔMoCA-BC in the third and fourth quartiles group (All p < 0.05). Conclusion The findings suggest the existence of an optimal concentration range for serum levels of TMAO, betaine, and carnitine that mitigates MCI risk, paving the way for enhanced dietary interventions aimed at preventing and treating MCI.
Collapse
Affiliation(s)
- He Bai
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peiying Tian
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yani Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiheng Peng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Liang
- Department of Cardiovascular Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenli Ruan
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Enmao Cai
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Ying Lu
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Mingfeng Ma
- Department of Cardiovascular Medicine, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Sprinkles JK, Lulla A, Hullings AG, Trujillo-Gonzalez I, Klatt KC, Jacobs DR, Shah RV, Murthy VL, Howard AG, Gordon-Larsen P, Meyer KA. Choline Metabolites and 15-Year Risk of Incident Diabetes in a Prospective Cohort of Adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetes Care 2024; 47:1985-1994. [PMID: 39259767 PMCID: PMC11502527 DOI: 10.2337/dc24-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE The potential for choline metabolism to influence the development of diabetes has received increased attention. Previous studies on circulating choline metabolites and incident diabetes have been conducted in samples of older adults, often with a high prevalence of risk factors. RESEARCH DESIGN AND METHODS Participants were from year 15 of follow-up (2000-2001) in the Coronary Artery Risk Development in Young Adults (CARDIA) Study (n = 3,133, aged 33-45 years) with plasma choline metabolite (choline, betaine, and trimethylamine N-oxide [TMAO]) data. We quantified associations between choline metabolites and 15-year risk of incident diabetes (n = 387) among participants free of diabetes at baseline using Cox proportional hazards regression models adjusted for sociodemographics, health behaviors, and clinical variables. RESULTS Betaine was inversely associated with 15-year risk of incident diabetes (hazard ratio 0.76 [95% CI 0.67, 0.88] per 1-SD unit betaine), and TMAO was positively associated with 15-year risk of incident diabetes (1.11 [1.01, 1.22] per 1-SD unit). Choline was not significantly associated with 15-year risk of incident diabetes (1.05 [0.94, 1.16] per 1-SD). CONCLUSIONS Our findings are consistent with other published literature supporting a role for choline metabolism in diabetes. Our study extends the current literature by analyzing a racially diverse population-based cohort of early middle-aged individuals in whom preventive activities may be most relevant.
Collapse
Affiliation(s)
- Jessica K. Sprinkles
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
| | - Autumn G. Hullings
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin C. Klatt
- Department of Nutrition Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Ravi V. Shah
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Penny Gordon-Larsen
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katie A. Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
11
|
Hu D, Qing G, Liu X, Cheng J, Zhang K, He L. A Study and In Vitro Evaluation of the Bioactive Compounds of Broad Bean Sprouts for the Treatment of Parkinson's Syndrome. Molecules 2024; 29:5160. [PMID: 39519801 PMCID: PMC11547941 DOI: 10.3390/molecules29215160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Levodopa (LD) is the first discovered and the most promising and effective medication for Parkinson's disease (PD). As the first identified natural source of LD, Vicia faba L. (broad beans), especially its sprouts, has been confirmed to contain many other potential bioactive compounds that could also be therapeutic for PD. In this study, the bioactive components obtained from broad bean sprout extraction (BSE) that could be beneficial for PD treatment were screened, and the related mechanisms were explored. Solvent extraction combined with column chromatography was used to isolate bioactive fractions and monomer compounds, while UPLC-ESI-MS/MS, HRESI-MS and (1H, 13C) NMR were employed for compound identification. Network pharmacology techniques were applied to screen for potential mechanisms. A total of 52 compounds were identified in a 50% MeOH extract of broad bean sprouts. Moreover, twelve compounds were isolated and identified from ethyl acetate and n-butanol portions, including caffeic acid (1), trans-3-indoleacrylic acid (2), p-coumaric acid (3), protocatechualdehyde (4), isovitexin (5), isoquercetin (6), grosvenorine (7), kaempferol-3-O-rutinoside (8), isoschaftoside (9), narcissin (10), kaempferitrin (11) and trigonelline HCl (12). Compounds 2, 4, 7, 8 and 12 were isolated from Vicia faba L. for the first time. The potential mechanisms were determined by analyzing 557 drug targets, 2334 disease targets and 199 intersections between them using a protein-protein interaction (PPI) network, gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. Further in vitro experiments confirmed that caffeic acid (compound 1) and p-coumaric acid (compound 3) have neuroprotective effects in 6-hydroxydopamine-treated SH-SY5Y cells and lipopolysaccharide-treated PC-12 cells through anti-inflammatory and antioxidant mechanisms. In conclusion, this study explored effective components in broad bean sprouts and performed in vitro evaluations.
Collapse
Affiliation(s)
- Danni Hu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
- Nanjing Core Tech Biomedical Co., Ltd., Nanjing 211100, China
| | - Guanglei Qing
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
- Nanjing Core Tech Biomedical Co., Ltd., Nanjing 211100, China
| | - Xuecheng Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
- Nanjing Core Tech Biomedical Co., Ltd., Nanjing 211100, China
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
| | - Kewei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.H.); (G.Q.); (X.L.); (J.C.)
| | - Lingyun He
- Nanjing Core Tech Biomedical Co., Ltd., Nanjing 211100, China
| |
Collapse
|
12
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowitz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. Sci Immunol 2024; 9:eado0090. [PMID: 39454027 PMCID: PMC11557871 DOI: 10.1126/sciimmunol.ado0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high-resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. Immunoglobulin A-positive (IgA+) PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruixue Hou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Tillowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Leyre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gastroenterology Department, Hôpital Henri Mondor, APHP, Créteil, France
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno R. Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Cruz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Akm
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Vujkovic-Cvijin
- F. Widjaja IBD Institute, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mayte Suarez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Zhu M, Zhang T, Xu D, Zhou B, Wang K, Liao C, Cheng Z, Li P, Chen C. Impact of fermented wine lees on gut microbiota and metabolic responses in Guanling crossbred cattle. BMC Microbiol 2024; 24:421. [PMID: 39438796 PMCID: PMC11495091 DOI: 10.1186/s12866-024-03583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The addition of wine lees to diets can make up for the deficiencies caused by traditional forages in beef cattle farming. However, the effects of different wine lees ratios on average daily weight, gastrointestinal microbial community structure and metabolites in Guanling crossbred cattle have been rarely studied. This study assessed the effects of feeds containing wine lees on weight gain, gastrointestinal microbial community structure, and metabolites in Guanling crossbred cattle and elucidated the metabolic responses induced by wine lees. Eighteen cows were randomly assigned to receive fed concentrate (C group), feed containing 15% wine lees (group A), or feed containing 30% wine lees (group B) for 60 days. RESULTS The average daily weight gain of group A and group B increased by 76.75% and 57.65%, respectively, compared with group C. Microbial community analysis showed that wine lees increased the abundance of Prevotella_1 in the rumen, decreased the abundance of Ruminococcaceae UCG 011 and Lachnospiraceae_FCS020_group in the rumen, and increased the abundance of Tyzzerella_4, Family_Xlll_AD3011_group, Granulicella, and Eisenbergiella in the cecum. Metabolomics analyses showed that wine lees decreased the concentrations of indole-3-ethanol in the rumen, and complexity cecal metabolism. Notably, linoleic acid metabolism was significantly enriched in both the rumen and cecum. Mantel test analyses indicated that the adverse effects of WL were reduced by stimulating the metabolism of linoleic acid, α-linolenic acid, and tryptophan, and these changes were mediated by intestinal microorganisms. The Guanling cattle cecum was enriched for several unfavorable metabolic pathways when wine lees concentrations reached 30%, which increased the likelihood of intestinal lesions. CONCLUSION This study shows that WL supplementation alters gut microbiota and metabolic pathways, improving cattle growth and health. Moderate WL levels (15%) enhance gut health and beneficial pathways (e.g., linoleic and alpha-linolenic acid metabolism). However, higher WL inclusion (30%) may activate adverse pathways, raising the risk of intestinal damage. To maximize benefits and minimize risks, WL levels should be carefully managed.
Collapse
Affiliation(s)
- Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
14
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowiz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.590425. [PMID: 38826293 PMCID: PMC11142040 DOI: 10.1101/2024.05.17.590425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. IgA + PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia. One Sentence Summary Intestinal germinal center B cell reduction in HIV-1 infection linked to reduced IgA + plasma cells and systemic inflammation.
Collapse
|
15
|
Sun R, Yu P, Guo L, Huang Y, Nie Y, Yang Y. Improving the growth and intestinal colonization of Escherichia coli Nissle 1917 by strengthening its oligopeptides importation ability. Metab Eng 2024; 86:157-171. [PMID: 39389255 DOI: 10.1016/j.ymben.2024.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Escherichia coli Nissle 1917 (EcN), the probiotic featured with well-established safety in different host, is emerging as a favored chassis for the construction of engineered probiotics for disease treatment. However, limited by the low intestinal colonization ability of EcN, repeated administration is required to maximize the health benefits of the EcN-derived engineered probiotics. Here, using fecal metabolites as "metabolites pool", we developed a metabolomic strategy to characterize the comprehensive metabolic profile of EcN. Compared with Prevotella copri DSM 18205 (P. copri), one of the dominant microbes in gut flora, EcN exhibited minor growth advantage under the fecal metabolites-containing condition for its lower metabolic capability towards fecal metabolites. Further study indicated that EcN lacked the ability to import the oligopeptides containing more than two amino acids. The shortage of oligopeptides-derived amino acids might limit the growth of EcN by restricting its purine metabolism. Assisted with the bioinformatic and qRT-PCR analyses, we identified a tripeptides-specific importer Pc-OPT in P. copri, which was mainly distributed in genera Prevotella and Bacteroides. Overexpression of Pc-OPT improved the tripeptides importation of EcN and promoted its growth and intestinal colonization. Notably, 16S rRNA gene amplicon sequencing results indicated that strengthening the oligopeptides importation ability of EcN might promote its intestinal colonization by adjusting the gut microbial composition. Our study reveals that the growth and intestinal colonization of EcN is limited by its insufficient oligopeptides importation and paves road for promoting the efficacy of the EcN-derived synthetic probiotics by improving their intestinal colonization ability.
