1
|
Teparak C, Uriyapongson J, Phoemsapthawee J, Tunkamnerdthai O, Aneknan P, Tong-un T, Panthongviriyakul C, Leelayuwat N, Alkhatib A. Diabetes Therapeutics of Prebiotic Soluble Dietary Fibre and Antioxidant Anthocyanin Supplement in Patients with Type 2 Diabetes: Randomised Placebo-Controlled Clinical Trial. Nutrients 2025; 17:1098. [PMID: 40218856 PMCID: PMC11990404 DOI: 10.3390/nu17071098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/15/2025] [Accepted: 03/15/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Antioxidants and prebiotics are popular functional foods known for their distinct physiological ameliorating benefits on type 2 diabetes mellitus (T2DM). Whether and how a combined antioxidant-prebiotic supplement affects primary and secondary T2DM outcomes is not known. OBJECTIVES We investigated the therapeutic effects of an antioxidant (anthocyanin from riceberry rice) combined with prebiotics (dietary fibre from rice bran and Jerusalem artichoke) on glucose control, lipid profile, oxidative stress, inflammation, and cardiorespiratory fitness in T2DM patients. METHODS A total of 60 T2DM patients were randomly assigned to receive antioxidant/prebiotic (supplement group, SG) or maltodextrin (control group, CG), (two capsules (350 mg)/meal after three meals and before bedtime, 2.8 g/day), for 60 days. Venous blood samples were collected at baseline and after 60 days intervention to assess blood metabolic variables (glucose, insulin, and lipid profiles, renal and liver functions, oxidative stress, inflammation). Nutrition status, anthropometry, body composition (DEXA) and cardiorespiratory fitness were also measured. RESULTS Analysis of co-variance showed superior effects on T2DM's glucose and lipid profiles in the SG compared with the CG including reduced fasting blood glucose (p = 0.01 within-group effects, p = 0.03 interaction effects), reduced glycated haemoglobin (p = 0.004 within-group effects, p = 0.002 interaction), and reduced low density lipoprotein (p = 0.006 within-group effects, p = 0.02 interaction effects). No significant change was found within the CG for any of these parameters. Kidney function's glomerular filtration rate was also improved in the SG (p = 0.01 within-group effects), but not in the placebo CG. Intermediatory biomarkers of oxidative stress, inflammation, and cardiorespiratory fitness were not significantly affected in either group with no interaction effects. No adverse effects were detected following the 60-day supplementation intervention. CONCLUSIONS The findings suggest that a combined anthocyanin-fibre may be promoted as an adjacent therapy in patients with T2DM, but the intermediary mechanisms of action require further research.
Collapse
Affiliation(s)
- Chompoonut Teparak
- Exercise and Sport Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand;
- Exercise and Sport Sciences Development and Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (P.A.); (T.T.-u.)
| | - Juntanee Uriyapongson
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jatuporn Phoemsapthawee
- Department of Sports Science, Faculty of Sports and Health Science, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Orathai Tunkamnerdthai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ploypailin Aneknan
- Exercise and Sport Sciences Development and Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (P.A.); (T.T.-u.)
| | - Terdthai Tong-un
- Exercise and Sport Sciences Development and Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (P.A.); (T.T.-u.)
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | | | - Naruemon Leelayuwat
- Exercise and Sport Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand;
- Exercise and Sport Sciences Development and Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (P.A.); (T.T.-u.)
