1
|
Sun Y, Huang S, Li M, Yang Y, Ma J, Xie R, Wang J, Zhao Q, Qin S, He L, Jiang J, Zhao Q, Jin G, Liu X, Huang H, Yang Y, Wei J, Liu W, Wang B, Yang R, Su X, Cao H. Maternal high-fat diet disrupts intestinal mucus barrier of offspring by regulating gut immune receptor LRRC19. Commun Biol 2025; 8:420. [PMID: 40075219 PMCID: PMC11903762 DOI: 10.1038/s42003-025-07836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Maternal high fat diet (MHFD) increased colitis susceptibility in adulthood. However, the mechanism remains unclear. We sought to explore whether novel gut immune receptor leucine-rich repeat C19 (LRRC19) contributed to the impaired mucus barrier of offspring exposed to MHFD via gut immune response and microbiota. The results showed that MHFD significantly impaired the intestinal mucus barrier of offspring, and up-regulated the expression of LRRC19. Lrrc19 deletion alleviated the mucus barrier disruption. Mechanistically, metagenome sequencing revealed that the MHFD-induced gut microbiota alteration was partly restored in Lrrc19-/- offspring. Muc2-associated bacteria were decreased in the MHFD group, such as Akkermansia_muciniphila_CAG_154, which increased in the Lrrc19-deficient offspring. Moreover, Lrrc19-/- offspring had a higher rate of indole-3-acetic acid (IAA)-producing bacterium, such as Lactobacillus reuteri. A targeted metabolomics analysis revealed that IAA emerged as the top candidate that might mediate the protective effects. IAA was found to improve the mucus barrier function by increasing the ratio of interleukin-22 (IL-22)+ ILC3 cells in an aryl hydrocarbon receptor (AhR)-dependent manner. These results suggest that MHFD disrupts the intestinal mucus barrier of offspring through regulating gut immune receptor LRRC19 and inducing an imbalance of gut microbiota and microbiota-derived metabolites.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
- Department of Endoscopy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shumin Huang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Yunwei Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Siqi Qin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Linlin He
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jiaying Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Huan Huang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Yazheng Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianmei Wei
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Key Medical Discipline (Specialty), Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| |
Collapse
|
2
|
Golshany H, Helmy SA, Morsy NFS, Kamal A, Yu Q, Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int J Food Sci Nutr 2025; 76:95-121. [PMID: 39701663 DOI: 10.1080/09637486.2024.2437472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
This comprehensive review examines the impact of dietary patterns on gut microbiome composition and diversity from infancy to old age, linking these changes to age-related health outcomes. It investigates how the gut microbiome develops and changes across life stages, focusing on the influence of dietary factors. The review explores how early-life feeding practices, including breastfeeding and formula feeding, shape the infant gut microbiota and have lasting effects. In elderly individuals, alterations in the gut microbiome are associated with increased susceptibility to infections, chronic inflammation, metabolic disorders and cognitive decline. The critical role of diet in modulating the gut microbiome throughout life is emphasised, particularly the potential benefits of probiotics and fortified foods in promoting healthy ageing. By elucidating the mechanisms connecting food systems to gut health, this review provides insights into interventions that could enhance gut microbiome resilience and improve health outcomes across the lifespan.
