1
|
Gerratana L, Gianni C, Nicolò E, Pontolillo L, Bidard FC, Reduzzi C, Cristofanilli M. Mapping breast cancer therapy with circulating tumor cells: The expert perspective. Breast 2025; 81:104463. [PMID: 40188664 PMCID: PMC12002747 DOI: 10.1016/j.breast.2025.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
Circulating tumor cells (CTCs) have emerged as a key prognostic biomarker for breast cancer, with their role becoming more pronounced in metastatic cases. In metastatic breast cancer, having five or more CTCs per 7.5 mL of blood is linked to poorer survival and more aggressive disease, marking it as stage IVaggressive. Conversely, fewer than five CTCs per 7.5 mL of blood indicates a less aggressive, stage IVindolent disease. Additionally, molecular CTCs characterization provides a real-time snapshot of tumor biology, capturing its temporal and spatial variability and providing insights into tumor behavior. Beyond their role in predicting outcomes, CTCs can help guide treatment intensity as shown in clinical trials like the STIC trial, offering a new way to tailor therapy alongside other liquid biopsy biomarkers such as circulating tumor DNA. The aim of our review is to focus on both enumeration and phenotyping of CTCs and examine how CTC-guided strategies can improve treatment tailoring and patient outcomes. We also explore the potential for integrating CTCs with other biomarkers, such as circulating tumor DNA, and discuss how innovative biomarker-driven clinical trial designs could further advance personalized treatment strategies.
Collapse
Affiliation(s)
- Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - Caterina Gianni
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA; Medical Oncology and Breast Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Forlì-Cesena, Italy
| | - Eleonora Nicolò
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Letizia Pontolillo
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA; Department of Translational Medicine and Surgery, Universita' Cattolica Del Sacro Cuore, Rome, Italy
| | | | - Carolina Reduzzi
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - Massimo Cristofanilli
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Ma S, Wang X, Lin PP, Lei L. Circulating Tumor Cell Detection for Therapeutic and Prognostic Roles in Breast Cancer. Cancer Med 2025; 14:e70902. [PMID: 40437761 PMCID: PMC12119910 DOI: 10.1002/cam4.70902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are pivotal liquid biopsy (LB) biomarkers for breast cancer (BC), offering non-invasive insights into tumor progression and metastasis. Despite their clinical promise, CTC detection remains technically challenging due to their extreme rarity in peripheral blood. METHODS This review systematically evaluates CTC detection methodologies, including immunoaffinity-based approaches and biophysical techniques, which exhibit inherent trade-offs in sensitivity, specificity, and compatibility with downstream analyses. Furthermore, post-isolation molecular characterization methods spanning genomic, transcriptomic, and proteomic analyses are also critically assessed. KEY FINDINGS CTC molecular profiling holds significant clinical relevance, enabling early diagnosis, prognostic stratification, and real-time monitoring of therapeutic response. Baseline CTC counts or quantitative/phenotypic changes during treatment inform therapeutic decision-making, predict drug resistance, and correlate with recurrence risk and metastatic progression. CONCLUSION Multimodal analysis integrating CTC morphology, surface markers, and molecular alterations advances precision therapy. However, standardization of detection platforms and clinical validation of CTC-guided protocols remain essential.
Collapse
Affiliation(s)
- Saiying Ma
- Zhejiang Chinese Medical UniversityHangzhouChina
| | | | | | - Lei Lei
- Zhejiang Cancer HospitalHangzhouChina
| |
Collapse
|
3
|
Mousa-Doust D, Bazzarelli A, Deban M, Dingee C, Newman-Bremang J, Pao JS, Warburton R, McKevitt E. Inflammatory breast cancer response to modern neoadjuvant chemotherapy: Tumor response and survival outcomes. Am J Surg 2025; 243:116288. [PMID: 40088610 DOI: 10.1016/j.amjsurg.2025.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer. This study evaluates oncologic outcomes in IBC patients treated with modern multimodal treatment. METHODS A retrospective review analyzed clinicopathologic data of 5063 patients, 646 of whom underwent NAC followed by surgery between 2012 and 2024. Survival outcomes were compared across biologic subtypes. RESULTS Twenty-six cases of T4dM0 IBC were identified, with 57.7 % HER-2 positive, 26.9 % ER positive/HER-2 negative, and 15.4 % ER negative/HER-2 negative. The total pCR rate was highest in HER-2 positive (53.3 %) and lowest in ER-positive/HER-2 negative patients (p = 0.036). Among 19 patients with ≥3 years of follow-up, 47 % experienced recurrence (78 % distant and 22 % locoregional) and 42 % died of breast cancer. No significant differences in locoregional recurrence, or survival outcomes were found across subtypes. CONCLUSION pCR has limited prognostic value in IBC. Although HER-2 positive patients are more likely to achieve pCR, this does not necessarily translate into improved outcomes.
Collapse
Affiliation(s)
- Dorsa Mousa-Doust
- Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Amy Bazzarelli
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | | | - Carol Dingee
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Jieun Newman-Bremang
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Jin-Si Pao
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Rebecca Warburton
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Elaine McKevitt
- Providence Breast Centre, Mount Saint Joseph Hospital, 3080 Prince Edward Street, Vancouver, BC, V5T 3N4, Canada; Division of General Surgery, Department of Surgery, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
4
|
Rusnáková DŠ, Aziri R, Dubovan P, Jurík M, Mego M, Pinďák D. Detection, significance and potential utility of circulating tumor cells in clinical practice in breast cancer (Review). Oncol Lett 2025; 29:10. [PMID: 39492933 PMCID: PMC11526295 DOI: 10.3892/ol.2024.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 11/05/2024] Open
Abstract
Although advances in diagnostic techniques, new therapeutic strategies and personalization of breast cancer (BC) care have improved the survival for a number of patients, BC remains a major cause of morbidity and mortality for women. The study of circulating tumor cells (CTCs) has significant potential in translational oncology since these cells represent promising biomarkers throughout the entire course of BC in patients. CTCs also have notable prognostic value in early BC as well as metastatic BC. Based on current knowledge, it seems that the dynamics of CTCs that change during therapy reflect therapy response, and CTCs could serve as a tool for risk stratification and real-time monitoring of treatment in patients with BC. The question of how to use this information in everyday clinical practice and how this information can guide or change therapy to affect the clinical outcome of patients with BC remains unanswered. The present review aims to discuss current completed and ongoing trials that have been designed to demonstrate the clinical significance of CTCs, offer insights into treatment efficacy and assess CTC utility, facilitating their implementation in the routine management of patients with BC.
Collapse
Affiliation(s)
- Dominika Šmičková Rusnáková
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Ramadan Aziri
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Peter Dubovan
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Miroslav Jurík
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Michal Mego
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Daniel Pinďák
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
5
|
Li M, Liu Y, Han X, Li T, Zhang Z, Xue N, Liang M, Ma G, Xia T. Aneuploid Circulating Endothelial Cells with Prognostic Value in Locally Advanced Breast Cancer Patients After Neoadjuvant Chemotherapy. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:761-768. [PMID: 39553239 PMCID: PMC11568856 DOI: 10.2147/bctt.s487336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Background Aneuploid circulating endothelial cells (CECs) are an indicator in breast cancer (BC). Significant changes of aneuploid CECs occurred during neoadjuvant chemotherapy (NCT). This study aimed to explore the predictive and prognostic values of aneuploid CECs in locally advanced breast cancer (LABC) patients with different NCT responses. Methods Breast cancer patients received an EC4-T4 NCT regimen. A novel subtraction enrichment and immunostaining fluorescence in situ hybridization (SE-iFISH) strategy was applied for the detection of CECs (CD45-/CD31+/DAPI+). Receiver operating characteristic (ROC) curves were plotted to evaluate the predictive value of aneuploid CEC counts in distinguishing NCT-resistant patients from sensitive ones. All patients were observed for progression-free survival (PFS) and overall survival (OS). Results The CEC counts at any time point did not show the ability to predict the efficacy of NCT. The difference in the CECs between post-chemotherapy levels and baseline could be sufficient to distinguish chemotherapy-resistant cases from other cases in Hormone+Her-2-/+ (HR+) BC patients. Patients with reduction of CECs after all courses of NCT were associated with higher probability of PFS. Conclusion Variations in aneuploid CECs during NCT may predict chemotherapy response in patients with HR+ breast cancer. The decrease in the number of aneuploid CECs after all courses of NCT indicates better treatment outcomes in patients with LABC.
Collapse
Affiliation(s)
- Minghui Li
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yuelin Liu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Xu Han
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Tao Li
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Zhizheng Zhang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Ningyi Xue
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Mengdi Liang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
6
|
Reduzzi C, Nicolo' E, Singhal S, Venetis K, Ortega-Franco A, de Miguel-Perez D, Dipasquale A, Gouda MA, Saldanha EF, Kasi PM, Jantus-Lewintre E, Fusco N, Malapelle U, Gandara DR, Rolfo C, Serrano MJ, Cristofanilli M. Unveiling the impact of circulating tumor cells: Two decades of discovery and clinical advancements in solid tumors. Crit Rev Oncol Hematol 2024; 203:104483. [PMID: 39159706 DOI: 10.1016/j.critrevonc.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Circulating tumor cells (CTCs) enumeration and molecular profiling hold promise in revolutionizing the management of solid tumors. Their understanding has evolved significantly over the past two decades, encompassing pivotal biological discoveries and clinical studies across various malignancies. While for some tumor types, such as breast, prostate, and colorectal cancer, CTCs are ready to enter clinical practice, for others, additional research is required. CTCs serve as versatile biomarkers, offering insights into tumor biology, metastatic progression, and treatment response. This review summarizes the latest advancements in CTC research and highlights future directions of investigation. Special attention is given to concurrent evaluations of CTCs and other circulating biomarkers, particularly circulating tumor DNA. Multi-analyte assessment holds the potential to unlock the full clinical capabilities of liquid biopsy. In conclusion, CTCs represent a transformative biomarker in precision oncology, offering extraordinary opportunities to translate scientific discoveries into tangible improvements in patient care.
