1
|
Zhou Y, Zeng H, Ye L, Wang J, Feng G, Chen Y, Fang D, Lu J, Lu G. The role of cyclin dependent kinase molecules in the pathogenesis and immune cell infiltration of TNBC in silicosis: Based on core stem cell related genes TPX2 and CCNA2. Int J Biol Macromol 2025; 306:141683. [PMID: 40037461 DOI: 10.1016/j.ijbiomac.2025.141683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Silicosis is a pulmonary fibrotic disease caused by long-term inhalation of silica dust. CDKs regulate the process of cell cycle by binding with cyclin. This study revealed the role of cyclin-dependent kinase molecules in the pathogenesis of TNBC in silicosis and analyzed its influence on immune cell infiltration. By retrospective analysis of clinical samples from silicosis patients and TNBC patients, we evaluated the expression level of CDKs molecules. Then, the effect of silica dust exposure on breast cancer cell cycle was simulated using in vitro cell culture technology, and the expression changes of TPX2 and CCNA2 genes were observed. Immunohistochemical techniques were used to detect the infiltration of immune cells in silicosis and TNBC tissue samples, and to analyze its correlation with the expression of CDKs. The findings from the conducted research indicated that there was a significant elevation in the expression levels of cyclin-dependent kinases, or CDKs, in patients diagnosed with silicosis as well as those with triple-negative breast cancer, or TNBC. Through immunohistochemical analysis, it was further revealed that there was an increased infiltration of immune cells within the tissues of both silicosis and TNBC patients. Interestingly, this infiltration of immune cells was found to be positively correlated with the expression levels of CDK molecules. The up-regulated expression of the TPX2 and CCNA2 genes is believed to be associated with abnormal regulation of the cell cycle, which in turn affects the infiltration patterns of immune cells within the affected tissues.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China; Department of Breast and Thyroid Surgery, The Third People's Hospital of Hechi, Hechi 547000, Guangxi, PR China
| | - Huifang Zeng
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Li Ye
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Jin Wang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Guangqing Feng
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Yongcheng Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China.
| | - Jinlan Lu
- Department of Stomatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
| | - Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden.
| |
Collapse
|
2
|
Ruan H, Xiang H, Liu Y, Wang P, Dong L, Cao Y, Liang D, Ding Z. FSP1 regulates ferroptosis and mitochondrial function during mouse oocyte maturation. Exp Cell Res 2025; 447:114524. [PMID: 40113029 DOI: 10.1016/j.yexcr.2025.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Oocyte quality plays a fundamental role in fertilization and embryonic development. Emerging evidence indicates that ferroptosis may impair oocyte quality. Ferroptosis suppressor protein 1 (FSP1), a known ferroptosis inhibitor, has an uncharacterized function in regulating oocyte quality during meiotic maturation. This study identified FSP1 expression across all stages of meiotic maturation with localization to the cytoplasm of mouse oocytes. Aged mice exhibited a marked reduction in FSP1 expression within the ovaries and oocytes. Pharmacological inhibition of FSP1 disrupted germinal vesicle breakdown and polar body emission, leading to spindle defects and chromosome misalignment. Additionally, FSP1 inhibition persistently activated the spindle assembly checkpoint, resulting in meiotic arrest. At the mechanistic level, inhibition of FSP1 led to an increase in intracellular Fe2+ levels, enhanced dihydroethidium fluorescence, excessive accumulation of reactive oxygen species, and intensified lipid peroxidation. Disruptions in ferroptosis-associated gene expression further indicated that oocytes underwent ferroptosis. Moreover, mitochondrial dysfunction was evident following FSP1 inhibition, as reflected by aberrant mitochondrial distribution, diminished ATP production, and an elevated mitochondrial membrane potential. Collectively, these results establish FSP1 as a key regulator of oocyte meiotic maturation by modulating iron homeostasis and mitochondrial function, while its inhibition triggers ferroptosis-dependent meiotic failure.
Collapse
Affiliation(s)
- Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Peiwen Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
| | - Liuliu Dong
- Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu, 233030, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China.
| | - Dan Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China.
| | - Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
3
|
Su Q, Fang L, Li C, Yue L, Yun Z, Zhang H, Liu Q, Ma R, Zhong P, Liu H, Lou Z, Chen Z, Tan Y, Hao X, Wu C. Multi-omics insights into the roles of CCNB1, PLK1, and HPSE in breast cancer progression: implications for prognosis and immunotherapy. Discov Oncol 2025; 16:471. [PMID: 40186712 PMCID: PMC11972280 DOI: 10.1007/s12672-025-02282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND This study examines the roles of Cyclin B1 (CCNB1), Polo-Like Kinase 1 (PLK1), and Heparanase (HPSE) in breast cancer progression using a multi-omics approach. These genes are known for their involvement in various cancer-related processes, but their precise contributions to breast cancer remain unclear. METHODS We employed an integrative analysis combining transcriptomics, proteomics, DNA methylation profiling, immune infiltration analysis, and single-cell RNA sequencing to investigate the expression patterns, regulatory mechanisms, and functional impacts of CCNB1, PLK1, and HPSE in breast cancer. Functional assays using si-RNA knockdown of CCNB1 and PLK1 were performed to assess their roles in cell proliferation. RESULTS CCNB1, PLK1, and HPSE are upregulated in breast tumors at the mRNA and protein levels. CCNB1 and PLK1 promote tumor growth and metastasis, while HPSE is linked to immune pathways. DNA methylation in BRCA correlates with prognosis, with PLK1 alterations protective for recurrence-free survival. High expression of these genes worsens prognosis, with CCNB1 as a risk factor for overall survival. Immune infiltration analysis associates these genes with tumor-infiltrating immune cells, highlighting HPSE's immunotherapeutic potential. Single-cell RNA sequencing confirms CCNB1 and PLK1 drive malignant proliferation and an immunosuppressive environment. Functional assays demonstrated that silencing CCNB1 and PLK1 significantly reduced breast cancer cell proliferation, indicating regulatory interactions among PLK1, CCNB1, and MKI67. CONCLUSIONS This study provides evidence that CCNB1, PLK1, and HPSE are key players in breast cancer progression and potential biomarkers for prognosis. Furthermore, their roles in immune regulation suggest they could be promising targets for immunotherapy.
