1
|
Bian X, Li X, Qu C, Zhang M, Li D, Wang Y, Jiang J, Liu G. Transcriptome sequencing-based analysis of primary vein development in Betula pendula 'Dalecarlica'. Gene 2025; 933:148948. [PMID: 39277147 DOI: 10.1016/j.gene.2024.148948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Keymessage The study revealed the major biological processes occurred at three developmental stages and identified candidate genes involved in primary vein development of birch plants. Vascular tissues usually mirror the surrounding leaf shape and its development plays a fundamental role in plant performance. However, the information of vascular development in birch trees, especially primary vein development, remains unclear. Therefore, we conducted the anatomical observation on primary veins from leaves at different development stages in Betula pendula 'Dalecarlica'. With the development of primary vein, dynamic changes in mechanical tissue thickness and primary vein diameter were consistent with each other, and the sum of phloem, xylem and cambium thickness was significantly varied. Transcriptome analysis indicated that primary vein development could be divided into three stages, namely Stage I, II and III, which were in aggreement with anatomical observation. Expression of marker genes associated with vascular tissues revealed that pro-vasculature development occurred at Stage I and II, and phloem development occurred at Stage III. GO enrichment analysis of differentially expressed genes (DEGs) showed that shared DEGs at Stage II were mainly engaged in cell division and cell cycle, and shared DEGs at Stage III were mainly engaged in phosphorylation. Decreased cell division and cell cycle as well as activation of lignin biosynthesis might contribute to primary vein development. Combining phenotypic traits, we performed weighted gene co-expression network analysis and identified a cytochrome P450 84A (CYP84A) family gene (BpF5H1). Based on analyses of gene families, expression patterns and yeast-two hybrid assay results, we proposed a potential electron transfer pathway involving BpF5H1 and three cytochrome b5 proteins during primary vein development in B. pendula 'Dalecarlica'. These results could shed some light on which biological processes occurred during primary vein formation and provide some valuable clues for vascular morphogenesis in woody plants.
Collapse
Affiliation(s)
- Xiuyan Bian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China
| | - Xiaoyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Manman Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Danyang Li
- Core facility of Wuhan University, Wuhan 430072, China
| | - Yunjiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University and Chinese Academy of Forestry, Harbin 150040, China.
| |
Collapse
|
2
|
Matos IS, Boakye M, Niewiadomski I, Antonio M, Carlos S, Johnson BC, Chu A, Echevarria A, Fontao A, Garcia L, Kalantar D, Madhavan S, Mann J, McDonough S, Rohde J, Scudder M, Sharma S, To J, Tomaka C, Vu B, Yokota N, Forbes H, Fricker M, Blonder BW. Leaf venation network architecture coordinates functional trade-offs across vein spatial scales: evidence for multiple alternative designs. THE NEW PHYTOLOGIST 2024; 244:407-425. [PMID: 39180209 DOI: 10.1111/nph.20037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Variation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs. Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function. We found that generalized architecture-function trade-offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale. This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.
Collapse
Affiliation(s)
- Ilaine Silveira Matos
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mickey Boakye
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Izzi Niewiadomski
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Monica Antonio
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sonoma Carlos
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Breanna Carrillo Johnson
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ashley Chu
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Andrea Echevarria
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adrian Fontao
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lisa Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Diana Kalantar
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Srinivasan Madhavan
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joseph Mann
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Samantha McDonough
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - James Rohde
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Meg Scudder
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Satvik Sharma
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jason To
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Connor Tomaka
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bradley Vu
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nicole Yokota
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Holly Forbes
- University of California Botanical Garden, Berkeley, CA, 94720, USA
| | - Mark Fricker
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Benjamin Wong Blonder
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Camboué M, Janoueix A, Tandonnet JP, Spilmont AS, Moisy C, Mathieu G, Cordelières F, Teillon J, Santesteban LG, Ollat N, Cookson SJ. Phenotyping xylem connections in grafted plants using X-ray micro-computed tomography. PLANT, CELL & ENVIRONMENT 2024; 47:2351-2361. [PMID: 38516728 DOI: 10.1111/pce.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Plants are able to naturally graft or inosculate their trunks, branches and roots together, this mechanism is used by humans to graft together different genotypes for a range of purposes. Grafts are considered successful if functional vascular connections between the two genotypes occur. Various techniques can evaluate xylem connections across the graft interface. However, these methods are generally unable to assess the heterogeneity and three-dimensional (3D) structure of xylem vessel connections. Here we present the use of X-ray micro-computed tomography to characterize the 3D morphology of grafts of grapevine. We show that xylem vessels form between the two plants of natural root and human-made stem grafts. The main novelty of this methodology is that we were able to visualize the 3D network of functional xylem vessels connecting the scion and rootstock in human-made stem grafts thanks to the addition of a contrast agent to the roots and improved image analysis pipelines. In addition, we reveal the presence of extensive diagonal xylem connections between the main axial xylem vessels in 2-year old grapevine stems. In conclusion, we present a method that has the potential to provide new insights into the structure and function of xylem vessels in large tissue samples.
Collapse
Affiliation(s)
- Marilou Camboué
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Anne Janoueix
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Jean-Pascal Tandonnet
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Anne-Sophie Spilmont
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
| | - Cédric Moisy
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
- UMR AGAP Institut, UMT Geno Vigne, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Guillaume Mathieu
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
| | | | - Jérémie Teillon
- Univ. Bordeaux, CNRS, INSERM, BIC, US4, UAR 3420, Bordeaux, France
| | - Luis Gonzaga Santesteban
- Departement of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra UPNA, Pamplona, Navarra, Spain
| | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Sarah Jane Cookson
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| |
Collapse
|
4
|
Fanton AC, Bouda M, Brodersen C. Xylem-dwelling pathogen unaffected by local xylem vessel network properties in grapevines (Vitis spp.). ANNALS OF BOTANY 2024; 133:521-532. [PMID: 38334466 PMCID: PMC11037485 DOI: 10.1093/aob/mcae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND AIMS Xylella fastidiosa (Xf) is the xylem-dwelling bacterium associated with Pierce's disease (PD), which causes mortality in agriculturally important species, such as grapevine (Vitis vinifera). The development of PD symptoms in grapevines depends on the ability of Xf to produce cell-wall-degrading enzymes to break up intervessel pit membranes and systematically spread through the xylem vessel network. Our objective here was to investigate whether PD resistance could be mechanistically linked to xylem vessel network local connectivity. METHODS We used high-resolution X-ray micro-computed tomography (microCT) imaging to identify and describe the type, area and spatial distribution of intervessel connections for six different grapevine genotypes from three genetic backgrounds, with varying resistance to PD (four PD resistant and two PD susceptible). KEY RESULTS Our results suggest that PD resistance is unlikely to derive from local xylem network connectivity. The intervessel pit area (Ai) varied from 0.07 ± 0.01 mm2 mm-3 in Lenoir to 0.17 ± 0.03 mm2 mm-3 in Blanc do Bois, both PD resistant. Intervessel contact fraction (Cp) was not statically significant, but the two PD-susceptible genotypes, Syrah (0.056 ± 0.015) and Chardonnay (0.041 ± 0.013), were among the most highly connected vessel networks. Neither Ai nor Cp explained differences in PD resistance among the six genotypes. Bayesian re-analysis of our data shows moderate evidence against the effects of the traits analysed: Ai (BF01 = 4.88), mean vessel density (4.86), relay diameter (4.30), relay density (3.31) and solitary vessel proportion (3.19). CONCLUSIONS Our results show that radial and tangential xylem network connectivity is highly conserved within the six different Vitis genotypes we sampled. The way that Xf traverses the vessel network may limit the importance of local network properties to its spread and may confer greater importance on host biochemical responses.
Collapse
Affiliation(s)
| | - Martin Bouda
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Yang W, Zhu J, van Leeuwen C, Dai Z, Gambetta GA. GrapevineXL reliably predicts multi-annual dynamics of vine water status, berry growth, and sugar accumulation in vineyards. HORTICULTURE RESEARCH 2023; 10:uhad071. [PMID: 37293532 PMCID: PMC10244804 DOI: 10.1093/hr/uhad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/08/2023] [Indexed: 06/10/2023]
Abstract
Climate and water availability greatly affect each season's grape yield and quality. Using models to accurately predict environment impacts on fruit productivity and quality is a huge challenge. We calibrated and validated the functional-structural model, GrapevineXL, with a data set including grapevine seasonal midday stem water potential (Ψxylem), berry dry weight (DW), fresh weight (FW), and sugar concentration per volume ([Sugar]) for a wine grape cultivar (Vitis vinifera cv. Cabernet Franc) in field conditions over 13 years in Bordeaux, France. Our results showed that the model could make a fair prediction of seasonal Ψxylem and good-to-excellent predictions of berry DW, FW, [Sugar] and leaf gas exchange responses to predawn and midday leaf water potentials under diverse environmental conditions with 14 key parameters. By running virtual experiments to mimic climate change, an advanced veraison (i.e. the onset of ripening) of 14 and 28 days led to significant decreases of berry FW by 2.70% and 3.22%, clear increases of berry [Sugar] by 2.90% and 4.29%, and shortened ripening duration in 8 out of 13 simulated years, respectively. Moreover, the impact of the advanced veraison varied with seasonal patterns of climate and soil water availability. Overall, the results showed that the GrapevineXL model can predict plant water use and berry growth in field conditions and could serve as a valuable tool for designing sustainable vineyard management strategies to cope with climate change.
