1
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Bressa C, González-Soltero R, Tabone M, Clemente-Velasco S, Gálvez BG, Larrosa M. Exploring the relationship between APOEε4 allele and gut microbiota composition and function in healthy adults. AMB Express 2025; 15:77. [PMID: 40372527 PMCID: PMC12081816 DOI: 10.1186/s13568-025-01888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
The APOE ε4 allele (APOE4) is a known risk factor for neurodegenerative and cardiovascular diseases, but its link to body composition and metabolism remains debated. The gut microbiota influences host metabolism and immunity, yet its relationship with APOE genotype in healthy individuals is not well understood. The objective of this work was to examine associations between APOE genotype and gut microbiota composition and function in healthy adults, focusing on microbial and metabolic differences related to the APOE4 allele. Seventy-seven healthy Spanish adults were genotyped for APOE. Fecal microbiota profiles were assessed by 16 S rRNA gene sequencing, and predicted functions were inferred using PICRUSt2. Body composition (DEXA) and physical activity (accelerometry) were also measured. APOE4 carriers exhibited subtle shifts in microbiota composition, including a five-fold reduction in Megamonas and lower abundance of the Eubacterium brachy group-both linked to energy harvest and adiposity-compared to APOE3 homozygotes. An uncharacterized Puniceicoccaceae genus was enriched in APOE4 carriers. Although E. brachy group abundance correlated with adiposity, no significant differences in body composition were observed. Functional predictions showed APOE4-associated microbiota enriched in pathways for carotenoid biosynthesis and trehalose metabolism, and depleted in tryptophan biosynthesis, propionate production, and multidrug resistance mechanisms. APOE4 carriers harbor gut microbiota with distinct taxonomic and functional features, potentially reflecting adaptations to metabolic and oxidative challenges. These findings underscore the relevance of the gut microbiome in shaping APOE4-associated phenotypes and warrant further investigation into its mechanistic contributions to health and disease.
Collapse
Affiliation(s)
- C Bressa
- Masmicrobiota Research Group, Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo- Majadahonda km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - R González-Soltero
- Masmicrobiota Research Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - M Tabone
- Masmicrobiota Research Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - S Clemente-Velasco
- Masmicrobiota Research Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - B G Gálvez
- Masmicrobiota Research Group, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain.
| | - M Larrosa
- Masmicrobiota Research Group, Madrid, Spain.
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Chakraborty N, Holmes-Hampton G, Rusling M, Kumar VP, Hoke A, Lawrence AB, Gautam A, Ghosh SP, Hammamieh R. Delayed Impact of Ionizing Radiation Depends on Sex: Integrative Metagenomics and Metabolomics Analysis of Rodent Colon Content. Int J Mol Sci 2025; 26:4227. [PMID: 40362462 PMCID: PMC12071923 DOI: 10.3390/ijms26094227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
There is an escalating need to comprehend the long-term impacts of nuclear radiation exposure since the permeation of ionizing radiation has been frequent in our current societal framework. A system evaluation of the microbes that reside inside a host's colon could meet this knowledge gap since the microbes play major roles in a host's response to stress. Indeed, our past study suggested that these microbes might break their symbiotic association with moribund hosts to form a pro-survival condition exclusive to themselves. In this study, we undertook metagenomics and metabolomics assays regarding the descending colon content (DCC) of adult mice. DCCs were collected 1 month and 6 months after 7 Gy or 7.5 Gy total body irradiation (TBI). The assessment of the metagenomic diversity profile in DCC found a significant sex bias caused by TBI. Six months after 7.5 Gy TBI, decreased Bacteroidetes were replaced by increased Firmicutes in males, and these alterations were reflected in the functional analysis. For instance, a larger number of networks linked to small chain fatty acid (SCFA) synthesis and metabolism were inhibited in males than in females. Additionally, bioenergy networks showed regression dynamics in females at 6 months post-TBI. Increased accumulation of glucose and pyruvate, which are typical precursors of beneficial SCFAs coupled with the activated networks linked to the production of reactive oxygen species, suggest a cross-sex energy-deprived state. Overall, there was a major chronic adverse implication in male mice that supported the previous literature in suggesting females are more radioresistant than males. The sex-biased chronic effects of TBI should be taken into consideration in designing the pertinent therapeutics.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (M.R.); (A.H.); (A.B.L.); (A.G.)
| | - Gregory Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889-5603, USA; (G.H.-H.); (V.P.K.)
| | - Matthew Rusling
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (M.R.); (A.H.); (A.B.L.); (A.G.)
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889-5603, USA; (G.H.-H.); (V.P.K.)
| | - Allison Hoke
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (M.R.); (A.H.); (A.B.L.); (A.G.)
| | - Alexander B. Lawrence
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (M.R.); (A.H.); (A.B.L.); (A.G.)
- Vysnova, Inc., Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (M.R.); (A.H.); (A.B.L.); (A.G.)
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889-5603, USA; (G.H.-H.); (V.P.K.)
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (M.R.); (A.H.); (A.B.L.); (A.G.)
| |
Collapse
|
4
|
Aguilera A, Lundin D, Charalampous E, Churakova Y, Tellgren-Roth C, Śliwińska-Wilczewska S, Conley DJ, Farnelid H, Pinhassi J. The evaluation of biogenic silica in brackish and freshwater strains reveals links between phylogeny and silica accumulation in picocyanobacteria. Appl Environ Microbiol 2025; 91:e0252724. [PMID: 40145754 PMCID: PMC12016540 DOI: 10.1128/aem.02527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Through biosilicification, organisms incorporate dissolved silica (dSi) and deposit it as biogenic silica (bSi), driving the silicon (Si) cycle in aquatic systems. While Si accumulation in marine picocyanobacteria has been recently observed, its mechanisms and ecological implications remain unclear. This study investigates biosilicification in marine and brackish picocyanobacteria of the Synechococcus clade and two model freshwater coccoid cyanobacteria. Brackish strains showed significantly higher Si quotas when supplemented with external dSi (100 µM) compared to controls (up to 60.0 ± 7.3 amol Si.cell-1 versus 9.2 to 16.3 ± 2.9 amol Si.cell-1). Conversely, freshwater strains displayed no significant differences in Si quotas between dSi-enriched treatments and controls, emphasizing that not all phytoplanktons without an obligate Si requirement accumulate this element. The Si-accumulating marine and brackish picocyanobacteria clustered within the Synechococcus clade, whereas their freshwater counterparts formed a distinct sister group, suggesting a link between phylogeny and silicification. Rapid culture growth caused increased pH and led to dSi precipitation, influencing apparent dSi uptake; this was mitigated by pH control through bubbling. This phenomenon has significant implications for natural systems affected by phytoplankton blooms. In such environments, pH-induced silicon precipitation may reduce dSi availability impacting Si-dependent populations like diatoms. Our findings suggest brackish picocyanobacteria could significantly influence the Si cycle through at least two mechanisms: cellular Si accumulation and biologically induced changes in dSi concentrations.IMPORTANCEThis work provides the first evidence of biogenic silica accumulation in brackish picocyanobacteria and uncovers a link between phylogeny and biosilicification patterns. Our findings demonstrate that picocyanobacterial growth induces pH-dependent silica precipitation, which could lead to overestimations of cellular Si quotas by up to 85%. This process may drive substantial silica precipitation in highly productive freshwater and coastal marine systems, with potential effects on silica cycling and the population dynamics of Si-dependent phytoplankton. The extent of biosilicification in modern picocyanobacteria offers insights into the rock record, shedding light on the evolutionary and ecological dynamics that influence sedimentary processes and the preservation of biosilicification signatures in geological formations. Overall, this research adds to the significant impact that microorganisms lacking an obligate silica requirement may have on silica dynamics.
Collapse
Affiliation(s)
- Anabella Aguilera
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linneaus University, Kalmar, Sweden
| | - Daniel Lundin
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linneaus University, Kalmar, Sweden
| | - Evangelia Charalampous
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linneaus University, Kalmar, Sweden
| | - Yelena Churakova
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linneaus University, Kalmar, Sweden
| | - Christian Tellgren-Roth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sylwia Śliwińska-Wilczewska
- Mount Allison University, Sackville, New Brunswick, Canada
- Laboratory of Marine Plant Ecophysiology, University of Gdansk, Gdynia, Poland
| | | | - Hanna Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linneaus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linneaus University, Kalmar, Sweden
| |
Collapse
|
5
|
Schell LD, Chadaideh KS, Allen-Blevins CR, Venable EM, Carmody RN. Dietary preservatives alter the gut microbiota in vitro and in vivo with sex-specific consequences for host metabolic development in a mouse model. Am J Clin Nutr 2025:S0002-9165(25)00196-0. [PMID: 40250761 DOI: 10.1016/j.ajcnut.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/14/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Antibiotics in early life can promote adiposity via interactions with the gut microbiota but represent only 1 possible route of antimicrobial exposure. Dietary preservatives exhibit antimicrobial activity, contain chemical structures accessible to microbial enzymes, and may therefore similarly disrupt microbial contributions to metabolic development. OBJECTIVES Here, we test the hypothesis that preservatives alter the gut microbiota with consequences for host metabolism. METHODS We screened common dietary preservatives for in vitro and ex vivo activity against a panel of gut bacteria and whole fecal microbial communities, profiling outcomes via optical density measurements and 16S rDNA sequencing. We then exposed adult mice to diet-relevant doses of 4 preservatives [acetic acid, butylated hydroxyanisole (BHA), ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] or ampicillin (positive control) for 7 d. Finally, we examined the effects of early-life EDTA and low-dose ampicillin exposure starting in gestation in a mouse model, tracking differences in growth and metabolism. RESULTS Preservatives altered microbial growth and community structure in vitro, ex vivo, and in vivo, but with compound-specific changes in gut microbiota composition distinct from those of ampicillin. Long-term EDTA exposure from gestation reduced calorie absorption and cecal acetate, resulting in 32% lower gains in body fat in females for a given food intake (±12% standard error, linear mixed effects model). Females exposed to ampicillin exhibited a similar 42% (±11%) reduction in food-adjusted gains in adiposity, along with larger brains and smaller livers. By contrast, among males, EDTA had no detectable metabolic impacts whereas ampicillin exposure increased food-adjusted gain in body fat by 108% (±12%). CONCLUSIONS Our results highlight the potential for everyday doses of common preservatives to affect the gut microbiota and impact metabolism differently in males and females. Thus, despite their generally regarded as safe designation, preservatives could have unintended consequences for consumer health via their impact on the gut microbiota.
Collapse
Affiliation(s)
- Laura D Schell
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| | - Katia S Chadaideh
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Cary R Allen-Blevins
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Emily M Venable
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| |
Collapse
|
6
|
Connors E, Gallagher KL, Dutta A, Oliver M, Bowman JS. Suspended detrital particles support a distinct microbial ecosystem in Palmer Canyon, Antarctica, a coastal biological hotspot. Polar Biol 2025; 48:62. [PMID: 40206699 PMCID: PMC11976824 DOI: 10.1007/s00300-025-03380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
The coastal region of the Western Antarctic Peninsula is considered a biological hotspot with high levels of phytoplankton productivity and krill biomass. Recent in situ observations and particle modeling studies of Palmer Canyon, a deep bathymetric feature in the region, demonstrated the presence of a recirculating eddy that traps particles, retaining a distinct particle layer over the summer season. We applied metagenomic sequencing and Imaging Flow Cytobot (IFCB) analysis to characterize the microbial community in the particle layer. We sampled across the upper water column (< 200 m) along a transect to identify the locations of increased particle density, categorizing particles into either living cells or cellular detritus via IFCB. An indicator species analysis of community composition demonstrated the diatom Corethron and the bacteria Sulfitobacter were significantly highly abundant in samples with high levels of living cells, while the mixotrophic dinoflagellate Prorocentrum texanum and prokaryotes Methanomassiliicoccales and Fluviicola taffensis were significantly more abundant in samples with high detritus within the particle layer. From our metagenomic analysis, the significantly differentially abundant metabolic pathway genes in the particle layer of Palmer Canyon included pathways for anaerobic metabolism, such as methanogenesis and sulfate reduction. Overall, our results indicate that distinct microbial species and metabolic pathway genes are present in the retained particle layer of Palmer Canyon. Supplementary Information The online version contains supplementary material available at 10.1007/s00300-025-03380-y.
