1
|
Veenhof RJ, McGrath AH, Champion C, Dworjanyn SA, Marzinelli EM, Coleman MA. The role of microbiota in kelp gametophyte development and resilience to thermal stress. JOURNAL OF PHYCOLOGY 2025; 61:633-649. [PMID: 40299544 PMCID: PMC12168109 DOI: 10.1111/jpy.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/30/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025]
Abstract
Ocean warming is driving profound changes in the ecology of marine habitat formers such as kelps, with negative implications for the biodiversity and ecosystem services they support. Thermal stress can disturb associated microbiota that are essential to the healthy functioning of kelp, but little is known about how this process influences early-life stages. Because kelps have a biphasic life cycle, thermal stress dynamics of adult sporophyte microbiota may not reflect those of the free-living haploid gametophyte. We investigated the role of microbial disruption under thermal stress on gametophytes of the kelp Ecklonia radiata and compared sporophyte and gametophyte microbiota. The microbiota of gametophytes changed significantly when the microbiome was disrupted and under increased temperature (26°C), in which putative generalist bacterial taxa proliferated and bacterial families associated with nitrogen fixation decreased. Concurrently, the survival of gametophytes decreased to <10%, and surviving gametophytes did not become fertile when the microbiome was disrupted. The length of gametophytes decreased under both microbial disruption and thermal stress. Taken together, this suggests that the associated microbiota of Ecklonia gametophytes is important for their survival, fertility, and response to warming. Gametophyte and parental sporophyte microbiota were also distinct from the water column but not each other, suggesting vertical transmission of microbiota from one life stage to the next. This study furthers our understanding of the role of microbiota in gametophyte stress tolerance as well as the acquisition of microbiota, which may prove vital in protecting and increasing the stress resilience of these foundation species.
Collapse
Affiliation(s)
- Reina J. Veenhof
- Faculty of Science and Engineering, National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| | - Alexander H. McGrath
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceMosmanNew South WalesAustralia
| | - Curtis Champion
- Faculty of Science and Engineering, National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
- Fisheries Research, NSW Department of Primary Industries and Regional DevelopmentNational Marine Science CentreCoffs HarbourNew South WalesAustralia
| | - Symon A. Dworjanyn
- Faculty of Science and Engineering, National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceMosmanNew South WalesAustralia
| | - Melinda A. Coleman
- Faculty of Science and Engineering, National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
- Fisheries Research, NSW Department of Primary Industries and Regional DevelopmentNational Marine Science CentreCoffs HarbourNew South WalesAustralia
| |
Collapse
|
2
|
Minne AJP, Vranken S, Wheeler D, Wood G, Batley J, Wernberg T, Coleman MA. Strong Environmental and Genome-Wide Population Differentiation Underpins Adaptation and High Genomic Vulnerability in the Dominant Australian Kelp ( Ecklonia radiata). Ecol Evol 2025; 15:e71158. [PMID: 40365477 PMCID: PMC12068950 DOI: 10.1002/ece3.71158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 05/15/2025] Open
Abstract
Ongoing and predicted range loss of kelp forests in response to climatic stressors is pressing marine managers to look into the adaptive capacity of populations to inform conservation strategies. Characterising how adaptive genetic diversity and structure relate to present and future environmental variation represents an emerging approach to quantifying kelp vulnerability to environmental change and identifying populations with genotypes that potentially confer an adaptive advantage in future ocean conditions. The dominant Australian kelp, Ecklonia radiata, was genotyped from 10 locations spanning 2000 km of coastline and a 9.5°C average temperature gradient along the east coast of Australia, a global warming hotspot. ddRAD sequencing generated 10,700 high-quality single nucleotide polymorphisms (SNPs) and characterized levels of neutral and adaptive genomic diversity and structure. The adaptive dataset, reflecting portions of the genome putatively under selection, was used to infer genomic vulnerability by 2050 under the RCP 8.5 scenario. There was strong neutral genetic differentiation between Australia mainland and Tasmanian populations, but only weak genetic structure among mainland populations within the main path of the East Australian Current. Genetic diversity was highest in the center of the range and lowest in the warm-edge population. The adaptive SNP candidates revealed similar genetic structure patterns, with a spread of adaptive alleles across most warm (northern) populations. The lowest, but most unique, adaptive genetic diversity values were found in both warm and cool population edges, suggesting local adaptation but low evolutionary potential. Critically, genomic vulnerability modeling identified high levels of vulnerability to future environmental conditions in Tasmanian populations. Populations of kelp at range edges are unlikely to adapt and keep pace with predicted climate change. Ensuring the persistence of these kelp forests, by boosting resilience to climate change, may require active management strategies with assisted adaptation in warm-edge (northern) populations and assisted gene flow in cool-edge (Tasmania) populations.