Collapse
Affiliation(s)
- Weiwei Yang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, 33882, France
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi, 832000, China
| | - Junqi Zhu
- The New Zealand Institute for Plant & Food Research Limited, Blenheim 7201, New Zealand
| | - Cornelis van Leeuwen
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, 33882, France
| | | | - Gregory A Gambetta
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, 33882, France
| |
Collapse
|
6
|
Guerra S, Michelotti M, Signorini S, Rossi G, Procopio T, Truschi S, Lenzi A, Marvasi M. Pre-heated blades for harvesting baby-leaves reduce the risk of Escherichia coli internalization in leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3621-3627. [PMID: 36377360 DOI: 10.1002/jsfa.12335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pathogenic enterobacteria can travel through the plant vascular bundles by penetrating from cuts and persisting into ready-to-eat leafy greens. Because the cutting site is the main point of entrance and uptake, we tested how different cutting strategies can reduce bacterial internalization in leaves. Horizontal cuts at the base of the leaves were performed with two different types of tools: the first with a scalpel (by pulling the blade) and the second with a scissor-action that has blades that cuts by gliding against a thicker blade. Scissor-action generally makes closer border cuts. Blades of both types of tools have worked at 25 °C and 200 °C. The present study aimed to determine how these different types of cuts and temperatures affected bacterial uptake in leaves. Experiments were repeated on different plant genotypes and at different wilting stages. RESULTS Our findings showed that cutting baby-leaves with a scissor action at 200 °C significantly reduced the bacterial uptake compared to the not heated (which simulates a mechanized lettuce harvester). The most effective cutting treatments for reducing bacterial uptake were in the order: scissor 200 °C > scissor 25 °C > scalpel 200 °C > scalpel 25 °C. The scissor heated at 200 °C also prevented bacterial uptake on wilted baby-leaves. CONCLUSION The findings of the present study could provide a further contribution in terms of safety during harvest and suggest that a pre-heated blade supports safety during harvest of leafy greens. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Simona Guerra
- Department of Biology, University of Florence, Florence, Italy
| | | | - Sofia Signorini
- Department of Biology, University of Florence, Florence, Italy
| | - Giuseppe Rossi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Tiziana Procopio
- Division Food Safety and Quality Control, Azienda Agricola Cammelli, Florence, Italy
| | - Stefania Truschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Anna Lenzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
7
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
8
|
Petit G, Bleve G, Gallo A, Mita G, Montanaro G, Nuzzo V, Zambonini D, Pitacco A. Susceptibility to Xylella fastidiosa and functional xylem anatomy in Olea europaea: revisiting a tale of plant-pathogen interaction. AOB PLANTS 2021; 13:plab027. [PMID: 34316336 PMCID: PMC8300559 DOI: 10.1093/aobpla/plab027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/09/2023]
Abstract
Xylella fastidiosa is a xylem-limited bacterium causing the Olive Quick Decline Syndrome, which is currently devastating the agricultural landscape of Southern Italy. The bacterium is injected into the xylem vessels of leaf petioles after the penetration of the insect vector's stylet. From here, it is supposed to colonize the xylem vasculature moving against water flow inside conductive vessels. Widespread vessel clogging following the bacterial infection and causing the failure of water transport seemed not to fully supported by the recent empirical xylem anatomical observations in infected olive trees. We tested the hypothesis that the higher susceptibility to the X. fastidiosa's infection in Cellina di Nardò compared with Leccino is associated to the higher vulnerability to air embolism of its larger vessels. Such hypothesis is motivated by the recognized ability of X. fastidiosa in degrading pit membranes and also because air embolism would possibly provide microenvironmental conditions more favourable to its more efficient aerobic metabolism. We revised the relevant literature on bacterium growth and xylem physiology, and carried out empirical field, mid-summer measurements of xylem anatomy and native embolism in olive cultivars with high (Cellina di Nardò) and low susceptibility (Leccino) to the infection by X. fastidiosa. Both cultivars had similar shoot mass traits and vessel length (~80 cm), but the highly susceptible one had larger vessels and a lower number of vessels supplying a given leaf mass. Native air embolism reduced mean xylem hydraulic conductance by ~58 % (Cellina di Nardò) and ~38 % (Leccino). The higher air-embolism vulnerability of the larger vessels in Cellina di Nardò possibly facilitates the X. fastidiosa's infection compared to Leccino. Some important characteristics of the vector-pathogen-plant interactions still require deep investigations acknowledging both the pathogen metabolic pathways and the biophysical principles of xylem hydraulics.
Collapse
Affiliation(s)
- Giai Petit
- Department of Land, Environment, Agriculture and Forestry (LEAF/TESAF), University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy
| | - Gianluca Bleve
- Institute of Sciences of Food Production, National research Council (ISPA-CNR), via Provinciale Lecce-Monteroni 73100 Lecce, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production, National research Council (ISPA-CNR), via Provinciale Lecce-Monteroni 73100 Lecce, Italy
| | - Giovanni Mita
- Institute of Sciences of Food Production, National research Council (ISPA-CNR), via Provinciale Lecce-Monteroni 73100 Lecce, Italy
| | - Giuseppe Montanaro
- Department of European and Mediterranean Culture (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy
| | - Vitale Nuzzo
- Department of European and Mediterranean Culture (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy
| | - Dario Zambonini
- Department of Land, Environment, Agriculture and Forestry (LEAF/TESAF), University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy
| | - Andrea Pitacco
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
9
|
Wason J, Bouda M, Lee EF, McElrone AJ, Phillips RJ, Shackel KA, Matthews MA, Brodersen C. Xylem network connectivity and embolism spread in grapevine(Vitis vinifera L.). PLANT PHYSIOLOGY 2021; 186:373-387. [PMID: 33576825 PMCID: PMC8154096 DOI: 10.1093/plphys/kiab045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/17/2021] [Indexed: 05/20/2023]
Abstract
Xylem networks are vulnerable to the formation and spread of gas embolisms that reduce water transport. Embolisms spread through interconduit pits, but the three-dimensional (3D) complexity and scale of xylem networks means that the functional implications of intervessel connections are not well understood. Here, xylem networks of grapevine (Vitis vinifera L.) were reconstructed from 3D high-resolution X-ray micro-computed tomography (microCT) images. Xylem network performance was then modeled to simulate loss of hydraulic conductivity under increasingly negative xylem sap pressure simulating drought stress conditions. We also considered the sensitivity of xylem network performance to changes in key network parameters. We found that the mean pit area per intervessel connection was constant across 10 networks from three, 1.5-m stem segments, but short (0.5 cm) segments fail to capture complete network connectivity. Simulations showed that network organization imparted additional resistance to embolism spread beyond the air-seeding threshold of pit membranes. Xylem network vulnerability to embolism spread was most sensitive to variation in the number and location of vessels that were initially embolized and pit membrane vulnerability. Our results show that xylem network organization can increase stem resistance to embolism spread by 40% (0.66 MPa) and challenge the notion that a single embolism can spread rapidly throughout an entire xylem network.
Collapse
Affiliation(s)
- Jay Wason
- School of Forest Resources, University of Maine, Orono, Maine 04469
- School of the Environment, Yale University, New Haven, CT 06520
| | - Martin Bouda
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Eric F Lee
- Department of Engineering Sciences, Clackamas Community College, Oregon City, Oregon 97045
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California Davis, Davis, California
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, California
| | - Ronald J Phillips
- Department of Chemical Engineering, University of California Davis, Davis, California
| | - Kenneth A Shackel
- Department of Plant Science, University of California Davis, Davis, California
| | - Mark A Matthews
- Department of Viticulture and Enology, University of California Davis, Davis, California
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT 06520
- Author for communication:
| |
Collapse
|
10
|
Guan X, Pereira L, McAdam SAM, Cao KF, Jansen S. No gas source, no problem: Proximity to pre-existing embolism and segmentation affect embolism spreading in angiosperm xylem by gas diffusion. PLANT, CELL & ENVIRONMENT 2021; 44:1329-1345. [PMID: 33529382 DOI: 10.1111/pce.14016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 05/12/2023]
Abstract
Embolism spreading in dehydrating angiosperm xylem is driven by gas movement between embolized and sap-filled conduits. Here we examine how the proximity to pre-existing embolism and hydraulic segmentation affect embolism propagation. Based on the optical method, we compare xylem embolism resistance between detached leaves and leaves attached to branches, and between intact leaves and leaves with cut minor veins, for six species. Embolism resistance of detached leaves was significantly lower than that of leaves attached to stems, except for two species, with all vessels ending in their petioles. Cutting of minor veins showed limited embolism spreading in minor veins near the cuts prior to major veins. Moreover, despite strong agreement in the overall embolism resistance of detached leaves between the optical and pneumatic method, minor differences were observed during early stages of embolism formation. We conclude that embolism resistance may represent a relative trait due to an open-xylem artefact, with embolism spreading possibly affected by the proximity and connectivity to pre-existing embolism as a gas source, while hydraulic segmentation prevents such artefact. Since embolism formation may not rely on a certain pressure difference threshold between functional and embolized conduits, we speculate that embolism is facilitated by pressure-driven gas diffusion across pit membranes.
Collapse
Affiliation(s)
- Xinyi Guan
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Andreolli M, Zapparoli G, Lampis S, Santi C, Angelini E, Bertazzon N. In Vivo Endophytic, Rhizospheric and Epiphytic Colonization of Vitis vinifera by the Plant-Growth Promoting and Antifungal Strain Pseudomonas protegens MP12. Microorganisms 2021; 9:microorganisms9020234. [PMID: 33498710 PMCID: PMC7910868 DOI: 10.3390/microorganisms9020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/24/2023] Open
Abstract
An evaluation was conducted of the colonization of Pseudomonas protegens MP12, a plant-growth promoting and antagonistic strain, inoculated in vine plants during a standard process of grapevine nursery propagation. Three in vivo inoculation protocols (endophytic, rhizospheric, and epiphytic) were implemented and monitored by means of both culture-dependent and independent techniques. Endophytic treatment resulted in the colonization of the bacterium inside the vine cuttings, which spread to young leaves during the forcing period. Microscopy analysis performed on transformed dsRed-tagged P. protegens MP12 cells confirmed the bacterium’s ability to penetrate the inner part of the roots. However, endophytic MP12 strain was no longer detected once the plant materials had been placed in the vine nursery field. The bacterium also displayed an ability to colonize the rhizosphere and, when the plants were uprooted at the end of the vegetative season, its persistence was confirmed. Epiphytic inoculation, performed by foliar spraying of cell suspension, was effective in controlling artificially-induced Botrytis cinerea infection in detached leaves. The success of rhizospheric and leaf colonization in vine plants suggests potential for the future exploitation of P. protegens MP12 as biofertilizer and biopesticide. Further investigation is required into the stability of the bacterium’s colonization of vine plants under real-world conditions in vineyards.