| | - Ahmad Alkhatib
- College of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| |
Collapse
|
2
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
4
|
Carr AC, Vlasiuk E, Zawari M, Lunt H. Understanding the additional impact of prediabetes and type 2 diabetes mellitus on vitamin C requirements in people living with obesity. Nutr Res 2024; 130:1-10. [PMID: 39303359 DOI: 10.1016/j.nutres.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Obesity and diabetes are known to negatively affect vitamin C status. However, whether the presence of diabetes, in addition to obesity, contributes an additional impact on vitamin C status is currently uncertain. In a cohort of 152 adults living with obesity, we assessed metabolic and nutrient parameters in participants without diabetes (n = 92), and with prediabetes (n = 22) and type 2 diabetes mellitus (T2DM; n = 35). Vitamin C concentrations were measured in plasma and leukocytes using HPLC and vitamin C intakes were assessed using 24-hour dietary recall. Metabolic severity scores were derived using gender, ethnicity, height, weight, waist circumference, systolic blood pressure, fasting glucose, HDL, and triglyceride values. In people living with obesity, those with prediabetes and T2DM had increased metabolic dysregulation and decreased vitamin C status relative to those without diabetes (P < .05). Vitamin C deficiency was observed in a high proportion (23%-32%) of participants with prediabetes and T2DM and ≥50% had hypovitaminosis C. However, there was no difference in vitamin C intake between those without diabetes and those with prediabetes or T2DM (P > .05). There was a significant inverse correlation between plasma vitamin C status and metabolic severity score (r = -0.290, P < .001). Linear regression indicated that for every 1-unit increase in metabolic severity score, there was a 6.5 µmol/L decrease in vitamin C status. Thus, the enhanced metabolic dysregulation observed with prediabetes and T2DM is associated with an increased demand for vitamin C in people living with obesity.
Collapse
Affiliation(s)
- Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Emma Vlasiuk
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Masuma Zawari
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Helen Lunt
- Diabetes Outpatients, Health New Zealand Waitaha Canterbury, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
5
|
Paller CJ, Zahurak ML, Mandl A, Metri NA, Lalji A, Heath E, Kelly WK, Hoimes C, Barata P, Taksey J, Garrison DA, Patra K, Milne GL, Anders NM, Nauroth JM, Durham JN, Marshall CH, Markowski MC, Eisenberger MA, Antonarakis ES, Carducci MA, Denmeade SR, Levine M. High-Dose Intravenous Vitamin C Combined with Docetaxel in Men with Metastatic Castration-Resistant Prostate Cancer: A Randomized Placebo-Controlled Phase II Trial. CANCER RESEARCH COMMUNICATIONS 2024; 4:2174-2182. [PMID: 39076107 PMCID: PMC11333993 DOI: 10.1158/2767-9764.crc-24-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
High-dose intravenous vitamin C (HDIVC) administered to produce pharmacologic concentrations shows promise in preclinical models and small clinical trials, but larger prospective randomized trials are lacking. We evaluated the clinical benefit of combining HDIVC with docetaxel in patients with progressive metastatic castration-resistant prostate cancer (mCRPC). In this double-blind, placebo-controlled phase II trial, 47 patients were randomized 2:1 to receive docetaxel (75 mg/m2 i.v.) with either HDIVC (1 g/kg) or placebo. Coprimary endpoints were PSA50 response and adverse event rates. Secondary endpoints included overall survival, radiographic progression-free survival, and quality of life measured using the Functional Assessment of Cancer Therapy-Prostate instrument. Correlative analyses included pharmacokinetics and oxidative stress markers. Eighty-nine percent of patients previously had three or more lines of therapy. The PSA50 response rate was 41% in the HDIVC group and 33% in the placebo group (P = 0.44), with comparable adverse event rates in both groups. There were no significant differences in Functional Assessment of Cancer Therapy-Prostate scores. The median radiographic progression-free survival was not significantly different between the HDIVC and placebo groups, with durations of 10.1 and 10.0 months (HR, 1.35; 95% confidence interval, 0.66-2.75; P = 0.40), respectively. The median overall survival was 15.2 months in the HDIVC group and 29.5 months in the placebo group (HR, 1.98; 95% confidence interval, 0.85-4.58; P = 0.11). HDIVC did not decrease F2-isoprostanes, indicators of oxidative stress. The study was suspended after prespecified interim analysis indicated futility in achieving primary endpoints. In this patient population, combining HDIVC with docetaxel did not improve PSA response, toxicity, or other clinical outcomes compared with docetaxel alone. Findings do not support the routine use of HDIVC in mCRPC treatment outside of clinical trials. SIGNIFICANCE This is the first randomized, placebo-controlled, double-blind trial to evaluate HDIVC in cancer treatment. The addition of HDIVC to docetaxel in patients with mCRPC does not improve PSA response, toxicity, or other clinical outcomes compared with docetaxel alone. The routine use of HDIVC in mCRPC treatment is not supported outside of clinical trials.
