1
|
Kim KS, Cho H. ClsC protein encoded by a stress-responsive operon in Escherichia coli functions as a trans-acting activator of RNase III. Int J Biol Macromol 2025; 298:140090. [PMID: 39842605 DOI: 10.1016/j.ijbiomac.2025.140090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
RNase III, an endoribonuclease that cleaves double-stranded RNAs (dsRNAs), significantly impacts Escherichia coli (E. coli) adaptation by regulating global RNA gene expression. YmdB from E. coli was characterized as a trans-acting regulator of RNase III. However, no protein encoded in E. coli has been characterized as an activator of RNase III. This study reports the discovery of ClsC protein, a phospholipase D (PLD) superfamily enzyme previously known as the third cardiolipin synthase (Cls) and a biofilm inhibitor in E. coli, as a novel RNase III activator. Overexpression of clsC in vivo stimulated the cleavage of RNase III-targeted lacZ fusions and antagonized the inhibition of RNase III by YmdB. Additional in vitro cleavage assays of RNase III-targeted RNAs using RNase III and ClsC confirmed this activity. Moreover, we identified multiple RNAs targeted by RNase III that are regulated dependently on cellular ClsC levels. Mechanistic investigations revealed that ClsC interacts with RNase III. Moreover, the isoleucine residue at the 466th position from the N-terminus of ClsC was identified as crucial for ClsC function. This study is the first to demonstrate that the ymdAB-clsC operon serves as an unexpected source for RNase III regulation in E. coli.
Collapse
Affiliation(s)
- Kwang-Sun Kim
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyejin Cho
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Basnet BB, Zhou ZY, Wei B, Wang H. Advances in AI-based strategies and tools to facilitate natural product and drug development. Crit Rev Biotechnol 2025:1-32. [PMID: 40159111 DOI: 10.1080/07388551.2025.2478094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 04/02/2025]
Abstract
Natural products and their derivatives have been important for treating diseases in humans, animals, and plants. However, discovering new structures from natural sources is still challenging. In recent years, artificial intelligence (AI) has greatly aided the discovery and development of natural products and drugs. AI facilitates to: connect genetic data to chemical structures or vice-versa, repurpose known natural products, predict metabolic pathways, and design and optimize metabolites biosynthesis. More recently, the emergence and improvement in neural networks such as deep learning and ensemble automated web based bioinformatics platforms have sped up the discovery process. Meanwhile, AI also improves the identification and structure elucidation of unknown compounds from raw data like mass spectrometry and nuclear magnetic resonance. This article reviews these AI-driven methods and tools, highlighting their practical applications and guide for efficient natural product discovery and drug development.
Collapse
Affiliation(s)
- Buddha Bahadur Basnet
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
| | - Zhen-Yi Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment, Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Porras MÁG, Assié A, Tietjen M, Violette M, Kleiner M, Gruber-Vodicka H, Dubilier N, Leisch N. An intranuclear bacterial parasite of deep-sea mussels expresses apoptosis inhibitors acquired from its host. Nat Microbiol 2024; 9:2877-2891. [PMID: 39242818 PMCID: PMC11521996 DOI: 10.1038/s41564-024-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
A limited number of bacteria are able to colonize the nuclei of eukaryotes. 'Candidatus Endonucleobacter' infects the nuclei of deep-sea mussels, where it replicates to ≥80,000 bacteria per nucleus and causes nuclei to swell to 50 times their original size. How these parasites are able to replicate and avoid apoptosis is not known. Dual RNA-sequencing transcriptomes of infected nuclei isolated using laser-capture microdissection revealed that 'Candidatus Endonucleobacter' does not obtain most of its nutrition from nuclear DNA or RNA. Instead, 'Candidatus Endonucleobacter' upregulates genes for importing and digesting sugars, lipids, amino acids and possibly mucin from its host. It likely prevents apoptosis of host cells by upregulating 7-13 inhibitors of apoptosis, proteins not previously seen in bacteria. Comparative phylogenetic analyses revealed that 'Ca. Endonucleobacter' acquired inhibitors of apoptosis through horizontal gene transfer from their hosts. Horizontal gene transfer from eukaryotes to bacteria is assumed to be rare, but may be more common than currently recognized.
Collapse
Affiliation(s)
| | - Adrien Assié
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Målin Tietjen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marlene Violette
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
4
|
Lodovici A, Buoso S, Miras-Moreno B, Lucini L, Tomasi N, García-Pérez P, Pinton R, Zanin L. A multi-omics insight on the interplay between iron deficiency and N forms in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1408141. [PMID: 39479546 PMCID: PMC11521840 DOI: 10.3389/fpls.2024.1408141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024]
Abstract
Introduction Nitrogen (N) and iron (Fe) are involved in several biochemical processes in living organisms, and their limited bioavailability is a strong constraint for plant growth and yield. This work investigated the interplay between Fe and N nutritional pathways in tomato plants kept under N and Fe deficiency and then resupplied with Fe and N (as nitrate, ammonium, or urea) through a physiological, metabolomics and gene expression study. Results After 24 hours of Fe resupply, the Fe concentration in Fe-deficient roots was dependent on the applied N form (following the pattern: nitrate > urea > ammonium > Fe-deficient control), and whereas in leaves of urea treated plants the Fe concentration was lower in comparison to the other N forms. Untargeted metabolomics pointed out distinctive modulations of plant metabolism in a treatment-dependent manner. Overall, N-containing metabolites were affected by the treatments in both leaves and roots, while N form significantly shaped the phytohormone profile. Moreover, the simultaneous application of Fe with N to Fe-deficient plants elicited secondary metabolites' accumulation, such as phenylpropanoids, depending on the applied N form (mainly by urea, followed by nitrate and ammonium). After 4 hours of treatment, ammonium- and urea-treated roots showed a reduction of enzymatic activity of Fe(III)-chelate reductase (FCR), compared to nitrate or N-depleted plants (maintained in Fe deficiency, where FCR was maintained at high levels). The response of nitrate-treated plants leads to the improvement of Fe concentration in tomato roots and the increase of Fe(II) transporter (IRT1) gene expression in tomato roots. Conclusions Our results strengthen and improve the understanding about the interaction between N and Fe nutritional pathways, thinning the current knowledge gap.
Collapse
Affiliation(s)
- Arianna Lodovici
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Sara Buoso
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Plant Biology, University of Murcia, Murcia, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Nicola Tomasi
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Roberto Pinton
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Laura Zanin
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
5
|
Koenig N, Baa-Puyoulet P, Lafont A, Lorenzo-Colina I, Navratil V, Leprêtre M, Sugier K, Delorme N, Garnero L, Queau H, Gaillard JC, Kielbasa M, Ayciriex S, Calevro F, Chaumot A, Charles H, Armengaud J, Geffard O, Degli Esposti D. Proteogenomic reconstruction of organ-specific metabolic networks in an environmental sentinel species, the amphipod Gammarus fossarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101323. [PMID: 39276751 DOI: 10.1016/j.cbd.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Metabolic pathways are affected by the impacts of environmental contaminants underlying a large variability of toxic effects across different species. However, the systematic reconstruction of metabolic pathways remains limited in environmental sentinel species due to the lack of available genomic data in many taxa of animal diversity. In this study we used a multi-omics approach to reconstruct the most comprehensive map of metabolic pathways for a crustacean model in biomonitoring, the amphipod Gammarus fossarum in order to improve the knowledge of the metabolism of this sentinel species. We revisited the assembly of RNA-seq data by de novo approaches to reduce RNA contaminants and transcript redundancy. We also acquired extensive mass spectrometry shotgun proteomic data on several organs from a reference population of G. fossarum males and females to identify organ-specific metabolic profiles. The G. fossarum metabolic pathway reconstruction (available through the metabolic database GamfoCyc) was performed by adapting the genomic tool CycADS and we identified 377 pathways representing 7630 annotated enzymes, 2610 enzymatic reactions and the expression of 858 enzymes was experimentally validated by proteomics. To our knowledge, our analysis provides for the first time a systematic metabolic pathway reconstruction and the proteome profiles of these pathways at the organ level in this sentinel species. As an example, we show an elevated abundance in enzymes involved in ATP biosynthesis and fatty acid beta-oxidation indicative of the high-energy requirement of the gills, or the key anabolic and detoxification role of the hepatopancreatic caeca, as exemplified by the specific expression of the retinoid biosynthetic pathways and glutathione synthesis. In conclusion, the multi-omics data integration performed in this study provides new resources to investigate metabolic processes in crustacean amphipods and their role in mediating the effects of environmental contaminant exposures in sentinel species. SYNOPSIS: This study provide the first evidence that it is possible to combine multiple omics data to exhaustively describe the metabolic network of a model species in ecotoxicology, Gammarus fossarum, for which a reference genome is not yet available.
Collapse
Affiliation(s)
- Natacha Koenig
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | | | - Amélie Lafont
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Isis Lorenzo-Colina
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, Villeurbanne, France, UMS 3601, Institut Français de Bioinformatique, IFB-Core, Évry, France
| | - Maxime Leprêtre
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Kevin Sugier
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Laura Garnero
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Hervé Queau
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Mélodie Kielbasa
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Sophie Ayciriex
- University of Lyon, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Hubert Charles
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - Jean Armengaud
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, F-30207 Bagnols-sur-Céze, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Davide Degli Esposti
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France.
| |
Collapse
|
6
|
Lombardi R, Ramsey JS, Mahoney JE, MacCoss MJ, Heck ML, Slupsky CM. Longitudinal Transcriptomic, Proteomic, and Metabolomic Response of Citrus sinensis to Diaphorina citri Inoculation of Candidatus Liberibacter asiaticus. J Proteome Res 2024; 23:2857-2869. [PMID: 38373055 PMCID: PMC11301674 DOI: 10.1021/acs.jproteome.3c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Huanglongbing (HLB) is a fatal citrus disease that is currently threatening citrus varieties worldwide. One putative causative agent, Candidatus Liberibacter asiaticus (CLas), is vectored by Diaphorina citri, known as the Asian citrus psyllid (ACP). Understanding the details of CLas infection in HLB disease has been hindered by its Candidatus nature and the inability to confidently detect it in diseased trees during the asymptomatic stage. To identify early changes in citrus metabolism in response to inoculation of CLas using its natural psyllid vector, leaves from Madam Vinous sweet orange (Citrus sinensis (L.) Osbeck) trees were exposed to CLas-positive ACP or CLas-negative ACP and longitudinally analyzed using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry; data available in Dryad: 10.25338/B83H1Z), and metabolomics (proton nuclear magnetic resonance). At 4 weeks postexposure (wpe) to psyllids, the initial HLB plant response was primarily to the ACP and, to a lesser extent, the presence or absence of CLas. Additionally, analysis of 4, 8, 12, and 16 wpe identified 17 genes and one protein as consistently differentially expressed between leaves exposed to CLas-positive ACP versus CLas-negative ACP. This study informs identification of early detection molecular targets and contributes to a broader understanding of vector-transmitted plant pathogen interactions.