Collapse
Affiliation(s)
- Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | - Aya Kamal
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety & Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Perrar I, Alexy U, Nöthlings U. Cohort profile update-overview of over 35 years of research in the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) study. Eur J Nutr 2024; 63:727-740. [PMID: 38151532 PMCID: PMC10948456 DOI: 10.1007/s00394-023-03290-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE To provide an update on the cohort profile of the DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD) study, including objectives, study design, methods and description of the comprehensive data pool, as well as to summarize the most important research findings of recent years. METHODS In 1985, the open (dynamic) cohort started to collect information on diet, growth, development, and metabolism of healthy children and adolescents in Dortmund, Germany. Detailed data are collected annually during infancy, childhood, and adolescence of the participants, including a 3-day weighed dietary record, a 24-h urine sample, anthropometric and medical examinations as well as interviews on lifestyle. RESULTS Even if the basic examination modules have not changed since the start over 35 years ago, the DONALD study has been continuously further developed by introducing new modules. As such, participants are also invited for follow-up examinations during adulthood since 2005, including an additional fasting blood withdrawal. Overall, 2375 (♂: 1177; ♀: 1198) participants were recruited in the DONALD study between 1985 and 2022. Data from ~ 30,700 anthropometric measurements, ~ 19,200 dietary records, ~ 10,600 24-h urine and ~ 1300 blood samples are available from an observation period of over 35 years. CONCLUSION The DONALD study provides a large data pool for longitudinal studies on nutrition, growth, and health in childhood and adolescence, its impact on the development of diseases in early adult life as well as dietary intake trends over more than three decades.
Collapse
Affiliation(s)
- Ines Perrar
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Ute Alexy
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Ute Nöthlings
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| |
Collapse
|
5
|
Schellekens H, Ribeiro G, Cuesta-Marti C, Cryan JF. The microbiome-gut-brain axis in nutritional neuroscience. Nutr Neurosci 2023; 26:1159-1171. [PMID: 36222323 DOI: 10.1080/1028415x.2022.2128007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Emerging evidence is highlighting the microbiome as a key regulator of the effect of nutrition on gut-brain axis signaling. Nevertheless, it is not yet clear whether the impact of nutrition is moderating the microbiota-gut-brain interaction or if diet has a mediating role on microbiota composition and function to influence central nervous system function, brain phenotypes and behavior. Mechanistic evidence from cell-based in vitro studies, animal models and preclinical intervention studies are linking the gut microbiota to the effects of diet on brain function, but they have had limited translation to human intervention studies. While increasing evidence demonstrates the triangulating relationship between diet, microbiota, and brain function across the lifespan, future mechanistic and translational studies in the field of microbiota and nutritional neuroscience are warranted to inform potential strategies for prevention and management of several neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders. This brief primer provides an overview of the most recent advances in the nutritional neuroscience - microbiome field, highlighting significant opportunities for future research.
Collapse
Affiliation(s)
- Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Cristina Cuesta-Marti
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Toh JY, Cai S, Lim SX, Pang WW, Godfrey KM, Shek LP, Tan KH, Yap F, Lee YS, Chong YS, Eriksson JG, Broekman BFP, Rifkin-Graboi A, Chong MFF. Nutrient trajectories during infancy and their associations with childhood neurodevelopment. Eur J Nutr 2023; 62:2429-2439. [PMID: 37118033 DOI: 10.1007/s00394-023-03164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
PURPOSE To examine the associations between infants' dietary nutrient trajectories and subsequent neurodevelopment during childhood in the Growing Up in Singapore Towards healthy Outcomes study. METHODS One-day food records were collected at ages 6, 9 and 12 months, whilst Bayley Scales of Infant and Toddler Development-III and Kaufman Brief Intelligence Test-2 were conducted at ages 24 and 54 months respectively. Nutrient trajectories were constructed using multi-level mixed modelling and associations with neurodevelopment (24 months: n = 484; 54 months: n = 444) were examined using adjusted multivariable linear regression. RESULTS At age 24 months, higher protein intake (at 6 months) and increasing rate of intake (from 6 to 12 months) were associated with higher fine motor score [β = 0.17 SD (95% CI 0.03, 0.31) and 0.62 SD (0.10, 1.14) respectively]. Higher fat intake was associated with higher receptive language score [0.04 SD (0.003, 0.07)], but increasing rate of intake was associated with lower expressive language [- 0.20 SD (- 0.39, - 0.01)] and fine motor [- 0.29 SD (- 0.48, - 0.10)] scores. Higher carbohydrate intake was associated with lower gross motor score [- 0.07 SD (- 0.14, - 0.005)], but increasing rate of intake was associated with higher receptive language [0.44 SD (0.08, 0.81)] and fine motor [0.56 SD (0.18, 0.93)] scores. Increasing rate of dietary fibre intake was associated with higher fine motor scores [0.63 SD (0.16, 1.10)]. No significant associations were observed with neurodevelopment at 54 months. CONCLUSION Our findings provide greater understanding of how nutrition over time could have varying effects on child neurodevelopment.