Collapse
Affiliation(s)
- Elizabeth Connors
- Scripps Institution of Oceanography, UC San Diego, 8622 Kennel Way, La Jolla, CA 92037 USA
- Scripps Polar Center, UC San Diego, La Jolla, CA USA
| | | | - Avishek Dutta
- Department of Geology, University of Georgia, Athens, GA USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC USA
| | - Matthew Oliver
- School of Marine Science and Policy, University of Delaware, Newark, DE USA
| | - Jeff S. Bowman
- Scripps Institution of Oceanography, UC San Diego, 8622 Kennel Way, La Jolla, CA 92037 USA
- Scripps Polar Center, UC San Diego, La Jolla, CA USA
| |
Collapse
|
7
|
Moshiri N. CompactTree: a lightweight header-only C++ library and Python wrapper for ultra-large phylogenetics. GIGABYTE 2025; 2025:gigabyte152. [PMID: 40110034 PMCID: PMC11921128 DOI: 10.46471/gigabyte.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The study of viral and bacterial species requires the ability to load and traverse ultra-large phylogenies with tens of millions of tips, but existing tree libraries struggle to scale to these sizes. We introduce CompactTree, a lightweight header-only C++ library with a user-friendly Python wrapper for traversing ultra-large trees that can be easily incorporated into other tools. We show that CompactTree is orders of magnitude faster and requires orders of magnitude less memory than existing tree packages. CompactTree is freely accessible as an open source project: https://github.com/niemasd/CompactTree.
Collapse
Affiliation(s)
- Niema Moshiri
- Department of Computer Science & Engineering, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Szada-Borzyszkowska A, Malicka M, Pogrzeba M. Diversity of arbuscular mycorrhiza fungi in roots of giant miscanthus (Miscanthus × giganteus) and prairie cordgrass (Spartina pectinata) cultivated on heavy metal-contaminated areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8943-8958. [PMID: 40095304 DOI: 10.1007/s11356-025-36133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
The use of indigenous AMF species from heavy metal contaminated areas can be a promising tool to support the phytostabilisation of such areas. The aim of the study was to evaluate the AMF species diversity in the roots of the perennial energy grasses Miscanthus × giganteus and Spartina pectinata grown in areas with different levels of heavy metal contamination with regard to the potential use of the dominant AMF species to support phytostabilisation of soils contaminated with Pb, Cd and Zn. Samples were taken from two sites with different levels of Pb, Cd and Zn contamination and from an uncontaminated site as a control. The AMF colonisation of the roots of Miscanthus × giganteus and Spartina pectinata was investigated. The composition of AMF species in the plant roots was determined by sequencing the D2 region of the LSU rDNA of Glomeromycota. Soil contamination had a significant effect on the composition of AMF communities in the roots. Diversispora and Claroideoglomus were the predominant genera in the communities in the heavily heavy metal contaminated area. The AMF communities at moderately contaminated and uncontaminated areas showed a similar structure, with Rhizoglomus as the dominant genus. Species such as Palaeospora spainiae, Rhizoglomus silesianum, Septoglomus sp., Septoglomus nigrum, Ambispora sp., Claroideoglomus etunicatum and Diversispora sp3. were identified exclusively in the roots of Miscanthus × giganteus and Spartina pectinata grown in contaminated areas. They could potentially be used to support phytostabilisation of areas contaminated with Pb, Cd and Zn, but further studies are needed.
Collapse
Affiliation(s)
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032, Katowice, Poland
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha St, 40-844, Katowice, Poland.
| |
Collapse
|
9
|
Prigozhin DM, Sutherland CA, Rangavajjhala S, Krasileva KV. Majority of the Highly Variable NLRs in Maize Share Genomic Location and Contain Additional Target-Binding Domains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:275-284. [PMID: 39013614 DOI: 10.1094/mpmi-05-24-0047-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nucleotide-binding, leucine-rich repeat (LRR) proteins (NLRs) are a major class of immune receptors in plants. NLRs include both conserved and rapidly evolving members; however, their evolutionary trajectory in crops remains understudied. Availability of crop pan-genomes enables analysis of the recent events in the evolution of this highly complex gene family within domesticated species. Here, we investigated the NLR complement of 26 nested association mapping (NAM) founder lines of maize. We found that maize has just four main subfamilies containing rapidly evolving highly variable NLR (hvNLR) receptors. Curiously, three of these phylogenetically distinct hvNLR lineages are located in adjacent clusters on chromosome 10. Members of the same hvNLR clade show variable expression and methylation across lines and tissues, which is consistent with their rapid evolution. By combining sequence diversity analysis and AlphaFold2 computational structure prediction, we predicted ligand-binding sites in the hvNLRs. We also observed novel insertion domains in the LRR regions of two hvNLR subfamilies that likely contribute to target recognition. To make this analysis accessible, we created NLRCladeFinder, a Google Colaboratory notebook, that accepts any newly identified NLR sequence, places it in the evolutionary context of the maize pan-NLRome, and provides an updated clade alignment, phylogenetic tree, and sequence diversity information for the gene of interest. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Sanjay Rangavajjhala
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
10
|
Meitil IK, de O.G. Silva C, Pedersen AG, Agger JW. Classification of polyphenol oxidases shows ancient gene duplication leading to two distinct enzyme types. iScience 2025; 28:111771. [PMID: 39925425 PMCID: PMC11803259 DOI: 10.1016/j.isci.2025.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Polyphenol oxidases (PPOs) are coupled binuclear copper proteins that catalyze the oxidation of phenols. New functions of PPOs are continuously being discovered, latest with several fungal o-methoxy phenolases, which are active on lignin-derived compounds. Here, we perform a comprehensive phylogenetic analysis of PPOs from a wide taxonomic origin and define 12 PPO groups. We find that a deep gene duplication has led to two distinct PPO types. Type 1 includes PPOs from chordates and molluscs, as well as the fungal o-methoxy phenolases. Type 2 includes plant PPOs, molluscan hemocyanins, and fungal tyrosinases. Most of the type 2 proteins have a C-terminal shielding domain and a thioether bond in the copper-binding site. We also find that most ascomycetes contain high numbers of the PPO type 1 that includes the o-methoxy phenolases, which may indicate a role in the lignin conversion strategy of these fungi.
Collapse
Affiliation(s)
- Ida K.S. Meitil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Caio de O.G. Silva
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders Gorm Pedersen
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jane W. Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Cross K, Beckman N, Jahnes B, Sabree ZL. Microbiome metabolic capacity is buffered against phylotype losses by functional redundancy. Appl Environ Microbiol 2025; 91:e0236824. [PMID: 39882875 PMCID: PMC11837509 DOI: 10.1128/aem.02368-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/01/2025] [Indexed: 01/31/2025] Open
Abstract
Many animals contain a species-rich and diverse gut microbiota that likely contributes to several host-supportive services that include diet processing and nutrient provisioning. Loss of microbiome taxa and their associated metabolic functions as result of perturbations may result in loss of microbiome-level services and reduction of metabolic capacity. If metabolic functions are shared by multiple taxa (i.e., functional redundancy), including deeply divergent lineages, then the impact of taxon/function losses may be dampened. We examined to what degree alterations in phylotype diversity impact microbiome-level metabolic capacity. Feeding two nutritionally imbalanced diets to omnivorous Periplaneta americana over 8 weeks reduced the diversity of their phylotype-rich gut microbiomes by ~25% based on 16S rRNA gene amplicon sequencing, yet PICRUSt2-inferred metabolic pathway richness was largely unaffected due to their being polyphyletic. We concluded that the nonlinearity between taxon and metabolic functional losses is due to microbiome members sharing many well-characterized metabolic functions, with lineages remaining after perturbation potentially being capable of preventing microbiome "service outages" due to functional redundancy. IMPORTANCE Diet can affect gut microbiome taxonomic composition and diversity, but its impacts on community-level functional capabilities are less clear. Host health and fitness are increasingly being linked to microbiome composition and further modeling of the relationship between microbiome taxonomic and metabolic functional capability is needed to inform these linkages. Invertebrate animal models like the omnivorous American cockroach are ideal for this inquiry because they are amenable to various diets and provide high replicates per treatment at low costs and thus enabling rigorous statistical analyses and hypothesis testing. Microbiome taxonomic composition is diet-labile and diversity was reduced after feeding on unbalanced diets (i.e., post-treatment), but the predicted functional capacities of the post-treatment microbiomes were less affected likely due to the resilience of several abundant taxa surviving the perturbation as well as many metabolic functions being shared by several taxa. These results suggest that both taxonomic and functional profiles should be considered when attempting to infer how perturbations are altering gut microbiome services and possible host outcomes.
Collapse
Affiliation(s)
- Kayla Cross
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | | | - Benjamin Jahnes
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| | - Zakee L. Sabree
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Pan XR, Shang-Guan PK, Li SH, Zhang CH, Lou JM, Guo L, Liu L, Lu Y. The influence of carbon dioxide on fermentation products, microbial community, and functional gene in food waste fermentation with uncontrol pH. ENVIRONMENTAL RESEARCH 2025; 267:120645. [PMID: 39694437 DOI: 10.1016/j.envres.2024.120645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Food waste is a major problem faced by human beings. Acidogenic fermentation is an effective and feasible technology for resource recovery from food waste. The mixture of volatile fatty acids (VFAs) hinders the utilization of fermentation products. In this study, we constructed fermentation reactors for food waste treatment. The operation period was separated to three stages: Stage 1 (from day 1-102), Stage 2 (from day 103-208), and Stage 3 (from day 209-304). CO2 was sparged to the reactors to promote the acetate enrichment at Stage 3. Bioinformatics analysis were performed to analyze the microbial community, genes, and pathways. Results showed that the highest average concentration of acetate was 6044 mg-COD/L (R1) and 5000 mg-COD/L (R2) at Stage 3, which was corresponded to the stage with highest acetate ratio (63% and 66% in R1 and R2). But the highest total VFAs concentration was 39424 mg-COD/L at Stage 2. Aeriscardovia belonging to Actinobacteria had an average relative abundance of 85.7% after CO2 sparging. Compared with Stage 1 and Stage 2, the number of down-regulated genes and pathways at Stage 3 were much higher than the number of up-regulated genes and pathways. The significant down-regulated genes were wcaB and ttrC, and the significant down-regulated pathways were pyruvate fermentation to acetone and acetyl-CoA fermentation to butanoate II pathway. This study demonstrated that CO2 can promote the acetate enrichment during food waste fermentation. The main mechanism was enriching acetate fermentation microorganisms and inhibiting the interfere genes and pathways.
Collapse
Affiliation(s)
- Xin-Rong Pan
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Pei-Ken Shang-Guan
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Shu-Hui Li
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Chu-Hao Zhang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Jia-Min Lou
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Liang Guo
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Lu Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| |
Collapse
|
13
|
Zhang S, Yang M, Xia X, Gu Q, Gao Q, Wang J, Liu S, Li X, Li Y, McDowell WH, Yang Z. Ecological Differentiation Among Nitrous Oxide Reducers Enhances Temperature Effects on Riverine N 2O Emissions. GLOBAL CHANGE BIOLOGY 2025; 31:e70096. [PMID: 39976081 DOI: 10.1111/gcb.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Nitrous oxide (N2O) reductase, the sole natural microbial sink for N2O, exists in two microbial clades: nosZI and nosZII. Although previous studies have explored inter-clade ecological differentiation, the intra-clade variations and their implications for N2O dynamics remain understudied. This study investigated both inter- and intra-clade ecological differentiation among N2O reducers, the drivers influencing these patterns, and their effects on N2O emissions across continental-scale river systems. The results showed that both nosZI and nosZII community turnovers were associated with similar key environmental factors, particularly total phosphorus (TP), but these variables explained a larger proportion of variation in the nosZI community. The influence of mean annual temperature (MAT) on community composition increased for more widespread N2O-reducing taxa. We identified distinct ecological clusters within each clade of N2O reducers and observed identical ecological clustering patterns across both clades. These clusters were primarily characterized by distinct MAT regimes, coarse sediment texture as well as low TP levels, and high abundance of N2O producers, with MAT-related clusters constituting predominant proportions. Intra-clade ecological differentiation was a crucial predictor of N2O flux and reduction efficiency. Although different ecological clusters showed varying or even contrasting associations with N2O dynamics, the shared ecological clusters across clades exhibited similar trends. Low-MAT clusters in both the nosZI and nosZII communities were negatively correlated with denitrification-normalized N2O flux and the N2O:(N2O + N2) ratio, whereas high-MAT clusters showed positive correlations. This contrasting pattern likely stems from low-MAT clusters being better adapted to eutrophic conditions and their more frequent co-occurrence with N2O-producing genes. These findings advance our understanding of the distribution and ecological functions of N2O reducers in natural ecosystems, suggesting that warming rivers may have decreased N2O reduction efficiency and thereby amplify temperature-driven emissions.