Collapse
Affiliation(s)
- Ruxue Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Peijun Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yufei Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yanhong Nie
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China; Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China; Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
16
|
Burns KF, LaMonte MJ, Blair RH, Tabung FK, Rexrode KM, Snetselaar LG, Millen AE. Developing and evaluating the construct validity of a dietary pattern predictive of plasma TMAO and choline. Nutr Metab Cardiovasc Dis 2024; 34:2190-2202. [PMID: 39003134 DOI: 10.1016/j.numecd.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AND AIMS The metabolism of choline (highly present in animal products) can produce trimethylamine N-oxide (TMAO), a metabolite with atherosclerotic effects; however, dietary fiber may suppress this metabolic pathway. This study aimed to develop a dietary pattern predictive of plasma TMAO and choline concentrations using reduced rank regression (RRR) and to evaluate its construct validity. METHODS AND RESULTS Diet and plasma concentrations of choline (μmol/L) and TMAO (μmol/L) were assessed in 1724 post-menopausal women who participated in an ancillary study within the Women's Health Initiative Observational Study (1993-1998). The TMAO dietary pattern was developed using RRR in half of the sample (Training Sample) and applied to the other half of the sample (Validation Sample) to evaluate its construct validity. Energy-adjusted food groups were the predictor variables and plasma choline and TMAO, the response variables. ANCOVA and linear regression models were used to assess associations between each biomarker and the dietary pattern score. Discretionary fat, potatoes, red meat, and eggs were positively associated with the dietary pattern, while yogurt, fruits, added sugar, and starchy vegetables were inversely associated. Mean TMAO and choline concentrations significantly increased across increasing quartiles of the dietary pattern in the Training and Validation samples. Positive associations between the biomarkers and the TMAO dietary pattern were also observed in linear regression models (Validation Sample: TMAO, adjusted beta-coefficient = 0.037 (p-value = 0.0088); Choline, adjusted beta-coefficient = 0.011 (p-value = 0.0224). CONCLUSION We established the TMAO dietary pattern, a dietary pattern reflecting the potential of the diet to contribute to plasma concentrations of TMAO and choline.
Collapse
Affiliation(s)
- Kaelyn F Burns
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA.
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| | | | - Fred K Tabung
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kathryn M Rexrode
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Linda G Snetselaar
- Department of Epidemiology, University of Iowa, Iowa City, IA 52242, USA
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
17
|
Severino A, Tohumcu E, Tamai L, Dargenio P, Porcari S, Rondinella D, Venturini I, Maida M, Gasbarrini A, Cammarota G, Ianiro G. The microbiome-driven impact of western diet in the development of noncommunicable chronic disorders. Best Pract Res Clin Gastroenterol 2024; 72:101923. [PMID: 39645277 DOI: 10.1016/j.bpg.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Noncommunicable chronic disorders (NCDs) are multifactorial disorders that share a state of chronic, low-grade inflammation together with an imbalance of gut microbiota. NCDs are becoming increasingly prevalent worldwide, and mainly in Western countries, with a significant impact on global health. Societal changes, together with the widespread diffusion of modern agricultural methods and food processing, have led to a significant shift in dietary habits over the past century, with an increased diffusion of the Western diet (WD). WD includes foods high in saturated fat, refined sugars, salt, sweeteners, and low in fiber, and is characterized by overeating, frequent snacking, and a prolonged postprandial state. An increasing body of evidence supports the association between the diffusion of WD and the rising prevalence of NCDs. WD also negatively affects both gut microbiota and the immune system by driving to microbial alterations, gut barrier dysfunction, increased intestinal permeability, and leakage of harmful bacterial metabolites into the bloodstream, with consequent contribution to the development of systemic low-grade inflammation. In this review article we aim to dissect the role of gut microbiota imbalance and gut barrier impairment in mediating the detrimental effects of WD on the development of NCDs, and to identify potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
| | - Ege Tohumcu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Luca Tamai
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Debora Rondinella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Marcello Maida
- Department of Medicine and Surgery, University of Enna 'Kore', Enna, Italy; Gastroenterology Unit, Umberto I Hospital, Enna, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
18
|
Li K, Liu P, Wang X, Zheng Z, Liu M, Ye J, Zhu L. Causal role of gut microbiota, serum metabolites, immunophenotypes in myocarditis: a mendelian randomization study. Front Genet 2024; 15:1382502. [PMID: 39280093 PMCID: PMC11392795 DOI: 10.3389/fgene.2024.1382502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Background The intricate relationship among gut microbiota, serum metabolites, and immunophenotypes may significantly impact myocarditis. However, direct causal links between these domains and myocarditis are not well understood. Methods The study performed Mendelian randomization (MR) analysis using genetic data from public sources. Exposure data included 211 gut microbiota, 486 serum metabolites, and 731 immunophenotypes from Mibiogen, the Metabolomics GWAS server, and GWAS catalog databases. Single nucleotide polymorphisms (SNPs) were selected as instrumental variables based on established criteria. Myocarditis data from GWAS (427,911 participants, 24, 180, 570 SNPs) were used as the outcome variable. MR analysis was conducted using Inverse Variance Weighting (IVW), with Cochran's Q test for heterogeneity and Egger's intercept to assess horizontal pleiotropy. Results 9 gut microbiota, 10 serum metabolites, and 2 immunophenotypes were negatively associated with myocarditis risk. In contrast, 5 gut microbiota, 12 serum metabolites, and 7 immunophenotypes were positively associated with myocarditis risk (all, P < 0.05). Sensitivity analyses confirmed the stability of these results. Conclusion This MR study suggests that gut microbiota, serum metabolites, and immunophenotypes may causally influence myocarditis risk. These findings provide genetic evidence for myocarditis etiology and could inform future precision prevention and treatment strategies.
Collapse
Affiliation(s)
- Kaiyuan Li
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuqi Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhipeng Zheng
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Miao Liu
- Department of Cardiovascular Medicine, Center Hospital of Shandong First Medical University, Jinan, China
| | - Jun Ye
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Li Zhu
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
19
|
Xu C, Zhang M, Zhang S, Wang P, Lai C, Meng D, Chen Z, Yi X, Gao X. Simultaneous determination of choline, L-carnitine, betaine, trimethylamine, trimethylamine N-oxide, and creatinine in plasma, liver, and feces of hyperlipidemic rats by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124210. [PMID: 38936270 DOI: 10.1016/j.jchromb.2024.124210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Due to the close correlation between choline, L-carnitine, betaine and their intestinal microbial metabolites, including trimethylamine (TMA) and trimethylamine N-oxide (TMAO), and creatinine, there has been an increasing interest in the study of these compounds in vivo. METHODS In this study, a rapid stable isotope dilution (SID)-UHPLC-MS/MS method was developed for the simultaneous determination of choline, L-carnitine, betaine, TMA, TMAO and creatinine in plasma, liver and feces of rats. The method was validated using quality control (QC) samples spiked at low, medium and high levels. Second, we applied the method to quantify the effects of Rosa Roxburghii Tratt juice (RRTJ) on plasma, liver, and fecal levels of choline, L-carnitine, betaine, TMA, TMAO, and creatinine in high-fat diet-induced hyperlipidemic rats, demonstrating the utility of the method. RESULTS The limits of detection (LOD) were 0.04-0.027 µM and the limits of quantification (LOQ) were 0.009-0.094 µM. The linear ranges for each metabolite in plasma were choline1.50-96 µM; L-carnitine: 2-128 µM; betaine: 3-192 µM; TMA: 0.01-40.96 µM; TMAO: 0.06-61.44 µM and creatinine: 1-64 µM (R2 ≥ 0.9954). The linear ranges for each metabolite in liver were Choline: 12-768 µM; L-carnitine: 1.5-96 µM; betaine: 10-640 µM; TMA: 0.5-32 µM; TMAO: 0.02-81.92 µM and creatinine: 0.2-204.8 µM (R2 ≥ 0.9938). The linear ranges for each metabolite in feces were choline: 1.5-96 µM; L-carnitine: 0.01-40.96 µM; Betaine: 1.5-96 µM; TMA: 1-64 µM; TMAO: 0.02-81.92 µM and Creatinine: 0.02-81.92 µM (R2 ≥ 0.998). The intra-day and inter-day coefficients of variation were < 8 % for all analytes. The samples were stabilized after multiple freeze-thaw cycles (3 freeze-thaw cycles), 24 h at room temperature, 24 h at 4 °C and 20 days at -80 °C. The samples were stable. The average recovery was 89 %-99 %. This method was used to quantify TMAO and its related metabolites and creatinine levels in hyperlipidemic rats. The results showed that high-fat diet led to the disorder of TMAO and its related metabolites and creatinine in rats, which was effectively improved after the intervention of Rosa Roxburghii Tratt juice(RRTJ). CONCLUSIONS A method for the determination of choline, L-carnitine, betaine, TMA, TMAO and creatinine in plasma, liver and feces samples was established, which is simple, time-saving, high precision, accuracy and recovery.