Collapse
Affiliation(s)
- Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Eleonora Nicolo'
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Surbhi Singhal
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Ana Ortega-Franco
- Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erick F Saldanha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON, Canada
| | - Pashtoon M Kasi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| | - Eloisa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and CIBERONC, Valencia, Spain
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20121, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - David R Gandara
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Jose Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain; Pathological Anatomy Unit, Molecular Pathology Laboratory,Virgen de las Nieves. University Hospital, Av. Dr. Olóriz 16, Granada 18012, Spain
| | - Massimo Cristofanilli
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| |
Collapse
|
7
|
Nicolò E, Gianni C, Curigliano G, Reduzzi C, Cristofanilli M. Modeling the management of patients with human epidermal growth factor receptor 2-positive breast cancer with liquid biopsy: the future of precision medicine. Curr Opin Oncol 2024; 36:503-513. [PMID: 39011731 DOI: 10.1097/cco.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW In the evolving landscape of human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) management, liquid biopsy offers unprecedented opportunities for guiding clinical decisions. Here, we review the most recent findings on liquid biopsy applications in HER2-positive BC and its potential role in addressing challenges specific to this BC subtype. RECENT FINDINGS Recent studies have highlighted the significance of liquid biopsy analytes, primarily circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), in stratifying patients' prognosis, predicting treatment response, and monitoring tumor evolution in both early and advanced stages of BC. Liquid biopsy holds promise in studying minimal residual disease to detect and potentially treat disease recurrence before it manifests clinically. Additionally, liquid biopsy may have significant implication in the management of brain metastasis, a major challenge in HER2-positive BC, and could redefine parameters for determining HER2 positivity. Combining ctDNA and CTCs is crucial for a comprehensive understanding of HER2-positive tumors, as they provide complementary insights. SUMMARY Research efforts are needed to address analytical challenges, validate, and broaden the application of liquid biopsy in HER2-positive BC. This effort will ultimately facilitate its integration into clinical practice, optimizing the care of patients with HER2-positive tumors.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
8
|
Du KY, Wu S, Ma X, Liu Y. Circulating tumor cell phenotype detection based on epithelial-mesenchymal transition markers combined with clinicopathological risk has potential to better predict recurrence in stage III breast cancer treated with neoadjuvant chemotherapy: a pilot study. Breast Cancer Res Treat 2024:10.1007/s10549-024-07430-7. [PMID: 38990453 DOI: 10.1007/s10549-024-07430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The potential value of detecting epithelial-mesenchymal transition (EMT) CTCs in early breast cancer, especially during the neoadjuvant therapy period, requires further investigation. We analyzed dynamic CTC phenotype status, to improve recurrence risk stratification for patients with stage III breast cancers. METHODS We enrolled 45 patients with stage III breast cancers from 2 clinical trials undergoing neoadjuvant chemotherapy and utilized the CanPatrol CTC enrichment technique pre- and post-chemotherapy to identify CTC phenotypes, including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs, in peripheral blood samples. Kaplan-Meier analyses were conducted to explore the prognostic value of dynamic change of CTC count and the proportion of CTCs with different phenotypes. Then, redefine the risk stratification based on CTC status and clinicopathological risk in combination. RESULTS Increased proportion of M + CTCs was a high-risk CTC status that was associated with decreased DFS (HR, 3.584; 95% CI, 1.057-12.15). In a combined analysis with clinicopathological risk, patients with high-risk tumors had an elevated risk of recurrence compared to patients with low-risk tumors (HR, 4.482; 95% CI, 1.246-16.12). The recurrence risk could be effectively stratified by newly defined risk stratification criteria, with 5-year DFS of 100.0%, 77.3%, and 50.0%, respectively, for low-risk, mid-risk, and high-risk patients (P = 0.0077). Finally, in the ROC analysis, the redefined risk stratification demonstrated higher predictive significance with an AUC of 0.7727, compared to CTC status alone (AUC of 0.6751) or clinicopathological risk alone (AUC of 0.6858). CONCLUSION The proportion of M + CTCs increased after neoadjuvant chemotherapy indicating a higher risk of tumor recurrence. Combining CTC status with clinicopathological risk has potential to redefine the risk stratification of stage III breast cancers and provide improved predictions of relapse.
Collapse
Affiliation(s)
- Kai-Ye Du
- Radiotherapy Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, People's Republic of China
| | - Shang Wu
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, People's Republic of China
- Breast Center, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Xindi Ma
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, People's Republic of China
- Breast Center, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Yunjiang Liu
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, 050011, People's Republic of China.
- Breast Center, The Fourth Hospital of Hebei Medical University, 169 Tianshan Street, Shijiazhuang, 050011, Hebei, People's Republic of China.
| |
Collapse
|
9
|
Cai Q, He Y, Zhou Y, Zheng J, Deng J. Nanomaterial-Based Strategies for Preventing Tumor Metastasis by Interrupting the Metastatic Biological Processes. Adv Healthc Mater 2024; 13:e2303543. [PMID: 38411537 DOI: 10.1002/adhm.202303543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Tumor metastasis is the primary cause of cancer-related deaths. The prevention of tumor metastasis has garnered notable interest and interrupting metastatic biological processes is considered a potential strategy for preventing tumor metastasis. The tumor microenvironment (TME), circulating tumor cells (CTCs), and premetastatic niche (PMN) play crucial roles in metastatic biological processes. These processes can be interrupted using nanomaterials due to their excellent physicochemical properties. However, most studies have focused on only one aspect of tumor metastasis. Here, the hypothesis that nanomaterials can be used to target metastatic biological processes and explore strategies to prevent tumor metastasis is highlighted. First, the metastatic biological processes and strategies involving nanomaterials acting on the TME, CTCs, and PMN to prevent tumor metastasis are briefly summarized. Further, the current challenges and prospects of nanomaterials in preventing tumor metastasis by interrupting metastatic biological processes are discussed. Nanomaterial-and multifunctional nanomaterial-based strategies for preventing tumor metastasis are advantageous for the long-term fight against tumor metastasis and their continued exploration will facilitate rapid progress in the prevention, diagnosis, and treatment of tumor metastasis. Novel perspectives are outlined for developing more effective strategies to prevent tumor metastasis, thereby improving the outcomes of patients with cancer.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yijia He
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
10
|
Alba-Bernal A, Godoy-Ortiz A, Domínguez-Recio ME, López-López E, Quirós-Ortega ME, Sánchez-Martín V, Roldán-Díaz MD, Jiménez-Rodríguez B, Peralta-Linero J, Bellagarza-García E, Troyano-Ramos L, Garrido-Ruiz G, Hierro-Martín MI, Vicioso L, González-Ortiz Á, Linares-Valencia N, Velasco-Suelto J, Carbajosa G, Garrido-Aranda A, Lavado-Valenzuela R, Álvarez M, Pascual J, Comino-Méndez I, Alba E. Increased blood draws for ultrasensitive ctDNA and CTCs detection in early breast cancer patients. NPJ Breast Cancer 2024; 10:36. [PMID: 38750090 PMCID: PMC11096188 DOI: 10.1038/s41523-024-00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Early breast cancer patients often experience relapse due to residual disease after treatment. Liquid biopsy is a methodology capable of detecting tumor components in blood, but low concentrations at early stages pose challenges. To detect them, next-generation sequencing has promise but entails complex processes. Exploring larger blood volumes could overcome detection limitations. Herein, a total of 282 high-volume plasma and blood-cell samples were collected for dual ctDNA/CTCs detection using a single droplet-digital PCR assay per patient. ctDNA and/or CTCs were detected in 100% of pre-treatment samples. On the other hand, post-treatment positive samples exhibited a minimum variant allele frequency of 0.003% for ctDNA and minimum cell number of 0.069 CTCs/mL of blood, surpassing previous investigations. Accurate prediction of residual disease before surgery was achieved in patients without a complete pathological response. A model utilizing ctDNA dynamics achieved an area under the ROC curve of 0.92 for predicting response. We detected disease recurrence in blood in the three patients who experienced a relapse, anticipating clinical relapse by 34.61, 9.10, and 7.59 months. This methodology provides an easily implemented alternative for ultrasensitive residual disease detection in early breast cancer patients.
Collapse
Affiliation(s)
- Alfonso Alba-Bernal
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
| | - Ana Godoy-Ortiz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - María Emilia Domínguez-Recio
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Esperanza López-López
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - María Elena Quirós-Ortega
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
| | - Victoria Sánchez-Martín
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - María Dunia Roldán-Díaz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Begoña Jiménez-Rodríguez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - Jesús Peralta-Linero
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Estefanía Bellagarza-García
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Laura Troyano-Ramos
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Guadalupe Garrido-Ruiz
- Radiology Department, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
| | - M Isabel Hierro-Martín
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Unidad de Gestion Clinica Provincial de Anatomia Patologica de Malaga, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Luis Vicioso
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Unidad de Gestion Clinica Provincial de Anatomia Patologica de Malaga, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Álvaro González-Ortiz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Noelia Linares-Valencia
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Jesús Velasco-Suelto
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Guillermo Carbajosa
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Alicia Garrido-Aranda
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Rocío Lavado-Valenzuela
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Martina Álvarez
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Javier Pascual
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - Iñaki Comino-Méndez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain.
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain.
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain.
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain.
| | - Emilio Alba
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| |
Collapse
|
11
|
Fang S, Xia W, Zhang H, Ni C, Wu J, Mo Q, Jiang M, Guan D, Yuan H, Chen W. A real-world clinicopathological model for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer. Front Oncol 2024; 14:1323226. [PMID: 38420013 PMCID: PMC10899694 DOI: 10.3389/fonc.2024.1323226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Purpose This study aimed to develop and validate a clinicopathological model to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients and identify key prognostic factors. Methods This retrospective study analyzed data from 279 breast cancer patients who received NAC at Zhejiang Provincial People's Hospital from 2011 to 2021. Additionally, an external validation dataset, comprising 50 patients from Lanxi People's Hospital and Second Affiliated Hospital, Zhejiang University School of Medicine from 2022 to 2023 was utilized for model verification. A multivariate logistic regression model was established incorporating clinical, ultrasound features, circulating tumor cells (CTCs), and pathology variables at baseline and post-NAC. Model performance for predicting pCR was evaluated. Prognostic factors were identified using survival analysis. Results In the 279 patients enrolled, a pathologic complete response (pCR) rate of 27.96% (78 out of 279) was achieved. The predictive model incorporated independent predictors such as stromal tumor-infiltrating lymphocyte (sTIL) levels, Ki-67 expression, molecular subtype, and ultrasound echo features. The model demonstrated strong predictive accuracy for pCR (C-statistics/AUC 0.874), especially in human epidermal growth factor receptor 2 (HER2)-enriched (C-statistics/AUC 0.878) and triple-negative (C-statistics/AUC 0.870) subtypes, and the model performed well in external validation data set (C-statistics/AUC 0.836). Incorporating circulating tumor cell (CTC) changes post-NAC and tumor size changes further improved predictive performance (C-statistics/AUC 0.945) in the CTC detection subgroup. Key prognostic factors included tumor size >5cm, lymph node metastasis, sTIL levels, estrogen receptor (ER) status and pCR. Despite varied pCR rates, overall prognosis after standard systemic therapy was consistent across molecular subtypes. Conclusion The developed predictive model showcases robust performance in forecasting pCR in NAC-treated breast cancer patients, marking a step toward more personalized therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Shan Fang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao Ni
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiuping Mo
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mengjie Jiang
- Department of Radiotherapy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dandan Guan
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongjun Yuan
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wuzhen Chen
- Department of Oncology, Lanxi People’s Hospital, Jinhua, China
| |
Collapse
|
12
|
Cani AK, Hayes DF. Breast Cancer Circulating Tumor Cells: Current Clinical Applications and Future Prospects. Clin Chem 2024; 70:68-80. [PMID: 38175590 DOI: 10.1093/clinchem/hvad191] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Identification and characterization of circulating tumor markers, designated as "liquid biopsies," have greatly impacted the care of cancer patients. Although more recently referring to circulating tumor DNA (ctDNA), the term liquid biopsy initially was coined to refer to any blood-borne biomarker related to malignancy, including circulating tumor cells (CTCs) in blood. In this manuscript, we review the specific state of the art of CTCs in breast cancer. CONTENT Liquid biopsies might play a clinical role across the entire spectrum of breast cancer, from risk assessment, prevention, screening, and treatment. CTC counts have been shown to carry clear, independent prognostic information in the latter situation. However, the clinical utility of CTCs in breast cancer remains to be determined. Nonetheless, in addition to CTC enumeration, analyses of CTCs provide tumor molecular information representing the entire, often-heterogeneous disease, relatively noninvasively and longitudinally. Technological advances have allowed the interrogation of CTC-derived information, providing renewed hope for a clinical role in disease monitoring and precision oncology. SUMMARY This narrative review examines CTCs, their clinical validity, and current prospects of clinical utility in breast cancer with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Andi K Cani
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Daniel F Hayes
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Keup C, Kimmig R, Kasimir-Bauer S. The Diversity of Liquid Biopsies and Their Potential in Breast Cancer Management. Cancers (Basel) 2023; 15:5463. [PMID: 38001722 PMCID: PMC10670968 DOI: 10.3390/cancers15225463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Analyzing blood as a so-called liquid biopsy in breast cancer (BC) patients has the potential to adapt therapy management. Circulating tumor cells (CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA) and other blood components mirror the tumoral heterogeneity and could support a range of clinical decisions. Multi-cancer early detection tests utilizing blood are advancing but are not part of any clinical routine yet. Liquid biopsy analysis in the course of neoadjuvant therapy has potential for therapy (de)escalation.Minimal residual disease detection via serial cfDNA analysis is currently on its way. The prognostic value of blood analytes in early and metastatic BC is undisputable, but the value of these prognostic biomarkers for clinical management is controversial. An interventional trial confirmed a significant outcome benefit when therapy was changed in case of newly emerging cfDNA mutations under treatment and thus showed the clinical utility of cfDNA analysis for therapy monitoring. The analysis of PIK3CA or ESR1 variants in plasma of metastatic BC patients to prescribe targeted therapy with alpesilib or elacestrant has already arrived in clinical practice with FDA-approved tests available and is recommended by ASCO. The translation of more liquid biopsy applications into clinical practice is still pending due to a lack of knowledge of the analytes' biology, lack of standards and difficulties in proving clinical utility.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, 45147 Essen, Germany
| | | | | |
Collapse
|
14
|
Munoz-Arcos LS, Nicolò E, Serafini MS, Gerratana L, Reduzzi C, Cristofanilli M. Latest advances in clinical studies of circulating tumor cells in early and metastatic breast cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:1-21. [PMID: 37739480 DOI: 10.1016/bs.ircmb.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Circulating tumor cells (CTCs) have emerged as a promising biomarker in breast cancer, offering insights into disease progression and treatment response. While CTCs have demonstrated prognostic relevance in early breast cancer, more validation is required to establish optimal cut-off points. In metastatic breast cancer, the detection of CTCs using the Food and Drug Administration-approved CellSearch® system is a strong independent prognostic factor. However, mesenchymal CTCs and the Parsortix® PC1 system show promise as alternative detection methods. This chapter offers a comprehensive review of clinical studies on CTCs in breast cancer, emphasizing their prognostic and predictive value in different stages of the disease and provides insights into potential future directions in CTC research.