Collapse
Affiliation(s)
- Channing J. Paller
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Marianna L. Zahurak
- Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland.
| | - Adel Mandl
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Nicole A. Metri
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Aliya Lalji
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | | | | | | | - Pedro Barata
- Case Western Reserve University/University Hospitals, Cleveland, Ohio.
| | - Jason Taksey
- Maryland Oncology Hematology, US Oncology, Annapolis, Maryland.
| | - Dominique A. Garrison
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Kartick Patra
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Nicole M. Anders
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Julie M. Nauroth
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Jennifer N. Durham
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Catherine H. Marshall
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mark C. Markowski
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mario A. Eisenberger
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | | | - Michael A. Carducci
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Samuel R. Denmeade
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Wilson RB, Liang Y, Kaushal D, Carr A. Molecular Pharmacology of Vitamin C and Relevance to Health and Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7523. [PMID: 39062764 PMCID: PMC11276620 DOI: 10.3390/ijms25147523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The role of food constituents as pharmacological agents is an important consideration in health and obesity. Vitamin C acts as a small molecule antioxidant but is also a co-factor for numerous transition metal-dependent enzymes involved in healthy weight and energy metabolism. Vitamin C cannot be manufactured by humans and is mainly obtained from the dietary intake of fresh fruit and vegetables. There is great variability between different nutritional guidelines in the recommended daily allowance of vitamin C. Vitamin C deficiency results from an inadequate intake of vitamin C-containing foods and also increased utilization by oxidative and carbonyl stress. Risk factors for vitamin C deficiency include cigarette smoking, malnutrition, obesity, type 2 diabetes mellitus, age, race, sex, social isolation, major surgery, and Western-type diets. Despite the common belief that vitamin C deficiency is rare in affluent countries, surveys of large populations and specific patient groups suggest otherwise. Patients with obesity typically consume highly processed, energy-dense foods which contain inadequate micronutrients. As obesity increases, larger amounts of oral vitamin C are required to achieve adequate plasma and tissue concentrations, as compared to persons with a healthy weight. This is important in the control of oxidative stress and the maintenance of homeostasis and organ function. In this narrative review, the dosage, absorption, distribution, excretion, and catabolism of vitamin C are reviewed, together with the latest findings on vitamin C pharmacology in patients with obesity.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales (Sydney), Elizabeth St, Liverpool, NSW 2170, Australia
| | - Yicong Liang
- Bankstown Hospital, University of New South Wales (Sydney), Bankstown, NSW 2200, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Anitra Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| |
Collapse
|
7
|
Sato A, Kondo Y, Ishigami A. The evidence to date: implications of l-ascorbic acid in the pathophysiology of aging. J Physiol Sci 2024; 74:29. [PMID: 38730366 PMCID: PMC11088021 DOI: 10.1186/s12576-024-00922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
L-Ascorbic acid, commonly known as vitamin C, has been used not only for disease prevention and in complementary and alternative medicine, but also for anti-aging purposes. However, the scientific evidence is not yet sufficient. Here, we review the physiological functions of vitamin C and its relationship with various pathological conditions, including our previous findings, and discuss the prospects of its application in healthy longevity. In summary, vitamin C levels are associated with lifespan in several animal models. Furthermore, clinical studies have shown that the blood vitamin C levels are lower in middle-aged and older adults than in younger adults. Lower blood vitamin C levels have also been observed in various pathological conditions such as chronic kidney disease and chronic obstructive pulmonary disease in the elderly. These observations suggest the implications of vitamin C in age-related pathological mechanisms owing to its physiological functions.
Collapse
Affiliation(s)
- Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan.
- Department of Nutritional Sciences, Faculty of Health and Sports Sciences, Toyo University, Tokyo, 115-8650, Japan.
| | - Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| |
Collapse
|
8
|
Bird JK, Feskens EJM, Melse-Boonstra A. A Systematized Review of the Relationship Between Obesity and Vitamin C Requirements. Curr Dev Nutr 2024; 8:102152. [PMID: 38666038 PMCID: PMC11039309 DOI: 10.1016/j.cdnut.2024.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity rates have increased globally in recent decades. Body weight is used as a modifiable factor in determining vitamin requirements. Accordingly, vitamin C requirements are volumetrically scaled from data for healthy weight males to other age- and sex-based categories. Likewise, it is possible that increases in body weight due to obesity may affect vitamin C needs. A systematized literature review was performed to summarize evidence on whether obesity affects vitamin C intake or status. The literature was also scanned for potential mechanisms for the relationship. Many observational studies showed that vitamin C status is lower in overweight and obese children and adults; this may be explained by lower vitamin C intakes. Nevertheless, a reanalysis of carefully conducted intervention studies has demonstrated a lower vitamin C status in participants who were overweight or obese when given the same dose of vitamin C as subjects of normal weight. Several mechanisms have been proposed to potentially explain why vitamin C status is lower in people with obesity: changes in vitamin C partitioning between lean and adipose tissue, volumetric dilution, metabolic alterations due to obesity, and gut microbial dysbiosis. Depletion-repletion or pharmacokinetic studies that include individuals of diverse body weights and ages would be helpful to further investigate whether obesity increases requirements for vitamin C. The current evidence base supports a lower vitamin C status in people who are overweight or obese; however, the association may be attenuated by lower vitamin C intakes.
Collapse
Affiliation(s)
- Julia K Bird
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Edith JM Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Alida Melse-Boonstra
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
9
|
Lykkesfeldt J, Carr AC. Vitamin C - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10300. [PMID: 38187788 PMCID: PMC10770653 DOI: 10.29219/fnr.v67.10300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 01/09/2024] Open
Abstract
Vitamin C has multiple metabolic functions in the body, but the available information on the exact relationship between these functions and the intake necessary to maintain them is very limited. However, most attempts to objectively measure adequacy of vitamin C status, including, for example, replacement of metabolic turnover, chronic disease prevention, urinary excretion, and saturation of immune cells and body compartment, currently point toward 50 µmol/L as a reasonable target plasma concentration. As a strong correlation between body weight and vitamin C status exists, recommended intakes (RIs) for other age groups may be extrapolated from the adult RI based on weight. However, as body weights above 70 kg are becoming increasingly common - also in the Nordic region - an RI of 140 mg/day for individuals weighing 100 kg or more should be considered to compensate for the larger volume of distribution. Finally, smoking continues to be a common contributor to poor vitamin C status; therefore, it is proposed that people who smoke increase their daily vitamin C intake by 40 mg/day to compensate for the increased metabolic turnover induced by smoking.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anitra C. Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
10
|
Carr AC, Lunt H, Wareham NJ, Myint PK. Estimating Vitamin C Intake Requirements in Diabetes Mellitus: Analysis of NHANES 2017-2018 and EPIC-Norfolk Cohorts. Antioxidants (Basel) 2023; 12:1863. [PMID: 37891943 PMCID: PMC10604478 DOI: 10.3390/antiox12101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Vitamin C is an essential enzyme cofactor and antioxidant with pleiotropic roles in human physiology. Circulating vitamin C concentrations are lower in people with diabetes mellitus, suggesting a higher dietary requirement for the vitamin. We interrogated the NHANES 2017-2018 and EPIC-Norfolk datasets to compare vitamin C requirements between those with and without diabetes mellitus using dose-concentration relationships fitted with sigmoidal (four-parameter logistic) curves. The NHANES cohort (n = 2828 non-supplementing adults) comprised 488 (17%) participants with diabetes (self-reported or HbA1c ≥ 6.5%). The participants with diabetes had a lower vitamin C status (median [IQR]) than those without (38 [17, 52] µmol/L vs. 44 [25, 61] µmol/L, p < 0.0001), despite comparable dietary intakes between the two groups (51 [26, 93] mg/d vs. 53 [24, 104] mg/d, p = 0.5). Dose-concentration relationships indicated that the group without diabetes reached adequate vitamin C concentrations (50 µmol/L) with an intake of 81 (72, 93) mg/d, whilst those with diabetes required an intake of 166 (126, NA) mg/d. In the EPIC-Norfolk cohort, comprising 20692 non-supplementing adults, 475 (2.3%) had self-reported diabetes at baseline. The EPIC cohort had a lower BMI than the NHANES cohort (26 [24, 28] kg/m2 vs. 29 [25, 34] kg/m2, p < 0.0001). Correspondingly, the EPIC participants without diabetes required a lower vitamin C intake of 64 (63, 65) mg/d while those with diabetes required 129 (104, NA) mg/d to reach adequate circulating vitamin C status. C-reactive protein concentrations were strongly correlated with body weight and BMI and provided a surrogate biomarker for vitamin C requirements. In conclusion, people with diabetes had 1.4 to 1.6 fold higher requirements for vitamin C than those without diabetes. This corresponds to additional daily vitamin C intake requirements of ~30-40 mg for people with diabetes, equating to a total daily intake of at least 125 mg/d.