Collapse
Affiliation(s)
- Antoine J. P. Minne
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Sofie Vranken
- Biology Department, Research Group PhycologyGhent UniversityGhentBelgium
| | - David Wheeler
- New South Wales Department of Primary IndustriesOrange Agricultural InstituteOrangeNew South WalesAustralia
| | - Georgina Wood
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- Flinders UniversityAdelaideSouth AustraliaAustralia
| | - Jacqueline Batley
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Thomas Wernberg
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Institute of Marine ResearchHisNorway
| | - Melinda A. Coleman
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- New South Wales FisheriesNational Marine Science CentreCoffs HarbourNew South WalesAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| |
Collapse
|
3
|
Bennett E, Paine ER, Britton D, Schwoerbel J, Hurd CL. The effect of temperature on rates of dissolved organic carbon (DOC) release by the kelp Ecklonia radiata (phylum Ochrophyta): Implications for the future coastal ocean carbon cycle. JOURNAL OF PHYCOLOGY 2024; 60:1471-1484. [PMID: 39660554 DOI: 10.1111/jpy.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 12/12/2024]
Abstract
Dissolved organic carbon (DOC) released by macroalgae is an intrinsic component of the coastal ocean carbon cycle, yet knowledge of how future ocean warming may influence this is limited. Temperature is one of the primary abiotic regulators of macroalgal physiology, but there is minimal understanding of how it influences the magnitude and mechanisms of DOC release. To investigate this, we examined the effect of a range of temperatures on DOC release rates and physiological traits of Ecklonia radiata, the most abundant and widespread kelp in Australia that represents a potentially significant contribution to coastal ocean carbon cycling. Juvenile sporophytes were incubated at eight temperatures (4-28°C) for 14 days, after which time, DOC concentrations and physiological traits (growth, photosynthesis, respiration, Fv/Fm, photosynthetic pigment content, and carbon, and nitrogen content) were analyzed using thermal performance curves (TPCs) or regression analyses. Thermal optima were 15.63°C for growth and 25.84°C for photosynthesis, highlighting vulnerability to future ocean warming. Dissolved organic carbon concentrations increased when the temperature was above ~22°C, being greatest at the highest temperature tested (28°C), which was likely driven by photosynthetic overflow and thermal stress. Mean Fv/Fm, total chlorophyll, and total fucoxanthin content were lowest at 28°C. The C:N ratio of blades increased linearly with temperature from 23.9 ± 1.30 at 4°C to 33.0 ± 1.22 at 28°C. We demonstrate increased DOC release by E. radiata under elevated seawater temperatures and discuss potential implications for coastal carbon cycling under future ocean warming given the complex and uncertain fate of macroalgal DOC in the marine environment.
Collapse
Affiliation(s)
- Eloise Bennett
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia
| | - Ellie R Paine
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia
| | - Damon Britton
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia
| | - Jakop Schwoerbel
- Australian National Algae Culture Collection (ANACC), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Battery Point, Tasmania, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia
| |
Collapse
|
4
|
Wood GV, Griffin KJ, van der Mheen M, Breed MF, Edgeloe JM, Grimaldi C, Minne AJP, Popovic I, Filbee-Dexter K, van Oppen MJH, Wernberg T, Coleman MA. Reef Adapt: A tool to inform climate-smart marine restoration and management decisions. Commun Biol 2024; 7:1368. [PMID: 39478133 PMCID: PMC11526119 DOI: 10.1038/s42003-024-06970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
A critical component of ecosystem restoration projects involves using genetic data to select source material that will enhance success under current and future climates. However, the complexity and expense of applying genetic data is a barrier to its use outside of specialised scientific contexts. To help overcome this barrier, we developed Reef Adapt ( www.reefadapt.org ), an innovative, globally applicable and expandable web platform that incorporates genetic, biophysical and environmental prediction data into marine restoration and assisted gene flow planning. The Reef Adapt tool provides maps that identify areas with populations suited to user-specified restoration/recipient sites under current and future climate scenarios. We demonstrate its versatility and practicality with four case studies of ecologically and evolutionarily diverse taxa: the habitat-forming corals Pocillopora damicornis and Acropora kenti, and macroalgae Phyllospora comosa and Ecklonia radiata. Reef Adapt is a management-ready tool to aid restoration and conservation efforts amidst ongoing habitat degradation and climate change.