Collapse
Affiliation(s)
- Sibo Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Meijuan Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qinyuan Gu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qun Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Shandong, China
| | - Yingjie Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Chen M, Luo X, Xu S, Li L, Li J, Xie Z, Wang Q, Liao Y, Liu B, Liang W, Mo K, Song Q, Chen X, Lam TT, Yu G. Scalable method for exploring phylogenetic placement uncertainty with custom visualizations using treeio and ggtree. IMETA 2025; 4:e269. [PMID: 40027482 PMCID: PMC11865327 DOI: 10.1002/imt2.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025]
Abstract
In metabarcoding research, such as taxon identification, phylogenetic placement plays a critical role. However, many existing phylogenetic placement methods lack comprehensive features for downstream analysis and visualization. Visualization tools often ignore placement uncertainty, making it difficult to explore and interpret placement data effectively. To overcome these limitations, we introduce a scalable approach using treeio and ggtree for parsing and visualizing phylogenetic placement data. The treeio-ggtree method supports placement filtration, uncertainty exploration, and customized visualization. It enhances scalability for large analyses by enabling users to extract subtrees from the full reference tree, focusing on specific samples within a clade. Additionally, this approach provides a clearer representation of phylogenetic placement uncertainty by visualizing associated placement information on the final placement tree.
Collapse
Affiliation(s)
- Meijun Chen
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lin Li
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Junrui Li
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yufan Liao
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Bingdong Liu
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangdong Academy of SciencesGuangzhouChina
| | - Wenquan Liang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Ke Mo
- Department of General Surgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Bioinformation Center of BioInforCloud, YuanDong International Academy of Life SciencesHong Kong SARChina
| | - Qiong Song
- Bioinformation Center of BioInforCloud, YuanDong International Academy of Life SciencesHong Kong SARChina
| | - Xia Chen
- Central Laboratory of the Medical Research CenterThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Tommy Tsan‐Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public HealthThe University of Hong KongHong Kong SARChina
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology ParksHong Kong SARChina
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
15
|
Záhonová K, Kaur H, Furgason CC, Smirnova AV, Dunfield PF, Dacks JB. Comparative Analysis of Protist Communities in Oilsands Tailings Using Amplicon Sequencing and Metagenomics. Environ Microbiol 2025; 27:e70029. [PMID: 39797470 PMCID: PMC11724239 DOI: 10.1111/1462-2920.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/13/2025]
Abstract
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress. Oilsands-associated protist communities have mainly been evaluated using amplicon sequencing of the 18S rRNA V4 region; however, this barcode may overlook important protist groups. This study examined how community assessment methods between the V4 and V9 regions differ in representing protist diversity across four oilsands-associated environments. The V9 barcode identified more operational taxonomical units (OTUs) for Discoba, Metamonada and Amoebozoa compared with the V4. A comparative shotgun metagenomics approach revealed few eukaryotic contigs but did recover a complete Paramicrosporidia mitochondrial genome, only the second publicly available from microsporidians. Both V4 and V9 markers were informative for assessing community diversity in oilsands-associated environments and are most effective when combined for a comprehensive taxonomic estimate, particularly in anoxic environments.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
- Department of Parasitology, Faculty of ScienceCharles UniversityVestecCzech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Angela V. Smirnova
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Peter F. Dunfield
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
16
|
Fernando MATM, Fu J, Adamowicz SJ. Testing Phylogenetic Placement Accuracy of DNA Barcode Sequences on a Fish Backbone Tree: Implications of Backbone Tree Completeness and Species Representation. Ecol Evol 2025; 15:e70817. [PMID: 39781258 PMCID: PMC11706799 DOI: 10.1002/ece3.70817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Advancements in DNA sequencing technology have facilitated the generation of a vast number of DNA sequences, posing opportunities and challenges for constructing large phylogenetic trees. DNA barcode sequences, particularly COI, represent extensive orthologous sequences suitable for phylogenetic analysis. Phylogenetic placement analysis offers a promising method to integrate COI data into tree-building efforts, yet the impacts of backbone tree completeness and species composition remain under-explored. Using a dataset comprising 27 genes and 4520 species of bony fishes, we assessed the accuracy of phylogenetic inference by "placing" COI sequences onto backbone trees. The backbone tree completeness was varied by subsampling 20%, 40%, 60%, 80%, and 99% of the total species separately, followed by placement of those missing species based on their COI sequences using software packages EPA-ng and APPLES. We also compared the effects of biased, random, and stratified sampling strategies; the latter ensured the representation of all major lineages (Family) of bony fish. Our findings indicate that the placement accuracy is consistently high across all levels of backbone tree completeness, where 70%-78% missing species are correctly placed (by EPA-ng) in the same locations as the reference tree derived from the complete data. High completeness produces slightly high placement accuracy, although in many cases the differences are nonsignificant. For example, at the 99% completeness level with stratified sampling, EPA-ng placed 78% missing species correctly, and when only considering placement with high confidence (LWR > 0.9), the percentage is 87%. Additionally, stratified sampling outperforms random sampling in most cases, and biased sampling has the worst performance. The likelihood-based EPA-ng consistently provide higher accurate placements than the distance-based APPLES. In conclusion, COI-based placement analysis represents a potential route of using the available vast barcoding data for building large phylogenetic trees.
Collapse
Affiliation(s)
| | - Jinzhong Fu
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | - Sarah J. Adamowicz
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
17
|
Takaramoto S, Fainsod S, Nagata T, Rozenberg A, Béjà O, Inoue K. HulaCCR1, a pump-like cation channelrhodopsin discovered in a lake microbiome. J Mol Biol 2024; 436:168844. [PMID: 39476949 DOI: 10.1016/j.jmb.2024.168844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Channelrhodopsins are light-gated ion channels consisting of seven transmembrane helices and a retinal chromophore, which are used as popular optogenetic tools for modulating neuronal activity. Cation channelrhodopsins (CCRs), first recognized as the photoreceptors in the chlorophyte Chlamydomonas reinhardtii, have since been identified in diverse species of green algae, as well in other unicellular eukaryotes. The CCRs from non-chlorophyte species are commonly referred to as bacteriorhodopsin-like cation channelrhodopsins, or BCCRs, as most of them feature the three characteristic amino acid residues of the "DTD motif" in the third transmembrane helix (TM3 or helix C) matching the canonical DTD motif of the well-studied archaeal light-driven proton pump bacteriorhodopsin. Here, we report characterization of HulaCCR1, a novel BCCR identified through metatranscriptomic analysis of a unicellular eukaryotic community in Lake Hula, Israel. Interestingly, HulaCCR1 has an ETD motif in which the first residue of the canonical motif is substituted for glutamate. Electrophysiological measurements of the wild-type and a mutant with a DTD motif of HulaCCR1 suggest the critical role of the first glutamate in spectral tuning and channel gating. Additionally, HulaCCR1 exhibits long extensions at the N- and C-termini. Photocurrents recorded from a truncated variant without the signal peptide predicted at the N-terminus were diminished, and membrane localization of the truncated variant significantly decreased, indicating that the signal peptide is important for membrane trafficking of HulaCCR1. These characteristics of HulaCCR1 would be related to a new biological significance in the original unidentified species, distinct from those known for other BCCRs.
Collapse
Affiliation(s)
- Shunki Takaramoto
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shai Fainsod
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Andrey Rozenberg
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel; The Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
18
|
Lai KP, Boncan DAT, Qin X, Chan TF, Tse WKF. Roles and occurrences of microbiota in the osmoregulatory organs, gills and gut, in marine medaka upon hypotonic stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101285. [PMID: 39002350 DOI: 10.1016/j.cbd.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Gills and gut are the two primary osmoregulatory organs in fish. Recently, studies have expanded beyond the osmoregulatory mechanisms of these organs to explore the microbiota communities inhabiting them. It is now known that microbial communities in both organs shift in response to osmotic stress. However, there are limited studies identifying the major contributors and co-occurrence among these microbiota in both organs under seawater and freshwater transfer conditions. The current data mining report performed a bioinformatics analysis on two previous published datasets from our group, aiming to provide insights into host-bacteria relationships under osmotic stress. We divided the samples into four groups: control seawater gills (LSW); control seawater gut (TSW); freshwater transfer gills (LFW); and freshwater transfer gut (TFW). Our results showed that LSW had higher diversities, richness, and evenness compared to TSW. However, both the LFW and LSW did not show any significant differences after the freshwater transfer experiment. We further applied co-occurrence network analysis and, for the first time, reported on the interactions of taxa shaping the community structure in these two organs. Moreover, we identified enriched ectoine biosynthesis in seawater samples, suggesting its potential role in seawater environments. Increased mRNA expression levels of Na+/K+-atpase, and cftr, were observed in gills after 6 h of ectoine treatment. These findings provide a foundation for future studies on host-bacteria interactions under osmotic stress.
Collapse
Affiliation(s)
- Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Delbert Almerick T Boncan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
19
|
Li Z, Cupples AM. Impact of yeast extract and basal salts medium on 1,4-dioxane biodegradation rates and the microorganisms involved in carbon uptake from 1,4-dioxane. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125014. [PMID: 39322104 DOI: 10.1016/j.envpol.2024.125014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Conventional physical and chemical treatment technologies for 1,4-dioxane can be ineffective and consequently attention has focused on bioremediation. Towards this, the current research investigated the impact of basal salts medium (BSM) and yeast extract on 1,4-dioxane biodegradation rates in microcosms with different soil or sediment (agricultural soil, wetland sediment, sediment from an impacted site). Phylotypes responsible for carbon uptake from 1,4-dioxane were determined using stable isotope probing (SIP), both with and without BSM and yeast extract. Further, putative functional genes were investigated using 1) soluble di-iron monooxygenase (SDIMO) based amplicon sequencing, 2) qPCR targeting propane monooxygenase (large subunit, prmA) and 3) a predictive approach (PICRUSt2). The addition of BSM and yeast extract significantly enhanced 1,4-dioxane removal rates the agricultural soil and impacted site sediment microcosms. The phylotypes associated with carbon uptake varied across treatments and inocula. Gemmatimonas was important in the heavy SIP fractions of the wetland sediment microcosms. Unclassified Solirubacteraceae, Solirubrobacter, Pseudonocardia and RB4 were dominant in the heavy SIP fractions of the agricultural soil microcosms. The heavy SIP fractions of the impacted site microcosms were dominated by only two phylotypes, unclassified Burkholderiaceae and oc3299. SDIMO based amplicon sequencing detected three genes previously associated with 1,4-dioxane. The predicted functional gene analysis suggested the importance of propane monooxygenases associated with Solirubrobacter and Pseudonocardia. Overall, more microorganisms were involved in carbon uptake from 1,4-dioxane in both the wetland and agricultural soil microcosms compared to the impacted site sediment microcosms. Many of these microorganisms have not previously been associated with 1,4-dioxane removal.