Collapse
Affiliation(s)
- Qisheng Su
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Leiming Fang
- Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Chaofan Li
- Graduate School of Hebei North University, Zhangjiakou, China
- Department of Tuberculosis Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liang Yue
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Zhimin Yun
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Huiqiang Zhang
- Breast Cancer Department of Oncology Institute, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Liu
- Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Ruilin Ma
- Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Pengfei Zhong
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - He Liu
- Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Zhangrong Lou
- Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Zhi Chen
- Department of Tuberculosis Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingxia Tan
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Xiaopeng Hao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
- Breast Cancer Department of Oncology Institute, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Chengjun Wu
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qinadao, 266113, China.
| |
Collapse
|
4
|
Bao X, Zeng Z, Tang W, Li D, Fan X, Chen K, Wang Y, Ai W, Yang Q, Liu S, Chen T. Bioinformatics Combined With Biological Experiments to Identify the Pathogenetic Link of Type 2 Diabetes for Breast Cancer. Cancer Med 2025; 14:e70759. [PMID: 40202151 PMCID: PMC11979791 DOI: 10.1002/cam4.70759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/19/2025] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) constitutes a significant risk factor for breast cancer (BC), with affected women exhibiting a two- to three-fold increased likelihood of developing BC. Furthermore, women diagnosed with both BC and T2DM tend to experience poorer prognoses and exhibit greater resistance to various treatments compared to their non-diabetic counterparts. Consequently, elucidating the comorbidities associated with T2DM and BC is instrumental in enhancing the diagnostic and therapeutic strategies for BC. METHODS A series of bioinformatics methods including weighted gene co-expression network analysis (WGCNA), differentially expressed gene (DEG) analysis, machine learning, and single-cell sequencing analysis were used to identify the pathogenetic molecules of T2DM for BC. Biological experiments including CCK-8, colony formation, wound healing, transwell assay, immunohistochemistry, and immunofluorescence were performed to determine the molecule effect. RESULTS By conducting WGCNA and DEG analysis on the profiles of T2DM (GSE25724 and GSE20966) and the TCGA cohort of BC, we identified a total of 27 common hub genes shared between T2DM and BC. These genes were significantly enriched in pathways related to cell differentiation, cellular developmental processes, focal adhesion, and the MAPK signaling pathway. Notably, among these 27 genes, CCNB2, XRCC2, and CENPI were associated with poor prognosis in BC. Moreover, single-cell RNA sequencing analysis revealed that CCNB2, XRCC2, and CENPI are enriched in cancer cells within BC tissues. Additionally, we observed that CCNB2, XRCC2, and CENPI were elevated in BC tissues provided by patients with a diabetes history and associated with KI67 expression. Hyperglycemia treatment elevated the expression levels of CCNB2, XRCC2, and CENPI in BC cells, which correlated with increased cell proliferation and mobility. Conversely, the knockdown of these genes partially mitigated the pro-proliferative and pro-migratory effects induced by hyperglycemia in BC cells. CONCLUSION Our findings suggested that CCNB2, XRCC2, and CENPI may serve as key pathogenic mediators linking T2DM and BC. Targeting these molecules could potentially attenuate the adverse impacts of T2DM on BC progression.
Collapse
Affiliation(s)
- Xin Bao
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Zhirui Zeng
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Wenjing Tang
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Dahuan Li
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Xianrui Fan
- School of ImagingGuizhou Medical UniversityGuiyangChina
| | - Kang Chen
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yongkang Wang
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Weijie Ai
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Qian Yang
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Shu Liu
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Tengxiang Chen
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
5
|
Ma C, Xu F, Hu C, Cui C, Du X, Chen J, Zhu L, Yu S, He X, Yu W, Wang Y, Xu X. MPF Regulates Oocyte and Embryo Development During Parthenogenesis Induction in Silkworm, Bombyx mori. INSECTS 2025; 16:361. [PMID: 40332857 PMCID: PMC12027660 DOI: 10.3390/insects16040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
In most species, oocytes are arrested at the prophase or metaphase of meiosis I and require sperm-derived or external stimuli to resume meiosis. Maturation-promoting factor (MPF) is an oocyte maturation factor composing the catalytic subunit Cdc2 and the regulatory subunit CycB that can restart stalled meiosis. In this study, we demonstrated that MPF activity affected parthenogenesis induction in the model lepidopteran insect Bombyx mori using activator and inhibitor interference. We found that the upregulation of MPF activity significantly increased the parthenogenesis induction rate, whereas downregulation significantly reduced it. Furthermore, the inhibition of MPF activity also led to a delay in embryonic development. Given its evolutionary conservation, MPF emerges as a potential universal target for manipulating reproductive outcomes, offering broad applications in genetics and selective breeding.
Collapse
Affiliation(s)
- Chenkai Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengjie Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunguang Cui
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Du
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jine Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linbao Zhu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingjian He
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
| | - Yongqiang Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xia Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China (W.Y.)
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Zhang G, Zhang N, Zhang B, Zhao Y, Wang Q, Han L. UBE2D3 functions in mouse oocyte meiotic maturation. FASEB J 2025; 39:e70375. [PMID: 39921465 DOI: 10.1096/fj.202403033r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Ubiquitin-mediated proteolysis plays a critical role in meiotic cell-cycle regulation and must be tightly controlled to achieve correct chromosome segregation. While the role of E2 ubiquitin-conjugating enzymes in mitosis is well-documented, their functions in oocyte meiosis remain largely unexplored. In this study, we identified UBE2D3 as the most highly expressed E2 enzyme in mouse oocytes, which is essential for proper meiotic division. UBE2D3 depletion caused (metaphase I) MI arrest and Cyclin B1 accumulation, whereas its overexpression led to reduced Cyclin B1 levels, kinetochore-microtubule (K-MT) mis-attachments, spindle assembly checkpoint (SAC) dysfunction, and increased aneuploidy. Notably, UBE2D3 upregulation in oocytes from aged mice contributed to age-related meiotic defects, which were partially reversed by UBE2D3 knockdown or Cyclin B1 overexpression. This study underscores the importance of the UBE2D3-Cyclin B1 axis in maintaining meiotic fidelity and highlights its potential as a therapeutic target for improving oocyte quality and fertility in aged females.
Collapse
Affiliation(s)
- Guorui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Na Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital Changzhou Medical Center, Nanjing Medical University, Nanjing, China
- Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital), Yangzhou University, Yangzhou, Jiangsu, China
| | - Bin Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yilong Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Xia TJ, Xie FY, Chen J, Zhang XG, Li S, Sun QY, Zhang Q, Yin S, Ou XH, Ma JY. CDK1 mediates the metabolic regulation of DNA double-strand break repair in metaphase II oocytes. BMC Biol 2025; 23:37. [PMID: 39915808 PMCID: PMC11803938 DOI: 10.1186/s12915-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND During oocyte maturation, DNA double-strand breaks (DSBs) can decrease oocyte quality or cause mutations. How DSBs are repaired in dividing oocytes and which factors influence DSB repair are not well understood. RESULTS By analyzing DSB repair pathways in oocytes at different stages, we found that break-induced replication (BIR) and RAD51-mediated homology-directed repair (HDR) were highly active in germinal vesicle breakdown (GVBD) oocytes but suppressed in metaphase II (MII) oocytes and the BIR in oocytes was promoted by CDK1 activity. By culturing oocytes in different media, we found that high-energy media, such as DMEM, decreased CDK1 protein levels and suppressed BIR or HDR in MII oocytes. In contrast, 53BP1-mediated nonhomologous end joining (NHEJ) repair was inhibited in germinal vesicle (GV) and GVBD oocytes but promoted in MII oocytes, and NHEJ was not affected by DMEM medium and CDK1 activity. In addition, in DSB MII oocytes, polymerase theta-mediated end joining (TMEJ) was found to be suppressed by CDK1 activity and promoted by high-energy media. CONCLUSIONS In summary, MII oocytes exhibit high heterogeneity in DSB repair, which is regulated by both metabolic factors and CDK1 activity. These results not only expand our understanding of oocyte DSB repair but also contribute to the modification of in vitro maturation medium for oocytes.