Collapse
Affiliation(s)
- Georgina V Wood
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Kingsley J Griffin
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Mirjam van der Mheen
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jane M Edgeloe
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Camille Grimaldi
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Antoine J P Minne
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Iva Popovic
- School of the Environment, University of Queensland, St Lucia, QLD, 4067, Australia
- Australian Institute of Marine Science, Townsville MC, QLD, 4810, Australia
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Arendal, NO-4817, Norway
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville MC, QLD, 4810, Australia
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Arendal, NO-4817, Norway
| | - Melinda A Coleman
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- NSW Department of Primary Industries and Regional Development, Fisheries, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
5
|
Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA, Venhuizen R, Kearns L, Marzinelli EM, Pettersen AK. Novel high-throughput oxygen saturation measurements for quantifying the physiological performance of macroalgal early life stages. JOURNAL OF PHYCOLOGY 2024; 60:1161-1172. [PMID: 39105657 DOI: 10.1111/jpy.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
Understanding how macroalgal forests will respond to environmental change is critical for predicting future impacts on coastal ecosystems. Although measures of adult macroalgae physiological responses to environmental stress are advancing, measures of early life-stage physiology are rare, in part due to the methodological difficulties associated with their small size. Here we tested a novel, high-throughput method (rate of oxygen consumption and production;V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ ) via a sensor dish reader microplate system to rapidly measure physiological rates of the early life stages of three habitat-forming macroalgae, the kelp Ecklonia radiata and the fucoids Hormosira banksii and Phyllospora comosa. We measured the rate of O2 consumption (respiration) and O2 production (net primary production) to then calculate gross primary production (GPP) under temperatures representing their natural thermal range. TheV ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ microplate system was suitable for rapidly measuring physiological rates over a temperature gradient to establish thermal performance curves for all species. TheV ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ microplate system proved efficient for measures of early life stages of macroalgae ranging in size from approximately 50 μm up to 150 mm. This method has the potential for measuring responses of early life stages across a range of environmental factors, species, populations, and developmental stages, vastly increasing the speed, precision, and efficacy of macroalgal physiological measures under future ocean change scenarios.
Collapse
Affiliation(s)
- R J Veenhof
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - M A Coleman
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - C Champion
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - S A Dworjanyn
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - R Venhuizen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - L Kearns
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - E M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - A K Pettersen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| |
Collapse
|
6
|
Harden M, Kovalev M, Molano G, Yorke C, Miller R, Reed D, Alberto F, Koos DS, Lansford R, Nuzhdin S. Heat stress analysis suggests a genetic basis for tolerance in Macrocystis pyrifera across developmental stages. Commun Biol 2024; 7:1147. [PMID: 39278981 PMCID: PMC11402984 DOI: 10.1038/s42003-024-06800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
Kelps are vital for marine ecosystems, yet the genetic diversity underlying their capacity to adapt to climate change remains unknown. In this study, we focused on the kelp Macrocystis pyrifera a species critical to coastal habitats. We developed a protocol to evaluate heat stress response in 204 Macrocystis pyrifera genotypes subjected to heat stress treatments ranging from 21 °C to 27 °C. Here we show that haploid gametophytes exhibiting a heat-stress tolerant (HST) phenotype also produced greater biomass as genetically similar diploid sporophytes in a warm-water ocean farm. HST was measured as chlorophyll autofluorescence per genotype, presented here as fluorescent intensity values. This correlation suggests a predictive relationship between the growth performance of the early microscopic gametophyte stage HST and the later macroscopic sporophyte stage, indicating the potential for selecting resilient kelp strains under warmer ocean temperatures. However, HST kelps showed reduced genetic variation, underscoring the importance of integrating heat tolerance genes into a broader genetic pool to maintain the adaptability of kelp populations in the face of climate change.
Collapse
Affiliation(s)
| | - Maxim Kovalev
- University of Southern California, Los Angeles, CA, USA
| | - Gary Molano
- University of Southern California, Los Angeles, CA, USA
| | - Christie Yorke
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Robert Miller
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Daniel Reed
- University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - David S Koos
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rusty Lansford
- University of Southern California, Los Angeles, CA, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sergey Nuzhdin
- University of Southern California, Los Angeles, CA, USA
- Kelp Ark, Port of Los Angeles, San Pedro, CA, USA
| |
Collapse
|
7
|
Manca F, Benedetti-Cecchi L, Bradshaw CJA, Cabeza M, Gustafsson C, Norkko AM, Roslin TV, Thomas DN, White L, Strona G. Projected loss of brown macroalgae and seagrasses with global environmental change. Nat Commun 2024; 15:5344. [PMID: 38914573 PMCID: PMC11196678 DOI: 10.1038/s41467-024-48273-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2024] [Indexed: 06/26/2024] Open
Abstract
Although many studies predict extensive future biodiversity loss and redistribution in the terrestrial realm, future changes in marine biodiversity remain relatively unexplored. In this work, we model global shifts in one of the most important marine functional groups-ecosystem-structuring macrophytes-and predict substantial end-of-century change. By modelling the future distribution of 207 brown macroalgae and seagrass species at high temporal and spatial resolution under different climate-change projections, we estimate that by 2100, local macrophyte diversity will decline by 3-4% on average, with 17 to 22% of localities losing at least 10% of their macrophyte species. The current range of macrophytes will be eroded by 5-6%, and highly suitable macrophyte habitat will be substantially reduced globally (78-96%). Global macrophyte habitat will shift among marine regions, with a high potential for expansion in polar regions.