Collapse
Affiliation(s)
- Jia Ying Toh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shirong Cai
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shan Xuan Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Wei Wei Pang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Keith M Godfrey
- Medical Research Council Lifecourse Epidemiology Centre and National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital, Southampton National Health Service Foundation Trust, Southampton, UK
| | - Lynette P Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Fabian Yap
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Paediatric Endocrinology, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychiatry, OLVG and Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Anne Rifkin-Graboi
- Centre for Research in Child Development, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
| |
Collapse
|
7
|
Cooper K, Clarke M, Clayton JB. Informatics for your Gut: at the Interface of Nutrition, the Microbiome, and Technology. Yearb Med Inform 2023; 32:89-98. [PMID: 37414029 PMCID: PMC10751132 DOI: 10.1055/s-0043-1768723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND A significant portion of individuals in the United States and worldwide experience diseases related to or driven by diet. As research surrounding user-centered design and the microbiome grows, movement of the spectrum of translational science from bench to bedside for improvement of human health through nutrition becomes more accessible. In this literature survey, we examined recent literature examining informatics research at the interface of nutrition and the microbiome. OBJECTIVES The objective of this survey was to synthesize recent literature describing how technology is being applied to understand health at the interface of nutrition and the microbiome focusing on the perspective of the consumer. METHODS A survey of the literature published between January 1, 2021 and October 10, 2022 was performed using the PubMed database and resulting literature was evaluated against inclusion and exclusion criteria. RESULTS A total of 139 papers were retrieved and evaluated against inclusion and exclusion criteria. After evaluation, 45 papers were reviewed in depth revealing four major themes: (1) microbiome and diet, (2) usability,(3) reproducibility and rigor, and (4) precision medicine and precision nutrition. CONCLUSIONS A review of the relationships between current literature on technology, nutrition and the microbiome, and self-management of dietary patterns was performed. Major themes that emerged from this survey revealed exciting new horizons for consumer management of diet and disease, as well as progress towards elucidating the relationship between diet, the microbiome, and health outcomes. The survey revealed continuing interest in the study of diet-related disease and the microbiome and acknowledgement of needs for data re-use, sharing, and unbiased and rigorous measurement of the microbiome. The literature also showed trends toward enhancing the usability of digital interventions to support consumer health and home management, and consensus building around how precision medicine and precision nutrition may be applied in the future to improve human health outcomes and prevent diet-related disease.