Collapse
Affiliation(s)
- Rachel
L. Lombardi
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - John S. Ramsey
- Agricultural
Research Service, Emerging Pests and Pathogens
Research Unit, Ithaca, New York 14853, United
States
| | - Jaclyn E. Mahoney
- Boyce
Thompson Institute for Plant Research, Ithaca, New York 14853, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michelle L. Heck
- Agricultural
Research Service, Emerging Pests and Pathogens
Research Unit, Ithaca, New York 14853, United
States
- Plant
Pathology and Plant Microbe Biology Section, School of Integrative
Plant Science, Cornell University, Ithaca, New York 14853, United States
| | - Carolyn M. Slupsky
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
- Department
of Nutrition, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
7
|
Sampara P, Lawson CE, Scarborough MJ, Ziels RM. Advancing environmental biotechnology with microbial community modeling rooted in functional 'omics. Curr Opin Biotechnol 2024; 88:103165. [PMID: 39033648 DOI: 10.1016/j.copbio.2024.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Emerging biotechnologies that solve pressing environmental and climate emergencies will require harnessing the vast functional diversity of the underlying microbiomes driving such engineered processes. Modeling is a critical aspect of process engineering that informs system design as well as aids diagnostic optimization of performance. 'Conventional' bioprocess models assume homogenous biomass within functional guilds and thus fail to predict emergent properties of diverse microbial physiologies, such as product specificity and community interactions. Yet, recent advances in functional 'omics-based approaches can provide a 'lens' through which we can probe and measure in situ ecophysiologies of environmental microbiomes. Here, we overview microbial community modeling approaches that incorporate functional 'omics data, which we posit can advance our ability to design and control new environmental biotechnologies going forward.
Collapse
Affiliation(s)
- Pranav Sampara
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher E Lawson
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
García-Saldaña EA, Cerqueda-García D, Ibarra-Laclette E, Aluja M. Insights into the differences related to the resistance mechanisms to the highly toxic fruit Hippomane mancinella (Malpighiales: Euphorbiaceae) between the larvae of the sister species Anastrepha acris and Anastrepha ludens (Diptera: Tephritidae) through comparative transcriptomics. Front Physiol 2024; 15:1263475. [PMID: 38304114 PMCID: PMC10830740 DOI: 10.3389/fphys.2024.1263475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.
Collapse
Affiliation(s)
- Essicka A. García-Saldaña
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Daniel Cerqueda-García
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Clúster Científico y Tecnológico BioMimic, Red de Estudios Moleculares Avanzados, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| |
Collapse
|
9
|
Espada‐Hinojosa S, Karthäuser C, Srivastava A, Schuster L, Winter T, de Oliveira AL, Schulz F, Horn M, Sievert S, Bright M. Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative. Mol Ecol Resour 2024; 24:e13889. [PMID: 38010882 PMCID: PMC10952691 DOI: 10.1111/1755-0998.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.
Collapse
Affiliation(s)
| | - Clarissa Karthäuser
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Lukas Schuster
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Deakin UniversityBurwoodAustralia
| | - Teresa Winter
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - André Luiz de Oliveira
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Frederik Schulz
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Present address:
DOE Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Matthias Horn
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Stefan Sievert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
10
|
Colbert LE, El Alam MB, Wang R, Karpinets T, Lo D, Lynn EJ, Harris TA, Elnaggar JH, Yoshida-Court K, Tomasic K, Bronk JK, Sammouri J, Yanamandra AV, Olvera AV, Carlin LG, Sims T, Delgado Medrano AY, Napravnik TC, O'Hara M, Lin D, Abana CO, Li HX, Eifel PJ, Jhingran A, Joyner M, Lin L, Ramondetta LM, Futreal AM, Schmeler KM, Mathew G, Dorta-Estremera S, Zhang J, Wu X, Ajami NJ, Wong M, Taniguchi C, Petrosino JF, Sastry KJ, Okhuysen PC, Martinez SA, Tan L, Mahmud I, Lorenzi PL, Wargo JA, Klopp AH. Tumor-resident Lactobacillus iners confer chemoradiation resistance through lactate-induced metabolic rewiring. Cancer Cell 2023; 41:1945-1962.e11. [PMID: 37863066 PMCID: PMC10841640 DOI: 10.1016/j.ccell.2023.09.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.
Collapse
Affiliation(s)
- Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Molly B El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Lo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica J Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A Harris
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob H Elnaggar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; LSU School of Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katarina Tomasic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julianna K Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julie Sammouri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ananta V Yanamandra
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adilene V Olvera
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lily G Carlin
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Travis Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea Y Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Cisneros Napravnik
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Madison O'Hara
- Department of Thoracic Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chike O Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hannah X Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Joyner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lilie Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lois M Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew M Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Geena Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Wong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cullen Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - K Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pablo C Okhuysen
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; LSU School of Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Senizza B, Araniti F, Lewin S, Wende S, Kolb S, Lucini L. Trichoderma spp.-mediated mitigation of heat, drought, and their combination on the Arabidopsis thaliana holobiont: a metabolomics and metabarcoding approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1190304. [PMID: 37692426 PMCID: PMC10484583 DOI: 10.3389/fpls.2023.1190304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023]
Abstract
Introduction The use of substances to increase productivity and resource use efficiency is now essential to face the challenge of feeding the rising global population with the less environmental impact on the ecosystems. Trichoderma-based products have been used as biopesticides, to inhibit pathogenic microorganisms, and as biostimulants for crop growth, nutrient uptake promotion, and resistance to abiotic stresses. Methods In this work, plant metabolomics combined with roots and rhizosphere bacterial metabarcoding were exploited to inspect the performance of Trichoderma spp. biostimulants on Arabidopsis thaliana under drought, heat and their combination and its impact on plant holobiont. Results and discussion An overall modulation of N-containing compounds, phenylpropanoids, terpenes and hormones could be pointed out by metabolomics. Moreover, metabarcoding outlined an impact on alpha and beta-diversity with an abundance of Proteobacteria, Pseudomonadales, Burkholderiales, Enterobacteriales and Azospirillales. A holobiont approach was applied as an integrated analytical strategy to resolve the coordinated and complex dynamic interactions between the plant and its rhizosphere bacteria using Arabidopsis thaliana as a model host species.
Collapse
Affiliation(s)
- Biancamaria Senizza
- Department for Sustainable Food Process, CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia (Di.S.A.A.) Università degli Studi di Milano, Milano, Italy
| | - Simon Lewin
- Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – ZALF, Munchenberg, Germany
| | - Sonja Wende
- Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – ZALF, Munchenberg, Germany
| | - Steffen Kolb
- Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – ZALF, Munchenberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Luigi Lucini
- Department for Sustainable Food Process, CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
12
|
Vidya Muthulakshmi M, Srinivasan A, Srivastava S. Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant In Vitro Cultures. ACS OMEGA 2023; 8:3586-3605. [PMID: 36743063 PMCID: PMC9893489 DOI: 10.1021/acsomega.2c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Vitamin E is a dietary supplement synthesized only by photosynthetic organisms and, hence, is an essential vitamin for human well-being. Because of the ever-increasing demand for natural vitamin E and limitations in existing synthesis modes, attempts to improve its yield using plant in vitro cultures have gained traction in recent years. With inflating industrial production costs, integrative approaches to conventional bioprocess optimization is the need of the hour for multifold vitamin E productivity enhancement. In this review, we briefly discuss the structure, isomers, and important metabolic routes of biosynthesis for vitamin E in plants. We then emphasize its vital role in human health and its industrial applications and highlight the market demand and supply. We illustrate the advantages of in vitro plant cell/tissue culture cultivation as an alternative to current commercial production platforms for natural vitamin E. We touch upon the conventional vitamin E metabolic pathway engineering strategies, such as single/multigene overexpression and chloroplast engineering. We highlight the recent progress in plant systems biology to rationally identify metabolic bottlenecks and knockout targets in the vitamin E biosynthetic pathway. We then discuss bioprocess optimization strategies for sustainable vitamin E production, including media/process optimization, precursor/elicitor addition, and scale-up to bioreactors. We culminate the review with a short discussion on kinetic modeling to predict vitamin E production in plant cell cultures and suggestions on sustainable green extraction methods of vitamin E for reduced environmental impact. This review will be of interest to a wider research fraternity, including those from industry and academia working in the field of plant cell biology, plant biotechnology, and bioprocess engineering for phytochemical enhancement.
Collapse
Affiliation(s)
- M. Vidya Muthulakshmi
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Aparajitha Srinivasan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Smita Srivastava
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| |
Collapse
|
13
|
Yu J, Wu S, Sun H, Wang X, Tang X, Guo S, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, McGregor C, Renner SS, Branham S, Kousik C, Wechter W, Levi A, Grumet R, Zheng Y, Fei Z. CuGenDBv2: an updated database for cucurbit genomics. Nucleic Acids Res 2023; 51:D1457-D1464. [PMID: 36271794 PMCID: PMC9825510 DOI: 10.1093/nar/gkac921] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/30/2023] Open
Abstract
The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.
Collapse
Affiliation(s)
- Jingyin Yu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Xin Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemei Tang
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yiqun Weng
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Susanne S Renner
- Faculty of Biology, Systematic Botany and Mycology, University of Munich (LMU), 80638 Munich, Germany
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | - Sandra Branham
- Coastal Research and Educational Center, Clemson University, Charleston, SC 29414, USA
| | - Chandrasekar Kousik
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - W Patrick Wechter
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Amnon Levi
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Lascu I, Tănase AM, Jablonski P, Chiciudean I, Preda MI, Avramescu S, Irgum K, Stoica I. Revealing the Phenotypic and Genomic Background for PHA Production from Rapeseed-Biodiesel Crude Glycerol Using Photobacterium ganghwense C2.2. Int J Mol Sci 2022; 23:13754. [PMID: 36430242 PMCID: PMC9697146 DOI: 10.3390/ijms232213754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are promising biodegradable and biocompatible bioplastics, and extensive knowledge of the employed bacterial strain's metabolic capabilities is necessary in choosing economically feasible production conditions. This study aimed to create an in-depth view of the utilization of Photobacterium ganghwense C2.2 for PHA production by linking a wide array of characterization methods: metabolic pathway annotation from the strain's complete genome, high-throughput phenotypic tests, and biomass analyses through plate-based assays and flask and bioreactor cultivations. We confirmed, in PHA production conditions, urea catabolization, fatty acid degradation and synthesis, and high pH variation and osmotic stress tolerance. With urea as a nitrogen source, pure and rapeseed-biodiesel crude glycerol were analyzed comparatively as carbon sources for fermentation at 20 °C. Flask cultivations yielded 2.2 g/L and 2 g/L PHA at 120 h, respectively, with molecular weights of 428,629 g/mol and 81,515 g/mol. Bioreactor batch cultivation doubled biomass accumulation (10 g/L and 13.2 g/L) in 48 h, with a PHA productivity of 0.133 g/(L·h) and 0.05 g/(L·h). Thus, phenotypic and genomic analyses determined the successful use of Photobacterium ganghwense C2.2 for PHA production using urea and crude glycerol and 20 g/L NaCl, without pH adjustment, providing the basis for a viable fermentation process.