Collapse
Affiliation(s)
- Laura S Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Mara S Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
15
|
Zhou JS, Liu ZN, Chen YY, Liu YX, Shen H, Hou LJ, Ding Y. New advances in circulating tumor cell‑mediated metastasis of breast cancer (Review). Mol Clin Oncol 2023; 19:71. [PMID: 37614367 PMCID: PMC10442766 DOI: 10.3892/mco.2023.2667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/20/2023] [Indexed: 08/25/2023] Open
Abstract
Breast cancer stands as the most prevalent form of cancer affecting women, with metastasis serving as a leading cause of mortality among patients with breast cancer. Gaining a comprehensive understanding of the metastatic mechanism in breast cancer is essential for early detection and precision treatment of the disease. Circulating tumor cells (CTCs) play a vital role in this context, representing cancer cells that detach from tumor tissues and enter the bloodstream of cancer patients. These cells travel in the blood circulation as single cells or clusters. Recent research has shed light on the enhanced metastatic potential of CTC clusters compared to single CTCs, despite their limited occurrence. The aim of the present review was to explore recent findings on CTCs with a particular focus on the clustering phenomenon of CTCs observed in breast cancer. Additionally, the present review delved into the comparison between single CTCs and CTC clusters regarding their implications for the treatment and prognosis of patients diagnosed with metastatic breast cancer. By examining the role and mechanisms of CTCs in breast cancer metastasis, the present review provided an improved understanding of CTCs and their significance in early detection of breast cancer metastasis through peripheral blood analysis. Moreover, it contributed to the comprehension of cancer prognosis and prediction by highlighting the implications of CTCs in these aspects. Ultimately, the present study seeks to advance knowledge in the field and pave the way for improved approaches to breast cancer management.
Collapse
Affiliation(s)
- Jiang-Shan Zhou
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zi-Ning Liu
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuan-Yuan Chen
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu-Xi Liu
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hua Shen
- Department of Mathematics and Statistics, University of Calgary, Alberta T2N 1N4, Canada
| | - Li-Jun Hou
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
- Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yi Ding
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
- Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
16
|
Ma G, Wang J, Fu J, Chen R, Liang M, Li M, Xia T, Liu X, Wang S. Heterogeneous circulating tumor cells correlate with responses to neoadjuvant chemotherapy and prognosis in patients with locally advanced breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-06942-y. [PMID: 37311933 DOI: 10.1007/s10549-023-06942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/05/2023] [Indexed: 06/15/2023]
Abstract
Neoadjuvant chemotherapy (NCT) is the standard treatment for patients with locally advanced breast cancer (LABC). The predictive value of heterogeneous circulating tumor cells (CTCs) in NCT response has not been determined. All patients were staged as LABC, and blood samples were collected at the time of biopsy, and after the first and eighth NCT courses. Patients were divided into High responders (High-R) and Low responders (Low-R) according to Miller-Payne system and changes in Ki-67 levels after NCT treatment. A novel SE-i·FISH strategy was applied to detect CTCs. Heterogeneities were successfully analyzed in patients undergoing NCT. Total CTCs increased continuously and were higher in Low-R group, while in High-R group, CTCs increased slightly during NCT before returning to baseline levels. Triploid and tetraploid chromosome 8 increased in Low-R but not High-R group. The number of small CTCs in Low-R group increased significantly until the last sample, however, remained constant in High-R group. The patients with more CTCs had shorter PFS and OS than those with less CTCs after the eighth course of NCT. Total CTCs following NCT could predict patients' responses. More detailed characterizations of CTC blood profiles may improve predictive capacity and treatments of LABC.
Collapse
Affiliation(s)
- Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guang-Zhou Road, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingyi Wang
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Changzhou, 213003, China
| | - Jingyue Fu
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guang-Zhou Road, Nanjing, 210029, China
| | - Rui Chen
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guang-Zhou Road, Nanjing, 210029, China
| | - Mengdi Liang
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guang-Zhou Road, Nanjing, 210029, China
| | - Minghui Li
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guang-Zhou Road, Nanjing, 210029, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guang-Zhou Road, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guang-Zhou Road, Nanjing, 210029, China.
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, 300 Guang-Zhou Road, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
17
|
Pore AA, Dhanasekara CS, Navaid HB, Vanapalli SA, Rahman RL. Comprehensive Profiling of Cancer-Associated Cells in the Blood of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy to Predict Pathological Complete Response. Bioengineering (Basel) 2023; 10:bioengineering10040485. [PMID: 37106672 PMCID: PMC10136335 DOI: 10.3390/bioengineering10040485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) can affect pathological complete response (pCR) in breast cancers; the resection that follows identifies patients with residual disease who are then offered second-line therapies. Circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) in the blood can be used as potential biomarkers for predicting pCR before resection. CTCs are of epithelial origin that undergo epithelial-to-mesenchymal transition to become more motile and invasive, thereby leading to invasive mesenchymal cells that seed in distant organs, causing metastasis. Additionally, CAMLs in the blood of cancer patients are reported to either engulf or aid the transport of cancer cells to distant organs. To study these rare cancer-associated cells, we conducted a preliminary study where we collected blood from patients treated with NAC after obtaining their written and informed consent. Blood was collected before, during, and after NAC, and Labyrinth microfluidic technology was used to isolate CTCs and CAMLs. Demographic, tumor marker, and treatment response data were collected. Non-parametric tests were used to compare pCR and non-pCR groups. Univariate and multivariate models were used where CTCs and CAMLs were analyzed for predicting pCR. Sixty-three samples from 21 patients were analyzed. The median(IQR) pre-NAC total and mesenchymal CTC count/5 mL was lower in the pCR vs. non-pCR group [1(3.5) vs. 5(5.75); p = 0.096], [0 vs. 2.5(7.5); p = 0.084], respectively. The median(IQR) post-NAC CAML count/5 mL was higher in the pCR vs. non-pCR group [15(6) vs. 6(4.5); p = 0.004]. The pCR group was more likely to have >10 CAMLs post-NAC vs. non-pCR group [7(100%) vs. 3(21.4%); p = 0.001]. In a multivariate logistic regression model predicting pCR, CAML count was positively associated with the log-odds of pCR [OR = 1.49(1.01, 2.18); p = 0.041], while CTCs showed a negative trend [Odds Ratio (OR) = 0.44(0.18, 1.06); p = 0.068]. In conclusion, increased CAMLs in circulation after treatment combined with lowered CTCs was associated with pCR.
Collapse
Affiliation(s)
- Adity A Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
18
|
Kuhar CG, Borštnar S, Gazić B, Matos E. Complete response in the axilla and the non-triple negative subtype are favourable prognostic factors for survival outcomes in inflammatory breast cancer. Breast 2023:S0960-9776(23)00011-5. [PMID: 36740512 DOI: 10.1016/j.breast.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
AIM To assess real-world outcomes and prognostic factors of non-metastatic inflammatory breast cancer according to immunohistochemistry (IHC)-based subtype and treatment regimen. METHODS An institutional retrospective analysis of patients treated with neoadjuvant systemic treatment (NAST) for stage III inflammatory breast cancer diagnosed between 2001 and 2018 was performed. The survival outcomes in relation to patient characteristics, tumour characteristics, treatment modality and response to NAST were analyzed. RESULTS 225 patients fulfilled the inclusion criteria, 90% of patients were node-positive. IHC-based subtypes: 39.1% were HR+/HER2-, 19.1% HR+/HER2+, 23.1% HR-/HER2+ and 18.7% HR-/HER2-. Treatment was multimodal: NAST (100%), surgery (94.2%) and radiotherapy (94.2%). 53.3% of patients received adjuvant endocrine therapy, 34.3% (neo)adjuvant trastuzumab. Tri-modality therapy was applied in 89.3% of patients. Following NAST, a pathologic complete remission (pCR) in the breast was found in 16.9%, in the axilla in 29.7% and in both the breast and axilla in 10.3% of patients. The axillary pCR rate was significantly higher in HR- subtypes. Median overall survival (OS) was 8.9, 7.2, 5.8 and 2.3 years (p < 0.001) for HR+/HER2-, HR+/HER2+, HR-/HER2+ and HR-/HER2- subtype, respectively. On multivariate analysis, IHC-based subtype, age and axillary pCR were found as independent prognostic factors for RFS and OS. pCR rate and median OS improved over time, 5.8% vs 14.7% and 4.7 vs 10.0 years (2001-2009 vs. 2010-2018), respectively. CONCLUSIONS Axillary pCR and the non-triple-negative IHC-based subtype are favourable prognostic factors for RFS and OS in inflammatory breast cancer. Introduction of taxanes and antiHER2 drugs contributed to improved pCR rate and OS.