Collapse
Affiliation(s)
- Kate Cooper
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Martina Clarke
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, NE, USA
| |
Collapse
|
8
|
Sun Y, Zhang X, Jin C, Yue K, Sheng D, Zhang T, Dou X, Liu J, Jing H, Zhang L, Yue J. Prospective, longitudinal analysis of the gut microbiome in patients with locally advanced rectal cancer predicts response to neoadjuvant concurrent chemoradiotherapy. J Transl Med 2023; 21:221. [PMID: 36967379 PMCID: PMC10041716 DOI: 10.1186/s12967-023-04054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Neoadjuvant concurrent chemoradiotherapy (nCCRT) is a standard treatment for locally advanced rectal cancer (LARC). The gut microbiome may be reshaped by radiotherapy through its effects on microbial composition, mucosal immunity, and the systemic immune system. We sought to clarify dynamic, longitudinal changes in the gut microbiome and blood immunomodulators throughout nCCRT and to explore the relationship of such changes with outcomes after nCCRT. METHODS A total of 39 patients with LARC were recruited for this study. Fecal samples and peripheral blood samples were collected from all 39 patients before nCCRT, during nCCRT (at week 3), and after nCCRT (at week 5). The gut microbiota and the microbial community structure were analyzed by 16S rRNA sequencing of the V3-V4 region. Levels of blood immunomodulatory proteins were measured with a Millipore HCKPMAG-11 K kit and Luminex 200 platform (Luminex, USA). RESULTS Cross-sectional and longitudinal analyses revealed that the gut microbiome profile and enterotype exhibited characteristic variations that could distinguish patients with good response (AJCC TRG classification 0-1) vs poor response (TRG 2-3) to nCCRT. Sparse partial least squares regression and canonical correspondence analyses showed multivariate associations between specific microbial taxa, host immunomodulatory proteins, immune cells, and outcomes after nCCRT. An integrated model consisting of baseline Clostridium sensu stricto 1 levels, fold changes in Intestinimonas, blood levels of the herpesvirus entry mediator (HVEM/CD270), and lymphocyte counts could predict good vs poor outcome after nCCRT [area under the receiver-operating characteristics curve (AUC)= 0.821; area under the precision-recall curve [AUPR] = 0.911]. CONCLUSIONS Our results showed that longitudinal variations in specific gut taxa, associated host immune cells, and immunomodulatory proteins before and during nCCRT could be useful for early predictions of the efficacy of nCCRT, which could guide the choice of individualized treatment for patients with LARC.
Collapse
Affiliation(s)
- Yi Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chuandi Jin
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaile Yue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Dou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongbiao Jing
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lei Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
9
|
Meng F, Zhang F, Meng M, Chen Q, Yang Y, Wang W, Xie H, Li X, Gu W, Yu J. Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 on type 2 diabetes mellitus rats. Front Microbiol 2023; 14:1158652. [PMID: 37152739 PMCID: PMC10157401 DOI: 10.3389/fmicb.2023.1158652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Many synbiotics are effective for the prevention and treatment of type 2 diabetes mellitus (T2DM). In the treatment of T2DM, synbiotics often regulate the composition of intestinal flora, which autoinducer-2 (AI-2) may play an important role. Whether the changes of intestinal flora are related to AI-2 during synbiotics treatment of T2DM is a topic worth studying. We elucidated the effects of synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 (SML) on T2DM rats. Male Spraque-Dawley rats were injected intraperitoneally with streptozotocin (STZ) and randomly grouped. After that, biochemical parameters, intestinal flora, fecal AI-2, and intestinal colonization of L. reuteri were detected. The results showed that SML had a hypoglycemic effect and mitigated the organ lesions of the liver and pancreas. Also, SML regulated biochemical parameters such as short chain fatty acids (SCFAs), lipopolysaccharides (LPS), intercellular cell adhesion molecule-1 (ICAM-1), and tumor necrosis factor-α (TNF-α). On the other hand, the proportion of probiotics, such as Lactobacillus acidophilus, L. reuteri, Bifidobacterium pseudolongum, Lactobacillus murinus, and Lactobacillus johnsonii, were elevated by the treatment of SML. In addition, SML promoted the colonization and proliferation of L. reuteri in the gut. Another thing to consider was that AI-2 was positively correlated with the total number of OTUs sequences and SML boosted AI-2 in the gut. Taken together, these results supported that SML may modulate intestinal flora through AI-2 to treat T2DM. This study provided a novel alternative strategy for the treatment of T2DM in future.