Collapse
Affiliation(s)
- Marco Andreolli
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.A.); (S.L.); (C.S.)
| | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.A.); (S.L.); (C.S.)
- Correspondence: ; Tel.: +39-045-8027047
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.A.); (S.L.); (C.S.)
| | - Chiara Santi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (M.A.); (S.L.); (C.S.)
| | - Elisa Angelini
- Research Centre for Viticulture and Enology, CREA, 31015 Conegliano, Italy; (E.A.); (N.B.)
| | - Nadia Bertazzon
- Research Centre for Viticulture and Enology, CREA, 31015 Conegliano, Italy; (E.A.); (N.B.)
| |
Collapse
|
12
|
Albuquerque C, Scoffoni C, Brodersen CR, Buckley TN, Sack L, McElrone AJ. Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7286-7300. [PMID: 33306796 DOI: 10.1093/jxb/eraa392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Drought decreases water transport capacity of leaves and limits gas exchange, which involves reduced leaf leaf hydraulic conductance (Kleaf) in both the xylem and outside-xylem pathways. Some literature suggests that grapevines are hyper-susceptible to drought-induced xylem embolism. We combined Kleaf and gas exchange measurements, micro-computed tomography of intact leaves, and spatially explicit modeling of the outside-xylem pathways to evaluate the role of vein embolism and Kleaf in the responses of two different grapevine cultivars to drought. Cabernet Sauvignon and Chardonnay exhibited similar vulnerabilities of Kleaf and gs to dehydration, decreasing substantially prior to leaf xylem embolism. Kleaf and gs decreased by 80% for both cultivars by Ψ leaf approximately -0.7 MPa and -1.2 MPa, respectively, while leaf xylem embolism initiated around Ψ leaf = -1.25 MPa in the midribs and little to no embolism was detected in minor veins even under severe dehydration for both cultivars. Modeling results indicated that reduced membrane permeability associated with a Casparian-like band in the leaf vein bundle sheath would explain declines in Kleaf of both cultivars. We conclude that during moderate water stress, changes in the outside-xylem pathways, rather than xylem embolism, are responsible for reduced Kleaf and gs. Understanding this mechanism could help to ensure adequate carbon capture and crop performance under drought.
Collapse
Affiliation(s)
- Caetano Albuquerque
- Department of Viticulture and Enology, University of California, Davis, 595 Hilgard Lane, Davis, CA, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA, USA
| | - Craig R Brodersen
- School of the Environment, Yale University, 195 Prospect Street, New Haven, CT, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, USA
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, 595 Hilgard Lane, Davis, CA, USA
- USDA-Agricultural Research Service, Davis, CA, USA
| |
Collapse
|
13
|
Pouzoulet J, Rolshausen PE, Charbois R, Chen J, Guillaumie S, Ollat N, Gambetta GA, Delmas CEL. Behind the curtain of the compartmentalization process: Exploring how xylem vessel diameter impacts vascular pathogen resistance. PLANT, CELL & ENVIRONMENT 2020; 43:2782-2796. [PMID: 32681569 DOI: 10.1111/pce.13848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 05/07/2023]
Abstract
A key determinant of plant resistance to vascular infections lies in the ability of the host to successfully compartmentalize invaders at the xylem level. Growing evidence supports that the structural properties of the vascular system impact host vulnerability towards vascular pathogens. The aim of this study was to provide further insight into the impact of xylem vessel diameter on compartmentalization efficiency and thus vascular pathogen movement, using the interaction between Vitis and Phaeomoniella chlamydospora as a model system. We showed experimentally that an increased number of xylem vessels above 100 μm of diameter resulted in a higher mean infection level of host tissue. This benchmark was validated within and across Vitis genotypes. Although the ability of genotypes to restore vascular cambium integrity upon infection was highly variable, this trait did not correlate with their ability to impede pathogen movement at the xylem level. The distribution of infection severity of cuttings across the range of genotype's susceptibility suggests that a risk-based mechanism is involved. We used this experimental data to calibrate a mechanistic stochastic model of the pathogen spread and we provide evidence that the efficiency of the compartmentalization process within a given xylem vessel is a function of its diameter.
Collapse
Affiliation(s)
- Jérôme Pouzoulet
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Rémi Charbois
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Jinliang Chen
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Sabine Guillaumie
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Gregory A Gambetta
- EGFV, INRAE, Bordeaux-Sciences Agro, Université Bordeaux, ISVV, Villenave d'Ornon, France
| | - Chloé E L Delmas
- SAVE, INRAE, Bordeaux-Sciences Agro, ISVV, Villenave d'Ornon, France
| |
Collapse
|
14
|
Johnson KM, Brodersen C, Carins-Murphy MR, Choat B, Brodribb TJ. Xylem Embolism Spreads by Single-Conduit Events in Three Dry Forest Angiosperm Stems. PLANT PHYSIOLOGY 2020; 184:212-222. [PMID: 32581116 PMCID: PMC7479884 DOI: 10.1104/pp.20.00464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/15/2020] [Indexed: 05/02/2023]
Abstract
Xylem cavitation resulting in air embolism is a major cause of plant death during drought, yet the spread of embolism throughout the plant water transport system is poorly understood. Our study used optical visualization and x-ray microcomputed tomography imaging to capture the spread of emboli in stems of three drought-resistant angiosperm trees: drooping she-oak (Allocasuarina verticillata), black wattle (Acacia mearnsii), and blue gum (Eucalyptus globulus). These species have similar degrees of xylem network connectivity (vessel grouping) with largely solitary vessels. The high temporal resolution of the optical vulnerability technique revealed that in current year branches, >80% of the cavitation events were discrete, temporally separated events in single vessels. This suggests that in xylem networks with low connectivity, embolism spread between conduits leading to multiple conduit cavitation events is uncommon. A. mearnsii showed both the highest number of multivessel cavitation events and the highest degree of vessel connectivity, suggesting a link between vessel arrangement and embolism spread. Knowledge of embolism spread will help us to uncover the links between xylem anatomy, arrangement, and the path of water flow in the xylem in diverse species to ultimately understand the drivers of cavitation and plant vulnerability to drought.
Collapse
Affiliation(s)
- Kate M Johnson
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Craig Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511
| | - Madeline R Carins-Murphy
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2750, Australia
| | - Timothy J Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
15
|
Hochberg U, Ponomarenko A, Zhang YJ, Rockwell FE, Holbrook NM. Visualizing Embolism Propagation in Gas-Injected Leaves. PLANT PHYSIOLOGY 2019; 180:874-881. [PMID: 30842264 PMCID: PMC6548249 DOI: 10.1104/pp.18.01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/20/2019] [Indexed: 05/15/2023]
Abstract
Because the xylem in leaves is thought to be at the greatest risk of cavitation, reliable and efficient methods to characterize leaf xylem vulnerability are of interest. We report a method to generate leaf xylem vulnerability curves (VCs) by gas injection. Using optical light transmission, we visualized embolism propagation in grapevine (Vitis vinifera) and red oak (Quercus rubra) leaves injected with positive gas pressure. This resulted in a rapid, stepwise reduction of transmitted light, identical to that observed during leaf dehydration, confirming that the optical method detects gas bubbles and provides insights into the air-seeding hypothesis. In red oak, xylem VCs generated using gas injection were similar to those generated using bench dehydration, but indicated 50% loss of conductivity at lower tension (∼0.4 MPa) in grapevine. In determining VC, this method eliminates the need to ascertain xylem tension, thus avoiding potential errors in water potential estimations. It is also much faster (1 h per VC). However, severing the petiole and applying high-pressure gas could affect air-seeding and the generated VC. We discuss potential artifacts arising from gas injection and recommend comparison of this method with a more standard procedure before it is assumed to be suitable for a given species.
Collapse
Affiliation(s)
- Uri Hochberg
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- ARO Volcani Center, Institute of Soil, Water and Environmental Sciences, Bet Dagan, 7505101 Israel
| | - Alexandre Ponomarenko
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Yong-Jiang Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Fulton E Rockwell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
16
|
Munitz S, Netzer Y, Shtein I, Schwartz A. Water availability dynamics have long-term effects on mature stem structure in Vitis vinifera. AMERICAN JOURNAL OF BOTANY 2018; 105:1443-1452. [PMID: 30168862 DOI: 10.1002/ajb2.1148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The stem of Vitis vinifera, a climbing vine of global economic importance, is characterized by both wide and narrow vessels and high specific hydraulic conductivity. While the effect of drought stress has been studied in 1- and 2-yr-old stems, there are few data documenting effects of drought stress on the anatomical structure of the mature, woody stem near the base of the vine. Here we describe mature wood anatomical responses to two irrigation regimes on wood anatomy and specific hydraulic conductivity in Vitis vinifera Merlot vines. METHODS For 4 years, irrigation was applied constantly at low, medium, or high levels, or at alternating levels at two different periods during the growing season, either early spring or late summer, resulting in late season or early spring deficits, respectively. The following variables were measured: trunk diameter, annual ring width and area, vessel diameter, specific hydraulic conductivity and stem water potential. KEY RESULTS High water availability early in the season (late deficit) resulted in vigorous vegetative growth (greater trunk diameter, ring width and area), wider vessels and increased specific hydraulic conductivity. High water availability early in the season caused a shift of the vessel population towards the wider frequency classes. These late deficit vines showed more negative water potential values late in the season than vines that received low but relatively constant irrigation. CONCLUSIONS We concluded that high water availability during vegetative growth period of Vitis increases vessels diameter and hydraulic conductivity and causes the vines to be more vulnerable to drought stress late in the season.