Collapse
Affiliation(s)
- Changqian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Shuo Zhang
- Experimental Animal Center of Guizhou Medical University, Guiyang 550025, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Chencen Lai
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Duo Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zhiyu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xinxin Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
20
|
Zhou Y, Zhang Y, Jin S, Lv J, Li M, Feng N. The gut microbiota derived metabolite trimethylamine N-oxide: Its important role in cancer and other diseases. Biomed Pharmacother 2024; 177:117031. [PMID: 38925016 DOI: 10.1016/j.biopha.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
An expanding body of research indicates a correlation between the gut microbiota and various diseases. Metabolites produced by the gut microbiota act as mediators between the gut microbiota and the host, interacting with multiple systems in the human body to regulate physiological or pathological functions. However, further investigation is still required to elucidate the underlying mechanisms. One such metabolite involved in choline metabolism by gut microbes is trimethylamine (TMA), which can traverse the intestinal epithelial barrier and enter the bloodstream, ultimately reaching the liver where it undergoes oxidation catalyzed by flavin-containing monooxygenase 3 (FMO3) to form trimethylamine N-oxide (TMAO). While some TMAO is eliminated through renal excretion, remaining amounts circulate in the bloodstream, leading to systemic inflammation, endoplasmic reticulum (ER) stress, mitochondrial stress, and disruption of normal physiological functions in humans. As a representative microbial metabolite originating from the gut, TMAO has significant potential both as a biomarker for monitoring disease occurrence and progression and for tailoring personalized treatment strategies for patients. This review provides an extensive overview of TMAO sources and its metabolism in human blood, as well as its impact on several major human diseases. Additionally, we explore the latest research areas related to TMAO along with future directions.
Collapse
Affiliation(s)
- Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, China
| | - Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; Nantong University Medical School, Nantong, China; Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
21
|
Wu J, Chen X, Qian J, Li G. Clinical improvement effect of regulating gut microbiota on metabolic dysfunction-associated steatotic liver disease: Systematic review and meta-analysis of randomized controlled trials. Clin Res Hepatol Gastroenterol 2024; 48:102397. [PMID: 38879003 DOI: 10.1016/j.clinre.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is constantly rising globally. There are barely any effective medications or supplements for the management of MASLD. We aim to systematically evaluate the most current evidence for gut microbiota-regulating supplements in patients with MASLD. METHODS We searched multiple electronic data for randomized controlled trials (RCTs) published from January 1, 2012, to July 15, 2023. The intervention measures included probiotics, prebiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). The control group was treated with a placebo or usual care. The intervention duration was divided into two periods (>12 weeks and ≤12 weeks). Adequate evaluation data for antibiotics and FMT have not been obtained. Therefore, the other three microbiota regulators are the primary evaluation measures in this study. RESULTS We found that probiotics alone could not improve clinical indicators in MASLD patients. However, synbiotics exhibited an improvement in reducing liver steatosis, TNF-ɑ levels, and increasing HDL-c levels, and the inflammatory markers of liver cells (ALT and AST) were also improved. For the effective intervention duration, this systematic review suggested that around 12 weeks is an ideal intervention cycle for MASLD patients. CONCLUSIONS This meta-analysis supported the modulation of gut microbiota with synbiotics in the management of MASLD.
Collapse
Affiliation(s)
- Juan Wu
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xiaoyang Chen
- Department of Diagnostics of Chinese Medicine, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jun Qian
- Department of Diagnostics of Chinese Medicine, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Guochun Li
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
22
|
Sun Y, Dong H, Sun C, Du D, Gao R, Voevoda M, Knyazev R, Wu N. Investigating the association between gut microbiome and aortic aneurysm diseases: a bidirectional two-sample Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1406845. [PMID: 39139765 PMCID: PMC11319299 DOI: 10.3389/fcimb.2024.1406845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Objective This study aims to investigate the associations between specific bacterial taxa of the gut microbiome and the development of aortic aneurysm diseases, utilizing Mendelian Randomization (MR) to explore these associations and overcome the confounding factors commonly present in observational studies. Methods Employing the largest available gut microbiome and aortic aneurysm Genome-Wide Association Study databases, including MiBioGen, Dutch Microbiome Project, FinnGen, UK Biobank, and Michigan Genomics Initiative, this study performs two-sample bidirectional MR analyses. Instrumental variables, linked to microbiome taxa at significant levels, were selected for identifying relationships with abdominal aortic aneurysms (AAA), thoracic aortic aneurysms (TAA), and aortic dissection (AD). Methods like inverse variance weighted, MR-PRESSO, MR-Egger, weighted median, simple mode, and mode-based estimate were used for MR analysis. Heterogeneity was assessed with the Cochran Q test. MR-Egger regression and MR-PRESSO addressed potential unbalanced horizontal pleiotropy. Results The analysis did not find any evidence of statistically significant associations between the gut microbiome and aortic aneurysm diseases after adjusting for the false discovery rate (FDR). Specifically, while initial results suggested correlations between 19 taxa and AAA, 25 taxa and TAA, and 13 taxa with AD, these suggested associations did not hold statistical significance post-FDR correction. Therefore, the role of individual gut microbial taxa as independent factors in the development and progression of aortic aneurysm diseases remains inconclusive. This finding underscores the necessity for larger sample sizes and more comprehensive studies to further investigate these potential links. Conclusion The study emphasizes the complex relationship between the gut microbiome and aortic aneurysm diseases. Although no statistically significant associations were found after FDR correction, the findings provide valuable insights and highlight the importance of considering gut microbiota in aortic aneurysm diseases research. Understanding these interactions may eventually contribute to identifying new therapeutic and preventive strategies for aortic aneurysm diseases.
Collapse
Affiliation(s)
- Yaodong Sun
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoju Dong
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Pediatric Cardiac Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Department of Cardiovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dongdong Du
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirong Gao
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Mikhail Voevoda
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Novosibirsk, Russia
| | - Roman Knyazev
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Novosibirsk, Russia
| | - Naishi Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Liu S, Deng Y, Liu H, Fu Z, Wang Y, Zhou M, Feng Z. Causal Relationship between Meat Intake and Biological Aging: Evidence from Mendelian Randomization Analysis. Nutrients 2024; 16:2433. [PMID: 39125314 PMCID: PMC11313912 DOI: 10.3390/nu16152433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Existing research indicates that different types of meat have varying effects on health and aging, but the specific causal relationships remain unclear. This study aimed to explore the causal relationship between different types of meat intake and aging-related phenotypes. This study employed Mendelian randomization (MR) to select genetic variants associated with meat intake from large genomic databases, ensuring the independence and pleiotropy-free nature of these instrumental variables (IVs), and calculated the F-statistic to evaluate the strength of the IVs. The validity of causal estimates was assessed through sensitivity analyses and various MR methods (MR-Egger, weighted median, inverse-variance weighted (IVW), simple mode, and weighted mode), with the MR-Egger regression intercept used to test for pleiotropy bias and Cochran's Q test employed to evaluate the heterogeneity of the results. The findings reveal a positive causal relationship between meat consumers and DNA methylation PhenoAge acceleration, suggesting that increased meat intake may accelerate the biological aging process. Specifically, lamb intake is found to have a positive causal effect on mitochondrial DNA copy number, while processed meat consumption shows a negative causal effect on telomere length. No significant causal relationships were observed for other types of meat intake. This study highlights the significant impact that processing and cooking methods have on meat's role in health and aging, enhancing our understanding of how specific types of meat and their preparation affect the aging process, providing a theoretical basis for dietary strategies aimed at delaying aging and enhancing quality of life.
Collapse
Affiliation(s)
| | | | | | | | | | - Meijuan Zhou
- Department of Radiation medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Y.D.); (H.L.); (Z.F.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Y.D.); (H.L.); (Z.F.); (Y.W.)
| |
Collapse
|
24
|
Hai S, Li X, Xie E, Wu W, Gao Q, Yu B, Hu J, Xu F, Zheng X, Zhang BH, Wu D, Yan W, Ning Q, Wang X. Intestinal IL-33 promotes microbiota-derived trimethylamine N -oxide synthesis and drives metabolic dysfunction-associated steatotic liver disease progression by exerting dual regulation on HIF-1α. Hepatology 2024:01515467-990000000-00950. [PMID: 38985971 DOI: 10.1097/hep.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND AIMS Gut microbiota plays a prominent role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). IL-33 is highly expressed at mucosal barrier sites and regulates intestinal homeostasis. Herein, we aimed to investigate the role and mechanism of intestinal IL-33 in MASLD. APPROACH AND RESULTS In both humans and mice with MASLD, hepatic expression of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) showed no significant change compared to controls, while serum soluble ST2 levels in humans, as well as intestinal IL-33 and ST2 expression in mice were significantly increased in MASLD. Deletion of global or intestinal IL-33 in mice alleviated metabolic disorders, inflammation, and fibrosis associated with MASLD by reducing intestinal barrier permeability and rectifying gut microbiota dysbiosis. Transplantation of gut microbiota from IL-33 deficiency mice prevented MASLD progression in wild-type mice. Moreover, IL-33 deficiency resulted in a decrease in the abundance of trimethylamine N -oxide-producing bacteria. Inhibition of trimethylamine N -oxide synthesis by 3,3-dimethyl-1-butanol mitigated hepatic oxidative stress in mice with MASLD. Nuclear IL-33 bound to hypoxia-inducible factor-1α and suppressed its activation, directly damaging the integrity of the intestinal barrier. Extracellular IL-33 destroyed the balance of intestinal Th1/Th17 and facilitated Th1 differentiation through the ST2- Hif1a - Tbx21 axis. Knockout of ST2 resulted in a diminished MASLD phenotype resembling that observed in IL-33 deficiency mice. CONCLUSIONS Intestinal IL-33 enhanced gut microbiota-derived trimethylamine N -oxide synthesis and aggravated MASLD progression through dual regulation on hypoxia-inducible factor-1α. Targeting IL-33 and its associated microbiota may provide a potential therapeutic strategy for managing MASLD.