Collapse
Affiliation(s)
- Fanying Meng
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fan Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiuding Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yaqin Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wenbo Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haina Xie
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xue Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Gu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Wen Gu,
| | - Jie Yu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Jie Yu,
| |
Collapse
|
10
|
Li X, Wang X, Wang Z, Zhang M, Wang S, Xiang Z, Pan H, Li M. The Relationship Between Gut Microbiome and Bile Acids in Primates With Diverse Diets. Front Microbiol 2022; 13:899102. [PMID: 35633689 PMCID: PMC9130754 DOI: 10.3389/fmicb.2022.899102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Primates have evolved a variety of feeding habits and intestinal physiological structure. Gut microbiome act as metabolic organs in many biological processes and play a vital role in adaptation to dietary niches. Gut microbiome also convert primary bile acids (BAs) to secondary. BAs profile and gut microbiome are together influenced by diets and play a significant role in nutrient absorption. The regulation between gut microbiome and BAs metabolism is bidirectional although the relationship in primates consuming diverse diets is still unclear. Here, we investigated gut microbiome structures, fecal BAs profile, and their relationship in primates preferring three distinct diets. We found that gut microbiome communities are well differentiated among dietary groups. Folivorous primates had higher Firmicutes abundance and lower Prevotella to Bacaeroides ratios, possibly related to fiber consumption. Frugivorous primates are colonized predominantly by Prevotella and Bacteroides, pointing to an increased adaptation to high-sugar and simple carbohydrate diets. Likewise, BA profiles differ according to diet in a manner predictable from the known effects of BAs on metabolism. Folivorous primates have high conjugated bile acid levels and low unconjugated to conjugated BA ratios, consistent with their fiber-rich leaf-eating diet. Much of the differentiation in secondary and unconjugated BAs is associated with microbiome composition shifts and individual bile acid concentrations are correlated with the abundance of distinct bacterial taxonomic groups. Omnivores have higher concentrations of secondary BAs, mainly lithocholic acid (LCA). These levels are significantly positively correlated with the presence of Clostrida species, showing that the digestion requirements of omnivores are different from plant-eating primates. In conclusion, gut microbiome and BAs can respond to changes in diet and are associated with nutrient component consumption in each diet primate group. Our study is the first to demonstrate BA profile differentiation among primates preferring diverse diets. BAs thus appear to work with gut microbiome to help primates adapt to their diet.
Collapse
Affiliation(s)
- Xinyue Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziming Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyi Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | | | - Zuofu Xiang
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Oluwagbemigun K, Schnermann ME, Schmid M, Cryan JF, Nöthlings U. A prospective investigation into the association between the gut microbiome composition and cognitive performance among healthy young adults. Gut Pathog 2022; 14:15. [PMID: 35440044 PMCID: PMC9019932 DOI: 10.1186/s13099-022-00487-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Background There is emerging evidence that the gut microbiome composition is associated with several human health outcomes, which include cognitive performance. However, only a few prospective epidemiological studies exist and none among young adults. Here we address the gap in the literature by investigating whether the gut microbiome composition is prospectively linked to fluid intelligence among healthy young adults. Methods Forty individuals (65% females, 26 years) from the DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD) study provided a fecal sample for gut microbiome composition and subsequently (average of 166 days) completed a cognitive functioning test using the Cattell’s Culture Fair Intelligence Test, revised German version (CFT 20-R). The assessment of the gut microbiome at the genera level was by 16S rRNA V3-V4 Illumina sequencing. The relative abundance of 158 genera was summarized into bacterial communities using a novel data-driven dimension reduction, amalgamation. The fluid intelligence score was regressed on the relative abundance of the bacterial communities and adjusted for selected covariates. Results The 158 genera were amalgamated into 12 amalgams (bacterial communities), which were composed of 18, 6, 10, 14, 8, 10, 16, 13, 12, 12, 3, and 11 genera. Only the 14-genera bacterial community, named the “Ruminococcaceae- and Coriobacteriaceae-dominant community” was positively associated with fluid intelligence score (β = 7.8; 95% CI: 0.62, 15.65, P = 0.04). Conclusion Among healthy young adults, the abundance of a gut bacterial community was associated with fluid intelligence score. This study suggests that cognitive performance may potentially benefit from gut microbiome-based intervention.