Collapse
Affiliation(s)
- Zheng Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
20
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589671. [PMID: 38659831 PMCID: PMC11042308 DOI: 10.1101/2024.04.15.589671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
21
|
Srivastava A, Akhter Y, Verma D. A step-by-step procedure for analysing the 16S rRNA-based microbiome diversity using QIIME 2 and comprehensive PICRUSt2 illustration for functional prediction. Arch Microbiol 2024; 206:467. [PMID: 39540937 DOI: 10.1007/s00203-024-04177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Short-read sequencing technology has emerged as a preferred tool to analyse the bacterial composition of a niche by targeting hypervariable regions of the 16S rRNA gene. It targets the short hypervariable regions of the 16S rRNA gene and uncovers the taxonomic profile and their associated pathways. QIIME 2 is preferred and ready-to-use pipelines that perform stepwise analysis of massive short reads of 16S rRNA genes. This wrapper comprises several tools that include quality checking, denoising, taxonomic classification, alignment, and diversity analysis. However, it demands huge bioinformatic analysis practices which are quite challenging to many microbiologists working in the field of traditional microbiology. This paper, therefore, aims to make microbiologists familiar with the steps of computational analysis for processing 16S rRNA-based sequences. Here, we are presenting stepwise processing of NGS sequences using the QIIME 2 platform along with their analyses, which include installing QIIME 2, importing and processing data, quality checks, taxonomy assignments, and diversity analysis. Besides, the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) has also been illustrated to understand the correlation between metabolic and physiological footprints of the different species observed during microbiome analysis. Therefore, this paper can be used as a handy toolkit for those researchers who are less familiar with its associated bioinformatic analysis.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
22
|
Sun L, Shewa WA, Bossy K, Dagnew M. Simultaneous nitrification and denitrification framework for decentralized systems: Long-term study utilizing rope-type biofilm media under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177337. [PMID: 39500459 DOI: 10.1016/j.scitotenv.2024.177337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/12/2024]
Abstract
This research introduces a novel approach to achieve simultaneous nitrification-denitrification (SND) under dynamic load conditions using a cost-effective rope-type biofilm technology. The approach represents a significant advancement in wastewater treatment, particularly beneficial for remote and decentralized communities. The biofilm-based SND process was developed using a pilot-scale flow-through reactor by implementing upstream carbon management with constant-timer-based aeration control versus dynamic-sensor-based aeration control strategies. The findings indicate that adding an upstream anaerobic pretreatment process to handle excess carbon plays a substantial role in achieving a sustainable SND process under a dynamic load environment using simple aeration on-off control. The most optimal nitrification performance of 0.32 g NH3-N/m2/d (89 % removal) was achieved under a 1-hour ON/30-minute OFF aeration. The process sustained an average bulk liquid DO of 5.16 mg/L and 3.80 mg/L during the aeration ON and OFF periods, respectively, facilitating a 0.13 g N/m2/d (41 %) total inorganic nitrogen (TIN) removal, notably, implementing advanced aeration strategies driven by DO, NH3, and NO3 sensors enhanced TIN removal efficiency to 72 %. The nitrification performance remained comparable (89 % removal), resulting in 3 and 10 mg N/L effluent ammonia and TIN concentration, respectively. Additionally, utilizing two multivariate approaches accounting for 82 % and 64 % of the variance, this study discerned patterns in monitored variables and performance. Additionally, the analysis underscored the difference of bulk liquid DO levels in the biofilm versus suspended systems inhibiting the SND process. Distinct bacterial communities were established in biofilms under aerobic, anaerobic, and SND conditions, with the SND reactor showing a hierarchy of functional group and enzymes, enriched sequentially from heterotrophs to denitrifiers, nitrifiers, and anammox bacteria. These innovations underline the potential of tailored control strategies to enhance a passive biofilm-based SND process efficiency under dynamic conditions, providing scalable solutions for diverse target water quality demands in remote communities and decentralized systems.
Collapse
Affiliation(s)
- Lin Sun
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London N6A 5B9, ON, Canada
| | - Wudneh Ayele Shewa
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London N6A 5B9, ON, Canada; Bishop Water Inc., 203-16 Edward Street South, Arnprior K7S 3W4, ON, Canada
| | - Kevin Bossy
- Bishop Water Inc., 203-16 Edward Street South, Arnprior K7S 3W4, ON, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London N6A 5B9, ON, Canada.
| |
Collapse
|
23
|
Obiol A, del Campo J, de Vargas C, Mahé F, Massana R. How marine are Marine Stramenopiles (MAST)? A cross-system evaluation. FEMS Microbiol Ecol 2024; 100:fiae130. [PMID: 39375832 PMCID: PMC11523054 DOI: 10.1093/femsec/fiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
Marine Stramenopiles (MAST) were first described two decades ago through ribosomal RNA gene (rRNA gene) sequences from marine surveys of microbial eukaryotes. MAST comprise several independent lineages at the base of the Stramenopiles. Despite their prevalence in the ocean, the majority of MAST diversity remains uncultured. Previous studies, mainly in marine environments, have explored MAST's cell morphology, distribution, trophic strategies, and genomics using culturing-independent methods. In comparison, less is known about their presence outside marine habitats. Here, we analyse the extensive EukBank dataset to assess the extent to which MAST can be considered marine protists. Additionally, by incorporating newly available rRNA gene sequences, we update Stramenopiles phylogeny, identifying three novel MAST lineages. Our results indicate that MAST are primarily marine with notable exceptions within MAST-2 and MAST-12, where certain subclades are prevalent in freshwater and soil habitats. In the marine water column, only a few MAST species, particularly within clades -1, -3, -4, and -7, dominate and exhibit clear latitudinal distribution patterns. Overall, the massive sequencing dataset analysed in our study confirms and partially expands the previously described diversity of MASTs groups and underscores the predominantly marine nature of most of these uncultured lineages.
Collapse
Affiliation(s)
- Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Javier del Campo
- Biodiversity Program, Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Frédéric Mahé
- CIRAD, UMR PHIM, F-34398 Montpellier, France
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| |
Collapse
|
24
|
Tapaça IDPE, Obieze CC, Pereira GVDM, Fangueiro D, Coutinho J, Fraga I, Partelli FL, Ramalho JC, Marques I, Ribeiro-Barros AI. Irradiance level and elevation shape the soil microbiome communities of Coffea arabica L. ENVIRONMENTAL MICROBIOME 2024; 19:75. [PMID: 39407337 PMCID: PMC11481607 DOI: 10.1186/s40793-024-00619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The nexus plant-microbe-environment is essential to understand the ecosystem processes shaping plant health and fitness. Within this triangle, soils and associated microflora are among the key ecosystem's drivers, underpinning plant productivity and evolution. In this study, we conducted a comprehensive analysis (physicochemical properties, enzyme activities, and taxonomic diversity) of soils under the canopy projection of Coffea arabica trees along a gradient of elevation (600, 800, and 900 m) and shade (0, 50, 100%). RESULTS While shade had no influence on most parameters, altitude shaped the dynamics of microbial communities. Available phosphorus, soil organic carbon, and nitrate were significantly higher at 800 m, likely due to the higher activities of β-glucosidase and phosphatases at this altitude. Microbial biomass (carbon and nitrogen) and moisture were significantly higher at 600 and 900 m, which might be attributed to the abundance and richness of soil microorganisms. Indeed, metabarcoding analysis revealed a complex pattern of microbial consortia (bacteria, archaea, fungi) at the three altitudes, with the lowest index of richness recorded at 800 m. The highest number of Amplicon Sequence Variants was observed in bacteria, whose functional analysis revealed distinct metabolic adaptations across different altitudes. At 900 m, the main functional attributes favored the responses to environmental stimuli and microbial interactions; at 800 m, the predominant metabolic pathways were related to organic matter, fermentation, and bioremediation; and at the lower 600 m, the pathways shifted towards the breakdown of plant-derived compounds (e.g. geraniol, limonene, and pinene degradation). CONCLUSION Overall, the results indicate a higher effectiveness of the microbial consortium at 800 m, which might result in better nutrient cycling. The study highlights the importance of canopy shade species and elevation for the composition of microbial consortia in C. arabica, unveiling ecological functions beyond plant health, with implications for bio-based solutions and biotechnology.
Collapse
Affiliation(s)
- Inocência da Piedade E Tapaça
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal
- Mozambique Agricultural Research Institute (IIAM), Avenida das FPLM 2698, P.O. Box 3658, Mavalane B, Maputo, Mozambique
| | - Chinedu C Obieze
- Centre for Forest Research, Institute of Integrative Biology and Systems, Universite Laval, Québec, QC, G1V0A6, Canada
| | - Gilberto V de Melo Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, 81531-980, Brazil
| | - David Fangueiro
- Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal
| | - João Coutinho
- Chemistry Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, 5001-801, Portugal
| | - Irene Fraga
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, 5001-801, Portugal
| | - Fábio L Partelli
- Department Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rodovia BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateus, ES, 29932- 540, Brazil
| | - José C Ramalho
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal
- Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Unidade de Geobiociências, Universidade NOVA de Lisboa (UNL), Caparica, Monte de Caparica, 2829-516, Portugal
| | - Isabel Marques
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal.
| | - Ana I Ribeiro-Barros
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, 1349-017, Portugal.
- Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Unidade de Geobiociências, Universidade NOVA de Lisboa (UNL), Caparica, Monte de Caparica, 2829-516, Portugal.
| |
Collapse
|
25
|
Chakraborty N, Hoke A, Campbell R, Holmes-Hampton G, Kumar VP, Moyler C, Gautam A, Hammamieh R, Ghosh SP. Ionizing Radiation Dose Differentially Affects the Host-Microbe Relationship over Time. Microorganisms 2024; 12:1995. [PMID: 39458305 PMCID: PMC11509422 DOI: 10.3390/microorganisms12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microorganisms that colonize in or on a host play significant roles in regulating the host's immunological fitness and bioenergy production, thus controlling the host's stress responses. Radiation elicits a pro-inflammatory and bioenergy-expensive state, which could influence the gut microbial compositions and, therefore, the host-microbe bidirectional relationship. To test this hypothesis, young adult mice were exposed to total body irradiation (TBI) at doses of 9.5 Gy and 11 Gy, respectively. The irradiated mice were euthanized on days 1, 3, and 9 post TBI, and their descending colon contents (DCCs) were collected. The 16S ribosomal RNAs from the DCCs were screened to find the differentially enriched bacterial taxa due to TBI. Subsequently, these data were analyzed to identify the metagenome-specific biofunctions. The bacterial community of the DCCs showed increased levels of diversity as time progressed following TBI. The abundance profile was the most divergent at day 9 post 11 Gy TBI. For instance, an anti-inflammatory and energy-harvesting bacterium, namely, Firmicutes, became highly abundant and co-expressed in the DCC with pro-inflammatory Deferribacteres at day 9 post 11 Gy TBI. A systems evaluation found a diverging trend in the regulation profiles of the functional networks that were linked to the bacteria and metabolites of the DCCs, respectively. Additionally, the network clusters associated with lipid metabolism and bioenergy synthesis were found to be activated in the DCC bacteria but inhibited in the metabolite space at day 9 post 11 Gy. Taking these results together, the present analysis indicated a disrupted mouse-bacteria symbiotic relationship as time progressed after lethal irradiation. This information can help develop precise interventions to ameliorate the symptoms triggered by TBI.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Ross Campbell
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| | - Candace Moyler
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| |
Collapse
|
26
|
Szada-Borzyszkowska A, Krzyżak J, Rusinowski S, Magurno F, Pogrzeba M. Inoculation with Arbuscular Mycorrhizal Fungi Supports the Uptake of Macronutrients and Promotes the Growth of Festuca ovina L. and Trifolium medium L., a Candidate Species for Green Urban Infrastructure. PLANTS (BASEL, SWITZERLAND) 2024; 13:2620. [PMID: 39339595 PMCID: PMC11434852 DOI: 10.3390/plants13182620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Green roofs and walls play an important role in promoting biodiversity, reducing the urban heat island effect and providing ecosystem services in urban areas. However, the conditions on green walls/roofs (low nutrient and organic matter content, drought, high temperatures) are often unfavorable for plant growth. Arbuscular mycorrhizal fungi (AMF) can improve the growth and development of plants under stress conditions as they can increase nutrient and water uptake. In a 6-month pot experiment, we investigated the effect of AMF inoculation on the growth and NPK uptake of Festuca ovina L. and Trifolium medium L., which are used for green roofs and walls. Two variants of mycorrhizal inoculation were used in the experiment: a commercial mycorrhizal inoculant AM Symbivit (Symbiom Ltd., Lanskroun, Czech Republic) and a mycorrhizal inoculant collected from calcareous grassland in the Silesia region (Poland). Funneliformis mosseae was the most abundant species in the roots of F. ovina and T. medium with IM inoculum. In the CM variant, a dominance of F. mosseae was observed in the roots of F. ovina. In contrast, Archaeosporaceae sp. node 317 dominated in the roots of T. medium. Both inoculations had a positive effect on the increase in dry weight of the shoots of T. medium, but only the commercial inoculum had a positive effect on the growth of F. ovina. Both inoculations improved the P uptake by the roots and the P and K uptake into the shoots of T. medium. In addition, both inoculations improved the K uptake by the roots of F. ovina and the N, P and K uptake into the shoots. In conclusion, both AMF communities included in the inoculations had a positive effect on plant growth and nutrient uptake, but the effect depends on the plant and the mycorrhizal fungus species.