Collapse
Affiliation(s)
- Irina Lascu
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ana Maria Tănase
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Piotr Jablonski
- Department of Chemistry, Faculty of Science and Technology, Umeå University, S-90187 Umeå, Sweden
| | - Iulia Chiciudean
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Maria Irina Preda
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Sorin Avramescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania
| | - Knut Irgum
- Department of Chemistry, Faculty of Science and Technology, Umeå University, S-90187 Umeå, Sweden
| | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
15
|
Miras-Moreno B, Senizza B, Regni L, Tolisano C, Proietti P, Trevisan M, Lucini L, Rouphael Y, Del Buono D. Biochemical Insights into the Ability of Lemna minor L. Extract to Counteract Copper Toxicity in Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:2613. [PMID: 36235490 PMCID: PMC9571813 DOI: 10.3390/plants11192613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Metal trace elements (MTE) can damage crops if present in excessive amounts in the environment. This research investigated the effect of a plant extract of an aquatic species, Lemna minor L. (duckweed) (LE), on the ability of maize to cope with copper (Cu) toxicity. LE reversed the effects of Cu2+ on photosynthetic activity (Pn), evapotranspiration (E), stomatal conductance (gs), sub-stomatal CO2 concentration (Ci) and biomass which did not differ from the untreated controls. LE did not regulate the amount of copper in maize leaves, but compared to Cu-treated samples, the extract decreased the hydrogen peroxide (H2O2; -26% on average) and malondialdehyde (MDA; -47% on average) content, regardless of the dosage applied. Furthermore, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) was significantly increased by LE compared to samples treated with Cu alone. Untargeted metabolomic profiling revealed that LE activated maize secondary metabolism, eliciting the content of non-enzymatic antioxidants (flavonoids, glutathione and glutathione-related compounds, tocopherols and tocotrienols) and modulating plant stress-related hormones (brassinosteroids and ABA derivatives). The results of this study are promising and pave the way for using duckweed as a biostimulant to trigger beneficial effects in maize and increase its resistance to MTEs.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luca Regni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Ciro Tolisano
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Primo Proietti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
16
|
Kumar R, Kane H, Wang Q, Hibberd A, Jensen HM, Kim HS, Bak SY, Auzanneau I, Bry S, Christensen N, Friedman A, Rasinkangas P, Ouwehand AC, Forssten SD, Hasselwander O. Identification and Characterization of a Novel Species of Genus Akkermansia with Metabolic Health Effects in a Diet-Induced Obesity Mouse Model. Cells 2022; 11:cells11132084. [PMID: 35805168 PMCID: PMC9265676 DOI: 10.3390/cells11132084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Akkermansia muciniphila is a well-known bacterium with the ability to degrade mucin. This metabolic capability is believed to play an important role in the colonization of this bacterium in the gut. In this study, we report the identification and characterization of a novel Akkermansia sp. DSM 33459 isolated from human feces of a healthy donor. Phylogenetic analysis based on the genome-wide average nucleotide identity indicated that the Akkermansia sp. DSM 33459 has only 87.5% similarity with the type strain A. muciniphila ATCC BAA-835. Akkermansia sp. DSM 33459 showed significant differences in its fatty acid profile and carbon utilization as compared to the type strain. The Akkermansia sp. DSM 33459 strain was tested in a preclinical obesity model to determine its effect on metabolic markers. Akkermansia sp. DSM 33459 showed significant improvement in body weight, total fat weight, and resistin and insulin levels. Interestingly, these effects were more pronounced with the live form as compared to a pasteurized form of the strain. The strain showed production of agmatine, suggesting a potential novel mechanism for supporting metabolic and cognitive health. Based on its phenotypic features and phylogenetic position, it is proposed that this isolate represents a novel species in the genus Akkermansia and a promising therapeutic candidate for the management of metabolic diseases.
Collapse
Affiliation(s)
- Ritesh Kumar
- Health & Biosciences, International Flavors & Fragrances, Inc. (IFF), Wilmington, DE 19803, USA; (H.K.); (Q.W.); (H.-S.K.); (A.F.)
- Correspondence: ; Tel.: +1-302-379-4738
| | - Helene Kane
- Health & Biosciences, International Flavors & Fragrances, Inc. (IFF), Wilmington, DE 19803, USA; (H.K.); (Q.W.); (H.-S.K.); (A.F.)
| | - Qiong Wang
- Health & Biosciences, International Flavors & Fragrances, Inc. (IFF), Wilmington, DE 19803, USA; (H.K.); (Q.W.); (H.-S.K.); (A.F.)
| | | | - Henrik Max Jensen
- Health & Biosciences, IFF, 8220 Brabrand, Denmark; (H.M.J.); (S.Y.B.); (N.C.)
| | - Hye-Sook Kim
- Health & Biosciences, International Flavors & Fragrances, Inc. (IFF), Wilmington, DE 19803, USA; (H.K.); (Q.W.); (H.-S.K.); (A.F.)
| | - Steffen Yde Bak
- Health & Biosciences, IFF, 8220 Brabrand, Denmark; (H.M.J.); (S.Y.B.); (N.C.)
| | | | - Stéphanie Bry
- Health & Biosciences, IFF, 86270 Dange, France; (I.A.); (S.B.)
| | - Niels Christensen
- Health & Biosciences, IFF, 8220 Brabrand, Denmark; (H.M.J.); (S.Y.B.); (N.C.)
| | - Andrew Friedman
- Health & Biosciences, International Flavors & Fragrances, Inc. (IFF), Wilmington, DE 19803, USA; (H.K.); (Q.W.); (H.-S.K.); (A.F.)
| | - Pia Rasinkangas
- Health & Biosciences, IFF, 02460 Kantvik, Finland; (P.R.); (A.C.O.); (S.D.F.)
| | - Arthur C. Ouwehand
- Health & Biosciences, IFF, 02460 Kantvik, Finland; (P.R.); (A.C.O.); (S.D.F.)
| | - Sofia D. Forssten
- Health & Biosciences, IFF, 02460 Kantvik, Finland; (P.R.); (A.C.O.); (S.D.F.)
| | | |
Collapse
|
17
|
Musilova J, Kourilova X, Pernicova I, Bezdicek M, Lengerova M, Obruca S, Sedlar K. Novel thermophilic polyhydroxyalkanoates producing strain Aneurinibacillus thermoaerophilus CCM 8960. Appl Microbiol Biotechnol 2022; 106:4669-4681. [PMID: 35759037 DOI: 10.1007/s00253-022-12039-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022]
Abstract
Aneurinibacillus thermoaerophilus CCM 8960 is a thermophilic bacterium isolated from compost in Brno. The bacterium accumulates polyhydroxyalkanoates (PHAs), a biodegradable and renewable alternative to petrochemical polymers. The bacterium reveals several features that make it a very interesting candidate for the industrial production of PHA. At first, due to its thermophilic character, the bacterium can be utilized in agreement with the concept of next-generation industrial biotechnology (NGIB), which relies on extremophiles. Second, the bacterium is capable of producing PHA copolymers containing a very high portion of 4-hydroxybutyrate (4HB). Such materials possess unique properties and can be advantageously used in multiple applications, including but not limited to medicine and healthcare. Therefore, this work focuses on the in-depth characterization of A. thermoaerophilus CCM 8960. In particular, we sequenced and assembled the genome of the bacterium and identified its most important genetic features, such as the presence of plasmids, prophages, CRISPR arrays, antibiotic-resistant genes, and restriction-modification (R-M) systems, which might be crucial for the development of genome editing tools. Furthermore, we focused on genes directly involved in PHA metabolism. We also experimentally studied the kinetics of glycerol and 1,4-butanediol (1,4BD) utilization as well as biomass growth and PHA production during cultivation. Based on these data, we constructed a metabolic model to reveal metabolic fluxes and nodes of glycerol and 1,4BD concerning their incorporation into the poly(3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB)) structure. KEY POINTS: • Aneurinibacillus sp. H1 was identified as Aneurinibacillus thermoaerophilus. • PHA metabolism pathway with associated genes was presented. • Unique monomer composition of produced PHAs was reported.
Collapse
Affiliation(s)
- Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Xenie Kourilova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Martina Lengerova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic.
- Department of Informatics, Institute of Bioinformatics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
18
|
DeepRF: A deep learning method for predicting metabolic pathways in organisms based on annotated genomes. Comput Biol Med 2022; 147:105756. [PMID: 35759992 DOI: 10.1016/j.compbiomed.2022.105756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
The rapid increase of metabolomics has led to an increasing focus on metabolic pathway modeling and reconstruction. In particular, reconstructing an organism's metabolic network based on its genome sequence is a key challenge in systems biology. The method used to address this problem predicts the presence or absence of metabolic pathways from known pathways in a reference database. However, this method is based on manual metabolic pathway construction and cannot be used for large genome sequencing data. To address such problems, we apply a supervised machine learning approach consisting of deep neural networks to learn feature representations of metabolic pathways and feed these representations into random forests to predict metabolic pathways. The supervised learning model, DeepRF, predicts all known and unknown metabolic pathways in an organism. Evaluation of DeepRF on over 318,016 instances shows that the model can predict metabolic pathways with high-performance metrics accuracy (>97%), recall (>95%), and precision (>99%). Comparing DeepRF with other methods in the literature shows that DeepRF produces more reliable results than other methods.