Collapse
Affiliation(s)
- Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany.
| | - Maike E Schnermann
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Liu H, Li X, Zhu Y, Huang Y, Zhang Q, Lin S, Fang C, Li L, Lv Y, Mei W, Peng X, Yin J, Liu L. Effect of Plant-Derived n-3 Polyunsaturated Fatty Acids on Blood Lipids and Gut Microbiota: A Double-Blind Randomized Controlled Trial. Front Nutr 2022; 9:830960. [PMID: 35223959 PMCID: PMC8873928 DOI: 10.3389/fnut.2022.830960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
Background Several cardioprotective mechanisms attributed to n-3 polyunsaturated fatty acids (PUFAs) have been widely documented. Significant interest has recently focused on the role of human gut microbiota in metabolic disorders. However, the role of plant-derived n-3 PUFAs on blood lipid profiles is controversial and the effect on gut microbiota is still unclear. Objectives We aimed to perform a double-blind randomized controlled trial to test the effect of plant-derived n-3 PUFAs on the blood lipids and gut microbiota of patients with marginal hyperlipidemia. Methods According to the inclusion and exclusion criteria, 75 participants with marginal hyperlipidemia were randomly assigned to the intervention group (supplied with n-3 PUFA-enriched plant oil) or control group (supplied with corn oil), respectively, for a 3-month treatment. Participants and assessors were blinded to the allocation. The primary outcomes of the trial were the changes in serum lipid levels. Secondary outcomes were changes in gut microbiota and metabolites. For the primary outcomes, we conducted both an intent-to-treat (ITT) analysis and a per protocol (PP) analysis. For the secondary outcomes, we only conducted the PP analysis among the participants who provided fecal sample. Results Fifty-one participants completed the trial. Relative to the control group, the n-3 PUFA supplementation resulted in significant reduction in total cholesterol (TC) levels (−0.43 mmol/L, 95% CI−0.84 to−0.01 mmol/L, P < 0.05). The n-3 PUFA supplementation was also associated with significantly increased relative abundance of Bacteroidetes in phylum level (P < 0.01; false discovery rate (FDR) corrected p = 0.11), and decreased the ratio between Firmicutes and Bacteroidetes (P < 0.05; FDR corrected p = 0.16). At genus level, the intervention of plant derived n-3 PUFAs resulted in a significant decrease in relative abundance of Phascolarctobacterium (P < 0.01; FDR corrected p = 0.18) and Veillonella (P < 0.01; FDR corrected p = 0.18) after the intervention. Conclusions Our results demonstrated that plant-derived n-3 PUFAs beneficially affected the serum levels of TC and decreased the ratio between Firmicutes and Bacteroidetes during the 12-week intervention period, which might confer advantageous consequences for lipid metabolism and intestinal health.
Collapse
Affiliation(s)
- Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Fang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiawei Yin
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Liegang Liu
| |
Collapse
|
13
|
Abstract
Research characterising the gut microbiota in different populations and diseases has mushroomed since the advent of next-generation sequencing techniques. However, there has been less emphasis on the impact of dietary fibres and other dietary components that influence gut microbial metabolic activities. Dietary fibres are the main energy source for gut bacteria. However, fibres differ in their physicochemical properties, their effects on the gut and their fermentation characteristics. The diversity of carbohydrates and associated molecules in fibre-rich foods can have a major influence on microbiota composition and production of bioactive molecules, for example SCFAs and phenolic acids. Several of these microbial metabolites may influence the functions of body systems including the gut, liver, adipose tissues and brain. Dietary fibre intake recommendations have recently been increased (to 30 g daily) in response to growing obesity and other health concerns. Increasing intakes of specific fibre and plant food sources may differentially influence the bacteria and their metabolism. However, in vitro studies show great individual variability in the response of the gut microbiota to different fibres and fibre combinations, making it difficult to predict which foods or food components will have the greatest impact on levels of bioactive molecules produced in the colon of individuals. Greater understanding of individual responses to manipulation of the diet, in relation to microbiome composition and production of metabolites with proven beneficial impact on body systems, would allow the personalised approach needed to best promote good health.