Collapse
Affiliation(s)
- Sarel Munitz
- R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- The Eastern Regional Research and Development Center, Ariel, 40700, Israel
| | - Yishai Netzer
- R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- The Eastern Regional Research and Development Center, Ariel, 40700, Israel
- Biotech engineering department, Ariel University, Ariel, 40700, Israel
| | - Ilana Shtein
- R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- The Eastern Regional Research and Development Center, Ariel, 40700, Israel
| | - Amnon Schwartz
- R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
17
|
Pratt RB, Jacobsen AL. Identifying which conduits are moving water in woody plants: a new HRCT-based method. TREE PHYSIOLOGY 2018; 38:1200-1212. [PMID: 29660094 DOI: 10.1093/treephys/tpy034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
In vivo imaging methods are useful for examination of plant vascular tissues, particularly in the identification of fluid vs gas-filled conduits; however, these methods may not allow for the simple identification of conductive conduits. Our aim in the present study was to develop a method that would allow for the in vivo identification of conductive conduits. Intact plants and segments of grapevine (Vitis vinifera L.) and intact American chestnut (Castanea dentata (Marshall) Borkh.) saplings were examined. We found that iohexol, a water soluble iodine-rich molecule, was a useful contrast agent. We also stained the xylem of segments and gas- dried samples to compare between intact scans and excised segments. Iohexol could be readily fed through cut roots or stems into the transpiration stream, was successfully transported through the xylem and marked conductive vessels within high-resolution computed tomography (HRCT) scans. Iohexol results were comparable to those obtained by staining cut segments, with iohexol detecting greater numbers of smaller conduits in some samples. Samples contained gas-filled conduits, as well as both conductive (containing iohexol tracer) and non-conductive (no iohexol tracer) fluid-filled vessels. Fluid-filled non-conductive vessels were likely still developing or were not connected to the sap stream by a low resistance pathway. We found minimal differences between intact and excised segments other than excision-related dilution of iohexol. Both vessels and vasicentric tracheids were filled with iohexol in chestnut, providing a new tool to study the functions of these different cell types. The use of iohexol as a tracer to identify conductive vessels may greatly improve the utility of HRCT as a tool in the study of plant hydraulic function. Future studies using HRCT will likely need to incorporate conductive vessel markers or controls into experiments due to the presence of non-conductive fluid-filled vessels within the xylem.
Collapse
Affiliation(s)
- R Brandon Pratt
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA, USA
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA, USA
| |
Collapse
|
18
|
Hochberg U, Windt CW, Ponomarenko A, Zhang YJ, Gersony J, Rockwell FE, Holbrook NM. Stomatal Closure, Basal Leaf Embolism, and Shedding Protect the Hydraulic Integrity of Grape Stems. PLANT PHYSIOLOGY 2017; 174:764-775. [PMID: 28351909 PMCID: PMC5462014 DOI: 10.1104/pp.16.01816] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/25/2017] [Indexed: 05/05/2023]
Abstract
The time scale of stomatal closure and xylem cavitation during plant dehydration, as well as the fate of embolized organs, are under debate, largely due to methodological limitations in the evaluation of embolism. While some argue that complete stomatal closure precedes the occurrence of embolism, others believe that the two are contemporaneous processes that are accompanied by daily xylem refilling. Here, we utilize an optical light transmission method to continuously monitor xylem cavitation in leaves of dehydrating grapevine (Vitis vinifera) in concert with stomatal conductance and stem and petiole hydraulic measurements. Magnetic resonance imaging was used to continuously monitor xylem cavitation and flow rates in the stem of an intact vine during 10 d of dehydration. The results showed that complete stomatal closure preceded the appearance of embolism in the leaves and the stem by several days. Basal leaves were more vulnerable to xylem embolism than apical leaves and, once embolized, were shed, thereby preventing further water loss and protecting the hydraulic integrity of younger leaves and the stem. As a result, embolism in the stem was minimal even when drought led to complete leaf shedding. These findings suggest that grapevine avoids xylem embolism rather than tolerates it.
Collapse
Affiliation(s)
- Uri Hochberg
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (U.H., A.P., Y.-J.Z., J.G., F.E.R., N.M.H.); and
- Forschungszentrum Jülich, Institute for Bio- and Geosciences 2: Plant Sciences, 52425 Juelich, Germany (C.W.W.)
| | - Carel W Windt
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (U.H., A.P., Y.-J.Z., J.G., F.E.R., N.M.H.); and
- Forschungszentrum Jülich, Institute for Bio- and Geosciences 2: Plant Sciences, 52425 Juelich, Germany (C.W.W.)
| | - Alexandre Ponomarenko
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (U.H., A.P., Y.-J.Z., J.G., F.E.R., N.M.H.); and
- Forschungszentrum Jülich, Institute for Bio- and Geosciences 2: Plant Sciences, 52425 Juelich, Germany (C.W.W.)
| | - Yong-Jiang Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (U.H., A.P., Y.-J.Z., J.G., F.E.R., N.M.H.); and
- Forschungszentrum Jülich, Institute for Bio- and Geosciences 2: Plant Sciences, 52425 Juelich, Germany (C.W.W.)
| | - Jessica Gersony
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (U.H., A.P., Y.-J.Z., J.G., F.E.R., N.M.H.); and
- Forschungszentrum Jülich, Institute for Bio- and Geosciences 2: Plant Sciences, 52425 Juelich, Germany (C.W.W.)
| | - Fulton E Rockwell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (U.H., A.P., Y.-J.Z., J.G., F.E.R., N.M.H.); and
- Forschungszentrum Jülich, Institute for Bio- and Geosciences 2: Plant Sciences, 52425 Juelich, Germany (C.W.W.)
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (U.H., A.P., Y.-J.Z., J.G., F.E.R., N.M.H.); and
- Forschungszentrum Jülich, Institute for Bio- and Geosciences 2: Plant Sciences, 52425 Juelich, Germany (C.W.W.)
| |
Collapse
|
19
|
Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome. SUSTAINABILITY 2017. [DOI: 10.3390/su9040659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The disease outbreak of Xylella fastidiosa subsp. pauca strain CoDiRO (Complesso del Disseccamento Rapido dell’Olivo) in Salento (Apulia, South Italy) associated with severe cases of olive quick decline syndrome may represent not just a new disease paradigm, but a challenge for policy formulation and science communication in plant pathology. Plant health management can be achieved by applying a technocratic model, in which objective science is thought to directly inform policy-making, or via decisionistic or inclusive models, in which scientific considerations drive risk assessment. Each could be applied to X. fastidiosa and CoDiRO strain management, thanks to consistent literature related to pathogen/host interactions, hosts, vectors, and diagnostic tools, reviewed here. However, consensus among stakeholders seems to be necessary in order to avoid plant health management failures or gridlocks, due to environmental, economic, and social implications in the X. fastidiosa threat. Here we discuss the role of consensus in building scientific opinion, reporting different approaches of governance after severe disease outbreaks in Europe. These case studies, and the available risk analysis for Xylella strains, should drive policy formulations towards more cooperative networks.
Collapse
|
20
|
Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C, Santoyo G, Valencia-Cantero E. [The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula]. Rev Argent Microbiol 2016; 48:342-346. [PMID: 27916328 DOI: 10.1016/j.ram.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/06/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022] Open
Abstract
Arthrobacter agilis UMCV2 is a rhizosphere bacterium that promotes legume growth by solubilization of iron, which is supplied to the plant. A second growth promotion mechanism produces volatile compounds that stimulate iron uptake activities. Additionally, A. agilis UMCV2 is capable of inhibiting the growth of phytopathogens. A combination of quantitative polymerase chain reaction and fluorescence in situ hybridization techniques were used here to detect and quantify the presence of the bacterium in the internal tissues of the legume Medicago truncatula. Our results demonstrate that A. agilis UMCV2 behaves as an endophytic bacterium of M. truncatula, particularly in environments where iron is available.