Collapse
Affiliation(s)
- Suping Hai
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xitang Li
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Erliang Xie
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Gao
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Binghui Yu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyang Xu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xizhe Zheng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Bin-Hao Zhang
- Department of Surgery, Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Qin H, Liu J, Qu Y, Li YY, Xu YL, Yan YF. The intratumoral microbiota biomarkers for predicting survival and efficacy of immunotherapy in patients with ovarian serous cystadenocarcinoma. J Ovarian Res 2024; 17:140. [PMID: 38970121 PMCID: PMC11227176 DOI: 10.1186/s13048-024-01464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Ovarian serous cystadenocarcinoma, accounting for about 90% of ovarian cancers, is frequently diagnosed at advanced stages, leading to suboptimal treatment outcomes. Given the malignant nature of the disease, effective biomarkers for accurate prediction and personalized treatment remain an urgent clinical need. METHODS In this study, we analyzed the microbial contents of 453 ovarian serous cystadenocarcinoma and 68 adjacent non-cancerous samples. A univariate Cox regression model was used to identify microorganisms significantly associated with survival and a prognostic risk score model constructed using LASSO Cox regression analysis. Patients were subsequently categorized into high-risk and low-risk groups based on their risk scores. RESULTS Survival analysis revealed that patients in the low-risk group had a higher overall survival rate. A nomogram was constructed for easy visualization of the prognostic model. Analysis of immune cell infiltration and immune checkpoint gene expression in both groups showed that both parameters were positively correlated with the risk level, indicating an increased immune response in higher risk groups. CONCLUSION Our findings suggest that microbial profiles in ovarian serous cystadenocarcinoma may serve as viable clinical prognostic indicators. This study provides novel insights into the potential impact of intratumoral microbial communities on disease prognosis and opens avenues for future therapeutic interventions targeting these microorganisms.
Collapse
Affiliation(s)
- Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Jie Liu
- Department of Medical Records, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yi Qu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North Huayuan Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yang-Yang Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Lan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North Huayuan Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
26
|
Xian X, Li L, Ye J, Mo W, Liang D, Huang M, Chang Y, Cui Z. Betaine and I-LG may have a predictive value for ATB: A causal study in a large European population. PLoS One 2024; 19:e0306752. [PMID: 38968285 PMCID: PMC11226055 DOI: 10.1371/journal.pone.0306752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024] Open
Abstract
PURPOSE To analyze the causal relationship between 486 human serum metabolites and the active tuberculosis (ATB) in European population. METHODS In this study, the causal relationship between human serum metabolites and the ATB was analyzed by integrating the genome-wide association study (GWAS). The 486 human serum metabolites were used as the exposure variable, three different ATB GWAS databases in the European population were set as outcome variables, and single nucleotide polymorphisms were used as instrumental variables for Mendelian Randomization. The inverse variance weighting was estimated causality, the MR-Egger intercept to estimate horizontal pleiotropy, and the combined effects of metabolites were also considered in the meta-analysis. Furthermore, the web-based MetaboAnalyst 6.0 was engaged for enrichment pathway analysis, while R (version 4.3.2) software and Review Manager 5.3 were employed for statistical analysis. RESULTS A total of 21, 17, and 19 metabolites strongly associated with ATB were found in the three databases after preliminary screening (P < 0.05). The intersecting metabolites across these databases included tryptophan, betaine, 1-linoleoylglycerol (1-monolinolein) (1-LG), 1-eicosatrienoylglycerophosphocholine, and oleoylcarnitine. Among them, betaine (I2 = 24%, P = 0.27) and 1-LG (I2 = 0%, P = 0.62) showed the lowest heterogeneity among the different ATB databases. In addition, the metabolic pathways of phosphatidylethanolamine biosynthesis (P = 0.0068), methionine metabolism (P = 0.0089), betaine metabolism (P = 0.0205) and oxidation of branched-chain fatty acids (P = 0.0309) were also associated with ATB. CONCLUSION Betaine and 1-LG may be biomarkers or auxiliary diagnostic tools for ATB. They may provide new guidance for medical practice in the early diagnosis and surveillance of ATB. In addition, by interfering with phosphatidylethanolamine biosynthesis, methionine metabolism, betaine metabolism, oxidation of branched-chain fatty acids, and other pathways, it is helpful to develop new anti-tuberculosis drugs and explore the virulence or pathogenesis of ATB at a deeper level, providing an effective reference for future studies.
Collapse
Affiliation(s)
- Xiaomin Xian
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Ye
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, Guangxi, China
| | - Wenxiu Mo
- School of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Dabin Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, Guangxi, China
| | - Minying Huang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, Guangxi, China
| | - Yue Chang
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhezhe Cui
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Key Discipline Platform of Tuberculosis Control, Guangxi Centre for Disease Control and Prevention, Nanning, Guangxi, China
| |
Collapse
|
27
|
Zhou X, Ji S, Chen L, Liu X, Deng Y, You Y, Wang M, He Q, Peng B, Yang Y, Chen X, Kwan HY, Zhou L, Chen J, Zhao X. Gut microbiota dysbiosis in hyperuricaemia promotes renal injury through the activation of NLRP3 inflammasome. MICROBIOME 2024; 12:109. [PMID: 38907332 PMCID: PMC11191305 DOI: 10.1186/s40168-024-01826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND The prevalence of hyperuricaemia (HUA), a metabolic disorder characterized by elevated levels of uric acid, is on the rise and is frequently associated with renal injury. Gut microbiota and gut-derived uremic toxins are critical mediators in the gut-kidney axis that can cause damage to kidney function. Gut dysbiosis has been implicated in various kidney diseases. However, the role and underlying mechanism of the gut microbiota in HUA-induced renal injury remain unknown. RESULTS A HUA rat model was first established by knocking out the uricase (UOX). HUA rats exhibited apparent renal dysfunction, renal tubular injury, fibrosis, NLRP3 inflammasome activation, and impaired intestinal barrier functions. Analysis of 16S rRNA sequencing and functional prediction data revealed an abnormal gut microbiota profile and activation of pathways associated with uremic toxin production. A metabolomic analysis showed evident accumulation of gut-derived uremic toxins in the kidneys of HUA rats. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the effects of HUA-induced gut dysbiosis on renal injury. Mice recolonized with HUA microbiota exhibited severe renal injury and impaired intestinal barrier functions following renal ischemia/reperfusion (I/R) surgery. Notably, in NLRP3-knockout (NLRP3-/-) I/R mice, the deleterious effects of the HUA microbiota on renal injury and the intestinal barrier were eliminated. CONCLUSION Our results demonstrate that HUA-induced gut dysbiosis contributes to the development of renal injury, possibly by promoting the production of gut-derived uremic toxins and subsequently activating the NLRP3 inflammasome. Our data suggest a potential therapeutic strategy for the treatment of renal diseases by targeting the gut microbiota and the NLRP3 inflammasome. Video Abstract.
Collapse
Affiliation(s)
- Xinghong Zhou
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ming Wang
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Qiuxing He
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ying Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lin Zhou
- Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
| | - Jieyu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaoshan Zhao
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Xie S, Fang L, Deng N, Shen J, Tan Z, Peng X. Targeting the Gut-Kidney Axis in Diarrhea with Kidney-Yang Deficiency Syndrome: The Role of Sishen Pills in Regulating TMAO-Mediated Inflammatory Response. Med Sci Monit 2024; 30:e944185. [PMID: 38898640 PMCID: PMC11305074 DOI: 10.12659/msm.944185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Sishen Pills (SSPs) are commonly used to treat diarrhea with kidney-yang deficiency syndrome. Trimethylamine-N-oxide (TMAO) is produced through the metabolism of gut microbiota and can participate in diarrhea in kidney-yang deficiency syndrome by mediating the "gut-kidney axis" to transmit inflammatory factors. This study combined network pharmacology with animal experiments to explore whether SSPs can treat diarrhea with kidney-yang deficiency syndrome by affecting the interaction between TMAO and gut microbiota. MATERIAL AND METHODS A mouse model of diarrhea with kidney-yang deficiency syndrome was constructed by using adenine and Folium sennae decoction, and SSP decoction was used for treatment. This study utilized network pharmacology to predict the potential mechanisms of SSPs in treating diarrhea with kidney-yang deficiency syndrome. 16S rRNA high-throughput sequencing was used to analyze gut mucosal microbial characteristics. ELISA was used to measure TMAO, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), interleukin-1ß (IL-1ß), and transforming growth factor-ß1 (TGF-ß1) levels. We performed Masson and immunohistochemical (Occludin, ZO-1) staining of kidney and small intestinal tissues. The fluorescein diacetate (FDA) hydrolysis spectrophotometric method was used to assess the microbial activity in contents of the small intestine. RESULTS Network pharmacology analysis revealed that SSPs can modulate 108 target points involved in the development of diarrhea, including IL-1ß and TNF. The experimental results demonstrated that SSP decoction significantly improved the general behavioral profiles of the mice, and also reduced TMAO, NLRP3, IL-1ß, and TGF-ß1 levels (P<0.05). Correlation analysis revealed significant positive correlations between TMAO concentrations and NLRP3, IL-1ß and TGF-ß1 levels (P<0.05). Pathological analysis revealed improvements in renal fibrosis and increased expression of the Occludin and ZO-1 proteins in intestinal tissue. In the SSP group, there was a significant increase in microbial activity (P<0.001). According to the sequencing results, the characteristic bacteria of the SSP and NR groups included Succinatimonas hippei, uncultured Solirubrobacter sp., and Clostridium tyrobutyricum. Furthermore, TMAO, NLRP3, IL-1ß, and TGF-ß1 were significantly positively correlated (P<0.05) with Succinatimonas hippei and Clostridium tyrobutyricum. By modulating Firmicutes, Succinatimonas hippei, and Clostridium tyrobutyricum, SSP decoction lowers TMAO levels to alleviate diarrhea with kidney-yang deficiency syndrome. CONCLUSIONS TMAO likely plays a significant role in the "gut-kidney axis" of diarrhea with kidney-yang deficiency syndrome. By adjusting gut microbiota to reduce the inflammatory response that is transmitted through the "gut-kidney axis" as a result of elevated TMAO levels, SSP decoction can alleviate diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Shiqin Xie
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Leyao Fang
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Na Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Junxi Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
29
|
Andreu‐Sánchez S, Ahmad S, Kurilshikov A, Beekman M, Ghanbari M, van Faassen M, van den Munckhof ICL, Steur M, Harms A, Hankemeier T, Ikram MA, Kavousi M, Voortman T, Kraaij R, Netea MG, Rutten JHW, Riksen NP, Zhernakova A, Kuipers F, Slagboom PE, van Duijn CM, Fu J, Vojinovic D. Unraveling interindividual variation of trimethylamine N-oxide and its precursors at the population level. IMETA 2024; 3:e183. [PMID: 38898991 PMCID: PMC11183189 DOI: 10.1002/imt2.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 06/21/2024]
Abstract
Trimethylamine N-oxide (TMAO) is a circulating microbiome-derived metabolite implicated in the development of atherosclerosis and cardiovascular disease (CVD). We investigated whether plasma levels of TMAO, its precursors (betaine, carnitine, deoxycarnitine, choline), and TMAO-to-precursor ratios are associated with clinical outcomes, including CVD and mortality. This was followed by an in-depth analysis of their genetic, gut microbial, and dietary determinants. The analyses were conducted in five Dutch prospective cohort studies including 7834 individuals. To further investigate association results, Mendelian Randomization (MR) was also explored. We found only plasma choline levels (hazard ratio [HR] 1.17, [95% CI 1.07; 1.28]) and not TMAO to be associated with CVD risk. Our association analyses uncovered 10 genome-wide significant loci, including novel genomic regions for betaine (6p21.1, 6q25.3), choline (2q34, 5q31.1), and deoxycarnitine (10q21.2, 11p14.2) comprising several metabolic gene associations, for example, CPS1 or PEMT. Furthermore, our analyses uncovered 68 gut microbiota associations, mainly related to TMAO-to-precursors ratios and the Ruminococcaceae family, and 16 associations of food groups and metabolites including fish-TMAO, meat-carnitine, and plant-based food-betaine associations. No significant association was identified by the MR approach. Our analyses provide novel insights into the TMAO pathway, its determinants, and pathophysiological impact on the general population.