Collapse
Affiliation(s)
- Anitra C. Carr
- Nutrition in Medicine Research Group, University of Otago, Christchurch 8011, New Zealand
| | - Helen Lunt
- Diabetes Outpatients, Health New Zealand Waitaha Canterbury, Christchurch 8011, New Zealand;
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | | | - Phyo K. Myint
- Ageing Clinical & Experimental Research (ACER) Team, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| |
Collapse
|
11
|
Ebenuwa I, Violet PC, Michel K, Padayatty SJ, Wang Y, Tu H, Wilkins KJ, Kassaye S, Levine M. Vitamin C Urinary Loss and Deficiency in Human Immunodeficiency Virus (HIV): Cross-sectional Study of Vitamin C Renal Leak in Women With HIV. Clin Infect Dis 2023; 77:1157-1165. [PMID: 37264998 PMCID: PMC10573720 DOI: 10.1093/cid/ciad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Reduced plasma vitamin C (vitC) concentrations in human immunodeficiency virus (HIV) may result from abnormal urinary excretion: a renal leak. VitC renal leak indicates underlying nutritional dysregulation independent of diet. We hypothesized that increased renal leak prevalence in HIV would be associated with deficient vitC concentrations. METHODS We conducted an outpatient cross-sectional study of 96 women (40 HIV [PWH] and 56 without HIV [PWOH]) at the National Institutes of Health and Georgetown University. Renal leak was defined as abnormal urinary vitC excretion at fasting plasma concentrations <43.2µM, 2 SDs below vitC renal threshold in healthy women. To determine the primary outcome of renal leak prevalence, matched urine and plasma samples were collected the morning after overnight fast. Secondary outcomes assessed group differences in mean plasma vitC concentrations and prevalence of vitC deficiency. Exploratory outcomes assessed clinical parameters associated with renal leak. VitC was measured by high-performance liquid chromatography with coulometric electrochemical detection. RESULTS PWH had significantly higher renal leak prevalence (73%vs14%; OR (odds ratio):16; P<.001), lower mean plasma vitC concentrations (14µMvs50µM; P<.001), and higher prevalence of vitC deficiency (43%vs7%; OR:10; P<.001) compared with PWOH, unchanged by adjustments for confounding factors. Significant predictors of renal leak included antiretroviral therapy (ART), Black race, older age, and metabolic comorbidities but not viral load or CD4 count. When compared with other chronic disease cohorts, PWH had the highest prevalence of renal leak and vitC deficiency (P<.001). CONCLUSIONS High prevalence of vitC renal leak in HIV was associated with vitC deficiency, ART use, and race/ethnicity differences.
Collapse
Affiliation(s)
- Ifechukwude Ebenuwa
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kate Michel
- Department of Medicine, Division of Infectious Disease, Georgetown University School of Medicine, Washington D.C., USA
| | - Sebastian J Padayatty
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaohui Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongbin Tu
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth J Wilkins
- Office of Clinical Research Support, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seble Kassaye
- Department of Medicine, Division of Infectious Disease, Georgetown University School of Medicine, Washington D.C., USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Nosratabadi S, Ashtary-Larky D, Hosseini F, Namkhah Z, Mohammadi S, Salamat S, Nadery M, Yarmand S, Zamani M, Wong A, Asbaghi O. The effects of vitamin C supplementation on glycemic control in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab Syndr 2023; 17:102824. [PMID: 37523928 DOI: 10.1016/j.dsx.2023.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND AND AIM It has been suggested that taking vitamin C supplements may improve glycemic control in patients with type 2 diabetes mellitus (T2DM). However, there has not been a thorough evaluation of the actual impact or certainty of the findings. This systematic review and meta-analysis was conducted to determine the effect of vitamin C supplementation on glycemic profile in T2DM patients. METHODS A systematic search was performed across online databases including Scopus, Web of Science, and PubMed/Medline to identify relevant randomized controlled trials (RCTs) published until July 2022. A random-effects model was applied for the meta-analysis. RESULTS The present meta-analysis included a total of 22 RCTs with 1447 patients diagnosed with T2DM.A pooled analysis revealed a significant decrease in levels of serum hemoglobin A1c (HbA1c), fasting insulin, and fasting blood glucose (FBG) in vitamin C-treated T2DM patients compared with their untreated counterparts. The dose-response evaluation displayed a substantial linear association between the intervention duration and changes in serum HbA1c levels. However, the analysis did not demonstrate any significant effect of vitamin C on serum values of homeostasis model assessment of insulin resistance(HOMA-IR) in diabetic patients. Subgroup analyses indicated that high-dose vitamin C administration (≥1000 mg/d) considerably decreased serum HOMA-IR levels. CONCLUSION These findings suggest that long-term (≥12 weeks) and high-dose vitamin C supplementation (≥1000 mg/d) may ameliorate glycemic profile in T2DM patients. However, additional high-quality RCTs are necessary to validate these results.