Collapse
|
19
|
Ganugi P, Fiorini A, Ardenti F, Caffi T, Bonini P, Taskin E, Puglisi E, Tabaglio V, Trevisan M, Lucini L. Nitrogen use efficiency, rhizosphere bacterial community, and root metabolome reprogramming due to maize seed treatment with microbial biostimulants. PHYSIOLOGIA PLANTARUM 2022; 174:e13679. [PMID: 35362106 PMCID: PMC9324912 DOI: 10.1111/ppl.13679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Seed inoculation with beneficial microorganisms has gained importance as it has been proven to show biostimulant activity in plants, especially in terms of abiotic/biotic stress tolerance and plant growth promotion, representing a sustainable way to ensure yield stability under low input sustainable agriculture. Nevertheless, limited knowledge is available concerning the molecular and physiological processes underlying the root-inoculant symbiosis or plant response at the root system level. Our work aimed to integrate the interrelationship between agronomic traits, rhizosphere microbial population and metabolic processes in roots, following seed treatment with either arbuscular mycorrhizal fungi (AMF) or Plant Growth-Promoting Rhizobacteria (PGPR). To this aim, maize was grown under open field conditions with either optimal or reduced nitrogen availability. Both seed treatments increased nitrogen uptake efficiency under reduced nitrogen supply revealed some microbial community changes among treatments at root microbiome level and limited yield increases, while significant changes could be observed at metabolome level. Amino acid, lipid, flavone, lignan, and phenylpropanoid concentrations were mostly modulated. Integrative analysis of multi-omics datasets (Multiple Co-Inertia Analysis) highlighted a strong correlation between the metagenomics and the untargeted metabolomics datasets, suggesting a coordinate modulation of root physiological traits.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Andrea Fiorini
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Federico Ardenti
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Tito Caffi
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | | - Eren Taskin
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Edoardo Puglisi
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Vincenzo Tabaglio
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Marco Trevisan
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Luigi Lucini
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
20
|
Neupane S, Bonilla SI, Manalo AM, Pelz-Stelinski KS. Complete de novo assembly of Wolbachia endosymbiont of Diaphorina citri Kuwayama (Hemiptera: Liviidae) using long-read genome sequencing. Sci Rep 2022; 12:125. [PMID: 34996906 PMCID: PMC8741817 DOI: 10.1038/s41598-021-03184-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023] Open
Abstract
Wolbachia, a gram-negative \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}α-proteobacterium, is an endosymbiont found in some arthropods and nematodes. Diaphorina citri Kuwayama, the vector of ‘Candidatus Liberibacter asiaticus’ (CLas), are naturally infected with a strain of Wolbachia (wDi), which has been shown to colocalize with the bacteria pathogens CLas, the pathogen associated with huanglongbing (HLB) disease of citrus. The relationship between wDi and CLas is poorly understood in part because the complete genome of wDi has not been available. Using high-quality long-read PacBio circular consensus sequences, we present the largest complete circular wDi genome among supergroup-B members. The assembled circular chromosome is 1.52 megabases with 95.7% genome completeness with contamination of 1.45%, as assessed by checkM. We identified Insertion Sequences (ISs) and prophage genes scattered throughout the genomes. The proteins were annotated using Pfam, eggNOG, and COG that assigned unique domains and functions. The wDi genome was compared with previously sequenced Wolbachia genomes using pangenome and phylogenetic analyses. The availability of a complete circular chromosome of wDi will facilitate understanding of its role within the insect vector, which may assist in developing tools for disease management. This information also provides a baseline for understanding phylogenetic relationships among Wolbachia of other insect vectors.
Collapse
Affiliation(s)
- Surendra Neupane
- Entomology and Nematology Department, Citrus Research and Education Center/IFAS, University of Florida, Lake Alfred, Florida, 33850, USA
| | - Sylvia I Bonilla
- Entomology and Nematology Department, Citrus Research and Education Center/IFAS, University of Florida, Lake Alfred, Florida, 33850, USA
| | - Andrew M Manalo
- Entomology and Nematology Department, Citrus Research and Education Center/IFAS, University of Florida, Lake Alfred, Florida, 33850, USA
| | - Kirsten S Pelz-Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center/IFAS, University of Florida, Lake Alfred, Florida, 33850, USA.
| |
Collapse
|
21
|
Szabó G, Schulz F, Manzano-Marín A, Toenshoff ER, Horn M. Evolutionarily recent dual obligatory symbiosis among adelgids indicates a transition between fungus- and insect-associated lifestyles. THE ISME JOURNAL 2022; 16:247-256. [PMID: 34294881 PMCID: PMC8692619 DOI: 10.1038/s41396-021-01056-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Adelgids (Insecta: Hemiptera: Adelgidae) form a small group of insects but harbor a surprisingly diverse set of bacteriocyte-associated endosymbionts, which suggest multiple replacement and acquisition of symbionts over evolutionary time. Specific pairs of symbionts have been associated with adelgid lineages specialized on different secondary host conifers. Using a metagenomic approach, we investigated the symbiosis of the Adelges laricis/Adelges tardus species complex containing betaproteobacterial ("Candidatus Vallotia tarda") and gammaproteobacterial ("Candidatus Profftia tarda") symbionts. Genomic characteristics and metabolic pathway reconstructions revealed that Vallotia and Profftia are evolutionary young endosymbionts, which complement each other's role in essential amino acid production. Phylogenomic analyses and a high level of genomic synteny indicate an origin of the betaproteobacterial symbiont from endosymbionts of Rhizopus fungi. This evolutionary transition was accompanied with substantial loss of functions related to transcription regulation, secondary metabolite production, bacterial defense mechanisms, host infection, and manipulation. The transition from fungus to insect endosymbionts extends our current framework about evolutionary trajectories of host-associated microbes.
Collapse
Affiliation(s)
- Gitta Szabó
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| | - Frederik Schulz
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- US Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, USA
| | - Alejandro Manzano-Marín
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Elena Rebecca Toenshoff
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Torres-Beltrán M, Vargas-Gastélum L, Magdaleno-Moncayo D, Riquelme M, Herguera-García JC, Prieto-Davó A, Lago-Lestón A. The metabolic core of the prokaryotic community from deep-sea sediments of the southern Gulf of Mexico shows different functional signatures between the continental slope and abyssal plain. PeerJ 2021; 9:e12474. [PMID: 34993013 PMCID: PMC8679910 DOI: 10.7717/peerj.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Marine sediments harbor an outstanding level of microbial diversity supporting diverse metabolic activities. Sediments in the Gulf of Mexico (GoM) are subjected to anthropic stressors including oil pollution with potential effects on microbial community structure and function that impact biogeochemical cycling. We used metagenomic analyses to provide significant insight into the potential metabolic capacity of the microbial community in Southern GoM deep sediments. We identified genes for hydrocarbon, nitrogen and sulfur metabolism mostly affiliated with Alpha and Betaproteobacteria, Acidobacteria, Chloroflexi and Firmicutes, in relation to the use of alternative carbon and energy sources to thrive under limiting growth conditions, and metabolic strategies to cope with environmental stressors. In addition, results show amino acids metabolism could be associated with sulfur metabolism carried out by Acidobacteria, Chloroflexi and Firmicutes, and may play a crucial role as a central carbon source to favor bacterial growth. We identified the tricarboxylic acid cycle (TCA) and aspartate, glutamate, glyoxylate and leucine degradation pathways, as part of the core carbon metabolism across samples. Further, microbial communities from the continental slope and abyssal plain show differential metabolic capacities to cope with environmental stressors such as oxidative stress and carbon limiting growth conditions, respectively. This research combined taxonomic and functional information of the microbial community from Southern GoM sediments to provide fundamental knowledge that links the prokaryotic structure to its potential function and which can be used as a baseline for future studies to model microbial community responses to environmental perturbations, as well as to develop more accurate mitigation and conservation strategies.
Collapse
Affiliation(s)
- Mónica Torres-Beltrán
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Lluvia Vargas-Gastélum
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Dante Magdaleno-Moncayo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Juan Carlos Herguera-García
- Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Alejandra Prieto-Davó
- Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
23
|
Dourado H, Mori M, Hwa T, Lercher MJ. On the optimality of the enzyme-substrate relationship in bacteria. PLoS Biol 2021; 19:e3001416. [PMID: 34699521 PMCID: PMC8547704 DOI: 10.1371/journal.pbio.3001416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much recent progress has been made to understand the impact of proteome allocation on bacterial growth; much less is known about the relationship between the abundances of the enzymes and their substrates, which jointly determine metabolic fluxes. Here, we report a correlation between the concentrations of enzymes and their substrates in Escherichia coli. We suggest this relationship to be a consequence of optimal resource allocation, subject to an overall constraint on the biomass density: For a cellular reaction network composed of effectively irreversible reactions, maximal reaction flux is achieved when the dry mass allocated to each substrate is equal to the dry mass of the unsaturated (or “free”) enzymes waiting to consume it. Calculations based on this optimality principle successfully predict the quantitative relationship between the observed enzyme and metabolite abundances, parameterized only by molecular masses and enzyme–substrate dissociation constants (Km). The corresponding organizing principle provides a fundamental rationale for cellular investment into different types of molecules, which may aid in the design of more efficient synthetic cellular systems. This study shows that in E. coli, the cellular mass of each metabolite approximately equals the combined mass of the free enzymes waiting to consume it; this simple relationship arises from the optimal utilization of cellular dry mass, and quantitatively describes available experimental data.
Collapse
Affiliation(s)
- Hugo Dourado
- Institute for Computer Science and Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Matteo Mori
- Department of Physics, University of California at San Diego, La Jolla, California, United States of America
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, California, United States of America
| | - Martin J. Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
24
|
Myers KS, Noguera DR, Donohue TJ. Promoter Architecture Differences among Alphaproteobacteria and Other Bacterial Taxa. mSystems 2021; 6:e0052621. [PMID: 34254822 PMCID: PMC8407463 DOI: 10.1128/msystems.00526-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Much of our knowledge of bacterial transcription initiation has been derived from studying the promoters of Escherichia coli and Bacillus subtilis. Given the expansive diversity across the bacterial phylogeny, it is unclear how much of this knowledge can be applied to other organisms. Here, we report on bioinformatic analyses of promoter sequences of the primary σ factor (σ70) by leveraging publicly available transcription start site (TSS) sequencing data sets for nine bacterial species spanning five phyla. This analysis identifies previously unreported differences in the -35 and -10 elements of σ70-dependent promoters in several groups of bacteria. We found that Actinobacteria and Betaproteobacteria σ70-dependent promoters lack the TTG triad in their -35 element, which is predicted to be conserved across the bacterial phyla. In addition, the majority of the Alphaproteobacteria σ70-dependent promoters analyzed lacked the thymine at position -7 that is highly conserved in other phyla. Bioinformatic examination of the Alphaproteobacteria σ70-dependent promoters identifies a significant overrepresentation of essential genes and ones encoding proteins with common cellular functions downstream of promoters containing an A, C, or G at position -7. We propose that transcription of many σ70-dependent promoters in Alphaproteobacteria depends on the transcription factor CarD, which is an essential protein in several members of this phylum. Our analysis expands the knowledge of promoter architecture across the bacterial phylogeny and provides new information that can be used to engineer bacteria for use in medical, environmental, agricultural, and biotechnological processes. IMPORTANCE Transcription of DNA to RNA by RNA polymerase is essential for cells to grow, develop, and respond to stress. Understanding the process and control of transcription is important for health, disease, the environment, and biotechnology. Decades of research on a few bacteria have identified promoter DNA sequences that are recognized by the σ subunit of RNA polymerase. We used bioinformatic analyses to reveal previously unreported differences in promoter DNA sequences across the bacterial phylogeny. We found that many Actinobacteria and Betaproteobacteria promoters lack a sequence in their -35 DNA recognition element that was previously assumed to be conserved and that Alphaproteobacteria lack a thymine residue at position -7, also previously assumed to be conserved. Our work reports important new information about bacterial transcription, illustrates the benefits of studying bacteria across the phylogenetic tree, and proposes new lines of future investigation.