Collapse
Affiliation(s)
- Cvetka Grašič Kuhar
- Institute of Oncology Ljubljana, Department of Medical Oncology, Zaloška 2, 1000, Ljubljana, Slovenia; Faculty of Medicine Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Simona Borštnar
- Institute of Oncology Ljubljana, Department of Medical Oncology, Zaloška 2, 1000, Ljubljana, Slovenia; Faculty of Medicine Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Barbara Gazić
- Faculty of Medicine Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia; Institute of Oncology Ljubljana, Department of Pathology, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Erika Matos
- Institute of Oncology Ljubljana, Department of Medical Oncology, Zaloška 2, 1000, Ljubljana, Slovenia; Faculty of Medicine Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Gianni C, Palleschi M, Merloni F, Bleve S, Casadei C, Sirico M, Di Menna G, Sarti S, Cecconetto L, Mariotti M, De Giorgi U. Potential Impact of Preoperative Circulating Biomarkers on Individual Escalating/de-Escalating Strategies in Early Breast Cancer. Cancers (Basel) 2022; 15:96. [PMID: 36612091 PMCID: PMC9817806 DOI: 10.3390/cancers15010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The research on non-invasive circulating biomarkers to guide clinical decision is in wide expansion, including the earliest disease settings. Several new intensification/de-intensification strategies are approaching clinical practice, personalizing the treatment for each patient. Moreover, liquid biopsy is revealing its potential with multiple techniques and studies available on circulating biomarkers in the preoperative phase. Inflammatory circulating cells, circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and other biological biomarkers are improving the armamentarium for treatment selection. Defining the escalation and de-escalation of treatments is a mainstay of personalized medicine in early breast cancer. In this review, we delineate the studies investigating the possible application of these non-invasive tools to give a more enlightened approach to escalating/de-escalating strategies in early breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pore AA, Bithi SS, Zeinali M, Navaid HB, Nagrath S, Layeequr Rahman R, Vanapalli SA. Phenotyping of rare circulating cells in the blood of non-metastatic breast cancer patients using microfluidic Labyrinth technology. BIOMICROFLUIDICS 2022; 16:064107. [PMID: 36536791 PMCID: PMC9759355 DOI: 10.1063/5.0129602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 05/13/2023]
Abstract
Label-free technologies for isolating rare circulating cells in breast cancer patients are widely available; however, they are mostly validated on metastatic patient blood samples. Given the need to use blood-based biomarkers to inform on disease progression and treatment decisions, it is important to validate these technologies in non-metastatic patient blood samples. In this study, we specifically focus on a recently established label-free microfluidic technology Labyrinth and assess its capabilities to phenotype a variety of rare circulating tumor cells indicative of epithelial-to-mesenchymal transition as well as cancer-associated macrophage-like (CAML) cells. We specifically chose a patient cohort that is non-metastatic and selected to undergo neoadjuvant chemotherapy to assess the performance of the Labyrinth technology. We enrolled 21 treatment naïve non-metastatic breast cancer patients of various disease stages. Our results indicate that (i) Labyrinth microfluidic technology is successfully able to isolate different phenotypes of CTCs despite the counts being low. (ii) Invasive phenotypes of CTCs such as transitioning CTCs and mesenchymal CTCs were found to be present in high numbers in stage III patients as compared to stage II patients. (iii) As the total load of CTCs increased, the mesenchymal CTCs were found to be increasing. (iv) Labyrinth was able to isolate CAMLs with the counts being higher in stage III patients as compared to stage II patients. Our study demonstrates the ability of the Labyrinth microfluidic technology to isolate rare cancer-associated cells from the blood of treatment naïve non-metastatic breast cancer patients, laying the foundation for tracking oncogenic spread and immune response in patients undergoing neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Mina Zeinali
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 79430, USA
| | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 79430, USA
| | | | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
21
|
Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. Int J Mol Sci 2022; 23:ijms23179952. [PMID: 36077348 PMCID: PMC9456236 DOI: 10.3390/ijms23179952] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is a highly heterogeneous disease. The treatment of BC is complicated owing to intratumoral complexity. Tissue biopsy and immunohistochemistry are the current gold standard techniques to guide breast cancer therapy; however, these techniques do not assess tumoral molecular heterogeneity. Personalized medicine aims to overcome these biological and clinical complexities. Advances in techniques and computational analyses have enabled increasingly sensitive, specific, and accurate application of liquid biopsy. Such progress has ushered in a new era in precision medicine, where the objective is personalized treatment of breast cancer, early screening, accurate diagnosis and prognosis, relapse detection, longitudinal monitoring, and drug selection. Liquid biopsy can be defined as the sampling of components of tumor cells that are released from a tumor and/or metastatic deposits into the blood, urine, feces, saliva, and other biological substances. Such components include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or circulating tumor RNA (ctRNA), platelets, and exosomes. This review aims to highlight the role of liquid biopsy in breast cancer and precision medicine.
Collapse
|
22
|
Addanki S, Meas S, Sarli VN, Singh B, Lucci A. Applications of Circulating Tumor Cells and Circulating Tumor DNA in Precision Oncology for Breast Cancers. Int J Mol Sci 2022; 23:ijms23147843. [PMID: 35887191 PMCID: PMC9315812 DOI: 10.3390/ijms23147843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Liquid biopsies allow for the detection of cancer biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Elevated levels of these biomarkers during cancer treatment could potentially serve as indicators of cancer progression and shed light on the mechanisms of metastasis and therapy resistance. Thus, liquid biopsies serve as tools for cancer detection and monitoring through a simple, non-invasive blood draw, allowing multiple longitudinal sampling. These circulating markers have significant prospects for use in assessing patients’ prognosis, monitoring response to therapy, and developing precision medicine. In addition, single-cell omics of these liquid biopsy markers can be potential tools for identifying tumor heterogeneity and plasticity as well as novel therapeutic targets. In this review, we focus on our current understanding of circulating tumor biomarkers, especially in breast cancer, and the scope of novel sequencing technologies and diagnostic methods for better prognostication and patient stratification to improve patient outcomes.
Collapse
Affiliation(s)
- Sridevi Addanki
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
| | - Salyna Meas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vanessa Nicole Sarli
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Balraj Singh
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony Lucci
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (V.N.S.); (B.S.)
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
23
|
Allouchery V, Perdrix A, Calbrix C, Berghian A, Lequesne J, Fontanilles M, Leheurteur M, Etancelin P, Sarafan-Vasseur N, Di Fiore F, Clatot F. Circulating PIK3CA mutation detection at diagnosis in non-metastatic inflammatory breast cancer patients. Sci Rep 2021; 11:24041. [PMID: 34911971 PMCID: PMC8674263 DOI: 10.1038/s41598-021-02643-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive BC subtype with poor outcomes. A targetable somatic PIK3CA mutation is reported in 30% of IBC, allowing for treatment by PI3Kα-specific inhibitors, such as alpelisib. The aim of this study was to evaluate the detection rate of circulating PIK3CA mutation in locally-advanced IBC (LAIBC) patients harbouring a PIK3CA mutation on initial biopsy. This monocentric retrospective study was based on available stored plasma samples and tumour biopsies at diagnosis from all LAIBC patients treated with neo-adjuvant chemotherapy (NCT) between 2008 and 2018 at the Centre Henri Becquerel. PIK3CA mutations (E542K, E545K, H1047R/L) were assessed by droplet digital PCR (ddPCR) in plasma samples and tumoral tissue at diagnosis. A total of 55 patients were included. Overall, 14/55 patients (25%) had a PIK3CA mutation identified on baseline biopsy (H1047R = 8; H1047L = 3; E545K = 2; E542K = 1). Among them, 11 (79%) patients had enough DNA for circulating DNA analyses, and corresponding circulating PIK3CA mutations were found in 6/11 (55%). Among the 41 patients without PIK3CA mutations on biopsy, 32 (78%) had enough DNA for circulating DNA analysis, and no circulating PIK3CA mutation was identified. Our results revealed no prognostic or predictive value of PIK3CA mutations at the diagnosis of non-metastatic IBC but highlighted the prognostic value of the cfDNA rate at diagnosis. Our study showed that a corresponding circulating PIK3CA mutation was identified in 55% of LAIBC patients with PIK3CA-mutated tumours, while no circulating mutation was found among patients with PI3KCA wild-type tumours.
Collapse
Affiliation(s)
- Violette Allouchery
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France.
| | - Anne Perdrix
- IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France.,Department of Bio-Pathology, Centre Henri Becquerel, Rouen, France
| | - Céline Calbrix
- IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France.,Department of Bio-Pathology, Centre Henri Becquerel, Rouen, France
| | - Anca Berghian
- Department of Bio-Pathology, Centre Henri Becquerel, Rouen, France
| | - Justine Lequesne
- Department of Biostatistics, Rouen University Hospital, Rouen, France
| | - Maxime Fontanilles
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France.,IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France
| | - Marianne Leheurteur
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France
| | | | - Nasrin Sarafan-Vasseur
- IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France.,Department of Bio-Pathology, Centre Henri Becquerel, Rouen, France
| | - Frédéric Di Fiore
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France.,IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France.,Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Florian Clatot
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France.,IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France
| |
Collapse
|
24
|
Castle J, Blower E, Kirwan CC. Update on the role of circulating tumour cells in cancer-associated thrombosis. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
25
|
Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (Beijing) 2021; 2:587-617. [PMID: 34977870 PMCID: PMC8706758 DOI: 10.1002/mco2.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer metastasis is responsible for the vast majority of cancer-related deaths worldwide. In contrast to numerous discoveries that reveal the detailed mechanisms leading to the formation of the primary tumor, the biological underpinnings of the metastatic disease remain poorly understood. Cancer metastasis is a complex process in which cancer cells escape from the primary tumor, settle, and grow at other parts of the body. Epithelial-mesenchymal transition and anoikis resistance of tumor cells are the main forces to promote metastasis, and multiple components in the tumor microenvironment and their complicated crosstalk with cancer cells are closely involved in distant metastasis. In addition to the three cornerstones of tumor treatment, surgery, chemotherapy, and radiotherapy, novel treatment approaches including targeted therapy and immunotherapy have been established in patients with metastatic cancer. Although the cancer survival rate has been greatly improved over the years, it is still far from satisfactory. In this review, we provided an overview of the metastasis process, summarized the cellular and molecular mechanisms involved in the dissemination and distant metastasis of cancer cells, and reviewed the important advances in interventions for cancer metastasis.
Collapse
Affiliation(s)
- Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bushu Xu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
26
|
Chantzara E, Xenidis N, Kallergi G, Georgoulias V, Kotsakis A. Circulating tumor cells as prognostic biomarkers in breast cancer: current status and future prospects. Expert Rev Mol Diagn 2021; 21:1037-1048. [PMID: 34328384 DOI: 10.1080/14737159.2021.1962710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction : Despite advances in diagnostic and therapeutic techniques breast cancer is still associated with significant morbidity and mortality. CTCs play a crucial role in the metastatic process, which is the main cause of death in BC patients.Areas covered : This review discusses the prognostic and predictive value of CTCs and their prospective in management of BC patients.Expert opinion : The analysis of CTCs through improved technologies offers a new insight into the metastatic cascade. Assessment of the number and molecular profile of CTCs holds great promises for disease monitoring and therapeutic decisions. However, more research is needed until they can be used in therapeutic decisions in clinical practice.