Collapse
Affiliation(s)
- Saeed Nosratabadi
- Department of Nutrition, Electronic Health and Statistics Surveillance Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fatemeh Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran.
| | - Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shekoufeh Salamat
- Department of Nutrition, Faculty of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Nadery
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA.
| | - Sazin Yarmand
- School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Virginia, USA.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ebenuwa I, Violet PC, Padayatty SJ, Wang Y, Tu H, Wilkins KJ, Moore DF, Eck P, Schiffmann R, Levine M. Vitamin C Urinary Loss in Fabry Disease: Clinical and Genomic Characteristics of Vitamin C Renal Leak. J Nutr 2023; 153:1994-2003. [PMID: 37229630 PMCID: PMC10375496 DOI: 10.1016/j.tjnut.2022.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Reduced plasma vitamin C concentrations in chronic diseases may result from abnormal urinary excretion of vitamin C: a renal leak. We hypothesized that vitamin C renal leak may be associated with disease-mediated renal dysregulation, resulting in aberrant vitamin C renal reabsorption and increased urinary loss. OBJECTIVES We investigated the prevalence, clinical characteristics, and genomic associations of vitamin C renal leak in Fabry disease, an X-linked lysosomal disease associated with renal tubular dysfunction and low plasma vitamin C concentrations. METHODS We conducted a non-randomized cross-sectional cohort study of men aged 24-42 y, with Fabry disease (n = 34) and controls without acute or chronic disease (n = 33). To match anticipated plasma vitamin C concentrations, controls were placed on a low-vitamin C diet 3 wk before inpatient admission. To determine the primary outcome of vitamin C renal leak prevalence, subjects were fasted overnight, and matched urine and fasting plasma vitamin C measurements were obtained the following morning. Vitamin C renal leak was defined as presence of urinary vitamin C at plasma concentrations below 38 μM. Exploratory outcomes assessed the association between renal leak and clinical parameters, and genomic associations with renal leak using single nucleotide polymorphisms (SNPs) in the vitamin C transporter SLC23A1. RESULTS Compared with controls, the Fabry cohort had 16-fold higher odds of renal leak (6% vs. 52%; OR: 16; 95% CI: 3.30, 162; P < 0.001). Renal leak was associated with higher protein creatinine ratio (P < 0.01) and lower hemoglobin (P = 0.002), but not estimated glomerular filtration rate (P = 0.54). Renal leak, but not plasma vitamin C, was associated with a nonsynonymous single nucleotide polymorphism in vitamin C transporter SLC23A1 (OR: 15; 95% CI: 1.6, 777; P = 0.01). CONCLUSIONS Increased prevalence of renal leak in adult men with Fabry disease may result from dysregulated vitamin C renal physiology and is associated with abnormal clinical outcomes and genomic variation.
Collapse
Affiliation(s)
- Ifechukwude Ebenuwa
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA.