Collapse
Affiliation(s)
- Kevin S. Myers
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Civil & Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Pazhamala LT, Kudapa H, Weckwerth W, Millar AH, Varshney RK. Systems biology for crop improvement. THE PLANT GENOME 2021; 14:e20098. [PMID: 33949787 DOI: 10.1002/tpg2.20098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/09/2021] [Indexed: 05/19/2023]
Abstract
In recent years, generation of large-scale data from genome, transcriptome, proteome, metabolome, epigenome, and others, has become routine in several plant species. Most of these datasets in different crop species, however, were studied independently and as a result, full insight could not be gained on the molecular basis of complex traits and biological networks. A systems biology approach involving integration of multiple omics data, modeling, and prediction of the cellular functions is required to understand the flow of biological information that underlies complex traits. In this context, systems biology with multiomics data integration is crucial and allows a holistic understanding of the dynamic system with the different levels of biological organization interacting with external environment for a phenotypic expression. Here, we present recent progress made in the area of various omics studies-integrative and systems biology approaches with a special focus on application to crop improvement. We have also discussed the challenges and opportunities in multiomics data integration, modeling, and understanding of the biology of complex traits underpinning yield and stress tolerance in major cereals and legumes.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
26
|
A Novel Freshwater to Marine Evolutionary Transition Revealed within Methylophilaceae Bacteria from the Arctic Ocean. mBio 2021; 12:e0130621. [PMID: 34154421 PMCID: PMC8262872 DOI: 10.1128/mbio.01306-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria inhabiting polar oceans, particularly the Arctic Ocean, are less studied than those at lower latitudes. Discovering bacterial adaptations to Arctic Ocean conditions is essential for understanding responses to the accelerated environmental changes occurring in the North. The Methylophilaceae are emerging as a model for investigating the genomic basis of habitat adaptation, because related lineages are widely distributed across both freshwater and marine ecosystems. Here, we investigated Methylophilaceae diversity in the salinity-stratified surface waters of the Canada Basin, Arctic Ocean. In addition to a diversity of marine OM43 lineages, we report on the genomic characteristics and evolution of a previously undescribed Methylophilaceae clade (BS01) common to polar surface waters yet related to freshwater sediment Methylotenera species. BS01 is restricted to the lower-salinity surface waters, while OM43 is found throughout the halocline. An acidic proteome supports a marine lifestyle for BS01, but gene content shows increased metabolic versatility compared to OM43 and evidence for ongoing genome-streamlining. Phylogenetic reconstruction shows that BS01 colonized the pelagic ocean independently of OM43 via convergent evolution. Salinity adaptation and differences in one-carbon and nitrogen metabolism may play a role in niche differentiation between BS01 and OM43. In particular, urea utilization by BS01 is predicted to provide an ecological advantage over OM43 given the limited amount of inorganic nitrogen in the Canada Basin. These observations provide further evidence that the Arctic Ocean is inhabited by distinct bacterial groups and that at least one group (BS01) evolved via a freshwater to marine environmental transition.
Collapse
|
27
|
Saini DK, Rai A, Devi A, Pabbi S, Chhabra D, Chang JS, Shukla P. A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403. BIORESOURCE TECHNOLOGY 2021; 329:124908. [PMID: 33690058 DOI: 10.1016/j.biortech.2021.124908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The cyanobacterial phycobiliproteins (PBPs) are an important natural colorant for nutraceutical industries. Here, a multi-objective hybrid machine learning-based optimization approach was used for enhanced cell biomass and PBPs production simultaneously in Nostoc sp. CCC-403. A central composite design (CCD) was employed to design an experimental setup for four input parameters, including three BG-11 medium components and pH. We achieved a 61.76% increase in total PBPs production and an almost 90% increase in cell biomass by our prediction model. We also established a test genome-scale metabolic network (GSMN) for Nostoc sp. and identified potential metabolic fluxes contributing to PBPs enhanced production. This study highlights the advantage of the hybrid machine learning approach and GSMN to achieve optimization for more than one objective and serves as the foundation for future efforts to convert cyanobacteria as an economically viable source for biofuels and natural products.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Centre for Conservation and Utilisation of Blue-Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Amit Rai
- Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Alka Devi
- Centre for Conservation and Utilisation of Blue-Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue-Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Deepak Chhabra
- Department of Mechanical Engineering, University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
28
|
Orlovska I, Podolich O, Kukharenko O, Zaets I, Reva O, Khirunenko L, Zmejkoski D, Rogalsky S, Barh D, Tiwari S, Kumavath R, Góes-Neto A, Azevedo V, Brenig B, Ghosh P, de Vera JP, Kozyrovska N. Bacterial Cellulose Retains Robustness but Its Synthesis Declines After Exposure to a Mars-like Environment Simulated Outside the International Space Station. ASTROBIOLOGY 2021; 21:706-717. [PMID: 33646011 DOI: 10.1089/ast.2020.2332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose is a widespread macromolecule in terrestrial environments and a major architectural component of microbial biofilm. Therefore, cellulose might be considered a biosignature that indicates the presence of microbial life. We present, for the first time, characteristics of bacterial cellulose after long-term spaceflight and exposure to simuled Mars-like stressors. The pristine cellulose-based pellicle membranes from a kombucha microbial community (KMC) were exposed outside the International Space Station, and after their return to Earth, the samples were reactivated and cultured for 2.5 years to discern whether the KMC could be restored. Analyses of cellulose polymer integrity and mechanical properties of cellulose-based pellicle films, as well as the cellulose biosynthesis-related genes' structure and expression, were performed. We observed that (i) the cellulose polymer integrity was not significantly changed under Mars-like conditions; (ii) de novo cellulose production was 1.5 times decreased in exposed KMC samples; (iii) the dry cellulose yield from the reisolated Komagataeibacter oboediens was 1.7 times lower than by wild type; (iv) there was no significant change in mechanical properties of the de novo synthesized cellulose-based pellicles produced by the exposed KMCs and K. oboediens; and (v) the gene, encoding biosynthesis of cellulose (bcsA) of the K. oboediens, was downregulated, and no topological change or mutation was observed in any of the bcs operon genes, indicating that the decreased cellulose production by the space-exposed samples was probably due to epigenetic regulation. Our results suggest that the cellulose-based pellicle could be a good material with which to protect microbial communities during space journeys, and the cellulose produced by KMC members could be suitable in the fabrication of consumer goods for extraterrestrial locations.
Collapse
Affiliation(s)
- Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | - Danica Zmejkoski
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sergiy Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, West Bengal, India
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala Tejaswini Hills, Kerala, India
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, Göttingen, Germany
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | |
Collapse
|
29
|
Janse I, Beeloo R, Swart A, Visser M, Schouls L, van Duijkeren E, van Passel MWJ. The extent of carbapenemase-encoding genes in public genome sequences. PeerJ 2021; 9:e11000. [PMID: 33732552 PMCID: PMC7953867 DOI: 10.7717/peerj.11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
Genome sequences provide information on the genetic elements present in an organism, and currently there are databases containing hundreds of thousands of bacterial genome sequences. These repositories allow for mining patterns concerning antibiotic resistance gene occurrence in both pathogenic and non-pathogenic bacteria in e.g. natural or animal environments, and link these to relevant metadata such as bacterial host species, country and year of isolation, and co-occurrence with other resistance genes. In addition, the advances in the prediction of mobile genetic elements, and discerning chromosomal from plasmid DNA, broadens our view on the mechanism mediating dissemination. In this study we utilize the vast amount of data in the public database PATRIC to investigate the dissemination of carbapenemase-encoding genes (CEGs), the emergence and spread of which is considered a grave public health concern. Based on publicly available genome sequences from PATRIC and manually curated CEG sequences from the beta lactam database, we found 7,964 bacterial genomes, belonging to at least 70 distinct species, that carry in total 9,892 CEGs, amongst which bla NDM, bla OXA, bla VIM, bla IMP and bla KPC. We were able to distinguish between chromosomally located resistance genes (4,137; 42%) and plasmid-located resistance genes (5,753; 58%). We found that a large proportion of the identified CEGs were identical, i.e. displayed 100% nucleotide similarity in multiple bacterial species (8,361 out of 9,892 genes; 85%). For example, the New Delhi metallo-beta-lactamase NDM-1 was found in 42 distinct bacterial species, and present in seven different environments. Our data show the extent of carbapenem-resistance far beyond the canonical species Acetinobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. These types of data complement previous systematic reviews, in which carbapenem-resistant Enterobacteriaceae were found in wildlife, livestock and companion animals. Considering the widespread distribution of CEGs, we see a need for comprehensive surveillance and transmission studies covering more host species and environments, akin to previous extensive surveys that focused on extended spectrum beta-lactamases. This may help to fully appreciate the spread of CEGs and improve the understanding of mechanisms underlying transmission, which could lead to interventions minimizing transmission to humans.
Collapse
Affiliation(s)
- Ingmar Janse
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Rick Beeloo
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Arno Swart
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Michael Visser
- Sequencing and Bioinformatics, Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, The Netherlands
| | - Leo Schouls
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Engeline van Duijkeren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Mark W J van Passel
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands.,Ministry of Health, Welfare and Sport, The Hague, The Netherlands
| |
Collapse
|
30
|
Ionescu D, Zoccarato L, Zaduryan A, Schorn S, Bizic M, Pinnow S, Cypionka H, Grossart HP. Heterozygous, Polyploid, Giant Bacterium, Achromatium, Possesses an Identical Functional Inventory Worldwide across Drastically Different Ecosystems. Mol Biol Evol 2021; 38:1040-1059. [PMID: 33169788 PMCID: PMC7947748 DOI: 10.1093/molbev/msaa273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Achromatium is large, hyperpolyploid and the only known heterozygous bacterium. Single cells contain approximately 300 different chromosomes with allelic diversity far exceeding that typically harbored by single bacteria genera. Surveying all publicly available sediment sequence archives, we show that Achromatium is common worldwide, spanning temperature, salinity, pH, and depth ranges normally resulting in bacterial speciation. Although saline and freshwater Achromatium spp. appear phylogenetically separated, the genus Achromatium contains a globally identical, complete functional inventory regardless of habitat. Achromatium spp. cells from differing ecosystems (e.g., from freshwater to saline) are, unexpectedly, equally functionally equipped but differ in gene expression patterns by transcribing only relevant genes. We suggest that environmental adaptation occurs by increasing the copy number of relevant genes across the cell's hundreds of chromosomes, without losing irrelevant ones, thus maintaining the ability to survive in any ecosystem type. The functional versatility of Achromatium and its genomic features reveal alternative genetic and evolutionary mechanisms, expanding our understanding of the role and evolution of polyploidy in bacteria while challenging the bacterial species concept and drivers of bacterial speciation.