Collapse
Affiliation(s)
- Evagelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece
| | - Nikolaos Xenidis
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Alexandroupolis, Thrace, Greece
| | - Galatea Kallergi
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), Athens, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece
| |
Collapse
|
27
|
Song SE, Seo BK, Cho KR, Woo OH, Ganeshan B, Kim ES, Cha J. Prediction of Inflammatory Breast Cancer Survival Outcomes Using Computed Tomography-Based Texture Analysis. Front Bioeng Biotechnol 2021; 9:695305. [PMID: 34354986 PMCID: PMC8329959 DOI: 10.3389/fbioe.2021.695305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Although inflammatory breast cancer (IBC) has poor overall survival (OS), there is little information about using imaging features for predicting the prognosis. Computed tomography (CT)-based texture analysis, a non-invasive technique to quantify tumor heterogeneity, could be a potentially useful imaging biomarker. The aim of the article was to investigate the usefulness of chest CT-based texture analysis to predict OS in IBC patients. Methods: Of the 3,130 patients with primary breast cancers between 2006 and 2016, 104 patients (3.3%) with IBC were identified. Among them, 98 patients who underwent pre-treatment contrast-enhanced chest CT scans, got treatment in our institution, and had a follow-up period of more than 2 years were finally included for CT-based texture analysis. Texture analysis was performed on CT images of 98 patients, using commercially available software by two breast radiologists. Histogram-based textural features, such as quantification of variation in CT attenuation (mean, standard deviation, mean of positive pixels [MPP], entropy, skewness, and kurtosis), were recorded. To dichotomize textural features for survival analysis, receiver operating characteristic curve analysis was used to determine cutoff points. Clinicopathologic variables, such as age, node stage, metastasis stage at the time of diagnosis, hormonal receptor positivity, human epidermal growth factor receptor 2 positivity, and molecular subtype, were assessed. A Cox proportional hazards model was used to determine the association of textural features and clinicopathologic variables with OS. Results: During a mean follow-up period of 47.9 months, 41 of 98 patients (41.8%) died, with a median OS of 20.0 months. The textural features of lower mean attenuation, standard deviation, MPP, and entropy on CT images were significantly associated with worse OS, as was the M1 stage among clinicopathologic variables (all P-values < 0.05). In multivariate analysis, lower mean attenuation (hazard ratio [HR], 3.26; P = 0.003), lower MPP (HR, 3.03; P = 0.002), and lower entropy (HR, 2.70; P = 0.009) on chest CT images were significant factors independent from the M1 stage for predicting worse OS. Conclusions: Lower mean attenuation, MPP, and entropy on chest CT images predicted worse OS in patients with IBC, suggesting that CT-based texture analysis provides additional predictors for OS.
Collapse
Affiliation(s)
- Sung Eun Song
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Kyu Ran Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ok Hee Woo
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London Hospitals NHS Trust, London, United Kingdom
| | - Eun Sil Kim
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Jaehyung Cha
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| |
Collapse
|
28
|
Jakabova A, Bielcikova Z, Pospisilova E, Petruzelka L, Blasiak P, Bobek V, Kolostova K. Characterization of circulating tumor cells in early breast cancer patients receiving neoadjuvant chemotherapy. Ther Adv Med Oncol 2021; 13:17588359211028492. [PMID: 34345252 PMCID: PMC8283058 DOI: 10.1177/17588359211028492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
Background and Aims: The aim of this study was to characterize circulating tumor cells (CTCs) during neoadjuvant chemotherapy (NACT) in early and locally advanced breast cancer (LABC) patients. Using ultrasound, tumor volume measurement was compared with the presence and the molecular nature of CTCs over multiple time intervals corresponding to treatment periods. Methods: A total of 20 patients diagnosed with breast cancer (BC) of different histotypes were monitored during the NACT period and in the follow-up period (~5 years). Peripheral blood for CTCs (n = 115) was taken prior to NACT, after two to three chemotherapy cycles, after the completion of NACT (before surgery) and at some time points during adjuvant therapy. CTCs were enriched using a size-based filtration method (MetaCell®) capturing viable cells, which enabled vital fluorescence microscopy. A set of tumor-associated (TA) genes and chemoresistance-associated (CA) genes was analyzed by qPCR in the enriched CTC fractions. Results: The analysis of tumor volume reduction after administration of anthracyclines (AC) and taxanes (TAX) during NACT showed that AC therapy was responsive in 60% (12/20) of tumors, whereas TAX therapy was responsive in 30% (6/20; n.s.). After NACT, CTCs were still present in 70.5% (12/17) of patients (responders versus non-responders, 61.5% versus 100%; not significant). In triple-negative BC (TNBC) patients (n = 8), tumor volume reduction was observed in 75% cases. CTCs were significantly reduced in 42.9% of all HER2-negative BC patients. In HER2+ tumors, CTC reduction was reported in 16.6% only. Relapses were also more prevalent in the HER2-positive patient group (28.5 versus 66.6%). During NACT, the presence of CTCs (three tests for each patient) identified patients with relapses and indicated significantly shorter progression-free survival (PFS) rates (p = 0.03). Differentiation between progressive disease and non-progressive disease was obtained when the occurrence of excessive expression for CA genes in CTCs was compared (p = 0.024). Absence of tumor volume reduction was also significantly indicative for progressive disease (p = 0.0224). Disseminated CTCs in HER2-negative tumors expressed HER2 in 29% of samples collected during the overall follow-up period (16/55), and in 32% of samples during the follow-up of NACT (10/31). The change accounted for 78.5% of HER2-negative patients (11/14) in total, and 63.6% of the conversion cases occurred during NACT (7/11). For the remaining four patients (36.3%), conversion to HER2+ CTCs occurred later during adjuvant therapy. We believe there is the possibility of preventing further progression by identifying less responsive tumors during NACT using CTC monitoring, which could also be used effectively during adjuvant therapy.
Collapse
Affiliation(s)
- Anna Jakabova
- Radiotherapy and Oncology Clinic, Laboratory of Personalized Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Zuzana Bielcikova
- Department of Oncology, First Faculty of Medicine Charles University and General University Hospital in Prague, Czech Republic
| | - Eliska Pospisilova
- Radiotherapy and Oncology Clinic, Laboratory of Personalized Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine Charles University and General University Hospital in Prague, Czech Republic
| | - Piotr Blasiak
- Department and Clinic of Thoracic Surgery, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Vladimir Bobek
- Radiotherapy and Oncology Clinic, Laboratory of Personalized Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Katarina Kolostova
- Radiotherapy and Oncology Clinic, Laboratory of Personalized Medicine, University Hospital, Kralovske Vinohrady, Srobarova 50, Prague, 100 34, Czech Republic
| |
Collapse
|
29
|
Circulating Tumor Cells from Enumeration to Analysis: Current Challenges and Future Opportunities. Cancers (Basel) 2021; 13:cancers13112723. [PMID: 34072844 PMCID: PMC8198976 DOI: 10.3390/cancers13112723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary With estimated numbers of 1–10 per mL of blood, circulating tumor cells (CTCs) are extremely rare compared to white (a few million) or red (billions) blood cells. Given their critical role in metastasis, CTCs have enormous potential as a biomarker for cancer diagnosis, prognosis, and monitoring of treatment response. There are now efforts to characterize CTCs more precisely through molecular and functional analysis, expanding the CTC effort from one of diagnosis and prognosis to now include the use of CTCs to specifically target cancers and discover therapeutic solutions, establishing CTCs as critical in precision medicine. This article summarizes current knowledge about CTC isolation technologies and discusses the translational benefits of different types of downstream analysis approaches, including single-CTC analysis, ex vivo expansion of CTCs, and characterization of CTC-associated cells. Abstract Circulating tumor cells (CTCs) have been recognized as a major contributor to distant metastasis. Their unique role as metastatic seeds renders them a potential marker in the circulation for early cancer diagnosis and prognosis as well as monitoring of therapeutic response. In the past decade, researchers mainly focused on the development of isolation techniques for improving the recovery rate and purity of CTCs. These developed techniques have significantly increased the detection sensitivity and enumeration accuracy of CTCs. Currently, significant efforts have been made toward comprehensive molecular characterization, ex vivo expansion of CTCs, and understanding the interactions between CTCs and their associated cells (e.g., immune cells and stromal cells) in the circulation. In this review, we briefly summarize existing CTC isolation technologies and specifically focus on advances in downstream analysis of CTCs and their potential applications in precision medicine. We also discuss the current challenges and future opportunities in their clinical utilization.
Collapse
|
30
|
Abstract
OPINION STATEMENT Inflammatory breast cancer (IBC) remains the most aggressive type of breast cancer. During the past decade, enormous progress has been made to refine diagnostic criteria and establish multimodality treatment strategies as keys for the improvement of survival outcomes. Multiple genomic studies enabled a better understanding of underlying tumor biology, which is responsible for the complex and aggressive nature of IBC. Despite these important achievements, outcomes for this subgroup of patients remain unsatisfactory compared to locally advanced non-IBC counterparts. Global efforts are now focused on identifying novel strategies that will improve treatment response, prolong survival for metastatic patients, achieve superior local control, and possibly increase the cure rate for locally advanced disease. Genomic technologies constitute the most important tool that will support future clinical progress. Gene-expressing profiling of the tumor tissue and liquid biopsy are important parts of the everyday clinical practice aiming to guide treatment decisions by providing information on tumor molecular drivers or primary and acquired resistance to treatment. The International IBC expert panel and IBC International Consortium made a tremendous effort to define IBC as a distinct entity of BC, and they will continue to lead and support the research for this rare and very aggressive disease. Finally, a uniform platform is now required to develop and lead large, multi-arm, proof-of-concept clinical trials that perform rapid, focused, and cost-effective evaluations of potential novel therapeutics in IBC.
Collapse
|
31
|
Chainitikun S, Saleem S, Lim B, Valero V, Ueno NT. Update on systemic treatment for newly diagnosed inflammatory breast cancer. J Adv Res 2021; 29:1-12. [PMID: 33842000 PMCID: PMC8020152 DOI: 10.1016/j.jare.2020.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is a rare and aggressive disease, accounting for 2-4% of new cases of breast cancer. Owing to its aggressive nature, IBC represent approximately 8-10% of breast cancer deaths. Management of IBC requires a multidisciplinary team for decision-making involving a composite of systemic treatment, surgery, and radiation, or "Trimodality Treatment." Because of the rarity of the disease, systemic therapy of IBC traditionally has been extrapolated from non-IBC clinical trials. Aim of Review The purpose of this review is to provide an overview of the development of systemic treatment of IBC from the past to the present by focusing on IBC clinical trials, including chemotherapy and targeted therapies. Key Scientific Concepts of Review We discuss their effects on pathologic complete response (pCR) and survival outcomes, the predictive markers, and the adverse events of these therapies. Further, we summarized the current standard treatment stratified by molecular subtypes based on clinical data. Finally, we discuss the future trend of systemic therapy, including immunotherapy and ongoing IBC clinical trials.