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| | - Sebastian J Padayatty
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| | - Yaohui Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| | - Hongbin Tu
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| | - Kenneth J Wilkins
- Biostatistics Program, Office of Clinical Research Support, Office of the Director, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David F Moore
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Peter Eck
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Raphael Schiffmann
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Monti DA. A Vitamin C Renal Leak in Fabry Disease: The Rare Informs the Common. J Nutr 2023; 153:1839-1840. [PMID: 36806448 DOI: 10.1016/j.tjnut.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Affiliation(s)
- Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Tuell DS, Los EA, Ford GA, Stone WL. The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidants (Basel) 2023; 12:1139. [PMID: 37371869 DOI: 10.3390/antiox12061139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
The worldwide prevalence of type 2 diabetes (T2D) and prediabetes is rapidly increasing, particularly in children, adolescents, and young adults. Oxidative stress (OxS) has emerged as a likely initiating factor in T2D. Natural antioxidant products may act to slow or prevent T2D by multiple mechanisms, i.e., (1) reducing mitochondrial oxidative stress, (2) preventing the damaging effects of lipid peroxidation, and (3) acting as essential cofactors for antioxidant enzymes. Natural antioxidant products should also be evaluated in the context of the complex physiological processes that modulate T2D-OxS such as glycemic control, postprandial OxS, the polyol pathway, high-calorie, high-fat diets, exercise, and sleep. Minimizing processes that induce chronic damaging OxS and maximizing the intake of natural antioxidant products may provide a means of preventing or slowing T2D progression. This "optimal redox" (OptRedox) approach also provides a framework in which to discuss the potential benefits of natural antioxidant products such as vitamin E, vitamin C, beta-carotene, selenium, and manganese. Although there is a consensus that early effective intervention is critical for preventing or reversing T2D progression, most research has focused on adults. It is critical, therefore, that future research include pediatric populations.
Collapse
Affiliation(s)
- Dawn S Tuell
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - Evan A Los
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - George A Ford
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - William L Stone
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| |
Collapse
|
16
|
Sivadas S, Mohanty AK, Rajesh S, Muthuvel SK, Vasanthi HR. Molecular modelling and biological evaluation of phyto-molecules as potential activators of gluconolactone oxidase (GULO). J Biomol Struct Dyn 2023; 41:15124-15136. [PMID: 36883880 DOI: 10.1080/07391102.2023.2187227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Diabetes, the cause of colossal economic and disease burden, is a key area of research in drug discovery programs. Elevated blood glucose levels in diabetes lead to several adverse consequences due to the formation of advanced glycation end products and free radicals. Vitamin C, a potent antioxidant, protects the body's cells and tissues from oxidative damage and dysfunctions. Glucose is the precursor of Vitamin C synthesis in plants and some mammals. L-gulono lactone oxidase (GULO) is the rate-limiting enzyme in producing Vitamin C. However, it is not synthesized in bats, primates, humans, and guinea pigs because of the pseudogene. Several phytomolecules having antioxidant properties are hypothesized to be promising and selective activators of GULO. Therefore, the present study focused on screening agonists of GULO from phytomolecules as an effective augmentor for Vitamin C synthesis, thereby suppressing the sequela of diabetic events. The 3D structure of GULO was generated by the ab-initio method. Subsequently, molecular docking explored the possible binding patterns of GULO protein with different plant phenolic compounds, followed by supplementation of the potent phytomolecules to diabetic guinea pigs. It is noteworthy that Resveratrol and Hydroxytyrosol showed better binding affinity. The molecular simulation also confirmed that Resveratrol is an activator of the GULO enzyme. Interestingly, it was also established that Vitamin C levels were improved in diabetic guinea pigs supplemented with the phytomolecules and comparatively Resveratrol modulates the concentration of glucose and Vitamin C levels substantially, thereby alleviating hyperglycemia. However, further studies are warranted to study the mechanisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sneha Sivadas
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Amaresh Kumar Mohanty
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Saranga Rajesh
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Suresh Kumar Muthuvel
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Hannah R Vasanthi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| |
Collapse
|
17
|
Lunt H, Carr AC, Heenan HF, Vlasiuk E, Zawari M, Prickett T, Frampton C. People with diabetes and hypovitaminosis C fail to conserve urinary vitamin C. J Clin Transl Endocrinol 2023; 31:100316. [PMID: 36873955 PMCID: PMC9982671 DOI: 10.1016/j.jcte.2023.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/27/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Background Hypovitaminosis C has negative health consequences. People with diabetes and hypovitaminosis C may fail to conserve vitamin C in the urine, thereby displaying evidence of inappropriate renal leak of vitamin C. This study describes the relationship between plasma and urinary vitamin C in diabetes, with a focus on the clinical characteristics of participants with renal leak. Methods Retrospective analysis of paired, non-fasting plasma and urine vitamin C, and also clinical characteristics, from participants with either type 1 or type 2 diabetes, recruited from a secondary care diabetes clinic. Plasma vitamin C thresholds for renal leak have been defined previously as 38.1 µmol/L for men and 43.2 µmol/L for women. Results Statistically significant differences in clinical characteristics were seen between those with; i) renal leak (N = 77) and; ii) hypovitaminosis C but no renal leak (N = 13) and; iii) normal plasma vitamin C levels (n = 34). Compared to participants with adequate plasma vitamin C levels, participants with renal leak tended to have type 2 (rather than type 1) diabetes, a lower eGFR and a higher HbA1c. Conclusion In the diabetes population studied, renal leak of vitamin C was common. In some participants, it may have contributed to hypovitaminosis C.