Collapse
Affiliation(s)
- Danny Ionescu
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
- Berlin Brandenburg Institute of Biodiversity, Berlin, Germany
| | - Luca Zoccarato
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Artur Zaduryan
- Department of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sina Schorn
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mina Bizic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
- Berlin Brandenburg Institute of Biodiversity, Berlin, Germany
| | - Solvig Pinnow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
- Berlin Brandenburg Institute of Biodiversity, Berlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| |
Collapse
|
31
|
Lascu I, Mereuță I, Chiciudean I, Hansen H, Avramescu SM, Tănase A, Stoica I. Complete genome sequence of Photobacterium ganghwense C2.2: A new polyhydroxyalkanoate production candidate. Microbiologyopen 2021; 10:e1182. [PMID: 33970538 PMCID: PMC8087987 DOI: 10.1002/mbo3.1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that can be manufactured sustainably and represent a promising green alternative to petrochemical-based plastics. Here, we describe the complete genome of a new marine PHA-producing bacterium-Photobacterium ganghwense (strain C2.2), which we have isolated from the Black Sea seashore. This new isolate is psychrotolerant and accumulates PHA when glycerol is provided as the main carbon source. Transmission electron microscopy, specific staining with Nile Red visualized via epifluorescence microscopy and gas chromatography analysis confirmed the accumulation of PHA. This is the only PHA-producing Photobacterium for which we now have a complete genome sequence, allowing us to investigate the pathways for PHA production and other secondary metabolite synthesis pathways. The de novo assembly genome, obtained using open-source tools, comprises two chromosomes (3.5, 2 Mbp) and a megaplasmid (202 kbp). We identify the entire PHA synthesis gene cluster that encodes a class I PHA synthase, a phasin, a 3-ketothiolase, and an acetoacetyl-CoA reductase. No conventional PHA depolymerase was identified in strain C2.2, but a putative lipase with extracellular amorphous PHA depolymerase activity was annotated, suggesting that C2.2 is unable to degrade intracellular PHA. A complete pathway for the conversion of glycerol to acetyl-CoA was annotated, in accordance with its ability to convert glycerol to PHA. Several secondary metabolite biosynthetic gene clusters and a low number of genes involved in antibiotic resistance and virulence were also identified, indicating the strain's suitability for biotechnological applications.
Collapse
Affiliation(s)
- Irina Lascu
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| | - Ioana Mereuță
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| | - Iulia Chiciudean
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| | - Hilde Hansen
- Department of ChemistryFaculty of Science and TechnologyUiT The Arctic University of NorwayTromsøNorway
| | - Sorin Marius Avramescu
- Department of Organic Chemistry, Biochemistry and CatalysisFaculty of ChemistryUniversity of BucharestBucharestRomania
| | - Ana‐Maria Tănase
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| | - Ileana Stoica
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| |
Collapse
|
32
|
Foliar Application of Different Vegetal-Derived Protein Hydrolysates Distinctively Modulates Tomato Root Development and Metabolism. PLANTS 2021; 10:plants10020326. [PMID: 33567668 PMCID: PMC7914860 DOI: 10.3390/plants10020326] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/28/2023]
Abstract
Despite the scientific evidence supporting their biostimulant activity, the molecular mechanism(s) underlying the activity of protein hydrolysates (PHs) and the specificity among different products are still poorly explored. This work tested five different protein hydrolysates, produced from different plant sources using the same enzymatic approach, for their ability to promote rooting in tomato cuttings following quick dipping. Provided that all the different PHs increased root length (45–93%) and some of them increased root number (37–56%), untargeted metabolomics followed by multivariate statistics and pathway analysis were used to unravel the molecular processes at the basis of the biostimulant activity. Distinct metabolomic signatures could be found in roots following the PHs treatments. In general, PHs shaped the phytohormone profile, modulating the complex interaction between cytokinins and auxins, an interplay playing a pivotal role in root development, and triggered a down accumulation of brassinosteroids. Concerning secondary metabolism, PHs induced the accumulation of aliphatic glucosinolates, alkaloids, and phenylpropanoids, potentially eliciting crop resilience to stress conditions. Here, we confirm that PHs may have a hormone-like activity, and that their application can modulate plant growth, likely interfering with signaling processes. Noteworthy, the heterogenicity of the botanical origin supported the distinctive and peculiar metabolomic responses we observed across the products tested. While supporting their biostimulant activity, these findings suggest that a generalized crop response to PHs cannot be defined and that specific effects are rather to be investigated.
Collapse
|
33
|
Nguyen NHA, Špánek R, Falagan-Lotsch P, Ševců A. Impact of Zero-Valent Iron on Freshwater Bacterioplankton Metabolism as Predicted from 16S rRNA Gene Sequence Libraries. Curr Microbiol 2021; 78:979-991. [PMID: 33521895 DOI: 10.1007/s00284-021-02362-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/10/2021] [Indexed: 11/25/2022]
Abstract
The application of zero-valent iron particles (ZVI) for the treatment of heavily polluted environment and its biological effects have been studied for at least two decades. Still, information on the impact on bacterial metabolic pathways is lacking. This study describes the effect of microscale and nanoscale ZVI (mZVI and nZVI) on the abundance of different metabolic pathways in freshwater bacterial communities. The metabolic pathways were inferred from metabolism modelling based on 16S rRNA gene sequence data using paprica pipeline. The nZVI changed the abundance of numerous metabolic pathways compared to a less influencing mZVI. We identified the 50 most affected pathways, where 31 were related to degradation, 17 to biosynthesis, and 2 to detoxification. The linkage between pathways was two times higher in nZVI samples compared to mZVI, and was specifically higher considering the arsenate detoxification II pathway. Limnohabitans and Roseiflexus were linked to the same pathways in both nZVI and mZVI. The prediction of metabolic pathways increases our knowledge of the impacts of nZVI and mZVI on freshwater bacterioplankton.
Collapse
Affiliation(s)
- Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentská 2, 46117, Liberec, Czech Republic.
| | - Roman Špánek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentská 2, 46117, Liberec, Czech Republic. .,Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), Studentská 2, 46117, Liberec, Czech Republic.
| | - Priscila Falagan-Lotsch
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.,Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentská 2, 46117, Liberec, Czech Republic.
| |
Collapse
|
34
|
Ganugi P, Miras-Moreno B, Garcia-Perez P, Lucini L, Trevisan M. Concealed metabolic reprogramming induced by different herbicides in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110727. [PMID: 33487335 DOI: 10.1016/j.plantsci.2020.110727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/17/2020] [Indexed: 06/12/2023]
Abstract
Herbicide application is a common procedure in agriculture, whose potentially adverse effects are assessed mainly with respect to weeds or in terms of residues and environmental impact. However, recent evidence has highlighted possible effects of pesticide treatments on plant metabolism, with potential implications for fruit quality. Therefore, the goal of this study was to investigate the impact of four different herbicides on the metabolic processes in industrial tomato plants. To this aim, plants were treated either with the selective herbicides metribuzin and rimsulfuron or with the non-selective herbicides glyphosate and pelargonic acid. Thereafter, leaves were analyzed using a metabolomics approach, and 247 differential compounds were selected by multivariate statistics and used to examine the changes at the molecular level. Data interpretation via the PlantCyc Pathway Tool revealed that the tested herbicides induced distinctive responses to the treatments, with the phytohormone profile (gibberellins and jasmonates) and secondary metabolism (including stress-related compounds, such as phenylpropanoids and glucosinolates) showing the largest modulation. Surprisingly, such metabolic reprogramming also affected several aspects of the fruits even though the herbicides were applied several weeks before, thus opening the possibility of effects on food quality. To date, these hidden effects have been largely underestimated even though they deserve to be carefully considered since they may affect the qualitative and quantitative traits of the yield.
Collapse
Affiliation(s)
- Paola Ganugi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Pascual Garcia-Perez
- Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, 36310 Vigo, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
35
|
Pathway Tools Visualization of Organism-Scale Metabolic Networks. Metabolites 2021; 11:metabo11020064. [PMID: 33499002 PMCID: PMC7911265 DOI: 10.3390/metabo11020064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolomics, synthetic biology, and microbiome research demand information about organism-scale metabolic networks. The convergence of genome sequencing and computational inference of metabolic networks has enabled great progress toward satisfying that demand by generating metabolic reconstructions from the genomes of thousands of sequenced organisms. Visualization of whole metabolic networks is critical for aiding researchers in understanding, analyzing, and exploiting those reconstructions. We have developed bioinformatics software tools that automatically generate a full metabolic-network diagram for an organism, and that enable searching and analyses of the network. The software generates metabolic-network diagrams for unicellular organisms, for multi-cellular organisms, and for pan-genomes and organism communities. Search tools enable users to find genes, metabolites, enzymes, reactions, and pathways within a diagram. The diagrams are zoomable to enable researchers to study local neighborhoods in detail and to see the big picture. The diagrams also serve as tools for comparison of metabolic networks and for interpreting high-throughput datasets, including transcriptomics, metabolomics, and reaction fluxes computed by metabolic models. These data can be overlaid on the metabolic charts to produce animated zoomable displays of metabolic flux and metabolite abundance. The BioCyc.org website contains whole-network diagrams for more than 18,000 sequenced organisms. The ready availability of organism-specific metabolic network diagrams and associated tools for almost any sequenced organism are useful for researchers working to better understand the metabolism of their organism and to interpret high-throughput datasets in a metabolic context.