Collapse
Affiliation(s)
| | - Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
- CommLED Solution Sp. z.o.o., 149 Tarnogórska St., 44-100 Gliwice, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St., 40-032 Katowice, Poland
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
| |
Collapse
|
27
|
Anderson CJ, Boeckaerts L, Chin P, Cardas JB, Xie W, Gonçalves A, Blancke G, Benson S, Rogatti S, Simpson MS, Davey A, Choi SM, Desmet S, Bushman SD, Goeminne G, Vandenabeele P, Desai MS, Vereecke L, Ravichandran KS. Metabolite-based inter-kingdom communication controls intestinal tissue recovery following chemotherapeutic injury. Cell Host Microbe 2024; 32:1469-1487.e9. [PMID: 39197455 DOI: 10.1016/j.chom.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Cytotoxic chemotherapies have devastating side effects, particularly within the gastrointestinal tract. Gastrointestinal toxicity includes the death and damage of the epithelium and an imbalance in the intestinal microbiota, otherwise known as dysbiosis. Whether dysbiosis is a direct contributor to tissue toxicity is a key area of focus. Here, from both mammalian and bacterial perspectives, we uncover an intestinal epithelial cell death-Enterobacteriaceae signaling axis that fuels dysbiosis. Specifically, our data demonstrate that chemotherapy-induced epithelial cell apoptosis and the purine-containing metabolites released from dying cells drive the inter-kingdom transcriptional re-wiring of the Enterobacteriaceae, including fundamental shifts in bacterial respiration and promotion of purine utilization-dependent expansion, which in turn delays the recovery of the intestinal tract. Inhibition of epithelial cell death or restriction of the Enterobacteriaceae to homeostatic levels reverses dysbiosis and improves intestinal recovery. These findings suggest that supportive therapies that maintain homeostatic levels of Enterobacteriaceae may be useful in resolving intestinal disease.
Collapse
Affiliation(s)
- Christopher J Anderson
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Laura Boeckaerts
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscilla Chin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Javier Burgoa Cardas
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wei Xie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB BioImaging Core, Ghent, Belgium
| | - Gillian Blancke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Benson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sebastian Rogatti
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mariska S Simpson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna Davey
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Summer D Bushman
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | | | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Barron M, Fernando DG, Atkinson SN, Kirby J, Kindel TL. Sleeve Gastrectomy Protects Against Hypertension in Rats due to Changes in the Gut Microbiome. J Surg Res 2024; 301:118-126. [PMID: 38925098 PMCID: PMC12034232 DOI: 10.1016/j.jss.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Sleeve gastrectomy (SG), results in improvement in hypertension. We have previously published that rodent SG improves hypertension independent of weight loss associated with unique shifts in the gut microbiome. We tested if the gut microbiome directly improves blood pressure by performing fecal material transfer (FMT) from post-SG rats to surgery-naïve animals. METHODS We performed SG or Sham surgery in male, Zucker rats (n = 6-7) with obesity. Stool was collected postop from surgical donors for treatment of recipient rats. Three nonsurgical groups received daily, oral consumption of SG stool, sham stool, or vehicle alone (Nutella) for 10 wk (n = 7-8). FMT treatment was assessed for effects on body weight, food intake, oral glucose tolerance, and blood pressure. Genomic deoxyribonucleic acid of stool from donor and recipient groups were sequenced by 16S ribosomal ribonucleic acid and analyzed for diversity, abundance, and importance. RESULTS Ten weeks of SG-FMT treatment significantly lowered systolic blood pressures in surgery-naïve, recipient rats compared to vehicle treatment alone (126.8 ± 13.3 mmHg versus 151.8 ± 12.2 mmHg, P = 0.001). SG-FMT treatment also significantly altered beta diversity metrics compared to Sham-FMT and vehicle treatment. In random forest analysis, amplicon sequence variant level significantly predicted FMT group, P = 0.01. CONCLUSIONS We have found a direct link between gut microbial changes after SG and regulation of blood pressure. Future mechanistic studies are required to learn what specific gut microbial changes are required to induce improvements in obesity-associated hypertension and translation to clinical, metabolic surgery.
Collapse
Affiliation(s)
| | | | - Samantha N Atkinson
- Department of Microbiology and Immunology, Milwaukee, Wisconsin; Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John Kirby
- Department of Microbiology and Immunology, Milwaukee, Wisconsin
| | | |
Collapse
|
29
|
Pipes L, Nielsen R. A rapid phylogeny-based method for accurate community profiling of large-scale metabarcoding datasets. eLife 2024; 13:e85794. [PMID: 39145536 PMCID: PMC11377034 DOI: 10.7554/elife.85794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/14/2024] [Indexed: 08/16/2024] Open
Abstract
Environmental DNA (eDNA) is becoming an increasingly important tool in diverse scientific fields from ecological biomonitoring to wastewater surveillance of viruses. The fundamental challenge in eDNA analyses has been the bioinformatical assignment of reads to taxonomic groups. It has long been known that full probabilistic methods for phylogenetic assignment are preferable, but unfortunately, such methods are computationally intensive and are typically inapplicable to modern next-generation sequencing data. We present a fast approximate likelihood method for phylogenetic assignment of DNA sequences. Applying the new method to several mock communities and simulated datasets, we show that it identifies more reads at both high and low taxonomic levels more accurately than other leading methods. The advantage of the method is particularly apparent in the presence of polymorphisms and/or sequencing errors and when the true species is not represented in the reference database.
Collapse
Affiliation(s)
- Lenore Pipes
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Czech L, Spence JP, Expósito-Alonso M. grenedalf: population genetic statistics for the next generation of pool sequencing. Bioinformatics 2024; 40:btae508. [PMID: 39185959 PMCID: PMC11357794 DOI: 10.1093/bioinformatics/btae508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024] Open
Abstract
SUMMARY Pool sequencing is an efficient method for capturing genome-wide allele frequencies from multiple individuals, with broad applications such as studying adaptation in Evolve-and-Resequence experiments, monitoring of genetic diversity in wild populations, and genotype-to-phenotype mapping. Here, we present grenedalf, a command line tool written in C++ that implements common population genetic statistics such as θ, Tajima's D, and FST for Pool sequencing. It is orders of magnitude faster than current tools, and is focused on providing usability and scalability, while also offering a plethora of input file formats and convenience options. AVAILABILITY AND IMPLEMENTATION grenedalf is published under the GPL-3, and freely available at github.com/lczech/grenedalf.
Collapse
Affiliation(s)
- Lucas Czech
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, United States
- Section for GeoGenetics, Globe Institute, University of Copenhagen, 1350 København, Denmark
| | - Jeffrey P Spence
- Department of Genetics, Stanford University, Stanford, CA 94305, United States
| | - Moisés Expósito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, United States
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, United States
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
31
|
Connors E, Lebreton L, Bowman JS, Royer S. Changes in microbial community structure of bio-fouled polyolefins over a year-long seawater incubation in Hawai'i. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13283. [PMID: 39075734 PMCID: PMC11286543 DOI: 10.1111/1758-2229.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/30/2024] [Indexed: 07/31/2024]
Abstract
Plastic waste, especially positively buoyant polymers known as polyolefins, are a major component of floating debris in the marine environment. While plastic colonisation by marine microbes is well documented from environmental samples, the succession of marine microbial community structure over longer time scales (> > 1 month) and across different types and shapes of plastic debris is less certain. We analysed 16S rRNA and 18S rRNA amplicon gene sequences from biofilms on polyolefin debris floating in a flow-through seawater tank in Hawai'i to assess differences in microbial succession across the plastic types of polypropylene (PP) and both high-density polyethylene (HDPE) and low-density polyethylene (LDPE) made of different plastic shapes (rod, film and cube) under the same environmental conditions for 1 year. Regardless of type or shape, all plastic debris were dominated by the eukaryotic diatom Nitzschia, and only plastic type was significantly important for bacterial community structure over time (p = 0.005). PE plastics had higher differential abundance when compared to PP for 20 bacterial and eight eukaryotic taxa, including the known plastic degrading bacterial taxon Hyphomonas (p = 0.01). Results from our study provide empirical evidence that plastic type may be more important for bacterial than eukaryotic microbial community succession on polyolefin pollution under similar conditions.
Collapse
Affiliation(s)
| | - Laurent Lebreton
- Center for Marine Debris ResearchHawaii Pacific UniversityWaimānaloHawaiiUSA
| | - Jeff S. Bowman
- Scripps Institution of OceanographyLa JollaCaliforniaUSA
| | - Sarah‐Jeanne Royer
- Center for Marine Debris ResearchHawaii Pacific UniversityWaimānaloHawaiiUSA
- The Ocean Cleanup FoundationRotterdamThe Netherlands
| |
Collapse
|
32
|
Roberts WR, Siepielski AM, Alverson AJ. Diatom abundance in the polar oceans is predicted by genome size. PLoS Biol 2024; 22:e3002733. [PMID: 39116044 PMCID: PMC11309476 DOI: 10.1371/journal.pbio.3002733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
A principal goal in ecology is to identify the determinants of species abundances in nature. Body size has emerged as a fundamental and repeatable predictor of abundance, with smaller organisms occurring in greater numbers than larger ones. A biogeographic component, known as Bergmann's rule, describes the preponderance, across taxonomic groups, of larger-bodied organisms in colder areas. Although undeniably important, the extent to which body size is the key trait underlying these patterns is unclear. We explored these questions in diatoms, unicellular algae of global importance for their roles in carbon fixation and energy flow through marine food webs. Using a phylogenomic dataset from a single lineage with worldwide distribution, we found that body size (cell volume) was strongly correlated with genome size, which varied by 50-fold across species and was driven by differences in the amount of repetitive DNA. However, directional models identified temperature and genome size, not cell size, as having the greatest influence on maximum population growth rate. A global metabarcoding dataset further identified genome size as a strong predictor of species abundance in the ocean, but only in colder regions at high and low latitudes where diatoms with large genomes dominated, a pattern consistent with Bergmann's rule. Although species abundances are shaped by myriad interacting abiotic and biotic factors, genome size alone was a remarkably strong predictor of abundance. Taken together, these results highlight the cascading cellular and ecological consequences of macroevolutionary changes in an emergent trait, genome size, one of the most fundamental and irreducible properties of an organism.