Collapse
Affiliation(s)
- Maria Elizabeth Aviles-Garcia
- Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico-Biológicas, Edificio B5, Ciudad Universitaria, Morelia, Michoacán, México
| | - Idolina Flores-Cortez
- Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico-Biológicas, Edificio B5, Ciudad Universitaria, Morelia, Michoacán, México
| | - Christian Hernández-Soberano
- Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico-Biológicas, Edificio B5, Ciudad Universitaria, Morelia, Michoacán, México
| | - Gustavo Santoyo
- Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico-Biológicas, Edificio B5, Ciudad Universitaria, Morelia, Michoacán, México
| | - Eduardo Valencia-Cantero
- Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico-Biológicas, Edificio B5, Ciudad Universitaria, Morelia, Michoacán, México.
| |
Collapse
|
21
|
Hochberg U, Herrera JC, Cochard H, Badel E. Short-time xylem relaxation results in reliable quantification of embolism in grapevine petioles and sheds new light on their hydraulic strategy. TREE PHYSIOLOGY 2016; 36:748-55. [PMID: 26843208 DOI: 10.1093/treephys/tpv145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/21/2015] [Indexed: 05/21/2023]
Abstract
In recent years, the validity of embolism quantification methods has been questioned, especially for long-vesseled plants. Some studies have suggested that cutting xylem while under tension, even under water, might generate artificial cavitation. Accordingly, a rehydration procedure prior to hydraulic measurements has been recommended to avoid this artefact. On the other hand, concerns have been raised that xylem refilling might occur when samples are rehydrated. Here, we explore the potential biases affecting embolism quantification for grapevine (Vitis vinifera L.) petioles harvested under tension or after xylem relaxation. We employ direct visualization of embolism through X-ray micro-computed tomography (microCT) to test for the occurrence of fast refilling (artifactually low per cent loss of conductivity (PLC) due to rehydration prior to sample harvest) as well as excision-induced embolism (artifactually high embolism due to air introduction during harvest). Additionally, we compared the response functions of both stomatal regulation and xylem embolism to xylem pressure (Ψx). Short-time (20 min) xylem tension relaxation prior to the hydraulic measurement resulted in a lower degree of embolism than found in samples harvested under native tensions, and yielded xylem vulnerability curves similar to the ones obtained using direct microCT visualization. Much longer periods of hydration (overnight) were required before xylem refilling was observed to occur. In field-grown vines, over 85% of stomatal closure occurred at less negative Ψx than that required to induce 12% PLC. Our results demonstrate that relaxation of xylem tension prior to hydraulic measurement allows for the reliable quantification of native embolism in grapevine petioles. Furthermore, we find that stomatal regulation is sufficiently conservative to avoid transpiration-induced cavitation. These results suggest that grapevines have evolved a strategy of cavitation resistance, rather than one of cavitation tolerance (diurnal cycles of embolism and repair).
Collapse
Affiliation(s)
- Uri Hochberg
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy INRA, UMR 547 PIAF, 63100 Clermont-Ferrand, France Clermont Université, Université Blaise-Pascal, UMR 547 PIAF, 63000 Clermont-Ferrand, France
| | - Jose Carlos Herrera
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Hervé Cochard
- INRA, UMR 547 PIAF, 63100 Clermont-Ferrand, France Clermont Université, Université Blaise-Pascal, UMR 547 PIAF, 63000 Clermont-Ferrand, France
| | - Eric Badel
- INRA, UMR 547 PIAF, 63100 Clermont-Ferrand, France Clermont Université, Université Blaise-Pascal, UMR 547 PIAF, 63000 Clermont-Ferrand, France
| |
Collapse
|
22
|
Johnson KL, Cronin H, Reid CL, Burr TJ. Distribution of Agrobacterium vitis in Grapevines and Its Relevance to Pathogen Elimination. PLANT DISEASE 2016; 100:791-796. [PMID: 30688607 DOI: 10.1094/pdis-08-15-0931-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Agrobacterium vitis, the cause of crown gall disease on grapevine, survives internally in vines and can be spread in cuttings for propagation. The possibility of generating pathogen-free vines through tissue culture makes it essential to understand the distribution of the pathogen in grapevines. A highly sensitive magnetic capture hybridization procedure along with real-time polymerase chain reaction were used to measure the distribution of tumorigenic A. vitis in dormant canes and green shoots of grapevines. Tumorigenic A. vitis was distributed from the basal to apical nodal and internodal tissues of canes as well as in nonlignified green shoots. In experiments conducted in 2013, A. vitis was detected in up to 17% of shoot tips and 52% of meristems of greenhouse-grown plants initiated from known A. vitis-contaminated cuttings. A lower frequency of detection was observed from surface-disinfected shoot tips (7%) as compared with nondisinfected tips (37%), suggesting epiphytic survival on green tissues. In 2014, vines propagated from cuttings collected from crown gall-infected vines from a different vineyard yielded lower incidences of A. vitis from shoot tips, and the bacterium was not detected in meristems. Tumorigenic A. vitis was also detected in cuttings of wild grapevines (Vitis riparia) that were collected both adjacent to and far removed from commercial vineyards.
Collapse
Affiliation(s)
- Kameka Latoya Johnson
- School of Integrative Plant Sciences, Section of Pathology and Plant-Microbe Biology, Cornell University, Geneva NY 14456
| | - Heather Cronin
- Department of Biological Sciences, University of Delaware, Newark 19716
| | - Cheryl L Reid
- School of Integrative Plant Sciences, Section of Pathology and Plant-Microbe Biology, Cornell University
| | - Thomas J Burr
- School of Integrative Plant Sciences, Section of Pathology and Plant-Microbe Biology, Cornell University
| |
Collapse
|
23
|
Almeida RPP, Nunney L. How Do Plant Diseases Caused by Xylella fastidiosa Emerge? PLANT DISEASE 2015; 99:1457-1467. [PMID: 30695952 DOI: 10.1094/pdis-02-15-0159-fe] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Emerging plant diseases frequently have significant economic, environmental, cultural, and social impacts. The prediction of new disease emergence, associated with new pathogens or not, remains a difficult and controversial topic. The main factors driving epidemics are often only identified several years after outbreaks, generally revealing that a limited number of factors are associated with the emergence of specific groups of pathogens. This pattern is illustrated in the insect-borne xylem-limited bacterium Xylella fastidiosa, an organism associated with several new plant diseases in different regions of the globe. Research during the last decade focusing on several severe disease outbreaks has led to substantial changes in our understanding of X. fastidiosa biology, ecology, and evolution. This new information has not only led to new insights into aspects of the biology of this bacterium and its interactions with plant and insect hosts, but also made available a phylogenetic framework that has allowed for better inferences concerning factors leading to the emergence of diseases. Here we identify and discuss these main pathways leading to epidemics caused by X. fastidiosa. Our ultimate goal was to raise critical questions and issues for academics and regulatory agencies alike, since the information generated during the last decade has both raised new questions but also clarified old ones.
Collapse
Affiliation(s)
- Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720
| | - Leonard Nunney
- Department of Biology, University of California, Riverside, CA 92521
| |
Collapse
|
24
|
Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments. BIOMED RESEARCH INTERNATIONAL 2013; 2013:491091. [PMID: 23878810 PMCID: PMC3708380 DOI: 10.1155/2013/491091] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022]
Abstract
Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root.
Collapse
|
25
|
Sun Q, Sun Y, Walker MA, Labavitch JM. Vascular occlusions in grapevines with Pierce's disease make disease symptom development worse. PLANT PHYSIOLOGY 2013; 161:1529-41. [PMID: 23292789 PMCID: PMC3585614 DOI: 10.1104/pp.112.208157] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/02/2013] [Indexed: 05/18/2023]
Abstract
Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce's disease (PD) and the impact of occlusions on the hosts' water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen's systemic spread in them, but may significantly suppress the vines' water conduction, contributing to PD symptom development and the vines' eventual death.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, WiI 54481, USA.
| | | | | | | |
Collapse
|
26
|
Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW. A global analysis of xylem vessel length in woody plants. AMERICAN JOURNAL OF BOTANY 2012; 99:1583-1591. [PMID: 22965850 DOI: 10.3732/ajb.1200140] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY Vessels are the chief conduit for long-distance water transport in the majority of flowering plants. Vessel length is a key trait that determines plant hydraulic efficiency and safety, yet relatively little is known about this xylem feature. • METHODS We used previously published studies to generate a new global data set of vessel length in woody plants. These data were used to examine how evolutionary history, plant habit, environment, and growth ring porosity influenced vessel length. We also examined the relationship between mean vessel length and mean vessel diameter and maximum vessel length. • KEY RESULTS Data on mean vessel length were available for stems of 130 species and on maximum vessel length for stems of 91 species. A phylogenetic analysis indicated that vessel length did not exhibit significant phylogenetic signal. Liana species had longer vessel lengths than in tree or shrub species. Vessel diameter was not predictive of mean vessel length, but maximum vessel length strongly predicted mean vessel length. Vessel length did not vary between species that differed in growth ring porosity. • CONCLUSIONS Many traits often assumed to be linked to vessel length, including growth ring porosity and vessel diameter, are not associated with vessel length when compared interspecifically. Sampling for vessel length has been nonrandom, e.g., there are virtually no data available for roots, and sampling for environment has been confounded with sampling for habit. Increased knowledge of vessel length is key to understanding the structure and function of the plant hydraulic pathway.
Collapse
Affiliation(s)
- Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, California 93311 USA.
| | | | | | | | | |
Collapse
|
27
|
Rogers EE. Evaluation of Arabidopsis thaliana as a model host for Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:747-754. [PMID: 22397407 DOI: 10.1094/mpmi-11-10-0270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The bacterium Xylella fastidiosa causes a number of plant diseases of significant economic impact. To date, progress determining mechanisms of host-plant susceptibility, tolerance, or resistance has been slow, due in large part to the long generation time and limited available genetic resources for grape, almond, and other known hosts of X. fastidiosa. To overcome many of these limitations, Arabidopsis thaliana has been evaluated as a host for X. fastidiosa. A pin-prick inoculation method has been developed to infect Arabidopsis with X. fastidiosa. Following infection, X. fastidiosa multiplies and can be detected by microscopy, polymerase chain reaction, and isolation. The ecotypes Van-0, LL-0, and Tsu-1 all allow more growth of strain X. fastidiosa Temecula than the reference ecotype Col-0. Affymetrix ATH1 microarray analysis of inoculated vs. noninoculated Tsu-1 reveals gene expression changes that differ greatly from changes seen after infection with apoplast-colonizing bacteria such as Psuedomonas syringae pvs. tomato or syringae. Many genes responsive to oxidative stress are differentially regulated, while classic pathogenesis-related genes are not induced by X. fastidiosa infection.