Collapse
Affiliation(s)
- Sudpreeda Chainitikun
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sadia Saleem
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bora Lim
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vicente Valero
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol 2021; 72:185-197. [PMID: 33465471 DOI: 10.1016/j.semcancer.2020.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Targeting of human epidermal growth factor type 2 (HER2) using monoclonal antibodies, antibody-drug conjugates and tyrosine kinase inhibitors extends survival of patients with HER2-expressing metastatic breast cancer. High expression of HER2 is a predictive biomarker for such specific treatment. Accurate determination of HER2 expression level is necessary for stratification of patients to targeted therapy. Non-invasive in vivo radionuclide molecular imaging of HER2 has a potential of repetitive measurements, addressing issues of heterogeneous expression and conversion of HER2 status during disease progression or in response to therapy. Imaging probes based of several classes of targeting proteins are currently in preclinical and early clinical development. Both preclinical and clinical data suggest that the most promising are imaging agents based on small proteins, such as single domain antibodies or engineered scaffold proteins. These agents permit a very specific high-contrast imaging at the day of injection.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Circulating Tumor Cells and Bevacizumab Pharmacokinetics during Neoadjuvant Treatment Combining Chemotherapy and Bevacizumab for Early Breast Cancer: Ancillary Analysis of the AVASTEM Trial. Cancers (Basel) 2021; 13:cancers13010140. [PMID: 33466225 PMCID: PMC7796232 DOI: 10.3390/cancers13010140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
The phase II AVASTEM trial explored the impact of chemotherapy-bevacizumab combination on breast cancer stem cells in the neoadjuvant setting. We aimed to identify biological features associated with preoperative chemotherapy efficacy and prognosis by analyses of circulating tumor cells (CTCs) and bevacizumab pharmacokinetics (PK). The main objective was to assess the prognostic (relapse-free survival and overall survival) and predictive (pathological complete response, pCR) values of CTCs (CellSearch technology) and bevacizumab PK (ELISA). Seventy-five patients were included. Out of them 50 received bevacizumab-chemotherapy and 25 received chemotherapy alone. CTC results were available for 60 patients and PK data for 29 patients in the experimental arm. The absence of CTC at inclusion was correlated to better outcome. Five-years overall survival (OS) was 91% for CTC-negative patients vs. 54% for CTC-positive cases (HR = 6.21; 95%CI (1.75-22.06), p = 0.001, log-rank test). Similar results were observed for RFS with 5 y-RFS of 78% vs. 44% (HR = 3.51; 95%CI (1.17-10.52), p = 0.017, log-rank test). However, CTC status at baseline was not predictive of pCR (p = 0.74). CTC status after one cycle was not a significant prognostic factor (HR = 1.56; 95%CI (0.19-12.67); p = 0.68 for OS and HR = 2.76; 95%CI (0.60-12.61); p = 0.17 for RFS, log-rank test). Bevacizumab serum levels could not predict pCR and survival. PK values were not associated with treatment-related toxicities. In conclusion, CTCs detection at baseline is a prognostic marker for breast cancer receiving a neoadjuvant chemotherapy-bevacizumab combination independently of tumor response.
Collapse
|
34
|
Tellez-Gabriel M, Knutsen E, Perander M. Current Status of Circulating Tumor Cells, Circulating Tumor DNA, and Exosomes in Breast Cancer Liquid Biopsies. Int J Mol Sci 2020; 21:E9457. [PMID: 33322643 PMCID: PMC7763984 DOI: 10.3390/ijms21249457] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Although the five-, ten- and fifteen-year survival rates are good for breast cancer patients diagnosed with early-stage disease, some cancers recur many years after completion of primary therapy. Tumor heterogeneity and clonal evolution may lead to distant metastasis and therapy resistance, which are the main causes of breast cancer-associated deaths. In the clinic today, imaging techniques like mammography and tissue biopsies are used to diagnose breast cancer. Even though these methods are important in primary diagnosis, they have limitations when it comes to longitudinal monitoring of residual disease after treatment, disease progression, therapy responses, and disease recurrence. Over the last few years, there has been an increasing interest in the diagnostic, prognostic, and predictive potential of circulating cancer-derived material acquired through liquid biopsies in breast cancer. Thanks to the development of sensitive devices and platforms, a variety of tumor-derived material, including circulating cancer cells (CTCs), circulating DNA (ctDNA), and biomolecules encapsulated in extracellular vesicles, can now be extracted and analyzed from body fluids. Here we will review the most recent studies on breast cancer, demonstrating the clinical potential and utility of CTCs and ctDNA. We will also review literature illustrating the potential of circulating exosomal RNA and proteins as future biomarkers in breast cancer. Finally, we will discuss some of the advantages and limitations of liquid biopsies and the future perspectives of this field in breast cancer management.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, 9011 Tromsø, Norway; (E.K.); (M.P.)
| | | | | |
Collapse
|
35
|
Alba-Bernal A, Lavado-Valenzuela R, Domínguez-Recio ME, Jiménez-Rodriguez B, Queipo-Ortuño MI, Alba E, Comino-Méndez I. Challenges and achievements of liquid biopsy technologies employed in early breast cancer. EBioMedicine 2020; 62:103100. [PMID: 33161226 PMCID: PMC7670097 DOI: 10.1016/j.ebiom.2020.103100] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer type in women worldwide and its early detection is crucial to curing the disease. Tissue biopsy, currently the method of choice to obtain tumour molecular information, is invasive and might be affected by tumour heterogeneity rendering it incapable to portray the complete molecular picture. Liquid biopsy permits to study disease features in a more comprehensive manner by sampling biofluids and extracting tumour components such as circulating-tumour DNA (ctDNA), circulating-tumour cells (CTCs), and/or circulating-tumour RNA (ctRNA) amongst others in a monitoring-compatible manner. In this review, we describe the recent progress in the utilization of the circulating tumour components using early breast cancer samples. We review the most important analytes and technologies employed for their study.
Collapse
Affiliation(s)
- Alfonso Alba-Bernal
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - Rocío Lavado-Valenzuela
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - María Emilia Domínguez-Recio
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - Begoña Jiménez-Rodriguez
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - Emilio Alba
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain.
| | - Iñaki Comino-Méndez
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain.
| |
Collapse
|
36
|
Dobiasova B, Mego M. Biomarkers for Inflammatory Breast Cancer: Diagnostic and Therapeutic Utility. BREAST CANCER-TARGETS AND THERAPY 2020; 12:153-163. [PMID: 33116817 PMCID: PMC7569067 DOI: 10.2147/bctt.s231502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory breast cancer (IBC) is a rare and highly aggressive subtype of advanced breast cancer. The aggressive behavior, resistance to chemotherapy, angiogenesis, and high metastatic potential are key intrinsic characteristics of IBC caused by many specific factors. Pathogenesis and behavior of IBC are closely related to tumor surrounding inflammatory and immune cells, blood vessels, and extracellular matrix, which are all components of the tumor microenvironment (TME). The tumor microenvironment has a crucial role in the local immune r09esponse. The communication between intrinsic and extrinsic components of IBC and the abundance of cytokines and chemokines in the TME strongly contribute to the aggressiveness and high angiogenic potential of this tumor. Critical modes of interaction are cytokine-mediated communication and direct intercellular contact between cancer cells and tumor microenvironment with a variety of pathway crosstalk. This review aimed to summarize current knowledge of predictive and prognostic biomarkers in IBC.
Collapse
Affiliation(s)
- Barbora Dobiasova
- 2 Department of Oncology, Comenius University, Faculty of Medicine, National Cancer Institute, Bratislava, Slovak Republic
| | - Michal Mego
- 2 Department of Oncology, Comenius University, Faculty of Medicine, National Cancer Institute, Bratislava, Slovak Republic
| |
Collapse
|
37
|
Magbanua MJM, Savenkov O, Asmus EJ, Ballman KV, Scott JH, Park JW, Dickler M, Partridge A, Carey LA, Winer EP, Rugo HS. Clinical Significance of Circulating Tumor Cells in Hormone Receptor-positive Metastatic Breast Cancer Patients who Received Letrozole with or Without Bevacizumab. Clin Cancer Res 2020; 26:4911-4920. [PMID: 32586939 DOI: 10.1158/1078-0432.ccr-20-1329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE We evaluated the prognostic and predictive value of circulating tumor cells (CTCs) hormone receptor-positive (HR+) metastatic breast cancer (MBC) patients randomized to letrozole alone or letrozole plus bevacizumab in the first-line setting (CALGB 40503). EXPERIMENTAL DESIGN Blood samples were collected at pretreatment and three additional time points during therapy. The presence of ≥5 CTCs per 7.5 mL of blood was considered CTC positive. Association of CTCs with progression-free survival (PFS) and overall survival (OS) was assessed using Cox regression models. RESULTS Of 343 patients treated, 294 had CTC data and were included in this analysis. Median follow-up was 39 months. In multivariable analysis, CTC-positive patients at baseline (31%) had significantly reduced PFS [HR, 1.49; 95% confidence interval (CI), 1.12-1.97] and OS (HR, 2.08; 95% CI, 1.49-2.93) compared with CTC negative. Failure to clear CTCs during treatment was associated with significantly increased risk of progression (HR, 2.2; 95% CI, 1.58-3.07) and death (HR, 3.4; 95% CI, 2.36-4.88). CTC-positive patients who received only letrozole had the worse PFS (HR, 2.3; 95% CI, 1.54-3.47) and OS (HR, 2.6; 95% CI, 1.59-4.40). Median PFS in CTC-positive patients was significantly longer (18.0 vs. 7.0 months) in letrozole plus bevacizumab versus letrozole arm (P = 0.0009). Restricted mean survival time analysis further revealed that addition of bevacizumab was associated with PFS benefit in both CTC-positive and CTC-negative patients, but OS benefit was only observed in CTC-positive patients. CONCLUSIONS CTCs were highly prognostic for the addition of bevacizumab to first-line letrozole in patients with HR+ MBC in CALGB 40503. Further research to determine the potential predictive value of CTCs in this setting is warranted.
Collapse
Affiliation(s)
| | | | - Erik J Asmus
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - Karla V Ballman
- Alliance Statistics and Data Center, Weill Medical College of Cornell University, New York, New York
| | - Janet H Scott
- University of California at San Francisco, San Francisco, California
| | - John W Park
- University of California at San Francisco, San Francisco, California
| | | | - Ann Partridge
- Dana-Farber/Partners CancerCare, Boston, Massachusetts
| | - Lisa A Carey
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Eric P Winer
- Dana-Farber/Partners CancerCare, Boston, Massachusetts
| | - Hope S Rugo
- University of California at San Francisco, San Francisco, California
| |
Collapse
|
38
|
The Role of Circulating Tumor Cells in Breast Cancer and Implications for Radiation Treatment Decisions. Int J Radiat Oncol Biol Phys 2020; 109:44-59. [PMID: 32882354 DOI: 10.1016/j.ijrobp.2020.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Tumor biomarkers are used routinely in oncology to assign risk categorization, screen and assist in diagnosis of malignancy, allow for prognostication and prediction of outcomes and treatment response, and allow for monitoring of patients after treatment completion. Although tissue-based biomarkers have a long history of use, the emergence of liquid-based biomarkers, including circulating tumor cells (CTCs), may soon revolutionize the management of patients with cancer. Here, we review the discovery of CTCs and their role as prognostic and predictive biomarkers, with an emphasis on breast cancer. We discuss the platforms for CTC enumeration and focus on studies using the only US Food and Drug Administration-approved platform for CTC enumeration (CellSearch). In addition, we examine the role of CTCs in women with metastatic, inflammatory, and nonmetastatic breast cancer, as well as the clinical evidence for their use as a surrogate for radiation treatment response as well as surveillance after treatment. Finally, we conclude by investigating ongoing clinical studies assessing CTCs as radiation response predictors and discuss unanswered questions.