Collapse
Affiliation(s)
- Sergio Andreu‐Sánchez
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Pediatrics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Shahzad Ahmad
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Metabolomics & Analytics Centre, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Mohsen Ghanbari
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center GroningenUniversity of GroningenGroningenThe Netherland
| | - Inge C. L. van den Munckhof
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Marinka Steur
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Amy Harms
- Metabolomics & Analytics Centre, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Thomas Hankemeier
- Metabolomics & Analytics Centre, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Maryam Kavousi
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Trudy Voortman
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Robert Kraaij
- Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost H. W. Rutten
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Niels P. Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Laboratory Medicine, University Medical Center GroningenUniversity of GroningenGroningenThe Netherland
- European Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | | | - Jingyuan Fu
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Pediatrics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Dina Vojinovic
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
30
|
Zha A, Li W, Wang J, Bai P, Qi M, Liao P, Tan B, Yin Y. Trimethylamine oxide supplementation differentially regulates fat deposition in liver, longissimus dorsi muscle and adipose tissue of growing-finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:25-35. [PMID: 38464952 PMCID: PMC10920132 DOI: 10.1016/j.aninu.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/12/2024]
Abstract
Trimethylamine oxide (TMAO) is a microbiota-derived metabolite, and numerous studies have shown that it could regulate fat metabolism in humans and mice. However, few studies have focused on the effects of TMAO on fat deposition in growing-finishing pigs. This study aimed to investigate the effect of TMAO on fat deposition and intestinal microbiota in growing-finishing pigs. Sixteen growing pigs were randomly divided into 2 groups and fed with a basal diet with 0 or 1 g/kg TMAO for 149 d. The intestinal microbial profiles, fat deposition indexes, and fatty acid profiles were measured. These results showed that TMAO supplementation had a tendency to decrease lean body mass (P < 0.1) and significantly increased backfat thickness (P < 0.05), but it did not affect growth performance. TMAO significantly increased total protein (TP) concentration, and reduced alkaline phosphatase (ALP) concentration in serum (P < 0.05). TMAO increased the α diversity of the ileal microbiota community (P < 0.05), and it did not affect the colonic microbial community. TMAO supplementation significantly increased acetate content in the ileum, and Proteobacteria and Escherichia-Shigella were significantly enriched in the TMAO group (P < 0.05). In addition, TMAO decreased fat content, as well as the ratio of linoleic acid, n-6 polyunsaturated fatty acids (PUFA), and PUFA in the liver (P < 0.05). On the contrary, TMAO increased intramuscular fat content of the longissimus dorsi muscle, whereas the C18:2n6c ratio was increased, and the n-6 PUFA:PUFA ratio was decreased (P < 0.05). In vitro, 1 mM TMAO treatment significantly upregulated the expression of FASN and SREBP1 in C2C12 cells (P < 0.05). Nevertheless, TMAO also increased adipocyte area and decreased the CPT-1B expression in subcutaneous fat (P < 0.05). Taken together, TMAO supplementation regulated ileal microbial composition and acetate production, and regulated fat distribution and fatty acid composition in growing-finishing pigs. These results provide new insights for understanding the role of TMAO in humans and animals.
Collapse
Affiliation(s)
- Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Wanquan Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ping Bai
- Yunnan Southwest Agriculture and Animal Husbandry Group Co., Ltd, Kunming 650224, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- University of Chinese Academy of Sciences, Beijing 100008, China
- Yunnan Southwest Agriculture and Animal Husbandry Group Co., Ltd, Kunming 650224, China
| |
Collapse
|
31
|
Deyang T, Baig MAI, Dolkar P, Hediyal TA, Rathipriya AG, Bhaskaran M, PandiPerumal SR, Monaghan TM, Mahalakshmi AM, Chidambaram SB. Sleep apnoea, gut dysbiosis and cognitive dysfunction. FEBS J 2024; 291:2519-2544. [PMID: 37712936 DOI: 10.1111/febs.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Sleep disorders are becoming increasingly common, and their distinct effects on physical and mental health require elaborate investigation. Gut dysbiosis (GD) has been reported in sleep-related disorders, but sleep apnoea is of particular significance because of its higher prevalence and chronicity. Cumulative evidence has suggested a link between sleep apnoea and GD. This review highlights the gut-brain communication axis that is mediated via commensal microbes and various microbiota-derived metabolites (e.g. short-chain fatty acids, lipopolysaccharide and trimethyl amine N-oxide), neurotransmitters (e.g. γ-aminobutyric acid, serotonin, glutamate and dopamine), immune cells and inflammatory mediators, as well as the vagus nerve and hypothalamic-pituitary-adrenal axis. This review also discusses the pathological role underpinning GD and altered gut bacterial populations in sleep apnoea and its related comorbid conditions, particularly cognitive dysfunction. In addition, the review examines the preclinical and clinical evidence, which suggests that prebiotics and probiotics may potentially be beneficial in sleep apnoea and its comorbidities through restoration of eubiosis or gut microbial homeostasis that regulates neural, metabolic and immune responses, as well as physiological barrier integrity via the gut-brain axis.
Collapse
Affiliation(s)
- Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Md Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Center, University of Toledo Health Science Campus, OH, USA
| | - Seithikuruppu R PandiPerumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, UK
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| |
Collapse
|
32
|
Vallianou NG, Kounatidis D, Psallida S, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Tsilingiris D, Dalamaga M. The Interplay Between Dietary Choline and Cardiometabolic Disorders: A Review of Current Evidence. Curr Nutr Rep 2024; 13:152-165. [PMID: 38427291 PMCID: PMC11133147 DOI: 10.1007/s13668-024-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, Athens, Greece
| | - Sotiria Psallida
- Department of Microbiology, KAT General Hospital of Attica, 2 Nikis str, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini str, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| |
Collapse
|
33
|
Jiang Y, Pang S, Liu X, Wang L, Liu Y. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J Cardiovasc Transl Res 2024; 17:624-637. [PMID: 38231373 DOI: 10.1007/s12265-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
34
|
Miranda-Angulo AL, Sánchez-López JD, Vargas-Tejada DA, Hawkins-Caicedo V, Calderón JC, Gallo-Villegas J, Alzate-Restrepo JF, Suarez-Revelo JX, Castrillón G. Sympathovagal quotient and resting-state functional connectivity of control networks are related to gut Ruminococcaceae abundance in healthy men. Psychoneuroendocrinology 2024; 164:107003. [PMID: 38471256 DOI: 10.1016/j.psyneuen.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Heart rate variability (HRV), brain resting-state functional connectivity (rsFC), and gut microbiota (GM) are three recognized indicators of health status, whose relationship has not been characterized. We aimed to identify the GM genera and families related to HRV and rsFC, the interaction effect of HRV and rsFC on GM taxa abundance, and the mediation effect of diet on these relationships. METHODS Eighty-eight healthy, young Colombian men were included in this cross-sectional study. HRV metrics were extracted from 24-hour Holter monitoring data and the resting functional connectivity strength (FCS) of 15 networks were derived from functional magnetic resonance imaging. Gut microbiota composition was assessed using the sequences of the V3-V4 regions of the 16 S rRNA gene, and diet was evaluated using a food frequency questionnaire. Multivariate linear regression analyses were performed to evaluate the correlations between the independent variables (HRV metrics and FCS) and the dependent variables (GM taxa abundance or alpha diversity indexes). Mediation analyses were used to test the role of diet in the relationship between HRV and GM. RESULTS The sympathovagal quotient (SQ) and the FCS of control networks were positively correlated with the abundance of the gut Ruminococcaceae family and an unclassified Ruminococcaceae genus (Ruminococcaceae_unc). Additionally, the interaction between the FCS of the control network and SQ reduced the individual main effects on the Ruminococcaceae_unc abundance. Finally, reduced habitual fiber intake partially mediated the relationship between SQ and this genus. CONCLUSION Two indicators of self-regulation, HRV and the rsFC of control networks, are related to the abundance of gut microbiota taxa in healthy men. However, only HRV is related to habitual dietary intake; thus, HRV could serve as a marker of food choice and GM composition in the future.