Collapse
Affiliation(s)
- Elizabeth E Rogers
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Crop Diseases, Pests and Genetics Unit, Parlier, CA 93648, USA.
| |
Collapse
|
28
|
Zufferey V, Cochard H, Ameglio T, Spring JL, Viret O. Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3885-94. [PMID: 21447755 PMCID: PMC3134346 DOI: 10.1093/jxb/err081] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 05/18/2023]
Abstract
The impact of water deficit on stomatal conductance (g(s)), petiole hydraulic conductance (K(petiole)), and vulnerability to cavitation (PLC, percentage loss of hydraulic conductivity) in leaf petioles has been observed on field-grown vines (Vitis vinifera L. cv. Chasselas). Petioles were highly vulnerable to cavitation, with a 50% loss of hydraulic conductivity at a stem xylem water potential (Ψ(x)) of -0.95 MPa, and up to 90% loss of conductivity at a Ψ(x) of -1.5 MPa. K(petiole) described a daily cycle, decreasing during the day as water stress and evapotranspiration increased, then rising again in the early evening up to the previous morning's K(petiole) levels. In water-stressed vines, PLC increased sharply during the daytime and reached maximum values (70-90%) in the middle of the afternoon. Embolism repair occurred in petioles from the end of the day through the night. Indeed, PLC decreased in darkness in water-stressed vines. PLC variation in irrigated plants showed the same tendency, but with a smaller amplitude. The Chasselas cultivar appears to develop hydraulic segmentation, in which petiole cavitation plays an important role as a 'hydraulic fuse', thereby limiting leaf transpiration and the propagation of embolism and preserving the integrity of other organs (shoots and roots) during water stress. In the present study, progressive stomatal closure responded to a decrease in K(petiole) and an increase in cavitation events. Almost total closure of stomata (90%) was measured when PLC in petioles reached >90%.
Collapse
Affiliation(s)
- V Zufferey
- Station de recherche Agroscope Changins-Wädenswil ACW, CP 1012, CH-1260 Nyon, Switzerland.
| | | | | | | | | |
Collapse
|
29
|
Chatelet DS, Wistrom CM, Purcell AH, Rost TL, Matthews MA. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious. ANNALS OF BOTANY 2011; 108:73-85. [PMID: 21546428 PMCID: PMC3119617 DOI: 10.1093/aob/mcr106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/21/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS The bacterium Xylella fastidiosa (Xf), responsible for Pierce's disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf. METHODS Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant. KEY RESULTS There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant 'Sylvaner' had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement. CONCLUSIONS Stem--leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.
Collapse
Affiliation(s)
- David S. Chatelet
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - Christina M. Wistrom
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA
| | - Alexander H. Purcell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA
| | - Thomas L. Rost
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Mark A. Matthews
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| |
Collapse
|
30
|
Sun Q, Greve LC, Labavitch JM. Polysaccharide compositions of intervessel pit membranes contribute to Pierce's disease resistance of grapevines. PLANT PHYSIOLOGY 2011; 155:1976-87. [PMID: 21343427 PMCID: PMC3091130 DOI: 10.1104/pp.110.168807] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
Symptom development of Pierce's disease (PD) in grapevine (Vitis vinifera) depends largely on the ability of the bacterium Xylella fastidiosa to use cell wall-degrading enzymes (CWDEs) to break up intervessel pit membranes (PMs) and spread through the vessel system. In this study, an immunohistochemical technique was developed to analyze pectic and hemicellulosic polysaccharides of intervessel PMs. Our results indicate that PMs of grapevine genotypes with different PD resistance differed in the composition and structure of homogalacturonans (HGs) and xyloglucans (XyGs), the potential targets of the pathogen's CWDEs. The PMs of PD-resistant grapevine genotypes lacked fucosylated XyGs and weakly methyl-esterified HGs (ME-HGs), and contained a small amount of heavily ME-HGs. In contrast, PMs of PD-susceptible genotypes all had substantial amounts of fucosylated XyGs and weakly ME-HGs, but lacked heavily ME-HGs. The intervessel PM integrity and the pathogen's distribution in Xylella-infected grapevines also showed differences among the genotypes. In pathogen-inoculated, PD-resistant genotypes PM integrity was well maintained and Xylella cells were only found close to the inoculation site. However, in inoculated PD-susceptible genotypes, PMs in the vessels associated with bacteria lost their integrity and the systemic presence of the X. fastidiosa pathogen was confirmed. Our analysis also provided a relatively clear understanding of the process by which intervessel PMs are degraded. All of these observations support the conclusion that weakly ME-HGs and fucosylated XyGs are substrates of the pathogen's CWDEs and their presence in or absence from PMs may contribute to grapevine's PD susceptibility.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, Wisconsin 54481, USA.
| | | | | |
Collapse
|
31
|
Czajkowski R, de Boer WJ, van Veen JA, van der Wolf JM. Downward vascular translocation of a green fluorescent protein-tagged strain of Dickeya sp. (Biovar 3) from stem and leaf inoculation sites on potato. PHYTOPATHOLOGY 2010; 100:1128-1137. [PMID: 20932162 DOI: 10.1094/phyto-03-10-0093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Translocation of a green fluorescent protein (GFP)-tagged Dickeya sp. from stems or from leaves to underground parts of potato plants was studied in greenhouse experiments. Thirty days after stem inoculation, 90% of plants expressed symptoms at the stem base and 95% of plants showed browning of internal stem tissue. The GFP-tagged Dickeya sp. was detected by dilution plating in extracts of the stem interiors (100%), stem bases (90%), roots (80%), stolons (55%), and progeny tubers (24%). In roots, the GFP-tagged Dickeya sp. was found inside and between parenchyma cells whereas, in stems and stolons, the GFP-tagged Dickeya sp. was found in the xylem vessels and protoxylem cells. In progeny tubers, this strain was detected in the stolon end. Thirty days after leaf inoculation, the GFP-tagged Dickeya sp. was detected in extracts of 75% of the leaves, 88% of the petioles, 63% of the axils, and inside 25% of the stems taken 15 cm above the ground level. UV microscopy confirmed the presence of the GFP-tagged Dickeya sp. inside petioles and in the main leaf veins. No blackleg or aerial stem rot and no translocation of the GFP-tagged Dickeya sp. to underground plant parts was observed. The implications for contamination of progeny tubers are discussed.
Collapse
|
32
|
Choat B, Drayton WM, Brodersen C, Matthews MA, Shackel KA, Wada H, McElrone AJ. Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species. PLANT, CELL & ENVIRONMENT 2010; 33:1502-12. [PMID: 20444217 DOI: 10.1111/j.1365-3040.2010.02160.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Among woody plants, grapevines are often described as highly vulnerable to water-stress induced cavitation with emboli forming at slight tensions. However, we found native embolism never exceeded 30% despite low xylem water potentials (Psi(x)) for stems of field grown vines. The discrepancy between native embolism measurements and those of previous reports led us to assess vulnerability curve generation using four separate methods and alterations (i.e. segment length and with/without flushing to remove embolism prior to measurement) of each. Centrifuge, dehydration and air-injection methods, which rely on measurement of percentage loss of hydraulic conductivity (PLC) in detached stems, were compared against non-invasive monitoring of xylem cavitation with nuclear magnetic resonance (NMR) imaging. Short segment air-injection and flushed centrifuge stems reached >90 PLC at Psi(x) of-0.5 and -1.5 MPa, respectively, whereas dehydration and long-segment air-injection measurements indicated no significant embolism at Psi(x) > -2.0 MPa. Observations from NMR agreed with the dehydration and long segment air-injection methods, showing the majority of vessels were still water-filled at Psi(x) > -1.5 MPa. Our findings show V. vinifera stems are far less vulnerable to water stress-induced cavitation than previously reported, and dehydration and long segment air-injection techniques are more appropriate for long-vesseled species and organs.
Collapse
Affiliation(s)
- Brendan Choat
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
McKown AD, Cochard H, Sack L. Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am Nat 2010; 175:447-60. [PMID: 20178410 DOI: 10.1086/650721] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Leaf venation architecture is tremendously diverse across plant species. Understanding the hydraulic functions of given venation traits can clarify the organization of the vascular system and its adaptation to environment. Using a spatially explicit model (the program K_leaf), we subjected realistic simulated leaves to modifications and calculated the impacts on xylem and leaf hydraulic conductance (K(x) and K(leaf), respectively), important traits in determining photosynthesis and growth. We tested the sensitivity of leaves to altered vein order conductivities (1) in the absence or (2) presence of hierarchical vein architecture, (3) to major vein tapering, and (4) to modification of vein densities (length/leaf area). The K(x) and K(leaf) increased with individual vein order conductivities and densities; for hierarchical venation systems, the greatest impact was from increases in vein conductivity for lower vein orders and increases in density for higher vein orders. Individual vein order conductivities were colimiting of K(x) and K(leaf), as were their densities, but the effects of vein conductivities and densities were orthogonal. Both vein hierarchy and vein tapering increased K(x) relative to xylem construction cost. These results highlight the important consequences of venation traits for the economics, ecology, and evolution of plant transport capacity.
Collapse
Affiliation(s)
- Athena D McKown
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
34
|
West ER, Cother EJ, Steel CC, Ash GJ. The characterization and diversity of bacterial endophytes of grapevine. Can J Microbiol 2010; 56:209-16. [DOI: 10.1139/w10-004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diversity of culturable and nonculturable bacterial endophytes of grapevine ( Vitis vinifera L.) was examined using a combination of cultivation and molecular methods. Entire grapevines were sampled to characterize bacterial diversity from different locations throughout the vine. Gas chromatography of fatty acid methyl esters (FAMEs) was used to identify culturable isolates prior to subsequent further microbiological characterization, whilst denaturing gradient gel electrophoresis (DGGE) was used to profile the ribosomal DNA of the bacterial endophyte community extracted from grapevines. Gas chromatography of FAMEs identified 75% of culturable bacterial endophytes to genus level (similarity index >0.3). Many isolates were identified as Bacillus spp., Pseudomonas spp., and Curtobacterium spp. Additionally, actinomycetes are reported for the first time as endophytes of grapevines, with a number of isolates identified as Streptomyces spp. DGGE was successfully used to identify major bands present in samples and indicated a degree of homogeneity of bacterial endophyte community profiles within the grapevines sampled. The major bacterial bands were sequenced and used in identification. Comparison with bacterial markers produced from cultured bacterial endophytes suggested that bacteria in the DGGE profiles were not the species most commonly cultured. Additional research demonstrated similarities between epiphytic and endophytic populations and examined potential entry vectors. Endophyte entry was demonstrated in both field-grown and potted grapevines (‘Chardonnay’) using a rifampicin-resistant Bacillus cereus mutant. The possibility of grapevine epiphytes becoming endophytes, if the opportunity arises, was supported by comparison of gas chromatography of FAMEs from epiphytic and endophytic populations. This research adds grapevine bacterial endophyte communities to those that have been characterized by a multifaceted approach.