Collapse
|
39
|
Zhang Q, Xu K, Chen M, Miao Y, Wang N, Xu Z, Xu H. Circulating tumor cells in whole process management of gastrointestinal stromal tumor in a real-life setting. Saudi J Gastroenterol 2020; 26:160-167. [PMID: 32386192 PMCID: PMC7392290 DOI: 10.4103/sjg.sjg_24_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Liquid biopsy is changing the diagnosis and treatment strategies of various neoplasms. However, the circulating tumor cells (CTCs) of gastrointestinal stromal tumor (GIST) patients with different disease process are not clear. To better understand the dynamic change of CTCs in GIST patients, we conducted a real-life setting study. PATIENTS AND METHODS One-hundred fifty GIST patients were included. The isolation by size of tumor cell (ISET) method was employed to detect the CTCs/circulating tumor microemboli (CTM). Imatinib (IM) plasma concentration was detected by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Multivariate and univariate analysis were used to analyze the effects of clinical characteristics on the positive rate of CTC and the number of CTCs/CTM. RESULTS The positive rate of CTCs was 72%. The median number of CTCs and CTM was 4 and 0. Logistic multivariate regression analysis showed that tumor diameter was the only independent factor of the positive rate of CTCs (P < 0.05). The numbers of CTCs and CTM had intensive linear correlation (P < 0.001). Tumor diameter, Ki 67 expression and mitotic were related to the number of CTCs (P < 0.05). Patients with higher Ki 67 expression tend to have more CTM (P < 0.05). IM plasma concentration showed no influence to the CTCs/CTM (P > 0.05). CONCLUSIONS : In the current study, we assessed the CTCs and CTM of GIST patients in various disease progressions and identified clinicopathological factors influencing the detection of CTCs and CTM. These results are instructive for clinicians to understand CTCs/CTM in GIST patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Kangjing Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Ming Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nuofan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, China,Address for correspondence: Dr. Hao Xu, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China. E-mail:
| |
Collapse
|
40
|
Clinical Relevance and Therapeutic Application of CTCs in Advanced Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32304085 DOI: 10.1007/978-3-030-35805-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Precision medicine through liquid biopsy represents an emerging approach in the management of cancer. The CTC count in blood samples from patients with advanced breast cancer is a powerful prognostic factor for both progression free and overall survival. Moreover, high levels of CTCs at any time during the treatment can reliably predict progression before imaging studies and/or tumor markers. Furthermore, there are works on the molecular characterization of the CTCs and their potential ability to guide the treatment in a dynamic way. However, their role remains controversial. Detection and enumeration of CTCs is variable among different tumors and is subjected to biases related mainly to their methodology, which is not completely standardized. In addition, they must demonstrate their clinical value to guide the treatment and a translation on patient's survival.
Collapse
|
41
|
Alsohaibani F, Alquaiz M, Alkahtani K, Alashgar H, Peedikayil M, AlFadda A, Almadi M. Efficacy of a bismuth-based quadruple therapy regimen for Helicobacter pylori eradication in Saudi Arabia. Saudi J Gastroenterol 2020; 26:84-88. [PMID: 32295933 PMCID: PMC7279072 DOI: 10.4103/sjg.sjg_626_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIM The treatment efficacy of Helicobacter pylori (H. pylori) has been decreasing over time due to resistance to multiple antimicrobial therapies. The most effective treatment regimen for Saudi Arabian patients infected with H. pylori is still unknown. We aimed to study the eradication rate of 10 days of quadruple therapy; bismuth subcitrate potassium 140 mg, metronidazole 125 mg, and tetracycline 125 mg for H. pylori infection in a Saudi population. PATIENTS AND METHODS This was a prospective, open-label, non-randomized controlled trial. Patients with H. pylori infection were diagnosed by upper gastrointestinal (GI) endoscopy and rapid urease test (RUT) or histology. Patients who tested positive were recruited. Eligible patients were prescribed a 10-day course of quadruple therapy and received three capsules 4 times daily for 10 days along with omeprazole 20 mg twice daily. H. pylori was considered eradicated if the urea breath test (UBT) was negative after 6 weeks of completing the treatment. RESULTS Ninety-two patients with H. pylori infection were recruited. Three patients withdrew from the trial and another seven patients lost follow-up. We analyzed 82 patient's data as per-protocol analysis, of whom 66 (80%) were naive to H. pylori treatment. Four patients had failed previous treatment with the sequential regimen and 12 patients had treatment with clarithromycin-based triple therapy. The post-treatment UBT for H. pylori infection was negative by per-protocol analysis in 72/82 patients (87.8%), and 72/92 (78.3%) by intention-to-treat analysis. There was no correlation between previous treatment failure and treatment response to the bismuth-based quadruple therapy (P value = 0.28). CONCLUSIONS Treatment with a bismuth-based quadruple therapy was effective in eradicating H. pylori infection in 78.3% of Saudi patients with an ITT analysis and in 87.8% as per-protocol analysis.
Collapse
Affiliation(s)
- Fahad Alsohaibani
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia,Address for correspondence: Dr. Fahad Alsohaibani, Department of Medicine MBC # 46, King Faisal Specialist Hospital and Research Center, P.O Box 3354, Riyadh - 11211, Saudi Arabia. E-mail:
| | - Mohammed Alquaiz
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid Alkahtani
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alashgar
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Musthafa Peedikayil
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman AlFadda
- Department of Medicine, Section of Gastroenterology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Majid Almadi
- Department of Medicine, Division of Gastroenterology, King Saud University Medical City, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
EpCAM-independent isolation of circulating tumor cells with epithelial-to-mesenchymal transition and cancer stem cell phenotypes using ApoStream® in patients with breast cancer treated with primary systemic therapy. PLoS One 2020; 15:e0229903. [PMID: 32214335 PMCID: PMC7098555 DOI: 10.1371/journal.pone.0229903] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tumor cells with a mesenchymal phenotype and/or cancer stem-like cells (CSCs) are known to contribute to metastasis and drug resistance. Circulating tumor cells (CTCs) undergoing epithelial-mesenchymal transition (EMT) and CTCs reflecting a dedifferentiated CSC phenotype may not be detected using only an anti-EpCAM antibody to capture them. We used an antibody-independent CTC enrichment platform, ApoStream®, which does not rely on any antibody, including anti-EpCAM, to capture EMT- and CSC-CTCs in breast cancer patients who received neoadjuvant chemotherapy and correlated them to pathological complete response (pCR). METHODS Blood samples from newly diagnosed breast cancer patients were prospectively collected before neoadjuvant chemotherapy (T0), after chemotherapy but before surgery (T1), and after surgery (T2) and processed using ApoStream. CTCs detected were stained with additional markers to define 3 CTC subsets with the following phenotypes: epithelial CTCs (CK+, EpCAM+ or E-cadherin+), EMT-CTCs (β-catenin+ or vimentin+), and CSC-CTCs (CD44+ and CD24low). RESULTS We enrolled 55 patients, 47 of which had data for analysis. EMT-CTCs were detected in 57%, 62%, and 72% and CSC-CTCs in 9%, 22%, and 19% at the T0, T1, and T2 time points, respectively. Counts of epithelial (P = 0.225) and EMT (P = 0.522) phenotypes of CTCs at T0 did not significantly predict pCR. Moreover, no correlation between CTC count change and pCR was demonstrated. CONCLUSIONS ApoStream was successful in detecting EMT-CTCs among patients after neoadjuvant chemotherapy. However, EMT-/CSC-CTC counts did not correlate with pCR. Due to the small sample size and heterogeneity of this patient population, further study in a larger cohort of molecularly homogeneous patients is warranted.
Collapse
|
43
|
Abstract
With active screening for early detection and advancements in treatment, there has been a significant decrease in mortality from breast cancer. However, a significant proportion of patients with non-metastatic breast cancer at time of diagnosis will relapse. Therefore, it is suggested that the dissemination of bloodstream tumor cells (circulating tumor cells, CTCs) undetectable by currently available diagnostic tools occurs during the early stages of breast cancer progression, and may be the potential source of micrometastases responsible for treatment failures. Here, we review the clinical significance of CTCs, as detected by the FDA-approved CellSearch® System, in both metastatic and non-metastatic breast cancer patients. Studies so far suggest that CTCs are prognostic of poorer outcomes in breast cancer patients; however, there is currently insufficient data to support use of CTC data to guide treatment. Therefore, there are ongoing studies to evaluate the utility of assessing CTC phenotypes to develop personalized breast cancer treatment, which will be reviewed in this chapter.
Collapse
|
44
|
Martos T, Casadevall D, Albanell J. Circulating Tumor Cells: Applications for Early Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:135-146. [PMID: 32304084 DOI: 10.1007/978-3-030-35805-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy among women. Most of breast cancer patients are diagnosed in early stages and will be treated with curative intent. Despite this, some patients will relapse. The identification of patients at high risk remains an important challenge. CTCs can be useful to identify this patients, to assess tumor dynamics and to monitoring therapy. There is definitive evidence on the prognostic role of CTCs in early breast cancer (eBC) but its clinical utility in daily practice is still lacking. We have to take into consideration that the studies published to date mainly evaluated the presence of CTC based on the expression of epithelial surface markers. Future studies need to overcome this limitation and important advances in technical methods can assess CTCs and capture the heterogeneity of the tumor landscape. It is also tempting to speculate that CTCs may also provide complementary information on the interplay of tumor cells with the immune system. The combination of different methods to detect tumoral disease by liquid biopsy may provide new ways to personalize in an unprecedented manner the management of patients with eBC.
Collapse
Affiliation(s)
- Tamara Martos
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain
| | - David Casadevall
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan Albanell
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain. .,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,CEXS Department, Pompeu Fabra University, Barcelona, Spain. .,CIOCC HM Delfos, Barcelona, Spain.
| |
Collapse
|
45
|
Circulating tumor cells detection in tumor draining vein of breast cancer patients. Sci Rep 2019; 9:18195. [PMID: 31796846 PMCID: PMC6890763 DOI: 10.1038/s41598-019-54839-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Circulating tumor cells (CTCs) in tumor draining vein blood (DB) are potential sources for liquid biopsy. However, the identification of CTCs in DB of breast cancer has not been attempted. In this study, we investigated the feasibility of CTC detection in DB of breast cancer patients using a newly developed filtration-based microfluidic CTC detection device. Samples of peripheral vein blood (PB) and DB drawn from the lateral thoracic vein of the resected breast tissue were collected during the perioperative period. We investigated 41 breast cancer patients who underwent breast surgery with axillary lymph node dissection. DB was successfully collected in 36 patients (87.8%), with a mean amount of 0.85 ml. CTCs were detected in 58.3% of PB samples and 80.6% of DB samples. DB had significant higher number of CTCs compared with PB (p < 0.001). CTCs were detected in 75.0% of DB samples and 50.0% of PB samples from patients achieving pathological complete response after neoadjuvant chemotherapy. These results suggest that abundant CTCs are released into the DB of breast cancer patients, indicating that CTCs in DB would be alternative sources for liquid biopsy and potential indicators for monitoring of treatment response and prognosis in breast cancer patients.