Collapse
Affiliation(s)
- Ana L Miranda-Angulo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia.
| | - Juan D Sánchez-López
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Daniel A Vargas-Tejada
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Valentina Hawkins-Caicedo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Juan C Calderón
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jaime Gallo-Villegas
- Grupo de Investigación en Medicina Aplicada a la Actividad Física y el Deporte (GRINMADE), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia; Centro Clínico y de Investigación SICOR, Calle 19 No. 42-40, Medellín, Colombia
| | - Juan F Alzate-Restrepo
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jazmin X Suarez-Revelo
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia
| | - Gabriel Castrillón
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia; Department of Neuroradiology, Universitätsklinikum Erlangen, Maximiliansplatz 2, Erlangen, Germany
| |
Collapse
|
35
|
Yaqub A, Vojinovic D, Vernooij MW, Slagboom PE, Ghanbari M, Beekman M, van der Grond J, Hankemeier T, van Duijn CM, Ikram MA, Ahmad S. Plasma trimethylamine N-oxide (TMAO): associations with cognition, neuroimaging, and dementia. Alzheimers Res Ther 2024; 16:113. [PMID: 38769578 PMCID: PMC11103865 DOI: 10.1186/s13195-024-01480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The gut-derived metabolite Trimethylamine N-oxide (TMAO) and its precursors - betaine, carnitine, choline, and deoxycarnitine - have been associated with an increased risk of cardiovascular disease, but their relation to cognition, neuroimaging markers, and dementia remains uncertain. METHODS In the population-based Rotterdam Study, we used multivariable regression models to study the associations between plasma TMAO, its precursors, and cognition in 3,143 participants. Subsequently, we examined their link to structural brain MRI markers in 2,047 participants, with a partial validation in the Leiden Longevity Study (n = 318). Among 2,517 participants, we assessed the risk of incident dementia using multivariable Cox proportional hazard models. Following this, we stratified the longitudinal associations by medication use and sex, after which we conducted a sensitivity analysis for individuals with impaired renal function. RESULTS Overall, plasma TMAO was not associated with cognition, neuroimaging markers or incident dementia. Instead, higher plasma choline was significantly associated with poor cognition (adjusted mean difference: -0.170 [95% confidence interval (CI) -0.297;-0.043]), brain atrophy and more markers of cerebral small vessel disease, such as white matter hyperintensity volume (0.237 [95% CI: 0.076;0.397]). By contrast, higher carnitine concurred with lower white matter hyperintensity volume (-0.177 [95% CI: -0.343;-0.010]). Only among individuals with impaired renal function, TMAO appeared to increase risk of dementia (hazard ratio (HR): 1.73 [95% CI: 1.16;2.60]). No notable differences were observed in stratified analyses. CONCLUSIONS Plasma choline, as opposed to TMAO, was found to be associated with cognitive decline, brain atrophy, and markers of cerebral small vessel disease. These findings illustrate the complexity of relationships between TMAO and its precursors, and emphasize the need for concurrent study to elucidate gut-brain mechanisms.
Collapse
Affiliation(s)
- Amber Yaqub
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands.
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| |
Collapse
|
36
|
Huang Y, Zhang J, Zhang Y, Wang W, Li M, Chen B, Zhang X, Zhang Z, Huang J, Jin Y, Wang H, Zhang X, Yin S, Yang W. Red meat intake, faecal microbiome, serum trimethylamine N-oxide and hepatic steatosis among Chinese adults. Liver Int 2024; 44:1142-1153. [PMID: 38314906 DOI: 10.1111/liv.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND AIMS Emerging evidence suggests a detrimental impact of high red meat intake on hepatic steatosis. We investigated the potential interplay between red meat intake and gut microbiome on circulating levels of trimethylamine N-oxide (TMAO) and hepatic steatosis risk. METHODS This cross-sectional study was conducted in a representative sample of 754 community-dwelling adults in Huoshan, China. Diet was collected using 4 quarterly 3 consecutive 24-h dietary (12-day) recalls. We profiled faecal microbiome using 16S ribosomal RNA sequencing and quantified serum TMAO and its precursors using LC-tandem MS (n = 333). We detected hepatic steatosis by FibroScan. The adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were calculated using logistic regression. RESULTS TMAO levels but not its precursors were positively associated with the likelihood of hepatic steatosis (aOR per 1-SD increment 1.86, 95% CI 1.04-3.32). We identified 14 bacterial genera whose abundance was associated with TMAO concentration (pFDR < .05) belonging to the phyla Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria families. Per 10 g/day increase in red meat intake was positively associated with TMAO levels among participants who had higher red meat intake (>70 g/day) and higher TMAO-predicting microbial scores (TMS, β = .045, p = .034), but not among others (pinteraction = .030). TMS significantly modified the positive association between red meat and steatosis (pinteraction = .032), with a stronger association being observed among participants with higher TMS (aOR 1.30, 95% CI 1.07-1.57). CONCLUSIONS The bacterial genera that predicted TMAO levels may jointly modify the association between red meat intake and TMAO levels and the subsequent risk of hepatic steatosis.
Collapse
Affiliation(s)
- Yong Huang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiawei Zhang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Yaozong Zhang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Wuqi Wang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Meiling Li
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Bo Chen
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyu Zhang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Zhuang Zhang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqi Huang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yong Jin
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shi Yin
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanshui Yang
- School of Public Health, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Zhou F, Zhang Q, Zheng X, Shi F, Ma K, Ji F, Meng N, Li R, Lv J, Li Q. Antiaging Effects of Human Fecal Transplants with Different Combinations of Bifidobacterium bifidum LTBB21J1 and Lactobacillus casei LTL1361 in d-Galactose-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9818-9827. [PMID: 38647087 DOI: 10.1021/acs.jafc.3c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The feces of healthy middle-aged and old people were first transplanted into d-galactose-induced aging mice to construct humanized aging mice with gut microbiota (FMTC) to confirm the antiaging effect of probiotics produced from centenarians. The mouse model was then treated with centenarian-derived Bifidobacterium bifidum (FMTL), Lactobacillus casei (FMTB), and their mixtures (FMTM), and young mice were used as the control. Compared with the FMTC group, the results demonstrated that the probiotics and their combinations alleviated neuronal damage, increased antioxidant capacity, decreased inflammation, and enhanced cognitive and memory functions in aging mice. In the gut microbiota, the relative abundance of Lactobacillus, Ligilactobacillus, and Akkermansia increased and that of Desulfovibrio and Colidextribacter decreased in the FMTM group compared with that in the FMTC group. The three probiotic groups displayed significant changes in 15 metabolites compared with the FMTC group, with 4 metabolites showing increased expression and 11 metabolites showing decreased expression. The groups were graded as Control > FMTM > FMTB > FMTL > FMTC using a newly developed comprehensive quantitative scoring system that thoroughly analyzed the various indicators of this study. The beneficial antiaging effects of probiotics derived from centenarians were quantitatively described using a novel perspective in this study; it is confirmed that both probiotics and their combinations exert antiaging effects, with the probiotic complex group exhibiting a larger effect.
Collapse
Affiliation(s)
- Fan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qinren Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaohua Zheng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fengcui Shi
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Shandong 250200, China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co.,Ltd, Jiangsu 214400, China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co.,Ltd, Jiangsu 214400, China
| | - Ning Meng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ruiding Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jingwen Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
38
|
Spasova N, Somleva D, Krastev B, Ilieva R, Borizanova A, Svinarov D, Kinova E, Goudev A. Association of the trimethylamine N-oxide with cardiovascular risk and vascular alterations in middle-aged patients with risk factors for cardiovascular diseases. Biosci Rep 2024; 44:BSR20232090. [PMID: 38669041 PMCID: PMC12046062 DOI: 10.1042/bsr20232090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is synthesized by the intestinal microbiota and is an independent predictor of cardiovascular disease (CVD). However, its underlying mechanisms remain unclear. We investigated TMAO levels across different CVD-risk patient groups, and evaluated associations between TMAO and vascular alterations (e.g., arterial stiffness, intima-media thickness [IMT], and the presence and grade of carotid artery plaques [CAPs]). METHODS We examined 95 patients (58.5 ± 7.3 years): 40 with clinical atherosclerotic cardiovascular disease (ASCVD), 40 with atherosclerosis risk factors (RF), and 15 controls. Arterial stiffness was measured by Carotid-Femoral Pulse Wave Velocity (C-F PWV). B-mode ultrasound was used to evaluate the presence and grade of CAPs and carotid IMT (CIMT). TMAO was measured by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) and results were presented as the median (interquartile range). RESULTS TMAO levels were higher in patients with ASCVD (251.5 [164.5] µg/l) when compared with patients with RFs (194.0 [174] µg/l, P=0.04) and controls (122.0 (77) µg/l, P<0.001). A significant correlation was observed between TMAO and PWV (r = 0.31, P=0.003), which was not confirmed after adjustment for RFs. TMAO levels were significantly correlated with plaque score (r = 0.46, P<0.001) and plaque height (r=0.41, P=0.003), and were independent predictors for grade III plaques (odds ratio [OR] = 1.002, confidence interval (CI) 95%: 1.000047-1.003, P=0.044). CONCLUSIONS TMAO levels are increased with expanded CVD risk. Across different types of vascular damage, TMAO is associated with atherosclerotic changes.