Collapse
|
36
|
Baranwal M, Magner A, Elvati P, Saldinger J, Violi A, Hero AO. A deep learning architecture for metabolic pathway prediction. Bioinformatics 2020; 36:2547-2553. [PMID: 31879763 DOI: 10.1093/bioinformatics/btz954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 01/14/2023] Open
Abstract
MOTIVATION Understanding the mechanisms and structural mappings between molecules and pathway classes are critical for design of reaction predictors for synthesizing new molecules. This article studies the problem of prediction of classes of metabolic pathways (series of chemical reactions occurring within a cell) in which a given biochemical compound participates. We apply a hybrid machine learning approach consisting of graph convolutional networks used to extract molecular shape features as input to a random forest classifier. In contrast to previously applied machine learning methods for this problem, our framework automatically extracts relevant shape features directly from input SMILES representations, which are atom-bond specifications of chemical structures composing the molecules. RESULTS Our method is capable of correctly predicting the respective metabolic pathway class of 95.16% of tested compounds, whereas competing methods only achieve an accuracy of 84.92% or less. Furthermore, our framework extends to the task of classification of compounds having mixed membership in multiple pathway classes. Our prediction accuracy for this multi-label task is 97.61%. We analyze the relative importance of various global physicochemical features to the pathway class prediction problem and show that simple linear/logistic regression models can predict the values of these global features from the shape features extracted using our framework. AVAILABILITY AND IMPLEMENTATION https://github.com/baranwa2/MetabolicPathwayPrediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mayank Baranwal
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abram Magner
- Department of Computer Science, University at Albany, SUNY, Albany, NY 12222, USA
| | | | | | - Angela Violi
- Department of Mechanical Engineering.,Department of Chemical Engineering and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alfred O Hero
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Lucini L, Miras-Moreno B, Busconi M, Marocco A, Gatti M, Poni S. Molecular basis of rootstock-related tolerance to water deficit in Vitis vinifera L. cv. Sangiovese: A physiological and metabolomic combined approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110600. [PMID: 32900438 DOI: 10.1016/j.plantsci.2020.110600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The rootstock M4 (V. vinifera × V. berlandieri) × V. berlandieri cv. Resseguier n.1) is a recent selection reported to confer improved drought tolerance to grafted V. vinifera scions, a very desired feature in the era of global warming. Therefore, a short-term study was performed on a batch of 12 potted cv. Sangiovese vines grafted either on M4 or on the drought susceptible SO4 rootstock. Ecophysiological assessments as whole canopy net CO2 exchange rate (NCER), transpiration (Tc), and pre-dawn leaf water potential (Ψpd) and UHPLC-ESI/QTOF-MS metabolomics were then used to investigate the different vine responses during water limiting conditions. Water stress was induced by applying 50 % of estimated daily water use from days of year 184-208. M4 was able to deliver similar CO2, at a significantly reduced water use, compared to SO4 grafting. In turn, this resulted in enhanced canopy water use efficiency (NCER/Tc ratio) quantified as +15.1 % during water stress and +21.7 % at re-watering. Untargeted metabolomics showed a similar modulation of brassinosteroids and ABA between the two rootstocks, whereas the up accumulation of cytokinins and gibberellins under drought was peculiar of M4 grafted vines. The increase in gibberellins, together with a concurrent down accumulation of chlorophyll precursors and catabolites and an up accumulation of folates in M4 rootstock suggests that the capacity of limiting reactive-oxygen-species and redox imbalance under drought stress was improved. Finally, distinctive osmolyte accumulation patterns could be observed, with SO4 investing more on proline and glycine-betaine content and M4 primarily showing polyols accumulation.
Collapse
Affiliation(s)
- Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Begona Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Gatti
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
38
|
Whole-Genome Sequences of Two New Caballeronia Strains Isolated from Cryoturbated Peat Circles of the Permafrost-Affected Eastern European Tundra. Microbiol Resour Announc 2020; 9:9/31/e00731-20. [PMID: 32732239 PMCID: PMC7393968 DOI: 10.1128/mra.00731-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Annotated genomes of Caballeronia strains SBC1 and SBC2 from acidic permafrost suggest a new species with a facultative lifestyle via oxygen and nitrate respiration. Thus, a contribution to nitrogen cycling in cold and low-pH environments is anticipated. Annotated genomes of Caballeronia strains SBC1 and SBC2 from acidic permafrost suggest a new species with a facultative lifestyle via oxygen and nitrate respiration. Thus, a contribution to nitrogen cycling in cold and low-pH environments is anticipated.
Collapse
|
39
|
Mahood EH, Kruse LH, Moghe GD. Machine learning: A powerful tool for gene function prediction in plants. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11376. [PMID: 32765975 PMCID: PMC7394712 DOI: 10.1002/aps3.11376] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 05/06/2023]
Abstract
Recent advances in sequencing and informatic technologies have led to a deluge of publicly available genomic data. While it is now relatively easy to sequence, assemble, and identify genic regions in diploid plant genomes, functional annotation of these genes is still a challenge. Over the past decade, there has been a steady increase in studies utilizing machine learning algorithms for various aspects of functional prediction, because these algorithms are able to integrate large amounts of heterogeneous data and detect patterns inconspicuous through rule-based approaches. The goal of this review is to introduce experimental plant biologists to machine learning, by describing how it is currently being used in gene function prediction to gain novel biological insights. In this review, we discuss specific applications of machine learning in identifying structural features in sequenced genomes, predicting interactions between different cellular components, and predicting gene function and organismal phenotypes. Finally, we also propose strategies for stimulating functional discovery using machine learning-based approaches in plants.
Collapse
Affiliation(s)
- Elizabeth H. Mahood
- Plant Biology SectionSchool of Integrative Plant SciencesCornell UniversityIthacaNew York14853USA
| | - Lars H. Kruse
- Plant Biology SectionSchool of Integrative Plant SciencesCornell UniversityIthacaNew York14853USA
| | - Gaurav D. Moghe
- Plant Biology SectionSchool of Integrative Plant SciencesCornell UniversityIthacaNew York14853USA
| |
Collapse
|
40
|
Lucini L, Miras-Moreno B, Rouphael Y, Cardarelli M, Colla G. Combining Molecular Weight Fractionation and Metabolomics to Elucidate the Bioactivity of Vegetal Protein Hydrolysates in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:976. [PMID: 32695133 PMCID: PMC7338714 DOI: 10.3389/fpls.2020.00976] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 05/24/2023]
Abstract
The comprehension of the bioactive fractions involved in the biostimulant activity of plant derived protein hydrolysates (PH) is a complex task, but it can also lead to significant improvements in the production of more effective plant biostimulants. The aim of this work is to shed light onto the bioactivity of different PH dialysis fractions (PH1 < 0.5-1 kDa; PH2 > 0.5-1 kDa; PH3 < 8-10 kDa; PH4 > 8-10 kDa) of a commercial PH-based biostimulant through a combined in vivo bioassay and metabolomics approach. A first tomato rooting bioassay investigated the auxin-like activity of PH and its fractions, each of them at three nitrogen levels (3, 30, and 300 mg L-1 of N) in comparison with a negative control (water) and a positive control (indole-3-butyric acid, IBA). Thereafter, a second experiment was carried out where metabolomics was applied to elucidate the biochemical changes imposed by the PH and its best performing fraction (both at 300 mg L-1 of N) in comparison to water and IBA. Overall, both the PH and its fractions increased the root length of tomato cuttings, compared to negative control. Moreover, the highest root length was obtained in the treatment PH1 following foliar application. Metabolomics allowed highlighting a response to PH1 that involved changes at phytohormones and secondary metabolite level. Notably, such metabolic reprogramming supported the effect on rooting of tomato cuttings, being shared with the response induced by the positive control IBA. Taken together, the outcome of in vivo assays and metabolomics indicate an auxin-like activity of the selected PH1 fraction.
Collapse
Affiliation(s)
- Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics (CREA-GB), Fiorenzuola d'Arda, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Mariateresa Cardarelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Orticoltura e Florovivaismo, Pontecagnano Faiano, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
41
|
van Vliet DM, Lin Y, Bale NJ, Koenen M, Villanueva L, Stams AJM, Sánchez-Andrea I. Pontiella desulfatans gen. nov., sp. nov., and Pontiella sulfatireligans sp. nov., Two Marine Anaerobes of the Pontiellaceae fam. nov. Producing Sulfated Glycosaminoglycan-like Exopolymers. Microorganisms 2020; 8:microorganisms8060920. [PMID: 32570748 PMCID: PMC7356697 DOI: 10.3390/microorganisms8060920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, we isolated two marine strains, F1T and F21T, which together with Kiritimatiella glycovorans L21-Fru-ABT are the only pure cultures of the class Kiritimatiellae within the phylum Verrucomicrobiota. Here, we present an in-depth genome-guided characterization of both isolates with emphasis on their exopolysaccharide synthesis. The strains only grew fermentatively on simple carbohydrates and sulfated polysaccharides. Strains F1T, F21T and K. glycovorans reduced elemental sulfur, ferric citrate and anthraquinone-2,6-disulfonate during anaerobic growth on sugars. Both strains produced exopolysaccharides during stationary phase, probably with intracellularly stored glycogen as energy and carbon source. Exopolysaccharides included N-sulfated polysaccharides probably containing hexosamines and thus resembling glycosaminoglycans. This implies that the isolates can both degrade and produce sulfated polysaccharides. Both strains encoded an unprecedently high number of glycoside hydrolase genes (422 and 388, respectively), including prevalent alpha-L-fucosidase genes, which may be necessary for degrading complex sulfated polysaccharides such as fucoidan. Strain F21T encoded three putative glycosaminoglycan sulfotransferases and a putative sulfate glycosaminoglycan biosynthesis gene cluster. Based on phylogenetic and chemotaxonomic analyses, we propose the taxa Pontiella desulfatans F1T gen. nov., sp. nov. and Pontiella sulfatireligans F21T sp. nov. as representatives of the Pontiellaceae fam. nov. within the class Kiritimatiellae.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands;
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
- Correspondence: ; Tel.: +31-317-483486
| |
Collapse
|
42
|
Riaz MR, Preston GM, Mithani A. MAPPS: A Web-Based Tool for Metabolic Pathway Prediction and Network Analysis in the Postgenomic Era. ACS Synth Biol 2020; 9:1069-1082. [PMID: 32347714 DOI: 10.1021/acssynbio.9b00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Comparative and evolutionary analyses of metabolic networks have a wide range of applications, ranging from research into metabolic evolution through to practical applications in drug development, synthetic biology, and biodegradation. We present MAPPS: Metabolic network Analysis and Pathway Prediction Server (https://mapps.lums.edu.pk), a web-based tool to study functions and evolution of metabolic networks using traditional and 'omics data sets. MAPPS provides diverse functionalities including an interactive interface, graphical visualization of results, pathway prediction and network comparison, identification of potential drug targets, in silico metabolic engineering, host-microbe interactions, and ancestral network building. Importantly, MAPPS also allows users to upload custom data, thus enabling metabolic analyses on draft and custom genomes, and has an 'omics pipeline to filter pathway results, making it relevant in today's postgenomic era.