Collapse
Affiliation(s)
- Tian-Jin Xia
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Feng-Yun Xie
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Juan Chen
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xiao-Guohui Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sen Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qin Zhang
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Jun-Yu Ma
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Lu PS, Sun SC. Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility. J Adv Res 2025:S2090-1232(25)00041-4. [PMID: 39814223 DOI: 10.1016/j.jare.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causes multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health and progeny by its ability to cross placental barriers. AIM OF REVIEW Due to its wide occurrence and potential toxicity on reproductive health, it is essential to understand the mechanisms of mycotoxin-related reproductive toxicity. This review summarizes the toxicities and mechanisms of mycotoxin on maternal and offspring reproduction among mammalian species. Approaches for effective mycotoxin alleviation are also discussed, providing strategies against mycotoxin contamination. KEY SCIENTIFIC CONCEPTS OF REVIEW The profound mycotoxin toxicities in female mammalian reproduction affect follicle assembly, embryo development, and fetus growth, thereby decreasing offspring fertility. Factors from endocrine system such as hypothalamic-pituitary-gonadal axis and gut-ovarian axis, placenta ABC transporters, organelle and cytoskeleton dynamics, cell cycle control, genomic stability, and redox homeostasis are found to be closely related to mycotoxin toxicities. Approaches from physical, chemical, biological, and supplementation of natural antioxidants are discussed for the mycotoxin elimination, while their applications are not widespread. Available ways for mycotoxin and its toxicities alleviation need further study. Since a species-, time-, and dose-specific response might exist in mycotoxin toxicities, more consideration should be given to the protocols for mycotoxin toxicity studies, such as experimental animal models, exposure duration, and dosage. Specific mechanism for mycotoxin, especially form a molecular biology perspective, could be investigated with multi-omics technologies and advanced imaging techniques. Mass spectrometry with algorithms may provide more accurate exposure assessments, and it may be further helpful to identify the high-risk individuals in the future.
Collapse
Affiliation(s)
- Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
9
|
Zhang YL, Hu Z, Jiang H, Jin J, Zhou Y, Lai M, Ren P, Liu S, Zhang YY, Rong Y, Zheng W, Zhang S, Tong X, Zhang S. PATL2 mutations affect human oocyte maternal mRNA homeostasis and protein interactions in cell cycle regulation. Cell Biosci 2024; 14:157. [PMID: 39741299 DOI: 10.1186/s13578-024-01341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown. RESULTS This study uncovers three novel mutations (c.1201G > T, c.1284delA and c.1613 + 2_1613 + 3insGT) and three reported mutations (c.1204 C > T, c.1271T > C, c.223 - 14_223-2delCCCTCCTGTTCCA) in the PATL2 gene across five unrelated individuals exhibiting OMD, oocyte death, and early embryonic arrest. RNA sequencing revealed that PATL2 mutations decreased mRNA storage in human germinal vesicle (GV) oocytes and impeded mRNA decay during maturation and in early embryos. We demonstrate that PATL2 interacts with CPEB1 and TUT7 in human oocytes to maintain mRNA homeostasis. Additionally, we observed a reduction in CCNB1 and CCNE1 mRNA levels in PATL2-mutant GV oocytes, which may be linked to GV arrest. Employing both wild-type and mutated PATL2V401F/R402W variants, we characterized the protein interactome of PATL2, identifying disruptions of PATL2V401F/R402W variants predominantly affecting cell cycle-related proteins, including CDC23, APC1 and MAD2L1. PATL2's interaction with and stabilization of CDC23 in oocytes may elucidate the mechanisms behind the mutation-induced MI arrest. PALT2 is required for the efficient mRNA translation and it maintains the protein level of CDC23, APC1 and MAD2L1 in mouse GV oocyte. CONCLUSION PATL2 plays a critical role in regulating mRNA accumulation and decay in human oocytes, potentially through interactions with CPEB1 and TUT7, respectively. Mutations in PATL2 lead to oocyte meiosis defects by affecting the mRNA accumulation, mRNA translation, and direct binding to and stabilizing proteins related to cell cycle regulation, such as CCNB1 and CDC23. This study expands the mutational spectrum of PATL2 and provides new insights into the molecular mechanisms underlying PATL2 mutation-associated oocyte maturation disorders.
Collapse
Affiliation(s)
- Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Zhanhong Hu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Huifang Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Yan Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Siya Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Ying-Yi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Yan Rong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Shen Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China.
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Provincial Clinical Research Center for Reproductive Health Diseases, Hangzhou, 310016, China.
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, 310016, China.