Collapse
Affiliation(s)
- Natalia Spasova
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Desislava Somleva
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Bozhidar Krastev
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Radostina Ilieva
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Angelina Borizanova
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Dobrin Svinarov
- University Hospital Alexandrovska, Faculty of Medicine, Medical University, Sofia
| | - Elena Kinova
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| | - Assen Goudev
- Department of Cardiology, University Hospital, UMHAT “Tsaritsa Yoanna - ISUL”, Sofia, Bulgaria
| |
Collapse
|
39
|
Lee H, Koh GY, Lee H, Alves P, Yokoyama W, Wang Y. Discovery of a Novel Bioactive Compound in Orange Peel Polar Fraction on the Inhibition of Trimethylamine and Trimethylamine N-Oxide through Metabolomics Approaches and In Vitro and In Vivo Assays: Feruloylputrescine Inhibits Trimethylamine via Suppressing cntA/B Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7870-7881. [PMID: 38562057 DOI: 10.1021/acs.jafc.3c09005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition.
Collapse
Affiliation(s)
- Hana Lee
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| | - Gar Yee Koh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, Texas 78666, United States
| | - Hanna Lee
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agricultural, Albany, California 94710, United States
| | - Priscila Alves
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agricultural, Albany, California 94710, United States
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agricultural, Albany, California 94710, United States
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| |
Collapse
|
40
|
Smith CB, Gao A, Bravo P, Alam A. Microbial Metabolite Trimethylamine N-Oxide Promotes Campylobacter jejuni Infection by Escalating Intestinal Inflammation, Epithelial Damage, and Barrier Disruption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588895. [PMID: 38645062 PMCID: PMC11030326 DOI: 10.1101/2024.04.10.588895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The interactions between Campylobacter jejuni , a critical foodborne cause of gastroenteritis, and the intestinal microbiota during infection are not completely understood. The crosstalk between C. jejuni and its host is impacted by the gut microbiota through mechanisms of competitive exclusion, microbial metabolites, or immune response. To investigate the role of gut microbiota on C. jejuni pathogenesis, we examined campylobacteriosis in the IL10KO mouse model, which was characterized by an increase in the relative abundance of intestinal proteobacteria, E. coli , and inflammatory cytokines during C. jejuni infection. We also found a significantly increased abundance of microbial metabolite Trimethylamine N-Oxide (TMAO) in the colonic lumens of IL10KO mice. We further investigated the effects of TMAO on C. jejuni pathogenesis. We determined that C. jejuni senses TMAO as a chemoattractant and the administration of TMAO promotes C. jejuni invasion into Caco-2 monolayers. TMAO also increased the transmigration of C. jejuni across polarized monolayers of Caco-2 cells, decreased TEER, and increased C. jejuni -mediated intestinal barrier damage. Interestingly, TMAO treatment and presence during C. jejuni infection of Caco-2 cells synergistically caused an increased inflammatory cytokine expression, specifically IL-1β and IL-8. These results establish that C. jejuni utilizes microbial metabolite TMAO for increased virulence during infection.
Collapse
|
41
|
Xiong Z, Li J, Huang R, Zhou H, Xu X, Zhang S, Xie P, Li M, Guo Y, Liao X, Zhuang X. The gut microbe-derived metabolite trimethylamine-N-oxide induces aortic valve fibrosis via PERK/ATF-4 and IRE-1α/XBP-1s signaling in vitro and in vivo. Atherosclerosis 2024; 391:117431. [PMID: 38408412 DOI: 10.1016/j.atherosclerosis.2023.117431] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND AND AIMS The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has been implicated in the development of cardiovascular fibrosis. Endoplasmic reticulum (ER) stress occurs after the dysfunction of ER and its structure. The three signals PERK/ATF-4, IRE-1α/XBP-1s and ATF6 are activated upon ER stress. Recent reports have suggested that the activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling contributes to cardiovascular fibrosis. However, whether TMAO mediates aortic valve fibrosis by activating PERK/ATF-4 and IRE-1α/XBP-1s signaling remains unclear. METHODS Human aortic valve interstitial cells (AVICs) were isolated from aortic valve leaflets. PERK IRE-1α, ATF-4, XBP-1s and CHOP expression, and production of collagen Ⅰ and TGF-β1 were analyzed following treatment with TMAO. The role of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in TMAO-induced fibrotic formation was determined using inhibitors and small interfering RNA. RESULTS Diseased valves produced greater levels of ATF-4, XBP-1, collagen Ⅰ and TGF-β1. Interestingly, diseased cells exhibited augmented PERK/ATF-4 and IRE-1α/XBP-1s activation after TMAO stimulation. Inhibition and silencing of PERK/ATF-4 and IRE-1α/XBP-1s each resulted in enhanced suppression of TMAO-induced fibrogenic activity in diseased cells. Mice treated with dietary choline supplementation had substantially increased TMAO levels and aortic valve fibrosis, which were reduced by 3,3-dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) treatment. Moreover, a high-choline and high-fat diet remodeled the gut microbiota in mice. CONCLUSIONS TMAO promoted aortic valve fibrosis through activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in vitro and in vivo. Modulation of diet, gut microbiota, TMAO, PERK/ATF-4 and IRE1-α/XBP-1s may be a promising approach to prevent aortic valve fibrosis.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Li
- Institute of Guangdong Provincial Geriatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Rihua Huang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Huimin Zhou
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Xingfeng Xu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Shaozhao Zhang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Peihan Xie
- Department of Ultrasonography, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Miaohong Li
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yue Guo
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
42
|
Zhou X, Ruan W, Wang T, Liu H, Du L, Huang J. Exploring the impact of gut microbiota on abdominal aortic aneurysm risk through a bidirectional Mendelian randomization analysis. J Vasc Surg 2024; 79:763-775.e2. [PMID: 38042512 DOI: 10.1016/j.jvs.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE The abdominal aortic aneurysm (AAA) is associated with alterations in the composition of the gut microbiota; however, the precise causal relationship remains unclear. Elucidating this complex interplay could provide new insights into the pathogenesis of AAA. METHODS A bidirectional two-sample Mendelian randomization analysis was conducted using genome-wide association study summary data on the gut microbiota (n = 18,340) and AAA (n = 353,087). A total of 196 gut microbial taxa across taxonomic levels were examined for their potential causal effects on AAA risk. Conversely, the effect of AAA on these microbial taxa was also analyzed. RESULTS Nine microbial taxa were identified as having a causal influence on AAA risk. Specifically, increased risk were associated with genus Bilophila (odds ratio [OR], 1.359; P = .0119), genus Catenibacterium (OR, 1.348; P = .0058), genus family XIII AD3011 group (OR, 1.507; P = .004), genus Oxalobacter (OR, 1.157; P = .0449), and genus Prevotella 7 (OR, 1.194; P = .0306), whereas decreased risks were linked to class Lentisphaeria (OR, 0.829; P = .0361), order Victivallales (OR, 0.829; P = .0361), family Victivallaceae (OR, 0.814; P = .0057), and genus Anaerotruncus (OR, 0.773; P = .0497). Furthermore, AAA was found to influence the abundance of 14 microbial taxa across various taxonomic levels. Notably, bidirectional associations were observed with the class Lentisphaeria and the order Victivallales. CONCLUSIONS This study provides novel evidence for a reciprocal causal relationship between gut microbiota and AAA risk, thereby offering new insights into the pathogenesis of AAA. These findings also suggest promising avenues for microbiome-based therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu, PR China; Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, PR China; Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weiqiang Ruan
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ting Wang
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, PR China
| | - Huizhen Liu
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, PR China
| | - Liang Du
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, PR China; Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, PR China; Medical Equipment Innovation Research Center, West China School of Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jin Huang
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, PR China; Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, PR China; Medical Equipment Innovation Research Center, West China School of Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
43
|
Pochini L, Galluccio M, Console L, Scalise M, Eberini I, Indiveri C. Inflammation and Organic Cation Transporters Novel (OCTNs). Biomolecules 2024; 14:392. [PMID: 38672410 PMCID: PMC11048549 DOI: 10.3390/biom14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Lara Console
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
44
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
45
|
Shea JW, Jacobs DR, Howard AG, Lulla A, Lloyd-Jones DM, Murthy VL, Shah RV, Trujillo-Gonzalez I, Gordon-Larsen P, Meyer KA. Choline metabolites and incident cardiovascular disease in a prospective cohort of adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 2024; 119:29-38. [PMID: 37865185 PMCID: PMC10808833 DOI: 10.1016/j.ajcnut.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND The potential role for choline metabolite trimethylamine N-oxide (TMAO) in cardiovascular disease (CVD) has garnered much attention, but there have been limited data from diverse population-based cohorts. Furthermore, few studies have included circulating choline and betaine, which can serve as precursors to TMAO and may independently influence CVD. OBJECTIVE We quantified prospective associations between 3 choline metabolites and 19-y incident CVD in a population-based cohort and tested effect modification of metabolite-CVD associations by kidney function. METHODS Data were from the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a prospective cohort with recruitment from 4 US urban centers (year 0: 1985-1986, n = 5115, ages 18-30). The analytic sample included 3444 White and Black males and females, aged 33 to 45, who attended the year 15 follow-up exam and did not have prevalent CVD. TMAO, choline, and betaine were quantitated from stored plasma (-70°C) using liquid-chromatography mass-spectrometry. Nineteen-year incident CVD events (n = 221), including coronary heart disease and stroke, were identified through adjudicated hospitalization records and linkage with the National Death Register. RESULTS Plasma choline was positively associated with CVD in Cox proportional hazards regression analysis adjusted for demographics, health behaviors, CVD risk factors, and metabolites (hazard ratio: 1.24; 95% CI: 1.09, 1.40 per standard deviation-unit choline). TMAO and betaine were not associated with CVD in an identically adjusted analysis. There was statistical evidence for effect modification by kidney function with CVD positively associated with TMAO and negatively associated with betaine at lower values of estimated glomerular filtration rate (interaction P values: 0.0046 and 0.020, respectively). CONCLUSIONS Our findings are consistent with a positive association between plasma choline and incident CVD. Among participants with lower kidney function, TMAO was positively, and betaine negatively, associated with CVD. These results further our understanding of the potential role for choline metabolism on CVD risk.