Collapse
Affiliation(s)
- Muhammad Rizwan Riaz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| |
Collapse
|
43
|
Aliferis KA, Bernard-Perron D. Cannabinomics: Application of Metabolomics in Cannabis ( Cannabis sativa L.) Research and Development. FRONTIERS IN PLANT SCIENCE 2020; 11:554. [PMID: 32457786 PMCID: PMC7225349 DOI: 10.3389/fpls.2020.00554] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 05/18/2023]
Abstract
Cannabis (Cannabis sativa L.) is a complex, polymorphic plant species, which produces a vast array of bioactive metabolites, the two major chemical groups being cannabinoids and terpenoids. Nonetheless, the psychoactive cannabinoid tetrahydrocannabinol (Δ 9 -THC) and the non-psychoactive cannabidiol (CBD), are the two major cannabinoids that have monopolized the research interest. Currently, more than 600 Cannabis varieties are commercially available, providing access to a multitude of potent extracts with complex compositions, whose genetics are largely inconclusive. Recently introduced legislation on Cannabis cultivation in many countries represents a great opportunity, but at the same time, a great challenge for Cannabis research and development (R&D) toward applications in the pharmaceutical, food, cosmetics, and agrochemical industries. Based on its versatility and unique capabilities in the deconvolution of the metabolite composition of complex matrices, metabolomics represents an ideal bioanalytical tool that could greatly assist and accelerate Cannabis R&D. Among others, Cannabis metabolomics or cannabinomics can be applied in the taxonomy of Cannabis varieties in chemovars, the research on the discovery and assessment of new Cannabis-based sources of bioactivity in medicine, the development of new food products, and the optimization of its cultivation, aiming for improvements in yield and potency. Although Cannabis research is still in its infancy, it is highly foreseen that the employment of advanced metabolomics will provide insights that could assist the sector to face the aforementioned challenges. Within this context, here, the current state-of-the-art and conceptual aspects of cannabinomics are presented.
Collapse
Affiliation(s)
- Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
44
|
Rouphael Y, Lucini L, Miras-Moreno B, Colla G, Bonini P, Cardarelli M. Metabolomic Responses of Maize Shoots and Roots Elicited by Combinatorial Seed Treatments With Microbial and Non-microbial Biostimulants. Front Microbiol 2020; 11:664. [PMID: 32435233 PMCID: PMC7218175 DOI: 10.3389/fmicb.2020.00664] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial and non-microbial plant biostimulants have been successfully used to improve agriculture productivity in a more sustainable manner. Since the mode of action of biostimulants is still largely unknown, the present work aimed at elucidating the morpho-physiological and metabolomic changes occurring in maize (Zea mays L.) leaves and roots following seed treatment with (i) a consortium of two beneficial fungi [arbuscular mycorrhizal fungi (AMF) and Trichoderma koningii TK7] and rhizobacteria, (ii) a protein hydrolyzate-based biostimulant (PH) alone, or (iii) in combination with a consortium of T. koningii TK7 and rhizobacteria. The application of PH alone or in combination with Trichoderma elicited significant increases (+16.6%) in the shoot biomass compared to untreated maize plants, whereas inoculation with AMF + Trichoderma elicited significant increases in root dry biomass (+48.0%) compared to untreated plants. Distinctive metabolomic signatures were achieved from the different treatments, hence suggesting that different molecular processes were involved in the plants response to the biostimulants. The metabolic reprogramming triggered by the treatments including the protein hydrolyzate was hierarchically more pronounced than the application of microorganisms alone. Most of the differential metabolites could be ascribed to the secondary metabolism, with phenylpropanoids and terpenes being the most represented compounds. The application of PH triggered an accumulation of secondary metabolites, whereas the opposite trend of accumulation was seen in the case of microorganisms alone. The increase in biomass could be related to two processes, namely the modulation of the multilayer phytohormone interaction network and a possible increase in nitrogen use efficiency via the GS-GOGAT system.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura el' Analisi dell'Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, Pontecagnano Faiano, Italy
| |
Collapse
|
45
|
Husnik F, Hypsa V, Darby A. Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite. Genome Biol Evol 2020; 12:429-442. [PMID: 32068830 PMCID: PMC7197495 DOI: 10.1093/gbe/evaa032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular level for up to several hundred million years. Exact mechanisms driving host-symbiont interactions are only understood for a handful of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont, Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut (foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-dependent proteases when acquiring amino acids, and for different immunity mechanisms controlling the symbionts than in closely related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
Collapse
Affiliation(s)
- Filip Husnik
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Vaclav Hypsa
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
46
|
From the Inside Out: an Epibiotic Bdellovibrio Predator with an Expanded Genomic Complement. J Bacteriol 2020; 202:JB.00565-19. [PMID: 32015145 DOI: 10.1128/jb.00565-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Bdellovibrio and like organisms are abundant environmental parasitoids of prokaryotes that show diverse predation strategies. The vast majority of studied Bdellovibrio bacteria and like organisms deploy intraperiplasmic replication inside the prey cell, while few isolates with smaller genomes consume their prey from the outside in an epibiotic manner. The novel parasitoid "Candidatus Bdellovibrio qaytius" was isolated from a eutrophic freshwater pond in British Columbia, where it was a continual part of the microbial community. "Ca Bdellovibrio qaytius" was found to preferentially prey on the betaproteobacterium Paraburkholderia fungorum without entering the periplasm. Despite its epibiotic replication strategy, "Ca Bdellovibrio" encodes a large genomic complement more similar to that of complex periplasmic predators. Functional genomic annotation further revealed several biosynthesis pathways not previously found in epibiotic predators, indicating that "Ca Bdellovibrio" represents an intermediate phenotype and at the same time narrowing down the genomic complement specific to epibiotic predators. In phylogenetic analysis, "Ca Bdellovibrio qaytius" occupies a widely distributed, but poorly characterized, basal cluster within the genus Bdellovibrio This suggests that epibiotic predation might be a common predation type in nature and that epibiotic predation could be the ancestral predation type in the genus.IMPORTANCE Bdellovibrio and like organisms are bacteria that prey on other bacteria and are widespread in the environment. Most of the known Bdellovibrio species enter the space between the inner and outer prey membrane, where they consume their prey cells. However, one Bdellovibrio species has been described that consumes its prey from the outside. Here, we describe "Ca Bdellovibrio qaytius," a novel member of the genus Bdellovibrio that also remains outside the prey cell throughout its replication cycle. Unexpectedly, the genome of "Ca Bdellovibrio" is much more similar to the genomes of intracellular predators than to the species with a similar life cycle. Since "Ca Bdellovibrio" is also a basal representative of this genus, we hypothesize that extracellular predation could be the ancestral predation strategy.
Collapse
|
47
|
Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, Ong WK, Paley S, Subhraveti P, Karp PD. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 2020; 48:D445-D453. [PMID: 31586394 PMCID: PMC6943030 DOI: 10.1093/nar/gkz862] [Citation(s) in RCA: 681] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
MetaCyc (MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains 2749 pathways derived from more than 60 000 publications, making it the largest curated collection of metabolic pathways. The data in MetaCyc are evidence-based and richly curated, resulting in an encyclopedic reference tool for metabolism. MetaCyc is also used as a knowledge base for generating thousands of organism-specific Pathway/Genome Databases (PGDBs), which are available in BioCyc.org and other genomic portals. This article provides an update on the developments in MetaCyc during September 2017 to August 2019, up to version 23.1. Some of the topics that received intensive curation during this period include cobamides biosynthesis, sterol metabolism, fatty acid biosynthesis, lipid metabolism, carotenoid metabolism, protein glycosylation, antibiotics and cytotoxins biosynthesis, siderophore biosynthesis, bioluminescence, vitamin K metabolism, brominated compound metabolism, plant secondary metabolism and human metabolism. Other additions include modifications to the GlycanBuilder software that enable displaying glycans using symbolic representation, improved graphics and fonts for web displays, improvements in the PathoLogic component of Pathway Tools, and the optional addition of regulatory information to pathway diagrams.
Collapse
Affiliation(s)
- Ron Caspi
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | | | - Ingrid M Keseler
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Anamika Kothari
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | | | - Peter E Midford
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Wai Kit Ong
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Suzanne Paley
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | | | - Peter D Karp
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| |
Collapse
|
48
|
Kolega S, Miras-Moreno B, Buffagni V, Lucini L, Valentinuzzi F, Maver M, Mimmo T, Trevisan M, Pii Y, Cesco S. Nutraceutical Profiles of Two Hydroponically Grown Sweet Basil Cultivars as Affected by the Composition of the Nutrient Solution and the Inoculation With Azospirillum brasilense. FRONTIERS IN PLANT SCIENCE 2020; 11:596000. [PMID: 33224175 PMCID: PMC7674207 DOI: 10.3389/fpls.2020.596000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/09/2020] [Indexed: 05/14/2023]
Abstract
Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO4 2- or NO3 -, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation.
Collapse
Affiliation(s)
- Simun Kolega
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | - Begona Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Mauro Maver
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- *Correspondence: Youry Pii,
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
49
|
Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, Walsh DA. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered Lakes. Environ Microbiol 2019; 20:2568-2584. [PMID: 29921005 DOI: 10.1111/1462-2920.14283] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023]
Abstract
Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Patricia Tran
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada.,Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada
| | - Arthi Ramachandran
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada
| | - Ola Khawasik
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Québec, Canada
| | - Milla Rautio
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Yannick Huot
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada.,Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada
| |
Collapse
|
50
|
Damale MG, Patil RB, Ansari SA, Alkahtani HM, Almehizia AA, Shinde DB, Arote R, Sangshetti J. Molecular docking, pharmacophore based virtual screening and molecular dynamics studies towards the identification of potential leads for the management of H. pylori. RSC Adv 2019; 9:26176-26208. [PMID: 35531003 PMCID: PMC9070323 DOI: 10.1039/c9ra03281a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The enzyme pantothenate synthetase panC is one of the potential new antimicrobial drug targets, but it is poorly characterized in H. pylori. H. pylori infection can cause gastric cancer and the management of H. pylori infection is crucial in various gastric ulcers and gastric cancer. The current study describes the use of innovative drug discovery and design approaches like comparative metabolic pathway analysis (Metacyc), exploration of database of essential genes (DEG), homology modelling, pharmacophore based virtual screening, ADMET studies and molecular dynamics simulations in identifying potential lead compounds for the H. pylori specific panC. The top ranked virtual hits STOCK1N-60270, STOCK1N-63040, STOCK1N-44424 and STOCK1N-63231 can act as templates for synthesis of new H. pylori inhibitors and they hold a promise in the management of gastric cancers caused by H. pylori.
Collapse
Affiliation(s)
- Manoj G Damale
- Department of Pharmaceutical Medicinal Chemistry, Srinath College of Pharmacy Aurangabad M.S. 431136 India
| | - Rajesh B Patil
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy Kondhwa (Bk) Pune India
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | | | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University Seoul Republic of Korea
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy Dr Rafiq Zakaria Campus, Rauza Baugh Aurangabad MS India
| |
Collapse
|