| |
Collapse
|
10
|
Wang T, Li W, Wu Y, You L, Zheng C, Zhang J, Qu L, Sun X. Construction of a prognostic model based on disulfidptosis-related genes and identification of CCNA2 as a novel biomarker for hepatocellular carcinoma. Biol Direct 2024; 19:128. [PMID: 39695705 DOI: 10.1186/s13062-024-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Disulfidptosis, identified as an innovative form of cellular death subsequent to cuproptosis, is currently under investigation for its mechanisms in oncological contexts. In-depth analyses exploring the relationship between disulfidptosis-related genes (DRGs) and hepatocellular carcinoma (HCC) are currently limited. METHODS Transcriptomic data and clinical information were retrieved from the TCGA and GEO databases (GSE76427 and GSE54236), concentrating on the expression levels of 24 DRGs. Subsequently, multifactor and LASSO regression analyses were utilized to construct the 5-DRG prognostic signature. Immunohistochemistry (IHC) was employed to assess Cyclin A2 (CCNA2) protein expression levels. Quantitative real-time PCR (qRT-PCR) and western blot analyses were conducted to detect transcriptomic and protein expression of CCNA2-targeting short interfering RNA (siRNA). The Cell Counting Kit-8 (CCK-8) assay, EdU staining, and scratch experiments were employed to observe the proliferation and migration of hepatoma cell lines subsequent to CCNA2 inhibition. RESULTS Three HCC patterns were identified, among which pattern B exhibited the the most unfavorable survival outcomes. Five DRGs (STC2, PBK, CCNA2, SERPINE1, and SLC6A1) were involved to establish the 5-DRG prognostic signature. High-risk groups (HRGs) exhibited prolonged survival durations in comparison to low-risk groups (LRGs). Both bioinformatics analyses and experimental methodologies corroborated the association of CCNA2 with poor prognosis in HCC patients. Functional studies elucidated that interference with CCNA2 significantly inhibited proliferation and migration, while simultaneously promoting apoptosis in hepatoma cells and resulting in the downregulation of epithelial-mesenchymal transition (EMT)-related protein markers. CONCLUSIONS The 5-DRG prognostic signature is proficient in predicting clinical outcomes, informing therapeutic strategies, and elucidating the characteristics of the immune microenvironment in HCC patients. Furthermore, this study elucidates the potential of CCNA2 as an innovative biomarker for HCC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lihong Qu
- Department of Infectious Diseases, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Li X, Yang G, Ren J, Li X, Chen Y, Zhang Y, Shi Y, Yang X. Angiotensin II type-1 receptor autoantibody positively correlates with the rate of metaphase I oocytes in infertility with ovulatory disorder. J Reprod Immunol 2024; 166:104327. [PMID: 39255543 DOI: 10.1016/j.jri.2024.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
The renin-angiotensin system (RAS) plays an important role in reproductive function. Our previous study identified that angiotensin II type-1 receptor autoantibody (AT1-AA), an autoantibody that activates RAS, was closely associated with infertility. However, its distribution in different types of infertility remained unclear. This study was designed to explore the distribution of AT1-AA in infertile patients and the connections between AT1-AA and oocyte development and pregnancy outcome. A total of 184 infertile women participated, with samples collected from peripheral venous blood. ELISA was used to detect AT1-AA levels in their sera. It was observed that the proportion of ovulation-disorder factors in AT1-AA-positive group was significantly higher than that in negative group (P=0.001). In 59 infertile women with ovulatory disorders, compared with negative group, AT1-AA-positive group had lower rate of retrieval (P=0.032) and metaphase II (MII) oocytes (P=0.011) but higher proportion of metaphase I (MI) oocytes (P=0.019). A negative correlation was found between the levels of AT1-AA and rate of retrieval and MII oocytes (P=0.027; P=0.043), whereas a positive correlation was observed with the proportion of MI oocytes (P=0.002). Moreover, a specific predictive value for proportion of reaching MII and MI oocytes was exhibited by AT1-AA (P < 0.01; P < 0.05). But no significant difference in embryonic parameters or pregnancy outcomes between two groups was observed (P > 0.05). This study revealed that serum AT1-AA levels were significantly increased in infertile women with ovulatory disorders and positively correlated with proportion of MI oocytes, but not associated with outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Xuemin Li
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Guifang Yang
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Jie Ren
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Xiaonuo Li
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China
| | - Yao Chen
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Yinan Zhang
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Yuhui Shi
- Department of Laboratory Medicine, Fenyang College of Shanxi Medical University, Lvliang, China
| | - Xiaoli Yang
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China.
| |
Collapse
|
12
|
Fan LH, Qi ST, Wang ZB, Ouyang YC, Lei WL, Wang Y, Li A, Wang F, Li J, Li L, Li YY, Hou Y, Schatten H, Wang WH, Sun QY, Ou XH. MEIKIN expression and its C-terminal phosphorylation by PLK1 is closely related the metaphase-anaphase transition by affecting cyclin B1 and Securin stabilization in meiotic oocyte. Histochem Cell Biol 2024; 162:447-464. [PMID: 39093409 DOI: 10.1007/s00418-024-02316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Oocyte meiotic maturation failure and chromosome abnormality is one of the main causes of infertility, abortion, and diseases. The mono-orientation of sister chromatids during the first meiosis is important for ensuring accurate chromosome segregation in oocytes. MEIKIN is a germ cell-specific protein that can regulate the mono-orientation of sister chromatids and the protection of the centromeric cohesin complex during meiosis I. Here we found that MEIKIN is a maternal protein that was highly expressed in mouse oocytes before the metaphase I (MI) stage, but became degraded by the MII stage and dramatically reduced after fertilization. Strikingly, MEIKIN underwent phosphorylation modification after germinal vesicle breakdown (GVBD), indicating its possible function in subsequent cellular event regulation. We further showed that MEIKIN phosphorylation was mediated by PLK1 at its carboxyl terminal region and its C-terminus was its key functional domain. To clarify the biological significance of meikin degradation during later stages of oocyte maturation, exogenous expression of MEIKIN was employed, which showed that suppression of MEIKIN degradation resulted in chromosome misalignment, cyclin B1 and Securin degradation failure, and MI arrest through a spindle assembly checkpoint (SAC)-independent mechanism. Exogenous expression of MEIKIN also inhibited metaphase II (MII) exit and early embryo development. These results indicate that proper MEIKIN expression level and its C-terminal phosphorylation by PLK1 are critical for regulating the metaphase-anaphase transition in meiotic oocyte. The findings of this study are important for understanding the regulation of chromosome segregation and the prevention meiotic abnormality.
Collapse
Affiliation(s)
- Li-Hua Fan
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shu-Tao Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ang Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Feng Wang
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Wei-Hua Wang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Qing-Yuan Sun
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
13
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with FecB++ genotype. Anim Biotechnol 2024; 35:2254568. [PMID: 37694839 DOI: 10.1080/10495398.2023.2254568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The thyroid gland is an important endocrine gland in animals, which mainly secretes thyroid hormones and acts on various organs of the body. Long-chain non-coding RNA (lncRNA) plays an important role in animal reproduction. However, there is still a lack of understanding of their expression patterns and potential roles in the thyroid of Small Tail Han (STH) sheep. In this study, RNA-seq was used to examine the transcriptome expression patterns of lncRNAs and mRNAs in the follicular phase (ww_FT) and luteal phase (ww_LT) in FecB++ genotype STH Sheep. A total of 17,217 lncRNAs and 39,112 mRNAs were identified including 96 differentially expressed lncRNAs (DELs) and 1054 differentially expressed mRNAs (DEGs). Functional analysis of genes with significant differences in expression level showed that these genes could be enriched in Ras signalling pathway, hedgehog (HH) signalling pathway, ATP-binding cassette (ABC) transporters and other signalling pathways related to animal reproduction. In addition, through correlation analysis for lncRNA-mRNA co-expression and network construction, we found that LNC_009115 and LNC_005796 trans target NIK-related kinase (NRK) and poly(A)-specific ribonuclease (PARN). LNC_007189 and LNC_002045 trans target progesterone-induced blocking factor 1 (PIBF1), LNC_009013 trans targets small mothers against decapentaplegic (SMAD1) are related to animal reproduction. These genes add new resources for elucidating the regulatory mechanisms of reproduction in sheep with different reproductive cycles of the FecB++ genotype STH sheep.