Collapse
|
46
|
Dowling RJO, Sparano JA, Goodwin PJ, Bidard FC, Cescon DW, Chandarlapaty S, Deasy JO, Dowsett M, Gray RJ, Henry NL, Meric-Bernstam F, Perlmutter J, Sledge GW, Thorat MA, Bratman SV, Carey LA, Chang MC, DeMichele A, Ennis M, Jerzak KJ, Korde LA, Lohmann AE, Mamounas EP, Parulekar WR, Regan MM, Schramek D, Stambolic V, Whelan TJ, Wolff AC, Woodgett JR, Kalinsky K, Hayes DF. Toronto Workshop on Late Recurrence in Estrogen Receptor-Positive Breast Cancer: Part 2: Approaches to Predict and Identify Late Recurrence, Research Directions. JNCI Cancer Spectr 2019; 3:pkz049. [PMID: 32337478 PMCID: PMC7050024 DOI: 10.1093/jncics/pkz049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Late disease recurrence (more than 5 years after initial diagnosis) represents a clinical challenge in the treatment and management of estrogen receptor-positive breast cancer (BC). An international workshop was convened in Toronto, Canada, in February 2018 to review the current understanding of late recurrence and to identify critical issues that require future study. The underlying biological causes of late recurrence are complex, with the processes governing cancer cell dormancy, including immunosurveillance, cell proliferation, angiogenesis, and cellular stemness, being integral to disease progression. These critical processes are described herein as well as their role in influencing risk of recurrence. Moreover, observational and interventional clinical trials are proposed, with a focus on methods to identify patients at risk of recurrence and possible strategies to combat this in patients with estrogen receptor-positive BC. Because the problem of late BC recurrence of great importance, recent advances in disease detection and patient monitoring should be incorporated into novel clinical trials to evaluate approaches to enhance patient management. Indeed, future research on these issues is planned and will offer new options for effective late recurrence treatment and prevention strategies.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph A Sparano
- Departments of Medicine and Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Albert Einstein Cancer Center, New York, NY
| | - Pamela J Goodwin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill-Cornell Medical College, New York, NY
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mitch Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK
| | - Robert J Gray
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - N Lynn Henry
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - George W Sledge
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Mangesh A Thorat
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martin C Chang
- University of Vermont Medical Center, Larner College of Medicine, Burlington, VT
| | - Angela DeMichele
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | | | - Katarzyna J Jerzak
- Division of Medical Oncology and Hematology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Larissa A Korde
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Ana Elisa Lohmann
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Wendy R Parulekar
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Meredith M Regan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Daniel Schramek
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Timothy J Whelan
- McMaster University and Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Antonio C Wolff
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Jim R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Kevin Kalinsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
47
|
Vasseur A, Cabel L, Tredan O, Chevrier M, Dubot C, Lorgis V, Jacot W, Goncalves A, Debled M, Levy C, Ferrero JM, Jouannaud C, Luporsi E, Mouret-Reynier MA, Dalenc F, Lemonnier J, Savignoni A, Tanguy ML, Bidard FC, Pierga JY. Prognostic value of CEC count in HER2-negative metastatic breast cancer patients treated with bevacizumab and chemotherapy: a prospective validation study (UCBG COMET). Angiogenesis 2019; 23:193-202. [PMID: 31773439 DOI: 10.1007/s10456-019-09697-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Proof of concept studies has reported that circulating endothelial cell (CEC) count may be associated with the outcome of HER2-negative metastatic breast cancer (mBC) patients treated by chemotherapy and the anti-VEGF antibody bevacizumab. We report the results obtained in an independent prospective validation cohort (COMET study, NCT01745757). METHODS The main baseline criteria were HER2-negative mBC, performance status 0-2 and no prior chemotherapy for metastatic disease. CECs were detected by CellSearch® from 4 ml of blood at baseline and after 4 weeks of weekly paclitaxel and bevacizumab therapy. CEC counts (considered both as a continuous variable and using the previously described 20 CEC/4 ml cutoff) were associated with clinical characteristics and progression-free survival (PFS). RESULTS CEC count was obtained in 251 patients at baseline and in 207 patients at 4 weeks. Median baseline CEC count was 22 CEC/4 ml (range 0-2231). Baseline CEC counts were associated with performance status (p = 0.02). No statistically significant change in CEC counts was observed between baseline and 4 weeks of therapy. High baseline CEC count was associated with shorter PFS in univariate and multivariate analyses (continuous: p < 0.001; dichotomized: HR 1.52, 95% CI [1.15-2.02], p = 0.004). CEC counts at 4 weeks had no prognostic impact. CONCLUSION This study confirms that CEC count may be associated with the outcome of mBC patients treated with chemotherapy and bevacizumab. However, discrepancies with previous reports in terms of both the timing of CEC count and the direction of the prognostic impact warrant further clinical investigation.
Collapse
Affiliation(s)
- Antoine Vasseur
- Department of Medical Oncology, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris & Saint Cloud, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris & Saint Cloud, France.,UVSQ, Paris-Saclay University, Saint Cloud, France
| | - Olivier Tredan
- Department of Medical Oncology, Leon Berard Center, Lyon, France
| | - Marion Chevrier
- Department of Biostatistics, Institut Curie, PSL Research University, Paris & Saint Cloud, France
| | - Coraline Dubot
- Department of Medical Oncology, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris & Saint Cloud, France
| | - Véronique Lorgis
- Department of Medical Oncology, Georges-François Leclerc Center, Dijon, France
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier (ICM) Val d'Aurelle, Montpellier University, IRCM INSERM U1194, Montpellier, France
| | - Anthony Goncalves
- Aix-Marseille Univ, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Marc Debled
- Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| | - Christelle Levy
- Department of Medical Oncology, François Baclesse Center, Caen, France
| | - Jean-Marc Ferrero
- Department of Medical Oncology, Antoine Lacassagne Center, Nice, France
| | | | - Elisabeth Luporsi
- Department of Medical Oncology, ICL Alexis Vautrin, Vandoeuvre Les Nancy, France
| | | | - Florence Dalenc
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | | | - Alexia Savignoni
- Department of Biostatistics, Institut Curie, PSL Research University, Paris & Saint Cloud, France
| | - Marie-Laure Tanguy
- Department of Biostatistics, Institut Curie, PSL Research University, Paris & Saint Cloud, France
| | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris & Saint Cloud, France.,UVSQ, Paris-Saclay University, Saint Cloud, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, PSL Research University, 26 rue d'Ulm, 75005, Paris & Saint Cloud, France. .,Paris Descartes University, Paris, France.
| |
Collapse
|
48
|
Yap YS, Leong MC, Chua YW, Loh KWJ, Lee GE, Lim EH, Dent R, Ng RCH, Lim JHC, Singh G, Tan A, Guan G, Wu A, Lee YF, Bhagat AAS, Lim DWT. Detection and prognostic relevance of circulating tumour cells (CTCs) in Asian breast cancers using a label-free microfluidic platform. PLoS One 2019; 14:e0221305. [PMID: 31553731 PMCID: PMC6760773 DOI: 10.1371/journal.pone.0221305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/04/2019] [Indexed: 12/22/2022] Open
Abstract
Objectives We aimed to study the prevalence of CTCs in breast cancer (BC) patients undergoing neoadjuvant or palliative therapy with a label-free microfluidic platform (ClearCell FX), and its prognostic relevance in metastatic BC (mBC). Materials and methods Peripheral blood samples were collected from 108 BC patients before starting a new line of treatment (“baseline”), majority of whom had mBC (76/108; 70.4%). CTCs were retrieved by dean flow fractionation that enriched for larger cells, and enumerated using immunofluorescence-based staining. Progression-free survival (PFS) in mBC patients was analysed using Kaplan-Meier method; cox proportional hazard models were used for univariable and multivariable analyses. Results The detection rate of CTCs before starting a new line of treatment was 75.9% (n = 108; median: 8 CTCs/7.5 ml blood) at a cut off of ≥2 CTCs. PFS was inferior for mBC patients with baseline CTC count ≥5 CTCs/7.5 ml blood vs. those with < 5 CTCs/7.5 ml blood (median PFS: 4.3 vs. 7.0 months; p-value: 0.037). The prognostic relevance of CTCs was most significant in patients with HER2- mBC (median PFS: 4.1 vs. 8.3 months; p-value: 0.032), luminal (HR+HER2-) subtype (median PFS: 4.2 vs. 8.3 months; p-value: 0.048), and patients who had one or more prior treatments (median PFS: 4.2 vs. 7.0 months; p-value: 0.02). On multivariable analysis, baseline CTC level (hazard ratio (HR): 1.84, p-value: 0.02) and pre-treatment status (HR: 1.87, p-value: 0.05) were independent predictors of PFS. Conclusions This work demonstrates the prognostic significance of CTCs in mBC detected using a label-free size-based enrichment platform.
Collapse
Affiliation(s)
- Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- * E-mail:
| | | | - Yong Wei Chua
- Department of Pathology, Singapore General Hospital, Singapore
| | - Kiley Wei Jen Loh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Guek Eng Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology, A*Star, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | - John Heng-Chi Lim
- Clinical Trials and Epidemiology Office, National Cancer Centre Singapore, Singapore
| | | | | | | | | | | | | | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology, A*Star, Singapore
| |
Collapse
|
49
|
Stem Cells Inhibition by Bevacizumab in Combination with Neoadjuvant Chemotherapy for Breast Cancer. J Clin Med 2019; 8:jcm8050612. [PMID: 31064127 PMCID: PMC6572380 DOI: 10.3390/jcm8050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
Preclinical works have suggested cytotoxic chemotherapies may increase the number of cancer stem cells (CSC) whereas angiogenesis inhibition may decrease CSC proliferation. We developed a proof of concept clinical trial to explore bevacizumab activity on breast CSC. Breast cancer patients requiring preoperative chemotherapy were included in this open-label, randomized, prospective, multicenter phase II trial. All received FEC-docetaxel combination, and patients randomized in the experimental arm received concomitant bevacizumab. The primary endpoint was to describe ALDH1 (Aldehyde dehydrogenase 1) positive tumor cells rate before treatment and after the fourth cycle. Secondary objectives included safety, pathological complete response (pCR) rate, disease-free survival (DFS), relapse-free survival (RFS), and overall survival (OS). Seventy-five patients were included. ALDH1+ cells rate increase was below the predefined 5% threshold in both arms for the 32 patients with two time points available. Grade 3 or 4 adverse events rates were similar in both arms. A non-significant increase in pCR was observed in the bevacizumab arm (42.6% vs. 18.2%, p = 0.06), but survival was not improved (OS: p = 0.89; DFS: p = 0.45; and RFS: p = 0.68). The increase of ALDH1+ tumor cells rate after bevacizumab-based chemotherapy was less than 5%. However, as similar results were observed with chemotherapy alone, bevacizumab impact on breast CSC cells cannot be confirmed.
Collapse
|
50
|
Role of Liquid Biopsy in Clinical Decision-Making for Breast Cancer. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-0308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|