Collapse
Affiliation(s)
- E. R. West
- New South Wales Department of Industry and Investment, Agricultural Research Institute, Orange, NSW 2800, Australia
- National Wine and Grape Industry Centre and E.H. Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- E.H. Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - E. J. Cother
- New South Wales Department of Industry and Investment, Agricultural Research Institute, Orange, NSW 2800, Australia
- National Wine and Grape Industry Centre and E.H. Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- E.H. Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - C. C. Steel
- New South Wales Department of Industry and Investment, Agricultural Research Institute, Orange, NSW 2800, Australia
- National Wine and Grape Industry Centre and E.H. Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- E.H. Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - G. J. Ash
- New South Wales Department of Industry and Investment, Agricultural Research Institute, Orange, NSW 2800, Australia
- National Wine and Grape Industry Centre and E.H. Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- E.H. Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
35
|
Pérez-Donoso AG, Sun Q, Roper MC, Greve LC, Kirkpatrick B, Labavitch JM. Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. PLANT PHYSIOLOGY 2010; 152:1748-59. [PMID: 20107028 PMCID: PMC2832268 DOI: 10.1104/pp.109.148791] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/18/2010] [Indexed: 05/18/2023]
Abstract
The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- beta -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease.
Collapse
Affiliation(s)
| | | | | | | | | | - John M. Labavitch
- Department of Plant Sciences (A.G.P.-D., L.C.G., J.M.L.) and Department of Plant Pathology (M.C.R., B.K.), University of California, Davis, California 95616–8780; Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile (A.G.P.-D.); and Department of Biology, University of Wisconsin, Stevens Point, Wisconsin 54481 (Q.S.)
| |
Collapse
|
36
|
Zwieniecki MA, Holbrook NM. Confronting Maxwell's demon: biophysics of xylem embolism repair. TRENDS IN PLANT SCIENCE 2009; 14:530-4. [PMID: 19726217 DOI: 10.1016/j.tplants.2009.07.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 05/02/2023]
Abstract
Embolism results in a dramatic loss of xylem hydraulic transport capacity that can lead to decreased plant productivity and even death. The ability to refill embolized conduits despite the presence of tension in the xylem seems to be widespread, but how this occurs is not known. To promote discussion and future research on this topic, we describe how we believe refilling under tension might take place. Our scenario includes: (i) an osmotic role for low-molecular weight sugars; (ii) an apoplastic sugar-sensing mechanism to activate refilling; (iii) the contribution of vapor transport in both the influx of water and removal of entrapped gases; and (iv) the need for a mechanism that can synchronize reconnection to the transpiration stream through multiple bordered pits.
Collapse
|
37
|
Choat B, Gambetta GA, Wada H, Shackel KA, Matthews MA. The effects of Pierce's disease on leaf and petiole hydraulic conductance in Vitis vinifera cv. Chardonnay. PHYSIOLOGIA PLANTARUM 2009; 136:384-394. [PMID: 19470095 DOI: 10.1111/j.1399-3054.2009.01231.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we test the hypothesis that the symptoms of Pierce's Disease (PD) result from the occlusion of xylem conduits by the bacteria Xylella fastidiosa (Xf ). Four treatments were imposed on greenhouse-grown Vitis vinifera cv. Chardonnay: well-watered and deficit-irrigated plants with and without petiole inoculation with Xf. The hydraulic conductance of the stem-petiole junction (k(jun)) and leaves (k(leaf)) were measured, and Xf concentrations were established by quantitative polymerase chain reaction (qPCR). Leaf hydraulic conductance decreased with increasing leaf scorch symptoms in both irrigation treatments. The positive relationship between Xf concentration and symptom formation in deficit-irrigated plants suggests that water-stress increases susceptibility to PD. In field-grown vines, water relations of symptomatic leaves were similar to naturally senescing leaves but differed from green control leaves. Overall, these results suggest that the development of PD symptoms represents a form of accelerated senescence as part of a systemic response of the plant to Xf infection.
Collapse
Affiliation(s)
- Brendan Choat
- Functional Ecology Group, Research School of Biological Sciences, The Australian National University, ACT, Australia.
| | | | | | | | | |
Collapse
|
38
|
Freeman BC, Beattie GA. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:857-67. [PMID: 19522568 DOI: 10.1094/mpmi-22-7-0857] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The physiological mechanisms by which plants limit the growth of bacterial pathogens during gene-for-gene resistance are poorly understood. We characterized early events in the Arabidopsis thaliana-Pseudomonas syringae pathosystem to identify physiological changes for which the kinetics are consistent with bacterial growth restriction. Using a safranine-O dye solution to detect vascular activity, we demonstrated that A. thaliana Col-0 resistance to P. syringae pv. tomato DC3000 cells expressing avrRpm1 involved virtually complete cessation of vascular water movement into the infection site within only 3 h postinoculation (hpi), under the conditions tested. This vascular restriction preceded or was simultaneous with precipitous decreases in photosynthesis, stomatal conductance, and leaf transpiration, with the latter two remaining at detectable levels. Microscopic plant cell death was detected as early as 2 hpi. Interestingly, suppression of bacterial growth during AvrRpm1-mediated resistance was eliminated by physically blocking leaf water loss through the stomata without altering plant cell death and was nearly eliminated by incubating plants at high relative humidity. The majority of the population growth benefit from blocking leaf water loss occurred early after inoculation, i.e., between 4 and 8 hpi. Collectively, these results support a model in which A. thaliana suppresses P. syringae growth during gene-for-gene resistance, at least in part, by coupling restricted vascular flow to the infection site with water loss through partially open stomata; that is, the plants effectively starve the invading bacteria for water.
Collapse
Affiliation(s)
- Brian C Freeman
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
39
|
Espino S, Schenk HJ. Hydraulically integrated or modular? Comparing whole-plant-level hydraulic systems between two desert shrub species with different growth forms. THE NEW PHYTOLOGIST 2009; 183:142-152. [PMID: 19368668 DOI: 10.1111/j.1469-8137.2009.02828.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
* Hydraulic systems of shrubs vary between hydraulically integrated and modular architectures; the latter divide the shrub into independent hydraulic units. Hydraulic systems of two common North American desert shrub species, the multi-branched Ambrosia dumosa and the single-stemmed Encelia farinosa (both Asteraceae), were compared to test for division into independent hydraulic units and the implications of such a division for water loss through leaves and roots. * Hydraulic systems of mature shrubs in the field were characterized using dye tracers and by documenting the degree of stem segmentation. Young pot-grown shrubs were subjected to heterogeneous and homogeneous watering. Spatial within-canopy variation of leaf water potentials and stomatal conductances, as well as soil water contents, were measured in response to manipulated soil water heterogeneity. * Results show that young Ambrosia shrubs are divided into independent hydraulic units long before they physically split into separate ramets as mature shrubs, and that young and mature Encelia shrubs possess integrated hydraulic systems. No hydraulic redistribution was detected for eitherspecies. * Our study shows that functional segmentation into independent hydraulic units precedes physical axis splitting, rather than being the consequence of split axes, and suggests that mature shrubs with round basal stems are likely to be hydraulically integrated.
Collapse
Affiliation(s)
- Susana Espino
- Department of Biological Science, California State University Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| |
Collapse
|
40
|
McElrone AJ, Jackson S, Habdas P. Hydraulic disruption and passive migration by a bacterial pathogen in oak tree xylem. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2649-57. [PMID: 18487632 PMCID: PMC2486461 DOI: 10.1093/jxb/ern124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 05/23/2023]
Abstract
Xylella fastidiosa (Xf) is a xylem-limited bacterial pathogen that causes leaf scorch symptoms in numerous plant species in urban, agricultural, and natural ecosystems worldwide. The exact mechanism of hydraulic disruption and systemic colonization of xylem by Xf remains elusive across all host plants. To understand both processes better, the functional and structural characteristics of xylem in different organs of both healthy and Xf-infected trees of several Quercus species were studied. Hydraulic conductivity (K(s)) in Xf-infected petioles of Q. palustris and Q. rubra decreased significantly compared with healthy trees as the season progressed and plummeted to zero with the onset of scorch symptoms. Prior to the onset of symptoms, embolism was as much as 3.7 times higher in Xf-infected petioles compared with healthy controls and preceded significant reductions in K(s). Embolism likely resulted from pit membrane degradation during colonization of new petiole xylem and triggered the process that eventually led to vessel occlusion. Pit membrane porosity was studied using the following four methods to determine if a pathway exists in the xylem network of woody stems that allows for passive Xf migration: (i) calculations based on vulnerability to cavitation data, (ii) scanning electron micrographs, (iii) microsphere injections, and (iv) air seeding thresholds on individual vessels. All four methods consistently demonstrated that large pit membrane pores (i.e. greater than the diameter of individual Xf) occur frequently throughout the secondary stem xylem in several Quercus species. These large pores probably facilitate systemic colonization of the secondary xylem network and contribute to the high susceptibility to bacterial leaf scorch exhibited among these species.