Collapse
Affiliation(s)
- Cheng Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Pan ZN, Zhuang LL, Zhao HS, Yin SY, Chu M, Liu XY, Bao HC. Propylparaben exposure impairs G2/M and metaphase-anaphase transition during mouse oocyte maturation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116798. [PMID: 39083874 DOI: 10.1016/j.ecoenv.2024.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Propylparaben (PrPB) is a known endocrine disrupting chemicals that is widely applied as preservative in pharmaceuticals, food and cosmetics. PrPB has been detected in human urine samples and human serum and has been proven to cause functional decline in reproduction. However, the direct effects of PrPB on mammalian oocyte are still unknown. Here, we demonstrationed that exposure to PrPB disturbed mouse oocyte maturation in vitro, causing meiotic resumption arrest and first polar body extrusion failure. Our results indicated that 600 μM PrPB reduced the rate of oocyte germinal vesicle breakdown (GVBD). Further research revealed that PrPB caused mitochondrial dysfunction and oxidative stress, which led to oocyte DNA damage. This damage further disturbed the activity of the maturation promoting factor (MPF) complex Cyclin B1/ Cyclin-dependent kinase 1 (CDK1) and induced G2/M arrest. Subsequent experiments revealed that PrPB exposure can lead to spindle morphology disorder and chromosome misalignment due to unstable microtubules. In addition, PrPB adversely affected the attachment between microtubules and kinetochore, resulting in persistent activation of BUB3 amd BubR1, which are two spindle-assembly checkpoint (SAC) protein. Taken together, our studies indicated that PrPB damaged mouse oocyte maturation via disrupting MPF related G2/M transition and SAC depended metaphase-anaphase transition.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Li-Li Zhuang
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Hui-Shan Zhao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Shu-Yuan Yin
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Min Chu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China
| | - Xiao-Yan Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China.
| | - Hong-Chu Bao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), China.
| |
Collapse
|
15
|
Chen Q, Ouyang L, Liu Q. Cyclin B1: A potential prognostic and immunological biomarker in pan-cancer. BIOMOLECULES & BIOMEDICINE 2024; 24:1150-1169. [PMID: 38581717 PMCID: PMC11378994 DOI: 10.17305/bb.2024.10253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Cyclin B1 (CCNB1) encodes a regulatory protein essential for the regulation of cell mitosis, particularly in controlling the G2/M transition phase of the cell cycle. Current research has implicated CCNB1 in the progression of various types of cancer, including gastric cancer, breast cancer, and non-small cell lung cancer. In this study, we conducted a pan-cancer analysis of CCNB1 to investigate its prognostic significance and immunological aspects. Our comprehensive investigation covered a wide range of analyses, including gene expression, promoter methylation, genetic alterations, immune infiltration, immune regulators, and enrichment studies. We utilized multiple databases and tools for this purpose, such as The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, the Human Protein Atlas (HPA), the University of Alabama at Birmingham CANcer data analysis Portal (UALCAN), the Gene Expression Profiling Interactive Analysis (GEPIA), the DNA Methylation Interactive Visualization Database (DNMIVD), the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Sangerbox, and cBioPortal. Data analyses were executed using GraphPad Prism software, R software, and various online tools. Our findings demonstrated a significant increase in CCNB1 expression across 28 cancer types. Elevated CCNB1 expression correlated with decreased overall survival (OS) in 11 cancer types and disease-free survival (DFS) in 12 cancer types. Additionally, DNA promoter methylation levels were significantly decreased in 14 cancer types. Furthermore, the study verified a significant association between CCNB1 expression and immune infiltration, immune modulators, microsatellite instability (MSI), and tumor mutational burden (TMB). Enrichment analysis indicated that CCNB1 is involved in multiple cellular pathways. Collectively, our results suggested that CCNB1 has the potential to serve as a valuable prognostic biomarker and may be a promising target for immunotherapy in various cancer types.
Collapse
Affiliation(s)
- Quan Chen
- Department of Pathology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hospital Department, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Ouyang
- Department of Pathology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hospital Department, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing Liu
- Department of Pathology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hospital Department, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
16
|
Wang S, Wu X, Yang J, Peng Y, Miao F, Li M, Zeng J. Sterigmatocystin declines mouse oocyte quality by inducing ferroptosis and asymmetric division defects. J Ovarian Res 2024; 17:175. [PMID: 39198920 PMCID: PMC11351269 DOI: 10.1186/s13048-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Sterigmatocystin (STE) is a mycotoxin widely found in contaminated food and foodstuffs, and excessive long-term exposure to STE is associated with several health issues, including infertility. However, there is little information available regarding the effects of STE toxin on the female reproductive system, particularly concerning oocyte maturation. METHODS In the present study, we investigated the toxic effects of STE on mouse oocyte maturation. We also used Western blot, immunofluorescence, and image quantification analyses to assess the impact of STE exposure on the oocyte maturation progression, mitochondrial distribution, oxidative stress, DNA damages, oocyte ferroptosis and asymmetric division defects. RESULTS Our results revealed that STE exposure disrupted mouse oocyte maturation progression. When we examined the cellular changes following 100 µM STE treatment, we found that STE adversely affected polar body extrusion and induced asymmetric division defects in oocytes. RNA-sequencing data showed that STE exposure affects the expression of several pathway-correlated genes during oocyte meiosis in mice, suggesting its toxicity to oocytes. Based on the RNA-seq data, we showed that STE exposure induced oxidative stress and caused DNA damage in oocytes. Besides, ferroptosis and α-tubulin acetylation were also found in STE-exposed oocytes. Moreover, we determined that STE exposure resulted in reduced RAF1 protein expression in mouse oocytes, and inhibition of RAF1 activity also causes defects in asymmetric division of mouse oocytes. CONCLUSIONS Collectively, our research provides novel insights into the molecular mechanisms whereby STE contributes to abnormal meiosis.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Yuwan Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Fulu Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Juan Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
17
|
Gao SC, Dong MZ, Zhao BW, Liu SL, Guo JN, Sun SM, Li YY, Xu YH, Wang ZB. Fangchinoline inhibits mouse oocyte meiosis by disturbing MPF activity. Toxicol In Vitro 2024; 99:105876. [PMID: 38876226 DOI: 10.1016/j.tiv.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species. Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.