Collapse
Affiliation(s)
- Catriona Thomson
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ada L Garcia
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Pinart M, Nimptsch K, Forslund SK, Schlicht K, Gueimonde M, Brigidi P, Turroni S, Ahrens W, Hebestreit A, Wolters M, Dötsch A, Nöthlings U, Oluwagbemigun K, Cuadrat RRC, Schulze MB, Standl M, Schloter M, De Angelis M, Iozzo P, Guzzardi MA, Vlaemynck G, Penders J, Jonkers DMAE, Stemmer M, Chiesa G, Cavalieri D, De Filippo C, Ercolini D, De Filippis F, Ribet D, Achamrah N, Tavolacci MP, Déchelotte P, Bouwman J, Laudes M, Pischon T. Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients 2021; 13:3292. [PMID: 34579168 PMCID: PMC8466729 DOI: 10.3390/nu13093292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/16/2023] Open
Abstract
In any research field, data access and data integration are major challenges that even large, well-established consortia face. Although data sharing initiatives are increasing, joint data analyses on nutrition and microbiomics in health and disease are still scarce. We aimed to identify observational studies with data on nutrition and gut microbiome composition from the Intestinal Microbiomics (INTIMIC) Knowledge Platform following the findable, accessible, interoperable, and reusable (FAIR) principles. An adapted template from the European Nutritional Phenotype Assessment and Data Sharing Initiative (ENPADASI) consortium was used to collect microbiome-specific information and other related factors. In total, 23 studies (17 longitudinal and 6 cross-sectional) were identified from Italy (7), Germany (6), Netherlands (3), Spain (2), Belgium (1), and France (1) or multiple countries (3). Of these, 21 studies collected information on both dietary intake (24 h dietary recall, food frequency questionnaire (FFQ), or Food Records) and gut microbiome. All studies collected stool samples. The most often used sequencing platform was Illumina MiSeq, and the preferred hypervariable regions of the 16S rRNA gene were V3-V4 or V4. The combination of datasets will allow for sufficiently powered investigations to increase the knowledge and understanding of the relationship between food and gut microbiome in health and disease.
Collapse
Affiliation(s)
- Mariona Pinart
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- Host-Microbiome Factors in Cardiovascular Disease Lab, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain;
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
- Institute of Statistics, Bremen University, 28359 Bremen, Germany
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Ute Nöthlings
- Nutritional Epidemiology Unit, Institute of Nutrition and Food Sciences, University of Bonn, 53115 Bonn, Germany; (U.N.); (K.O.)
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology Unit, Institute of Nutrition and Food Sciences, University of Bonn, 53115 Bonn, Germany; (U.N.); (K.O.)
| | - Rafael R. C. Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (R.R.C.C.); (M.B.S.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (R.R.C.C.); (M.B.S.)
- Institute of Nutritional Science, University of Potsdam, 14558 Potsdam, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Geertrui Vlaemynck
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, 9090 Melle, Belgium;
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Daisy M. A. E. Jonkers
- Department of Internal Medicine, Division Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Maya Stemmer
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel;
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Florence, Italy;
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology National Research Council, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.E.); (F.D.F.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.E.); (F.D.F.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - David Ribet
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
| | - Najate Achamrah
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- Department of Nutrition, CHU Rouen, 76000 Rouen, France
| | - Marie-Pierre Tavolacci
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- INSERM CIC-CRB 1404, CHU Rouen, 76000 Rouen, France
| | - Pierre Déchelotte
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- Department of Nutrition, CHU Rouen, 76000 Rouen, France
| | - Jildau Bouwman
- Microbiology and Systems Biology Group, TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Biobank Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| |
Collapse
|