Collapse
Affiliation(s)
- Andrew J McElrone
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
41
|
Chatelet DS, Rost TL, Matthews MA, Shackel KA. The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1997-2007. [PMID: 18440930 PMCID: PMC2413279 DOI: 10.1093/jxb/ern061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/11/2007] [Accepted: 02/04/2008] [Indexed: 05/19/2023]
Abstract
It has been hypothesized that the substantial reductions in xylemic water flow occurring at veraison are due to physical disruption (breaking) of the xylem as a result of renewed berry growth. In a companion paper, evidence was presented that the vast majority of xylem tracheary elements remained intact despite the growth of the berry, and it was proposed that existing tracheary elements stretch to accommodate growth and that additional elements may also differentiate after veraison. Measurements of the intergyre distance of tracheary elements in macerated tissue were used to test for stretching, and the numbers of tracheary elements per vascular bundle and of branch points of the peripheral xylem network were analysed to test for continued differentiation from 18 to 120 d after anthesis in Chardonnay berries. The distance between the epidermis and the vasculature increased substantially from pre- to post-veraison, potentially increasing the amount of skin available for analysis of compounds important for winemaking. Tracheary elements continued to differentiate within the existing vascular bundles throughout berry development. Additional vascular bundles also appeared until after veraison, thereby increasing the complexity of the peripheral vascular network. The results also confirmed that tracheary elements stretched by approximately 20%, but this was not as much as that predicted based on the growth of the vascular diameter (40%). These results complete a comprehensive evaluation of grape berry peripheral xylem during its development and show that tracheary development continues further into berry maturation than previously thought.
Collapse
Affiliation(s)
- David S. Chatelet
- Section of Plant Biology, University of California, Davis, CA 95616, USA
| | - Thomas L. Rost
- Section of Plant Biology, University of California, Davis, CA 95616, USA
| | - Mark A. Matthews
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Kenneth A. Shackel
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
Chatelet DS, Rost TL, Shackel KA, Matthews MA. The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1987-96. [PMID: 18440931 PMCID: PMC2413285 DOI: 10.1093/jxb/ern060] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/11/2007] [Accepted: 02/04/2008] [Indexed: 05/19/2023]
Abstract
During the development of many fleshy fruits, water flow becomes progressively more phloemic and less xylemic. In grape (Vitis vinifera L.), the current hypothesis to explain this change is that the tracheary elements of the peripheral xylem break as a result of berry growth, rendering the xylem structurally discontinuous and hence non-functional. Recent work, however, has shown via apoplastic dye movement through the xylem of post-veraison berries that the xylem should remain structurally intact throughout berry development. To corroborate this, peripheral xylem structure in developing Chardonnay berries was investigated via maceration and plastic sectioning. Macerations revealed that, contrary to current belief, the xylem was comprised mostly of vessels with few tracheids. In cross-section, the tracheary elements of the vascular bundles formed almost parallel radial files, with later formed elements toward the epidermis and earlier formed elements toward the centre of the berry. Most tracheary elements remained intact throughout berry maturation, consistent with recent reports of vascular dye movement in post-veraison berries.
Collapse
Affiliation(s)
- David S. Chatelet
- Section of Plant Biology, University of California, Davis, CA 95166, USA
| | - Thomas L. Rost
- Section of Plant Biology, University of California, Davis, CA 95166, USA
| | - Kenneth A. Shackel
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Mark A. Matthews
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| |
Collapse
|
43
|
Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 2008; 63:84-93. [PMID: 18081592 DOI: 10.1111/j.1574-6941.2007.00410.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The colonization pattern of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN was determined using grapevine fruiting cuttings with emphasis on putative inflorescence colonization under nonsterile conditions. Two-week-old rooted plants harbouring flower bud initials, grown in nonsterile soil, were inoculated with PsJN:gfp2x. Plant colonization was subsequently monitored at various times after inoculation with plate counts and epifluorescence and/or confocal microscopy. Strain PsJN was chronologically detected on the root surfaces, in the endorhiza, inside grape inflorescence stalks, not inside preflower buds and flowers but rather as an endophyte inside young berries. Data demonstrated low endophytic populations of strain PsJN in inflorescence organs, i.e. grape stalks and immature berries with inconsistency among plants for bacterial colonization of inflorescences. Nevertheless, endophytic colonization of inflorescences by strain PsJN was substantial for some plants. Microscopic analysis revealed PsJN as a thriving endophyte in inflorescence organs after the colonization process. Strain PsJN was visualized colonizing the root surface, entering the endorhiza and spreading to grape inflorescence stalks, pedicels and then to immature berries through xylem vessels. In parallel to these observations, a natural microbial communities was also detected on and inside plants, demonstrating the colonization of grapevine by strain PsJN in the presence of other microorganisms.
Collapse
Affiliation(s)
- Stéphane Compant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, Université de Reims Champagne-Ardenne, Reims Cédex 2, France
| | | | | | | | | | | |
Collapse
|
44
|
Fritschi FB, Lin H, Walker MA. Scanning Electron Microscopy Reveals Different Response Pattern of Four Vitis Genotypes to Xylella fastidiosa Infection. PLANT DISEASE 2008; 92:276-286. [PMID: 30769393 DOI: 10.1094/pdis-92-2-0276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The xylem-limited bacterium Xylella fastidiosa causes Pierce's disease (PD), whose disease symptoms are primarily the result of xylem vessel blockage in susceptible grapevines. Stem internode and petiole tissues from infected and uninfected control plants of four grape genotypes (Vitis vinifera, V. rufotomentosa, V. smalliana, and V. arizonica/candicans) differing in PD susceptibility were examined using scanning electron microscopy (SEM). Tyloses, fibrillar networks, and gum plugs were observed in lumens of tracheary elements in petioles and internodes of both water-inoculated control plants and X. fastidiosa-inoculated plants of all genotypes. Bacteria were not observed in control plants. In both petiole and internode tissues, the greatest number of occluded xylem vessels were observed in V. vinifera and the smallest number in V. arizonica/candicans. The number of xylem vessels infested with X. fastidiosa was greatest in V. vinifera and did not differ among the other three genotypes. Systemic infection was found in all genotypes. The frequency with which X. fastidiosa infested vessels were observed using SEM corresponded well with bacterial levels estimated by enzyme-linked immunosorbent assay. Among infected plants, tylose formation in internodes was lowest in V. arizonica/candicans and did not differ among the other three genotypes. Infection with X. fastidiosa strongly induced tylose formation in V. vinifera and V. smalliana but not in V. arizonica/candicans. Analysis across tissues and genotypes indicated an induction of fibrillar networks and gum occlusions in response to X. fastidiosa infection, whereas treatment comparisons within genotypes were not significant except for V. vinifera petioles. Limiting the spread of X. fastidiosa infection by xylem conduit occlusions does not appear to be the mechanism conferring PD resistance or tolerance to V. arizonica/candicans, V. smalliana, or V. rufotomentosa. In contrast, the strong induction of tyloses may be detrimental rather than beneficial for V. vinifera survival after X. fastidiosa infection.
Collapse
Affiliation(s)
- Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia 65211
| | - Hong Lin
- United States Department of Agriculture-Agricultural Research Service, Crop Diseases, Pests & Genetics Research Unit, Parlier, CA 93648
| | - M Andrew Walker
- Department of Viticulture and Enology, University of California, Davis 95616
| |
Collapse
|
45
|
Chatterjee S, Almeida RPP, Lindow S. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:243-71. [PMID: 18422428 DOI: 10.1146/annurev.phyto.45.062806.094342] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Diseases caused by Xylella fastidiosa have attained great importance worldwide as the pathogen and its insect vectors have been disseminated. Since this is the first plant pathogenic bacterium for which a complete genome sequence was determined, much progress has been made in understanding the process by which it spreads within the xylem vessels of susceptible plants as well as the traits that contribute to its acquisition and transmission by sharpshooter vectors. Although this pathogen shares many similarities with Xanthomonas species, such as its use of a small fatty acid signal molecule to coordinate virulence gene expression, the traits that it utilizes to cause disease and the manner in which they are regulated differ substantially from those of related plant pathogens. Its complex lifestyle as both a plant and insect colonist involves traits that are in conflict with these stages, thus apparently necessitating the use of a gene regulatory scheme that allows cells expressing different traits to co-occur in the plant.
Collapse
Affiliation(s)
- Subhadeep Chatterjee
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
46
|
Gambetta GA, Fei J, Rost TL, Matthews MA. Leaf scorch symptoms are not correlated with bacterial populations during Pierce's disease. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:4037-46. [PMID: 18037677 DOI: 10.1093/jxb/erm260] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Xylella fastidiosa (Xf) is a xylem-limited bacterium that lives as a harmless endophyte in most plant species but is pathogenic in several agriculturally important crops such as coffee, citrus, and grapevine (Vitis vinifera L.). In susceptible cultivars of grapevine, Xf infection results in leaf scorch, premature leaf senescence, and eventually vine death; a suite of symptoms collectively referred to as Pierce's disease. A qPCR assay was developed to determine bacterial concentrations in planta and these concentrations were related to the development of leaf-scorch symptoms. The concentration of Xf in leaves of experimental grapevines grown in the greenhouse was similar to the concentration of Xf in leaves of naturally infected plants in the field. The distribution of Xf was patchy within and among leaves. Some whole leaves exhibited severe leaf-scorch symptoms in the absence of high concentrations of Xf. Despite a highly sensitive assay and a range of Xf concentrations from 10(2) to 10(9) cells g(-1) fresh weight, no clear relationship between bacterial population and symptom development during Pierce's disease was revealed. Thus, high and localized concentrations of Xf are not necessary for the formation of leaf-scorch symptoms. The results are interpreted as being consistent with an atiology that involves a systemic plant response.
Collapse
Affiliation(s)
- G A Gambetta
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|