Collapse
Affiliation(s)
- Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuan-Hong Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Galatidou S, Petelski AA, Pujol A, Lattes K, Latorraca LB, Fair T, Popovic M, Vassena R, Slavov N, Barragán M. Single-cell proteomics reveals decreased abundance of proteostasis and meiosis proteins in advanced maternal age oocytes. Mol Hum Reprod 2024; 30:gaae023. [PMID: 38870523 DOI: 10.1093/molehr/gaae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed data-independent acquisition, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.
Collapse
Affiliation(s)
- Styliani Galatidou
- Research and Development, EUGIN Group, Barcelona, Spain
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Aleksandra A Petelski
- Department of Bioengineering, Single Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | | | - Lais B Latorraca
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Mina Popovic
- Research and Development, EUGIN Group, Barcelona, Spain
| | - Rita Vassena
- Research and Development, EUGIN Group, Barcelona, Spain
| | - Nikolai Slavov
- Department of Bioengineering, Single Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
19
|
Galatidou S, Petelski A, Pujol A, Lattes K, Latorraca LB, Fair T, Popovic M, Vassena R, Slavov N, Barragan M. Single-cell proteomics reveals decreased abundance of proteostasis and meiosis proteins in advanced maternal age oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595547. [PMID: 38903107 PMCID: PMC11188101 DOI: 10.1101/2024.05.23.595547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.
Collapse
|
20
|
Ma C, Xu Y, Chen H, Huang Y, Wang S, Zhang P, Li G, Xu Z, Xu X, Ding Z, Xiang H, Cao Y. Bisphenol Z exposure inhibits oocyte meiotic maturation by rupturing mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116312. [PMID: 38608383 DOI: 10.1016/j.ecoenv.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The use of bisphenol A (BPA) has been restricted due to its endocrine-disrupting effects. As a widely used alternative to BPA today, environmental levels of bisphenol Z (BPZ) continue to rise and accumulate in humans. Oocyte quality is critical for a successful pregnancy. Nevertheless, the toxic impacts of BPZ on the maturation of mammalian oocytes remain unexplored. Therefore, the impacts of BPZ and BPA on oocyte meiotic maturation were compared in an in vitro mouse oocyte culture model. Exposure to 150 μM of both BPZ and BPA disrupted the assembly of the meiotic spindle and the alignment of chromosomes, and BPZ exerted stronger toxicological effects than BPA. Furthermore, BPZ resulted in aberrant expression of F-actin, preventing the formation of the actin cap. Mechanistically, BPZ exposure disrupted the mitochondrial localization pattern, reduced mitochondrial membrane potential and ATP content, leading to impaired mitochondrial function. Further studies revealed that BPZ exposure resulted in oxidative stress and altered expression of genes associated with anti-oxidative stress. Moreover, BPZ induced severe DNA damage and triggered early apoptosis in oocytes, accompanied by impaired lysosomal function. Overall, the data in this study suggest that BPZ is not a safe alternative to BPA. BPZ can trigger early apoptosis by affecting mitochondrial function and causing oxidative stress and DNA damage in oocytes. These processes disrupt cytoskeletal assembly, arrest the cell cycle, and ultimately inhibit oocyte meiotic maturation.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yue Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Shanshan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Pin Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Guojing Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
21
|
Zhang J, Di Y, Zhang B, Li T, Li D, Zhang H. CDK1 and CCNA2 play important roles in oral squamous cell carcinoma. Medicine (Baltimore) 2024; 103:e37831. [PMID: 38640322 PMCID: PMC11029925 DOI: 10.1097/md.0000000000037831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant tumor that occurs in oral cavity and is dominated by squamous cells. The relationship between CDK1, CCNA2, and OSCC is still unclear. The OSCC datasets GSE74530 and GSE85195 configuration files were downloaded from the Gene Expression Omnibus (GEO) database and were derived from platforms GPL570 and GPL6480. Differentially expressed genes (DEGs) were screened. The weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, Comparative Toxicogenomics Database analysis were performed. Gene expression heatmap was drawn. TargetScan was used to screen miRNAs that regulate central DEGs. A total of 1756 DEGs were identified. According to Gene Ontology (GO) analysis, they were predominantly enriched in processes related to organic acid catabolic metabolism, centromeric, and chromosomal region condensation, and oxidoreductase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were mainly concentrated in metabolic pathways, P53 signaling pathway, and PPAR signaling pathway. Weighted gene co-expression network analysis was performed with a soft-thresholding power set at 9, leading to the identification of 6 core genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1). The gene expression heatmap revealed that core genes (CDK1, CCNA2) were highly expressed in OSCC samples. Comparative Toxicogenomics Database analysis demonstrated associations between the 6 genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1) and oral tumors, precancerous lesions, inflammation, immune system disorders, and tongue tumors. The associated miRNAs for CDK1 gene were hsa-miR-203a-3p.2, while for CCNA2 gene, they were hsa-miR-6766-3p, hsa-miR-4782-3p, and hsa-miR-219a-5p. CDK1 and CCNA2 are highly expressed in OSCC. The higher the expression of CDK1 and CCNA2, the worse the prognosis.
Collapse
Affiliation(s)
- Junbo Zhang
- Department of Stomatology, Tangshan Gongren Hospital, Tangshan City, China
| | - Yongbin Di
- Department of Stomatology, The First Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Bohao Zhang
- Department of Otolaryngology and Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Tianke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Dan Li
- Department of Otolaryngology and Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Haolei Zhang
- Department of Otolaryngology and Head and Neck Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, China
| |
Collapse
|
22
|
Liu JC, Pan ZN, Ju JQ, Zou YJ, Pan MH, Wang Y, Wu X, Sun SC. Kinesin KIF3A regulates meiotic progression and spindle assembly in oocyte meiosis. Cell Mol Life Sci 2024; 81:168. [PMID: 38587639 PMCID: PMC11001723 DOI: 10.1007/s00018-024-05213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
23
|
Yang G, Xin Q, Dean J. Degradation and translation of maternal mRNA for embryogenesis. Trends Genet 2024; 40:238-249. [PMID: 38262796 DOI: 10.1016/j.tig.2023.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Maternal mRNAs accumulate during egg growth and must be judiciously degraded or translated to ensure successful development of mammalian embryos. In this review we integrate recent investigations into pathways controlling rapid degradation of maternal mRNAs during the maternal-to-zygotic transition. Degradation is not indiscriminate, and some mRNAs are selectively protected and rapidly translated after fertilization for reprogramming the zygotic genome during early embryogenesis. Oocyte specific cofactors and pathways have been illustrated to control different futures of maternal mRNAs. We discuss mechanisms that control the fate of maternal mRNAs during late oogenesis and after fertilization. Issues to be resolved in current maternal mRNA research are described, and future research directions are proposed.