Collapse
Affiliation(s)
- Federica Manca
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.
| | | | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (EpicAustralia.org.au), Wollongong, NSW, Australia
| | - Mar Cabeza
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Camilla Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Alf M Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Tomas V Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 5, 00014, Helsinki, Finland
| | - David N Thomas
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
| | - Lydia White
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | | |
Collapse
|
8
|
Wright LS, Simpkins T, Filbee-Dexter K, Wernberg T. Temperature sensitivity of detrital photosynthesis. ANNALS OF BOTANY 2024; 133:17-28. [PMID: 38142363 PMCID: PMC10921823 DOI: 10.1093/aob/mcad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Kelp forests are increasingly considered blue carbon habitats for ocean-based biological carbon dioxide removal, but knowledge gaps remain in our understanding of their carbon cycle. Of particular interest is the remineralization of detritus, which can remain photosynthetically active. Here, we study a widespread, thermotolerant kelp (Ecklonia radiata) to explore detrital photosynthesis as a mechanism underlying temperature and light as two key drivers of remineralization. METHODS We used meta-analysis to constrain the thermal optimum (Topt) of E. radiata. Temperature and light were subsequently controlled over a 119-day ex situ decomposition experiment. Flow-through experimental tanks were kept in darkness at 15 °C or under a subcompensating maximal irradiance of 8 µmol photons m-2 s-1 at 15, 20 or 25 °C. Photosynthesis of laterals (analogues to leaves) was estimated using closed-chamber oxygen evolution in darkness and under a saturating irradiance of 420 µmol photons m-2 s-1. KEY RESULTS T opt of E. radiata is 18 °C across performance variables (photosynthesis, growth, abundance, size, mass and fertility), life stages (gametophyte and sporophyte) and populations. Our models predict that a temperature of >15 °C reduces the potential for E. radiata detritus to be photosynthetically viable, hence detrital Topt ≤ 15 °C. Detritus is viable under subcompensating irradiance, where it performs better than in darkness. Comparison of net and gross photosynthesis indicates that elevated temperature primarily decreases detrital photosynthesis, whereas darkness primarily increases detrital respiration compared with optimal experimental conditions, in which detrital photosynthesis can persist for ≥119 days. CONCLUSIONS T opt of kelp detritus is ≥3 °C colder than that of the intact plant. Given that E. radiata is one of the most temperature-tolerant kelps, this suggests that photosynthesis is generally more thermosensitive in the detrital phase, which partly explains the enhancing effect of temperature on remineralization. In contrast to darkness, even subcompensating irradiance maintains detrital viability, elucidating the accelerating effect of depth and its concomitant light reduction on remineralization to some extent. Detrital photosynthesis is a meaningful mechanism underlying at least two drivers of remineralization, even below the photoenvironment inhabited by the attached alga.
Collapse
Affiliation(s)
- Luka Seamus Wright
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
| | - Taylor Simpkins
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
| | - Karen Filbee-Dexter
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
- Institute of Marine Research, His, Norway
| | - Thomas Wernberg
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
9
|
Britton D, Layton C, Mundy CN, Brewer EA, Gaitán-Espitia JD, Beardall J, Raven JA, Hurd CL. Cool-edge populations of the kelp Ecklonia radiata under global ocean change scenarios: strong sensitivity to ocean warming but little effect of ocean acidification. Proc Biol Sci 2024; 291:20232253. [PMID: 38228502 DOI: 10.1098/rspb.2023.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7-26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO2 can mitigate negative effects of warming. To identify whether elevated CO2 could improve thermal performance of a cool-edge population of E. radiata, we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.
Collapse
Affiliation(s)
- Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | - Craig N Mundy
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | | | - Juan Diego Gaitán-Espitia
- School of Biological Sciences and the SWIRE Institute of Marine Sciences, The University of Hong-Kong, Hong Kong, People's Republic of China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Climate Change Cluster, University of Technology, Sydney, Ultimo, New South Wales 2007, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| |
Collapse
|