Collapse
Key Words
- BMI, Body mass index, eGFR, estimated glomerular filtration rate
- Diabetes
- Diabetic nephropathy
- HbA1c, glycated haemoglobin, HPLC, high-performance liquid chromatography
- MET, Minimal elimination threshold, SGLT2, sodium glucose cotransporter 2
- Nutritional and metabolic diseases
- Physiopathology
- T1 diabetes, Type 1 diabetes, T2 diabetes, Type 2 diabetes
- Urine
- Vitamin C deficiency
Collapse
Affiliation(s)
- Helen Lunt
- Diabetes Outpatients, Te Whatu Ora Waitaha Canterbury, Christchurch 8011, New Zealand.,Department of Medicine, University of Otago, Christchurch. 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch. 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Helen F Heenan
- Diabetes Outpatients, Te Whatu Ora Waitaha Canterbury, Christchurch 8011, New Zealand
| | - Emma Vlasiuk
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch. 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Masuma Zawari
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch. 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Tim Prickett
- Department of Medicine, University of Otago, Christchurch. 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Chris Frampton
- Department of Medicine, University of Otago, Christchurch. 2 Riccarton Ave, Christchurch 8011, New Zealand
| |
Collapse
|
18
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
19
|
Carr AC, Lunt H. Is "renal leak" of vitamin C an issue for people with diabetes? Am J Clin Nutr 2022; 116:3-4. [PMID: 35536233 DOI: 10.1093/ajcn/nqac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Helen Lunt
- Department of Medicine, University of Otago, Christchurch, New Zealand.,Diabetes Outpatients, Canterbury District Health Board, Christchurch, New Zealand
| |
Collapse
|
20
|
Wang D, Pham VT, Steinert RE, Zhernakova A, Fu J. Microbial vitamin production mediates dietary effects on diabetic risk. Gut Microbes 2022; 14:2154550. [PMID: 36474346 PMCID: PMC9733697 DOI: 10.1080/19490976.2022.2154550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Adequate levels of essential vitamins are important for the prevention of diabetes. While the main efforts to address this are currently focused on the intake of vitamin supplements, improving and maintaining intrinsic vitamin production capacity, which is determined by gut microbes, has received insufficient attention. In this study, we systematically investigated the relationship between gut microbial vitamin production and factors related to diabetes and cardiometabolic health in a deeply phenotyped cohort, Lifelines-DEEP (N = 1,135). We found that blood glucose-related factors, lipids, circulating inflammation, and fecal short-chain fatty acids are associated with gut microbial vitamin production. Use of laxatives and metformin are associated with increased levels of vitamin B1/B6 biosynthesis pathways. We further reveal a mediatory role for microbial vitamin B1/B2 production on the influence of fruit intake on diabetes risk. This study provides preliminary evidence for microbiome-targeted vitamin metabolism interventions to promote health.
Collapse
Affiliation(s)
- Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
| | - Van T. Pham
- Global R&D Center Human Nutrition and Care (HNC), DSM Nutritional Products Ltd, Basel, Switzerland
| | - Robert E. Steinert
- Global R&D Center Human Nutrition and Care (HNC), DSM Nutritional Products Ltd, Basel, Switzerland
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen9713AV, the Netherlands
| |
Collapse
|