Collapse
Affiliation(s)
- Guanghui Yang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Qiliang Xin
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Nong C, Chen Y, Yang H, Chen N, Tian C, Li S, Chen H. Phenotypic sorting of individual male and female intersex Cherax quadricarinatus and analysis of molecular differences in the gonadal transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101194. [PMID: 38246110 DOI: 10.1016/j.cbd.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Cherax quadricarinatus exhibit sexual dimorphism, with males outpacing females in size specification and growth rate. However, there is limited understanding of the molecular mechanisms underlying sex determination and sex differentiation in crustaceans. To study the differences between intersex individuals and normal individuals, this study counted the proportion of intersex individuals in the natural population, collected the proportion of 7 different phenotypes in 200 intersex individuals, and observed the differences in tissue sections. RNA-seq was used to study the different changes in the transcriptome of normal and intersex gonads. The results showed that: the percentage of intersex in the natural population was 1.5 %, and the percentage of different types of intersex ranged from 0.5 % to 22.5 %; the sections revealed that the development of normal ovaries was stagnant at the primary oocyte stage when intersex individuals with ovaries were present; We screened for pathways and genes that may be associated with gonadal development and sex, including ovarian steroid synthesis, estrogen signaling pathway, oocyte meiosis, progesterone-mediated oocyte maturation, etc. Relevant genes including tra2a, dmrta2, ccnb2, foxl2, and smad4. This study provides an important molecular basis for sex determination, sex-controlled breeding, and unisex breeding in red crayfish.
Collapse
Affiliation(s)
- Chuntai Nong
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yibin Chen
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China
| | - Hao Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Nanxiong Chen
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Sedong Li
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China.; Zhanjiang Ocean and Fishery Development Research Center, Zhanjiang, China.
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Havwii agriculture group Co., Ltd, Zhanjiang 524266, China.
| |
Collapse
|
25
|
Wang X, Leung FS, Bush JO, Conti M. Alternative cleavage and polyadenylation of the Ccnb1 mRNA defines accumulation of cyclin protein during the meiotic cell cycle. Nucleic Acids Res 2024; 52:1258-1271. [PMID: 38048302 PMCID: PMC10853788 DOI: 10.1093/nar/gkad1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Progression through the mitotic and meiotic cell cycle is driven by fluctuations in the levels of cyclins, the regulatory subunits controlling the localization and activity of CDK1 kinases. Cyclin levels are regulated through a precise balance of synthesis and degradation. Here we demonstrate that the synthesis of Cyclin B1 during the oocyte meiotic cell cycle is defined by the selective translation of mRNA variants generated through alternative cleavage and polyadenylation (APA). Using gene editing in mice, we introduced mutations into the proximal and distal polyadenylation elements of the 3' untranslated region (UTR) of the Ccnb1 mRNA. Through in vivo loss-of-function experiments, we demonstrate that the translation of mRNA with a short 3' UTR specifies Cyclin B1 protein levels that set the timing of meiotic re-entry. In contrast, translation directed by a long 3' UTR is necessary to direct Cyclin B1 protein accumulation during the MI/MII transition. These findings establish that the progression through the cell cycle is dependent on the selective translation of multiple mRNA variants generated by APA.
Collapse
Affiliation(s)
- Xiaotian Wang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Fang-Shiuan Leung
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
26
|
Wang CR, Yuan XW, Ji HW, Xu YN, Li YH, Kim NH. Chrysoeriol Improves the Early Development Potential of Porcine Oocytes by Maintaining Lipid Homeostasis and Improving Mitochondrial Function. Antioxidants (Basel) 2024; 13:122. [PMID: 38275647 PMCID: PMC10812720 DOI: 10.3390/antiox13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Our previous study established that chrysoeriol (CHE) can reduce reactive oxygen species (ROS) accumulation, apoptosis, and autophagy in vitro culture (IVC) of porcine embryos. However, the role of CHE in oocyte maturation and lipid homeostasis is unclear. Herein, we aimed to elucidate the effect of CHE on porcine oocyte competence in vitro maturation (IVM) and subsequent embryo development. The study chooses parthenogenetic activated porcine oocytes as the research model. The study revealed that the cumulus expansion index and related gene expressions are significantly elevated after supplementing 1 μM CHE. Although there were no significant differences in nuclear maturation and cleavage rates, the blastocyst formation rate and total cell numbers were significantly increased in the 1 μM CHE group. In addition, CHE improved the expression of genes related to oocyte and embryo development. ROS was significantly downregulated in all CHE treatment groups, and intracellular GSH (glutathione) was significantly upregulated in 0.01, 0.1, and 1 μM CHE groups. The immunofluorescence results indicated that mitochondrial membrane potential (MMP) and lipid droplet (LD), fatty acid (FA), ATP, and functional mitochondria contents significantly increased with 1 μM CHE compared to the control. Furthermore, CHE increased the expression of genes related to lipid metabolism, mitochondrial biogenesis, and β-oxidation.
Collapse
Affiliation(s)
| | | | | | | | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China; (C.-R.W.); (H.-W.J.)
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China; (C.-R.W.); (H.-W.J.)
| |
Collapse
|
27
|
Zhang K, Zou Y, Shan M, Pan Z, Ju J, Liu J, Ji Y, Sun S. Arf1 GTPase Regulates Golgi-Dependent G2/M Transition and Spindle Organization in Oocyte Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303009. [PMID: 38014604 PMCID: PMC10811507 DOI: 10.1002/advs.202303009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Indexed: 11/29/2023]
Abstract
ADP-ribosylation factor 1 (Arf1) is a small GTPase belonging to the Arf family. As a molecular switch, Arf1 is found to regulate retrograde and intra-Golgi transport, plasma membrane signaling, and organelle function during mitosis. This study aimed to explore the noncanonical roles of Arf1 in cell cycle regulation and cytoskeleton dynamics in meiosis with a mouse oocyte model. Arf1 accumulated in microtubules during oocyte meiosis, and the depletion of Arf1 led to the failure of polar body extrusion. Unlike mitosis, it finds that Arf1 affected Myt1 activity for cyclin B1/CDK1-based G2/M transition, which disturbed oocyte meiotic resumption. Besides, Arf1 modulated GM130 for the dynamic changes in the Golgi apparatus and Rab35-based vesicle transport during meiosis. Moreover, Arf1 is associated with Ran GTPase for TPX2 expression, further regulating the Aurora A-polo-like kinase 1 pathway for meiotic spindle assembly and microtubule stability in oocytes. Further, exogenous Arf1 mRNA supplementation can significantly rescue these defects. In conclusion, results reported the noncanonical functions of Arf1 in G2/M transition and meiotic spindle organization in mouse oocytes.