Collapse
Affiliation(s)
- Wade R. Roberts
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Adam M. Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Andrew J. Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
33
|
Chang YT, Huang WT, Wu PL, Kumar R, Wang HC, Lu HP. Low salinity stress increases the risk of Vibrio parahaemolyticus infection and gut microbiota dysbiosis in Pacific white shrimp. BMC Microbiol 2024; 24:275. [PMID: 39048954 PMCID: PMC11271031 DOI: 10.1186/s12866-024-03407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Extreme precipitation events often cause sudden drops in salinity, leading to disease outbreaks in shrimp aquaculture. Evidence suggests that environmental stress increases animal host susceptibility to pathogens. However, the mechanisms of how low salinity stress induces disease susceptibility remain poorly understood. METHODS We investigated the acute response of shrimp gut microbiota exposed to pathogens under low salinity stress. For comparison, shrimp were exposed to Vibrio infection under two salinity conditions: optimal salinity (Control group) and low salinity stress (Stress group). High throughput 16S rRNA sequencing and real-time PCR were employed to characterize the shrimp gut microbiota and quantify the severity level of Vibrio infection. RESULTS The results showed that low salinity stress increased Vibrio infection levels, reduced gut microbiota species richness, and perturbed microbial functions in the shrimp gut, leading to significant changes in lipopolysaccharide biosynthesis that promoted the growth of pathogens. Gut microbiota of the bacterial genera Candidatus Bacilliplasma, Cellvibrio, and Photobacterium were identified as biomarkers of the Stress group. The functions of the gut microbiota in the Stress group were primarily associated with cellular processes and the metabolism of lipid-related compounds. CONCLUSIONS Our findings reveal how environmental stress, particularly low salinity, increases shrimp susceptibility to Vibrio infection by affecting the gut microbiota. This highlights the importance of avoiding low salinity stress and promoting gut microbiota resilience to maintain the health of shrimp.
Collapse
Affiliation(s)
- Yi-Ting Chang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ting Huang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Lun Wu
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Pei Lu
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Naguib D, Gantois N, Desramaut J, Dominguez RG, Arafat N, Atwa SM, Even G, Devos DP, Certad G, Chabé M, Viscogliosi E. Large-Scale Molecular Epidemiological Survey of Blastocystis sp. among Herbivores in Egypt and Assessment of Potential Zoonotic Risk. Microorganisms 2024; 12:1286. [PMID: 39065057 PMCID: PMC11278737 DOI: 10.3390/microorganisms12071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Given the proven zoonotic potential of the intestinal protozoan Blastocystis sp., a fast-growing number of surveys are being conducted to identify potential animal reservoirs for transmission of the parasite. Nevertheless, few epidemiological studies have been conducted on farmed animals in Egypt. Therefore, a total of 1089 fecal samples were collected from herbivores (sheep, goats, camels, horses, and rabbits) in six Egyptian governorates (Dakahlia, Gharbia, Kafr El Sheikh, Giza, Aswan, and Sharqia). Samples were screened for the presence of Blastocystis sp. by real-time PCR followed by sequencing of positive PCR products and phylogenetic analysis for subtyping of the isolates. Overall, Blastocystis sp. was identified in 37.6% of the samples, with significant differences in frequency between animal groups (sheep, 65.5%; camels, 62.2%; goats, 36.0%; rabbits, 10.1%; horses, 3.3%). Mixed infections were reported in 35.7% of the Blastocystis sp.-positive samples. A wide range of subtypes (STs) with varying frequency were identified from single infections in ruminants including sheep (ST1-ST3, ST5, ST10, ST14, ST21, ST24, ST26, and ST40), goats (ST1, ST3, ST5, ST10, ST26, ST40, ST43, and ST44), and camels (ST3, ST10, ST21, ST24-ST26, ST30, and ST44). Most of them overlapped across these animal groups, highlighting their adaptation to ruminant hosts. In other herbivores, only three and two STs were evidenced in rabbits (ST1-ST3) and horses (ST3 and ST44), respectively. The greater occurrence and wider genetic diversity of parasite isolates among ruminants, in contrast to other herbivores, strongly suggested that dietary habits likely played a significant role in influencing both the colonization rates of Blastocystis sp. and ST preference. Of all the isolates subtyped herein, 66.3% were reported as potentially zoonotic, emphasizing the significant role these animal groups may play in transmitting the parasite to humans. These findings also expand our knowledge on the prevalence, genetic diversity, host specificity, and zoonotic potential of Blastocystis sp. in herbivores.
Collapse
Affiliation(s)
- Doaa Naguib
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
| | - Jeremy Desramaut
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
| | - Ruben Garcia Dominguez
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Samar Magdy Atwa
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid P.O. Box 3030, Jordan
| | - Gaël Even
- GD Biotech—Gènes Diffusion, F-59000 Lille, France;
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Damien Paul Devos
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Gabriela Certad
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, F-59000 Lille, France
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (D.N.); (N.G.); (J.D.); (D.P.D.); (G.C.); (M.C.)
| |
Collapse
|
35
|
Seyoum Y, Greffeuille V, Kouadio DKD, Kuong K, Turpin W, M'Rabt R, Chochois V, Fortin S, Perignon M, Fiorentino M, Berger J, Burja K, Ponce MC, Chamnan C, Wieringa FT, Humblot C. Faecal microbiota of schoolchildren is associated with nutritional status and markers of inflammation: a double-blinded cluster-randomized controlled trial using multi-micronutrient fortified rice. Nat Commun 2024; 15:5204. [PMID: 38890302 PMCID: PMC11189458 DOI: 10.1038/s41467-024-49093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Faecal microbiota plays a critical role in human health, but its relationship with nutritional status among schoolchildren remains under-explored. Here, in a double-blinded cluster-randomized controlled trial on 380 Cambodian schoolchildren, we characterize the impact of six months consumption of two types of rice fortified with different levels of vitamins and minerals on pre-specified outcomes. We investigate the association between the faecal microbiota (16SrRNA sequencing) and age, sex, nutritional status (underweight, stunting), micronutrient status (iron, zinc and vitamin A deficiencies, anaemia, iron deficient anaemia, hemoglobinopathy), inflammation (systemic, gut), and parasitic infection. We show that the faecal microbiota is characterised by a surprisingly high proportion of Lactobacillaceae. We discover that deficiencies in specific micronutrients, such as iron and vitamin A, correlate with particular microbiota profiles, whereas zinc deficiency shows no such association. The nutritional intervention with the two rice treatments impacts both the composition and functions predicted from compositional analysis in different ways. (ClinicalTrials.gov (Identifier: NCT01706419)).
Collapse
Affiliation(s)
- Yohannes Seyoum
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Valérie Greffeuille
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Dorgeles Kouakou Dje Kouadio
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Khov Kuong
- Department of Fisheries Post-Harvest Technologies and Quality Control, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Williams Turpin
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Gastroenterology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rachida M'Rabt
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Vincent Chochois
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Sonia Fortin
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Marlène Perignon
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- MoISA, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Marion Fiorentino
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- SESSTIM, INSERM, IRD, Aix Marseille Univ, Marseille, France
| | - Jacques Berger
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Kurt Burja
- United Nations World Food Programme, Phnom Penh, Cambodia
| | - Maiza Campos Ponce
- Section Infectious Diseases, department of Health Sciences, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Chhoun Chamnan
- Department of Fisheries Post-Harvest Technologies and Quality Control, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Frank T Wieringa
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Christèle Humblot
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France.
| |
Collapse
|
36
|
Zhao H, Meng L, Hikida H, Ogata H. Eukaryotic genomic data uncover an extensive host range of mirusviruses. Curr Biol 2024; 34:2633-2643.e3. [PMID: 38806056 DOI: 10.1016/j.cub.2024.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
A recent marine metagenomic study has revealed the existence of a novel group of viruses designated mirusviruses, which are proposed to form an evolutionary link between two realms of double-stranded DNA viruses, Varidnaviria and Duplodnaviria. Metagenomic data suggest that mirusviruses infect microeukaryotes in the photic layer of the ocean, but their host range remains largely unknown. In this study, we investigated the presence of mirusvirus marker genes in 1,901 publicly available eukaryotic genome assemblies, mainly derived from unicellular eukaryotes, to identify potential hosts of mirusviruses. Mirusvirus marker sequences were identified in 915 assemblies spanning 227 genera across eight supergroups of eukaryotes. The habitats of the putative mirusvirus hosts included not only marine but also other diverse environments. Among the major capsid protein (MCP) signals in the genome assemblies, we identified 85 sequences that showed high sequence and structural similarities to reference mirusvirus MCPs. A phylogenetic analysis of these sequences revealed their distant evolutionary relationships with the seven previously reported mirusvirus clades. Most of the scaffolds with these MCP sequences encoded multiple mirusvirus homologs, suggesting that mirusviral infection contributes to the alteration of the host genome. We also identified three circular mirusviral genomes within the genomic data of the oil-producing thraustochytrid Schizochytrium sp. and the endolithic green alga Ostreobium quekettii. Overall, mirusviruses probably infect a wide spectrum of eukaryotes and are more diverse than previously reported.
Collapse
Affiliation(s)
- Hongda Zhao
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Hikida
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
37
|
Tamang JP, Kharnaior P, Halami PM. Lactic acid bacteria in some Indian fermented foods and their predictive functional profiles. Braz J Microbiol 2024; 55:1745-1751. [PMID: 38337126 PMCID: PMC11153396 DOI: 10.1007/s42770-024-01251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
Lactic acid bacteria (LAB) were isolated from naturally fermented foods of India, viz., sidra, a dried fish product; kinema, a naturally fermented sticky soybean food; and dahi, a naturally fermented milk product. Five strains of LAB, based on 16S rRNA gene sequence, were identified: Lactococcus lactis FS2 (from sidra), Lc. lactis C2D (dahi), Lc. lactis SP2C4 (kinema), Lactiplantibacillus plantarum DHCU70 (=Lactobacillus plantarum) (from dahi), and Lactiplantibacillus plantarum KP1 (kinema). The PICRUSt2 software, a bioinformatic tool, was applied to infer the raw sequences obtained from LAB strains mapped against KEGG database for predictive functionality. Functional features of LAB strains showed genes associated with metabolism (36.47%), environmental information processing (31.42%), genetic information processing (9.83%), and the unclassified (22.28%). KEGG database also showed abundant genes related to predictive membrane transport (29.25%) and carbohydrate metabolism (11.91%). This study may help in understanding the health-promoting benefits of the culturable LAB strains in fermented foods.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Science Building, Dara Goan, Tadong, Gangtok, Sikkim, 737102, India.
| | - Pynhunlang Kharnaior
- Department of Microbiology, School of Life Sciences, Sikkim University, Science Building, Dara Goan, Tadong, Gangtok, Sikkim, 737102, India
| | - Prakash M Halami
- CSIR-Central Food Technological Research Institute, Microbiology and Fermentation Technology, Mysuru, Karnataka, 570020, India
| |
Collapse
|
38
|
Stojan I, Šantić D, Villena-Alemany C, Trumbić Ž, Matić F, Vrdoljak Tomaš A, Lepen Pleić I, Piwosz K, Kušpilić G, Ninčević Gladan Ž, Šestanović S, Šolić M. Ecology of aerobic anoxygenic phototrophs on a fine-scale taxonomic resolution in Adriatic Sea unravelled by unsupervised neural network. ENVIRONMENTAL MICROBIOME 2024; 19:28. [PMID: 38685092 PMCID: PMC11059731 DOI: 10.1186/s40793-024-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphyletic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine environments, relatively little is still known about their community structure and ecology at fine-scale taxonomic resolution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composition in the Adriatic Sea. RESULTS Analysis was based on pufM gene metabarcoding and quantitative FISH-IR approach with the use of artificial neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abundances in spring 2.136 ± 0.081 × 104 cells mL-1, minimum in summer 0.86 × 104 cells mL-1), FISH-IR groups (Roseobacter clade prevalent in autumn, other Alpha- and Gammaproteobacteria in summer) and pufM sequencing data agglomerated at genus-level. FISH-IR results revealed heterogeneity with the highest average relative contribution of AAPs assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria (31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bacteria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abiotic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, and orthophosphate concentration). A type of neural network, neural gas analysis at order-, genus- and ASV-level, resulted in five distinct best matching units (representing particular environments) and revealed that high diversity was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton. CONCLUSION This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adriatic Sea on a trophic gradient during a year-round period. This study is also one of the first reports of their genus-level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, paving the way for further research of substantial contribution of this important bacterial functional group to marine ecosystems.
Collapse
Affiliation(s)
- Iva Stojan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Danijela Šantić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia.