Collapse
Affiliation(s)
- Jonathan W Shea
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Annie Green Howard
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States; Carolina Population Center, University of North Carolina, Chapel Hill, NC, United States
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University, Chicago, IL, United States
| | - Venkatesh L Murthy
- Department of Medicine and Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Ravi V Shah
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, United States; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States
| | - Katie A Meyer
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
46
|
Nhan J, Sgambat K, Moudgil A. Plant-based diets: a fad or the future of medical nutrition therapy for children with chronic kidney disease? Pediatr Nephrol 2023; 38:3597-3609. [PMID: 36786858 DOI: 10.1007/s00467-023-05875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 02/15/2023]
Abstract
Plant-based diets are growing in popularity worldwide due to the importance of reducing the population's ecological footprint as well as an emerging role in the prevention and treatment of chronic human diseases. In adults, plant-based diets have been shown to be beneficial for preventing and controlling conditions that are common in patients with chronic kidney disease (CKD), such as obesity, hypertension, type 2 diabetes, dyslipidemia, and metabolic acidosis. Emerging evidence suggests that the higher fiber content of plant-based diets may help to modulate production of uremic toxins through beneficial shifts in the gut microbiome. The effects of the plant-based diet on progression of CKD remain controversial, and there are no data to support this in children. However, knowledge that the bioavailability of potassium and phosphorus from plant-based foods is reduced has led to recent changes in international kidney-friendly diet recommendations for children with CKD. The new guidelines advise that high potassium fruits and vegetables should no longer be automatically excluded from the kidney-friendly diet. In fact, a plant-based diet can be safely implemented in children with CKD through building the diet around whole, high fiber foods, avoiding processed foods and using recommended cooking methods to control potassium. The health benefits of the plant-based diet compared to omnivorous diets in children with CKD need investigation.
Collapse
Affiliation(s)
- Jennifer Nhan
- Department of Nephrology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC, 20010, USA
| | - Kristen Sgambat
- Department of Nephrology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC, 20010, USA.
| | - Asha Moudgil
- Department of Nephrology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC, 20010, USA
| |
Collapse
|
47
|
Lledós M, Prats-Sánchez L, Llucià-Carol L, Cárcel-Márquez J, Muiño E, Cullell N, Gallego-Fabrega C, Martín-Campos JM, Aguilera-Simón A, Guasch-Jiménez M, Guisado-Alonso D, Ramos-Pachón A, Martínez-Domeño A, Izquierdo A, Marín R, Camps-Renom P, Martí-Fàbregas J, Fernández-Cadenas I. Ischaemic stroke patients present sex differences in gut microbiota. Eur J Neurol 2023; 30:3497-3506. [PMID: 37329328 DOI: 10.1111/ene.15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Gut microbiota plays a role in the pathophysiology of ischaemic stroke (IS) through the bidirectional gut-brain axis. Nevertheless, little is known about sex-specific microbiota signatures in IS occurrence. METHODS A total of 89 IS patients and 12 healthy controls were enrolled. We studied the taxonomic differences of the gut microbiota between men and women with IS by shotgun metagenomic sequencing. To evaluate the causal effect of several bacteria on IS risk, we performed a two-sample Mendelian randomisation (MR) with inverse-variance weighting (IVW) using genome-wide association analysis (GWAS) summary statistics from two cohorts of 5959 subjects with genetic and microbiota data and 1,296,908 subjects with genetic and IS data, respectively. RESULTS α-Diversity analysis measured using Observed Species (p = 0.017), Chao1 (p = 0.009) and Abundance-based Coverage Estimator (p = 0.012) indexes revealed that IS men have a higher species richness compared with IS women. Moreover, we found sex-differences in IS patients in relation to the phylum Fusobacteria, class Fusobacteriia, order Fusobacteriales and family Fusobacteriaceae (all Bonferroni-corrected p < 0.001). MR confirmed that increased Fusobacteriaceae levels in the gut are causally associated with an increased risk of IS (IVW p = 0.02, β = 0.32). CONCLUSIONS Our study is the first to indicate that there are gut microbiome differences between men and women with IS, identifying high levels of Fusobacteriaceae in women as a specific risk factor for IS. Incorporating sex stratification analysis is important in the design, analysis and interpretation of studies on stroke and the gut microbiota.
Collapse
Affiliation(s)
- Miquel Lledós
- Stroke Pharmacogenomics and Genetics Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Luís Prats-Sánchez
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Stroke Pharmacogenomics and Genetics Laboratory, Fundación Docència i Recerca MútuaTerrassa, Hospital Mútua de Terrassa, Terrassa, Spain
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jesús M Martín-Campos
- Stroke Pharmacogenomics and Genetics Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Ana Aguilera-Simón
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina Guasch-Jiménez
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Daniel Guisado-Alonso
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Anna Ramos-Pachón
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Artur Izquierdo
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rebeca Marín
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Joan Martí-Fàbregas
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| |
Collapse
|
48
|
Mihuta MS, Paul C, Borlea A, Roi CM, Pescari D, Velea-Barta OA, Mozos I, Stoian D. Connections between serum Trimethylamine N-Oxide (TMAO), a gut-derived metabolite, and vascular biomarkers evaluating arterial stiffness and subclinical atherosclerosis in children with obesity. Front Endocrinol (Lausanne) 2023; 14:1253584. [PMID: 37850094 PMCID: PMC10577381 DOI: 10.3389/fendo.2023.1253584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Childhood obesity leads to early subclinical atherosclerosis and arterial stiffness. Studying biomarkers like trimethylamine N-oxide (TMAO), linked to cardio-metabolic disorders in adults, is crucial to prevent long-term cardiovascular issues. Methods The study involved 70 children aged 4 to 18 (50 obese, 20 normal-weight). Clinical examination included BMI, waist measurements, puberty stage, the presence of acanthosis nigricans, and irregular menstrual cycles. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (CIMT), and the arterial stiffness was evaluated through surrogate markers like the pulse wave velocity (PWV), augmentation index (AIx), and peripheral and central blood pressures. The blood biomarkers included determining the values of TMAO, HOMA-IR, and other usual biomarkers investigating metabolism. Results The study detected significantly elevated levels of TMAO in obese children compared to controls. TMAO presented positive correlations to BMI, waist circumference and waist-to-height ratio and was also observed as an independent predictor of all three parameters. Significant correlations were observed between TMAO and vascular markers such as CIMT, PWV, and peripheral BP levels. TMAO independently predicts CIMT, PWV, peripheral BP, and central SBP levels, even after adding BMI, waist circumference, waist-to-height ratio, puberty development and age in the regression model. Obese children with high HOMA-IR presented a greater weight excess and significantly higher vascular markers, but TMAO levels did not differ significantly from the obese with HOMA-IR Conclusion Our study provides compelling evidence supporting the link between serum TMAO, obesity, and vascular damage in children. These findings highlight the importance of further research to unravel the underlying mechanisms of this connection.
Collapse
Affiliation(s)
- Monica Simina Mihuta
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Borlea
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Mihaela Roi
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Denisa Pescari
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Alexandra Velea-Barta
- 3rd Department of Odontotherapy and Endodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Mozos
- Department of Functional Sciences—Pathophysiology, Center for Translational Research and Systems Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
49
|
Wang R, Wang QY, Bai Y, Bi YG, Cai SJ. Research progress of diabetic retinopathy and gut microecology. Front Microbiol 2023; 14:1256878. [PMID: 37744925 PMCID: PMC10513461 DOI: 10.3389/fmicb.2023.1256878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
According to the prediction of the International Diabetes Federation, global diabetes mellitus (DM) patients will reach 783.2 million in 2045. The increasing incidence of DM has led to a global epidemic of diabetic retinopathy (DR). DR is a common microvascular complication of DM, which has a significant impact on the vision of working-age people and is one of the main causes of blindness worldwide. Substantial research has highlighted that microangiopathy and chronic low-grade inflammation are widespread in the retina of DR. Meanwhile, with the introduction of the gut-retina axis, it has also been found that DR is associated with gut microecological disorders. The disordered structure of the GM and the destruction of the gut barrier result in the release of abnormal GM flora metabolites into the blood circulation. In addition, this process induced alterations in the expression of various cytokines and proteins, which further modulate the inflammatory microenvironment, vascular damage, oxidative stress, and immune levels within the retina. Such alterations led to the development of DR. In this review, we discuss the corresponding alterations in the structure of the GM flora and its metabolites in DR, with a more detailed focus on the mechanism of gut microecology in DR. Finally, we summarize the potential therapeutic approaches of DM/DR, mainly regulating the disturbed gut microecology to restore the homeostatic level, to provide a new perspective on the prevention, monitoring, and treatment of DR.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| | - Qiu-Yuan Wang
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| | - Yang Bai
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| | - Ye-Ge Bi
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| | - Shan-Jun Cai
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| |
Collapse
|
50
|
Witkowska AM, Salem JE. Pharmacological and Nutritional Modulation of Metabolome and Metagenome in Cardiometabolic Disorders. Biomolecules 2023; 13:1340. [PMID: 37759740 PMCID: PMC10526920 DOI: 10.3390/biom13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic disorders are major causes of morbidity and mortality worldwide. A growing body of research indicates that the gut microbiota, whether it interacts favorably or not, plays an important role in host metabolism. Elucidating metabolic pathways may be crucial in preventing and treating cardiometabolic diseases, and omics methods are key to studying the interaction between the fecal microbiota and host metabolism. This review summarizes available studies that combine metabolomic and metagenomic approaches to describe the effects of drugs, diet, nutrients, and specific foods on cardiometabolic health and to identify potential targets for future research.
Collapse
Affiliation(s)
- Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Joe-Elie Salem
- Department of Pharmacology, Pitié-Salpêtrière Hospital, Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Investigation Center (CIC-1901), Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, 75013 Paris, France;
| |
Collapse
|