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Frano Matić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Ana Vrdoljak Tomaš
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Kasia Piwosz
- Department of Fisheries, Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Grozdan Kušpilić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | | | - Stefanija Šestanović
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Mladen Šolić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| |
Collapse
|
39
|
Baltazar-Díaz TA, Andrade-Villanueva JF, Sánchez-Álvarez P, Amador-Lara F, Holguín-Aguirre T, Sánchez-Reyes K, Álvarez-Zavala M, López-Roa RI, Bueno-Topete MR, González-Hernández LA. A Two-Faced Gut Microbiome: Butyrogenic and Proinflammatory Bacteria Predominate in the Intestinal Milieu of People Living with HIV from Western Mexico. Int J Mol Sci 2024; 25:4830. [PMID: 38732048 PMCID: PMC11084381 DOI: 10.3390/ijms25094830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
HIV infection results in marked alterations in the gut microbiota (GM), such as the loss of microbial diversity and different taxonomic and metabolic profiles. Despite antiretroviral therapy (ART) partially ablating gastrointestinal alterations, the taxonomic profile after successful new ART has shown wide variations. Our objective was to determine the GM composition and functions in people living with HIV (PLWHIV) under ART in comparison to seronegative controls (SC). Fecal samples from 21 subjects (treated with integrase strand-transfer inhibitors, INSTIs) and 18 SC were included. We employed 16S rRNA amplicon sequencing, coupled with PICRUSt2 and fecal short-chain fatty acid (SCFA) quantification by gas chromatography. The INSTI group showed a decreased α-diversity (p < 0.001) compared to the SC group, at the expense of increased amounts of Pseudomonadota (Proteobacteria), Segatella copri, Lactobacillus, and Gram-negative bacteria. Concurrently, we observed an enrichment in Megasphaera and Butyricicoccus, both SCFA-producing bacteria, and significant elevations in fecal butyrate in this group (p < 0.001). Interestingly, gut dysbiosis in PLWHIV was characterized by a proinflammatory environment orchestrated by Pseudomonadota and elevated levels of butyrate associated with bacterial metabolic pathways, as well as the evident presence of butyrogenic bacteria. The role of this unique GM in PLWHIV should be evaluated, as well as the use of butyrate-based supplements and ART regimens that contain succinate, such as tenofovir disoproxil succinate. This mixed profile is described for the first time in PLWHIV from Mexico.
Collapse
Affiliation(s)
- Tonatiuh Abimael Baltazar-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Jaime F. Andrade-Villanueva
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Paulina Sánchez-Álvarez
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Fernando Amador-Lara
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Tania Holguín-Aguirre
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| | - Karina Sánchez-Reyes
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Monserrat Álvarez-Zavala
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
| | - Rocío Ivette López-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1421, Guadalajara 44430, Mexico;
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Luz Alicia González-Hernández
- Instituto de Investigación en Inmunodeficiencias y VIH, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital 278, Guadalajara 44280, Mexico; (J.F.A.-V.); (K.S.-R.); (M.Á.-Z.)
- Unidad de VIH, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Guadalajara 44280, Mexico; (P.S.-Á.); (F.A.-L.); (T.H.-A.)
| |
Collapse
|
40
|
Li Z, Kravchenko AN, Cupples A, Guber AK, Kuzyakov Y, Philip Robertson G, Blagodatskaya E. Composition and metabolism of microbial communities in soil pores. Nat Commun 2024; 15:3578. [PMID: 38678028 PMCID: PMC11055953 DOI: 10.1038/s41467-024-47755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Delineation of microbial habitats within the soil matrix and characterization of their environments and metabolic processes are crucial to understand soil functioning, yet their experimental identification remains persistently limited. We combined single- and triple-energy X-ray computed microtomography with pore specific allocation of 13C labeled glucose and subsequent stable isotope probing to demonstrate how long-term disparities in vegetation history modify spatial distribution patterns of soil pore and particulate organic matter drivers of microbial habitats, and to probe bacterial communities populating such habitats. Here we show striking differences between large (30-150 µm Ø) and small (4-10 µm Ø) soil pores in (i) microbial diversity, composition, and life-strategies, (ii) responses to added substrate, (iii) metabolic pathways, and (iv) the processing and fate of labile C. We propose a microbial habitat classification concept based on biogeochemical mechanisms and localization of soil processes and also suggests interventions to mitigate the environmental consequences of agricultural management.
Collapse
Affiliation(s)
- Zheng Li
- Department to Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alexandra N Kravchenko
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| | - Alison Cupples
- Department to Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Andrey K Guber
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
| | - G Philip Robertson
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | | |
Collapse
|
41
|
Manouana GP, Kuk S, Linh LTK, Pallerla SR, Niendorf S, Kremsner PG, Adegnika AA, Velavan TP. Gut microbiota in vaccine naïve Gabonese children with rotavirus A gastroenteritis. Heliyon 2024; 10:e28727. [PMID: 38576575 PMCID: PMC10990958 DOI: 10.1016/j.heliyon.2024.e28727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Background While the gut microbiome modulates the pathogenesis of enteric viruses, how infections caused by rotavirus A (RVA), with or without diarrhoea, alter the gut microbiota has been sparsely studied. Methods From a cohort of 224 vaccine naïve Gabonese children with and without diarrhoea (n = 177 and n = 67, respectively), 48 stool samples were analysed: (i) RVA with diarrhoea (n = 12); (ii) RVA without diarrhoea (n = 12); (iii) diarrhoea without RVA (n = 12); (iv) healthy controls without diarrhoea and RVA (n = 12). The 16S rRNA metabarcoding using Oxford Nanopore sequencing data was analysed for taxonomic composition, abundance, alpha and beta diversity, and metabolic pathways. Findings Alpha diversity showed that children with acute diarrhoea (with and without RVA infection), and children with acute diarrhoea without RVA had low microbial diversity compared to healthy children (p = 0.001 and p = 0.006, respectively). No significant differences observed when comparing children with RVA with or without diarrhoea. Beta diversity revealed high microbial heterogeneity in children without diarrhoea. Proteobacteria (68%) and Firmicutes (69%) were most common in the diarrhoea and non-diarrhoea groups, respectively. Proteobacteria (53%) were most common in children without RVA, while Firmicutes (55%) were most common with RVA. At the genus level, Escherichia (21%), Klebsiella (10%) and Salmonella (4%) were abundant in children with diarrhoea, while Blautia (11%), Clostridium (8%), Lachnoclostridium (6%) and Ruminococcus (5%) were abundant in children without diarrhoea. Metabolites involved in amino acid, carbohydrate, lipid, nucleotide, and vitamin metabolism were quantitatively altered. Interpretation Although host physiology dictates the intestinal milieu, diarrhoea per se can alter a balanced gut microbiota, whereas infectious diarrhoea disrupts the gut microbiome and reduces its diversity.
Collapse
Affiliation(s)
- Gédéon Prince Manouana
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Salih Kuk
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), 10000, Hanoi, Viet Nam
| | | | - Sandra Niendorf
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
- Fondation pour la Recherche Scientifique, Cotonou, Benin
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), 10000, Hanoi, Viet Nam
- Faculty of Medicine, Duy Tan University, 50000, Da Nang, Viet Nam
| |
Collapse
|
42
|
Gàlvez-Morante A, Guéguen L, Natsidis P, Telford MJ, Richter DJ. Dollo Parsimony Overestimates Ancestral Gene Content Reconstructions. Genome Biol Evol 2024; 16:evae062. [PMID: 38518756 PMCID: PMC10995720 DOI: 10.1093/gbe/evae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
Ancestral reconstruction is a widely used technique that has been applied to understand the evolutionary history of gain and loss of gene families. Ancestral gene content can be reconstructed via different phylogenetic methods, but many current and previous studies employ Dollo parsimony. We hypothesize that Dollo parsimony is not appropriate for ancestral gene content reconstruction inferences based on sequence homology, as Dollo parsimony is derived from the assumption that a complex character cannot be regained. This premise does not accurately model molecular sequence evolution, in which false orthology can result from sequence convergence or lateral gene transfer. The aim of this study is to test Dollo parsimony's suitability for ancestral gene content reconstruction and to compare its inferences with a maximum likelihood-based approach that allows a gene family to be gained more than once within a tree. We first compared the performance of the two approaches on a series of artificial data sets each of 5,000 genes that were simulated according to a spectrum of evolutionary rates without gene gain or loss, so that inferred deviations from the true gene count would arise only from errors in orthology inference and ancestral reconstruction. Next, we reconstructed protein domain evolution on a phylogeny representing known eukaryotic diversity. We observed that Dollo parsimony produced numerous ancestral gene content overestimations, especially at nodes closer to the root of the tree. These observations led us to the conclusion that, confirming our hypothesis, Dollo parsimony is not an appropriate method for ancestral reconstruction studies based on sequence homology.
Collapse
Affiliation(s)
- Alex Gàlvez-Morante
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona 08003, Spain
| | - Laurent Guéguen
- LBBE, UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Paschalis Natsidis
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Daniel J Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona 08003, Spain
| |
Collapse
|
43
|
Duniere L, Frayssinet B, Achard C, Chevaux E, Plateau J. Conditioner application improves bedding quality and bacterial composition with potential beneficial impacts for dairy cow's health. Microbiol Spectr 2024; 12:e0426323. [PMID: 38376365 PMCID: PMC10994720 DOI: 10.1128/spectrum.04263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Recycled manure solids (RMS) is used as bedding material in cow housing but can be at risk for pathogens development. Cows spend several hours per day lying down, contributing to the transfer of potential mastitis pathogens from the bedding to the udder. The effect of a bacterial conditioner (Manure Pro, MP) application was studied on RMS-bedding and milk qualities and on animal health. MP product was applied on bedding once a week for 3 months. Bedding and teat skin samples were collected from Control and MP groups at D01, D51, and D90 and analyzed through 16S rRNA amplicon sequencing. MP application modified bacterial profiles and diversity. Control bedding was significantly associated with potential mastitis pathogens, while no taxa of potential health risk were significantly detected in MP beddings. Functional prediction identified enrichment of metabolic pathways of agronomic interest in MP beddings. Significant associations with potential mastitis pathogens were mainly observed in Control teat skin samples. Finally, significantly better hygiene and lower Somatic Cell Counts in milk were observed for cows from MP group, while no group impact was observed on milk quality and microbiota. No dissemination of MP strains was observed from bedding to teats or milk. IMPORTANCE The use of Manure Pro (MP) conditioner improved recycled manure solids-bedding quality and this higher sanitary condition had further impacts on dairy cows' health with less potential mastitis pathogens significantly associated with bedding and teat skin samples of animals from MP group. The animals also presented an improved inflammation status, while milk quality was not modified. The use of MP conditioner on bedding may be of interest in controlling the risk of mastitis onset for dairy cows and further associated costs.
Collapse
Affiliation(s)
| | | | | | - Eric Chevaux
- Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
| | - Julia Plateau
- Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
| |
Collapse
|
44
|
Yan Y, Lee J, Han IL, Wang Z, Li G, McCullough K, Klaus S, Kang D, Wang D, Patel A, McQuarrie J, Stinson BM, deBarbadillo C, Dombrowski P, Bott C, Gu AZ. Comammox and unknown ammonia oxidizers contribute to nitrite accumulation in an integrated A-B stage process that incorporates side-stream EBPR (S2EBPR). WATER RESEARCH 2024; 253:121220. [PMID: 38341969 DOI: 10.1016/j.watres.2024.121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/27/2023] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
A novel integrated pilot-scale A-stage high rate activated sludge, B-stage short-cut biological nitrogen removal and side-stream enhanced biological phosphorus removal (A/B-shortcut N-S2EBPR) process for treating municipal wastewater was demonstrated with the aim to achieve simultaneous and carbon- and energy-efficient N and P removal. In this studied period, an average of 7.62 ± 2.17 mg-N/L nitrite accumulation was achieved through atypical partial nitrification without canonical known NOB out-selection. Network analysis confirms the central hub of microbial community as Nitrospira, which was one to two orders of magnitude higher than canonical aerobic oxidizing bacteria (AOB) in a B-stage nitrification tank. The contribution of comammox Nitrospira as AOB was evidenced by the increased amoB/nxr ratio and higher ammonia oxidation activity. Furthermore, oligotyping analysis of Nitrospira revealed two dominant sub-clusters (microdiveristy) within the Nitrospira. The relative abundance of oligotype II, which is phylogenetically close to Nitrospira_midas_s_31566, exhibited a positive correlation with nitrite accumulation in the same operational period, suggesting its role as comammox Nitrospira. Additionally, the phylogenetic investigation suggested that heterotrophic organisms from the family Comamonadacea and the order Rhodocyclaceae embedding ammonia monooxygenase and hydroxylamine oxidase may function as heterotrophic nitrifiers. This is the first study that elucidated the impact of integrating the S2EBPR on nitrifying populations with implications on short-cut N removal. The unique conditions in the side-stream reactor, such as low ORP, favorable VFA concentrations and composition, seemed to exert different selective forces on nitrifying populations from those in conventional biological nutrient removal processes. The results provide new insights for integrating EBPR with short-cut N removal process for mainstream wastewater treatment.
Collapse
Affiliation(s)
- Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - I L Han
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Zijian Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Kester McCullough
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States; Hampton Roads Sanitation District, Virginia Beach, VA 23454, United States; modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, Canada
| | - Stephanie Klaus
- Hampton Roads Sanitation District, Virginia Beach, VA 23454, United States
| | - Da Kang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States; Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States
| | - Anand Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Jim McQuarrie
- Denver Metro Wastewater Reclamation District, Denver, CO 80229, United States
| | | | - Christine deBarbadillo
- District of Columbia Water and Sewer Authority, District of Columbia, 5000 Overlook Ave., SW, Washington, DC 20032, United States
| | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA 23454, United States.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
45
|
Ryckman M, Gantois N, Dominguez RG, Desramaut J, Li LL, Even G, Audebert C, Devos DP, Chabé M, Certad G, Monchy S, Viscogliosi E. Molecular Identification and Subtype Analysis of Blastocystis sp. Isolates from Wild Mussels ( Mytilus edulis) in Northern France. Microorganisms 2024; 12:710. [PMID: 38674653 PMCID: PMC11051716 DOI: 10.3390/microorganisms12040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Blastocystis sp. is the most common single-celled eukaryote colonizing the human gastrointestinal tract worldwide. Because of the proven zoonotic potential of this protozoan, sustained research is therefore focused on identifying various reservoirs of transmission to humans, and in particular animal sources. Numerous groups of animals are considered to be such reservoirs due to their handling or consumption. However, some of them, including mollusks, remain underexplored. Therefore, a molecular epidemiological survey conducted in wild mussels was carried out in Northern France (Hauts-de-France region) to evaluate the frequency and subtypes (STs) distribution of Blastocystis sp. in these bivalve mollusks. For this purpose, 100 mussels (Mytilus edulis) were randomly collected in two sampling sites (Wimereux and Dannes) located in the vicinity of Boulogne-sur-Mer. The gills and gastrointestinal tract of each mussel were screened for the presence of Blastocystis sp. by real-time polymerase chain reaction (qPCR) assay followed by direct sequencing of positive PCR products and subtyping through phylogenetic analysis. In parallel, sequences of potential representative Blastocystis sp. isolates that were previously obtained from temporal surveys of seawater samples at marine stations offshore of Wimereux were integrated in the present analysis. By taking into account the qPCR results from all mussels, the overall prevalence of the parasite was shown to reach 62.0%. In total, more than 55% of the positive samples presented mixed infections. In the remaining mussel samples with a single sequence, various STs including ST3, ST7, ST14, ST23, ST26 and ST44 were reported with varying frequencies. Such distribution of STs coupled with the absence of a predominant ST specific to these bivalves strongly suggested that mussels might not be natural hosts of Blastocystis sp. and might rather be carriers of parasite isolates from both human and animal (bovid and birds) waste. These data from mussels together with the molecular identification of isolates from marine stations were subsequently discussed along with the local geographical context in order to clarify the circulation of this protozoan in this area. The identification of human and animal STs of Blastocystis sp. in mussels emphasized the active circulation of this protozoan in mollusks and suggested a significant environmental contamination of fecal origin. This study has provided new insights into the host/carrier range and transmission of Blastocystis sp. and emphasized its potential as an effective sentinel species for water quality and environmental contamination.
Collapse
Affiliation(s)
- Manon Ryckman
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Ruben Garcia Dominguez
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Jeremy Desramaut
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Luen-Luen Li
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Gaël Even
- GD Biotech—Gènes Diffusion, F-59000 Lille, France; (G.E.); (C.A.)
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Christophe Audebert
- GD Biotech—Gènes Diffusion, F-59000 Lille, France; (G.E.); (C.A.)
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Damien Paul Devos
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Gabriela Certad
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, F-59000 Lille, France
| | - Sébastien Monchy
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| |
Collapse
|
46
|
Chamard J, Faticov M, Blanchet FG, Chagnon PL, Laforest-Lapointe I. Interplay of biotic and abiotic factors shapes tree seedling growth and root-associated microbial communities. Commun Biol 2024; 7:360. [PMID: 38519711 PMCID: PMC10960049 DOI: 10.1038/s42003-024-06042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Root-associated microbes can alleviate plant abiotic stresses, thus potentially supporting adaptation to a changing climate or to novel environments during range expansion. While climate change is extending plant species fundamental niches northward, the distribution and colonization of mutualists (e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet, the degree to which biotic and abiotic factors impact plant performance and associated microbial communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial communities from sugar maple seedlings distributed across two temperate-to-boreal elevational gradients in southern Québec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to sugar maple trees are key drivers of root-associated microbial communities, overshadowing the influence of elevation. Interestingly, changes in root fungal community composition mediate an indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in turn correlated with seedling growth. These findings have important ramifications for tree range expansion in response to shifting climatic niches.
Collapse
Affiliation(s)
- Joey Chamard
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Faticov
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| | - F Guillaume Blanchet
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de mathématiques, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département des sciences de la santé communautaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Chagnon
- Agriculture and Agri-food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Laforest-Lapointe
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
47
|
Riggen-Bueno V, Del Toro-Arreola S, Baltazar-Díaz TA, Vega-Magaña AN, Peña-Rodríguez M, Castaño-Jiménez PA, Sánchez-Orozco LV, Vera-Cruz JM, Bueno-Topete MR. Intestinal Dysbiosis in Subjects with Obesity from Western Mexico and Its Association with a Proinflammatory Profile and Disturbances of Folate (B9) and Carbohydrate Metabolism. Metabolites 2024; 14:121. [PMID: 38393013 PMCID: PMC10890169 DOI: 10.3390/metabo14020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity is a public health problem with a growing prevalence worldwide. In Mexico, it is estimated that one out of three adults suffer from obesity. In these patients, the intestinal microbiota (IM) undergoes pathological changes that are associated with a dysbiotic state; however, the microbiota profile of adult subjects with obesity from western Mexico has not been described. To assess this, fecal samples were obtained from 65 participants (Obese = 38; Control = 27). The microbial composition was characterized by 16S rRNA amplicon sequencing. The IM of the group with obesity revealed a clear decrease in richness and diversity (p < 0.001), as well as a significant increase in proinflammatory bacterial groups, mainly genera belonging to the Negativicutes class, Escherichia/Shigella, and Prevotella. Likewise, an increase in short-chain fatty acid-producing bacteria was found, especially the genus Lachnoclostridium. Additionally, PICRUSt2 analysis showed a depletion of vitamin B9 metabolism and an increase in saccharolytic pathways. The IM of patients with obesity possesses a dysbiotic, proinflammatory environment, possibly contributing to lipogenesis and adiposity. Thus, assessing the IM will allow for a better understanding of the pathophysiology of metabolic diseases of high prevalence, such as obesity. These findings are described for the first time in the adult population of western Mexico.
Collapse
Affiliation(s)
- Verónica Riggen-Bueno
- Servicio de Nutrición Clínica, Hospital Civil de Guadalajara, Unidad Hospitalaria Fray Antonio Alcalde, Hospital 278, Guadalajara CP 44280, Jalisco, Mexico
- Maestría en Nutrición Clínica, Universidad del Valle de Atemajac, Tepeyac 4800, Zapopan CP 45050, Jalisco, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara CP 44340, Jalisco, Mexico
| | - Tonatiuh Abimael Baltazar-Díaz
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara CP 44340, Jalisco, Mexico
| | - Alejandra N Vega-Magaña
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara CP 44340, Jalisco, Mexico
| | - Marcela Peña-Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara CP 44340, Jalisco, Mexico
| | - Paula Alejandra Castaño-Jiménez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara CP 44340, Jalisco, Mexico
| | - Laura Verónica Sánchez-Orozco
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara CP 44340, Jalisco, Mexico
| | - José María Vera-Cruz
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara CP 44340, Jalisco, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara CP 44340, Jalisco, Mexico
| |
Collapse
|
48
|
Tominaga K, Takebe H, Murakami C, Tsune A, Okamura T, Ikegami T, Onishi Y, Kamikawa R, Yoshida T. Population-level prokaryotic community structures associated with ferromanganese nodules in the Clarion-Clipperton Zone (Pacific Ocean) revealed by 16S rRNA gene amplicon sequencing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13224. [PMID: 38146681 PMCID: PMC10866075 DOI: 10.1111/1758-2229.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Although deep-sea ferromanganese nodules are a potential resource for exploitation, their formation mechanisms remain unclear. Several nodule-associated prokaryotic species have been identified by amplicon sequencing of 16S rRNA genes and are assumed to contribute to nodule formation. However, the recent development of amplicon sequence variant (ASV)-level monitoring revealed that closely related prokaryotic populations within an operational taxonomic unit often exhibit distinct ecological properties. Thus, conventional species-level monitoring might have overlooked nodule-specific populations when distinct populations of the same species were present in surrounding environments. Herein, we examined the prokaryotic community diversity of nodules and surrounding environments at the Clarion-Clipperton Zone in Japanese licensed areas by 16S rRNA gene amplicon sequencing with ASV-level resolution for three cruises from 2017 to 2019. Prokaryotic community composition and diversity were distinct by habitat type: nodule, nodule-surface mud, sediment, bottom water and water column. Most ASVs (~80%) were habitat-specific. We identified 178 nodule-associated ASVs and 41 ASVs associated with nodule-surface mud via linear discriminant effect size analysis. Moreover, several ASVs, such as members of SAR324 and Woeseia, were highly specific to nodules. These nodule-specific ASVs are promising targets for future investigation of the nodule formation process.
Collapse
Affiliation(s)
- Kento Tominaga
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Hiroaki Takebe
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | | - Akira Tsune
- Deep Ocean Resources Development Co., Ltd.TokyoJapan
| | | | | | | | - Ryoma Kamikawa
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | |
Collapse
|
49
|
Connors E, Dutta A, Trinh R, Erazo N, Dasarathy S, Ducklow H, Weissman JL, Yeh YC, Schofield O, Steinberg D, Fuhrman J, Bowman JS. Microbial community composition predicts bacterial production across ocean ecosystems. THE ISME JOURNAL 2024; 18:wrae158. [PMID: 39105280 PMCID: PMC11385589 DOI: 10.1093/ismejo/wrae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.
Collapse
Affiliation(s)
- Elizabeth Connors
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
- Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States
| | - Avishek Dutta
- Department of Geology, University of Georgia, Athens, GA 30602, United States
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, United States
| | - Rebecca Trinh
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964, United States
| | - Natalia Erazo
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
| | - Srishti Dasarathy
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
| | - Hugh Ducklow
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964, United States
| | - J L Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biology, The City College of New York, New York, NY 10003, United States
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Oscar Schofield
- Coastal Ocean Observation Laboratory, Institute of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, United States
| | - Deborah Steinberg
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, United States
| | - Jed Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Jeff S Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
- Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States
| |
Collapse
|
50
|
Cho A, Tikhonenkov DV, Lax G, Prokina KI, Keeling PJ. Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean. Mol Phylogenet Evol 2024; 190:107964. [PMID: 37951557 DOI: 10.1016/j.ympev.2023.107964] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia; Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|