Collapse
Affiliation(s)
- Kun‐Huan Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Yuan‐Jing Zou
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Meng‐Meng Shan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Zhen‐Nan Pan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jia‐Qian Ju
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jing‐Cai Liu
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Yi‐Ming Ji
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Shao‐Chen Sun
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
28
|
Wan Y, Yang S, Li T, Cai Y, Wu X, Zhang M, Muhammad T, Huang T, Lv Y, Chan WY, Lu G, Li J, Sha QQ, Chen ZJ, Liu H. LSM14B is essential for oocyte meiotic maturation by regulating maternal mRNA storage and clearance. Nucleic Acids Res 2023; 51:11652-11667. [PMID: 37889087 PMCID: PMC10681746 DOI: 10.1093/nar/gkad919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Shuang Yang
- Department of Physiology School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Yuling Cai
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Xinyue Wu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Mingyu Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Tahir Muhammad
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- Department of Cell Biology and Anatomy, NY Medical College, 15 Dana Road, Valhalla, NY 10595, USA
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yue Lv
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Wai-Yee Chan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jingxin Li
- Department of Physiology School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
| |
Collapse
|
29
|
Almalki SG. The pathophysiology of the cell cycle in cancer and treatment strategies using various cell cycle checkpoint inhibitors. Pathol Res Pract 2023; 251:154854. [PMID: 37864989 DOI: 10.1016/j.prp.2023.154854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
The cell cycle is the series of events that occur in a cell leading to its division and duplication. It can be divided into two main stages: interphase and mitosis. Interphase is the longest stage of the cell cycle and can be further divided into three phases: G1, S, and G2. During G1, the cell grows and prepares for DNA synthesis. In the S phase, DNA synthesis occurs, leading to the replication of the genetic material. In G2, the cell continues to grow and prepares for mitosis. After mitosis, the cell enters the final stage of the cell cycle, called cytokinesis, during which the cytoplasm is divided, resulting in two separate daughter cells. The cell cycle then begins again with interphase. Cell cycle dysregulation is a hallmark of cancer, and it can have several consequences that contribute to the development and progression of cancer. Cyclin inhibitors and checkpoint activators have shown promise in the treatment of cancer, particularly in combination with other therapies.
Collapse
Affiliation(s)
- Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| |
Collapse
|
30
|
Kulus J, Kranc W, Kulus M, Dzięgiel P, Bukowska D, Mozdziak P, Kempisty B, Antosik P. Expression of genes regulating cell division in porcine follicular granulosa cells. Cell Div 2023; 18:12. [PMID: 37550786 PMCID: PMC10408085 DOI: 10.1186/s13008-023-00094-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Cell cycle regulation influences the proliferation of granulosa cells and affects many processes related to ovarian folliclular growth and ovulation. Abnormal regulation of the cell cycle can lead to many diseases within the ovary. The aim of this study was to describe the expression profile of genes within granulosa cells, which are related to the formation of the cytoskeleton, organization of cell organelles inside the cell, and regulation of cell division. Established in vitro primary cultures from porcine ovarian follicle granulosa cells were maintained for 48, 96, 144 h and evaluated via microarray expression analysis. RESULTS Analyzed genes were assigned to 12 gene ontology groups "actin cytoskeleton organization", "actin filament organization", "actin filament-based process", "cell-matrix adhesion", "cell-substrate adhesion", "chromosome segregation", "chromosome separation", "cytoskeleton organization", "DNA integrity checkpoint", "DNA replication initiation", "organelle fision", "organelle organization". Among the genes with significantly changed expression, those whose role in processes within the ovary are selected for consideration. Genes with increased expression include (ITGA11, CNN1, CCl2, TPM2, ACTN1, VCAM-1, COL3A1, GSN, FRMD6, PLK2). Genes with reduced expression inlcude (KIF14, TACC3, ESPL1, CDC45, TTK, CDC20, CDK1, FBXO5, NEK2-NIMA, CCNE2). For the results obtained by microarray expressions, quantitative validation by RT-qPCR was performed. CONCLUSIONS The results indicated expression profile of genes, which can be considered as new molecular markers of cellular processes involved in signaling, cell structure organization. The expression profile of selected genes brings new insight into regulation of physiological processes in porcine follicular granulosa cells during primary in vitro culture.
Collapse
Affiliation(s)
- Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
31
|
Camlin NJ, Venkatachalam I, Evans JP. Oscillations in PP1 activity are essential for accurate progression through mammalian oocyte meiosis. Cell Cycle 2023; 22:1614-1636. [PMID: 37340734 PMCID: PMC10361142 DOI: 10.1080/15384101.2023.2225924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Tightly controlled fluctuations in kinase and phosphatase activity play important roles in regulating M-phase transitions. Protein Phosphatase 1 (PP1) is one of these phosphatases, with oscillations in PP1 activity driving mitotic M-phase. Evidence from a variety of experimental systems also points to roles in meiosis. Here, we report that PP1 is important for M-phase transitions through mouse oocyte meiosis. We employed a unique small-molecule approach to inhibit or activate PP1 at distinct phases of mouse oocyte meiosis. These studies show that temporal control of PP1 activity is essential for the G2/M transition, metaphase I/anaphase I transition, and the formation of a normal metaphase II oocyte. Our data also reveal that inappropriate activation of PP1 is more deleterious at the G2/M transition than at prometaphase I-to-metaphase I, and that an active pool of PP1 during prometaphase is vital for metaphase I/anaphase I transition and metaphase II chromosome alignment. Taken together, these results establish that loss of oscillations in PP1 activity causes a range of severe meiotic defects, pointing to essential roles for PP1 in female fertility, and more broadly, M-phase regulation.
Collapse
Affiliation(s)
- Nicole J. Camlin
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
| | - Ilakkiya Venkatachalam
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
- Department of Human Genetics, University of Michigan, Ann Arbor, MIUnited States
| | - Janice P. Evans
- Department of Biological Sciences, Purdue University, West Lafayette, INUnited States
| |
Collapse
|
32
|
Palacios-Blanco I, Martín-Castellanos C. Cyclins and CDKs in the regulation of meiosis-specific events. Front Cell Dev Biol 2022; 10:1069064. [PMID: 36523509 PMCID: PMC9745066 DOI: 10.3389/fcell.2022.1069064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 07/13/2024] Open
Abstract
How eukaryotic cells control their duplication is a fascinating example of how a biological system self-organizes specific activities to temporally order cellular events. During cell cycle progression, the cellular level of CDK (Cyclin-Dependent Kinase) activity temporally orders the different cell cycle phases, ensuring that DNA replication occurs prior to segregation into two daughter cells. CDK activity requires the binding of a regulatory subunit (cyclin) to the core kinase, and both CDKs and cyclins are well conserved throughout evolution from yeast to humans. As key regulators, they coordinate cell cycle progression with metabolism, DNA damage, and cell differentiation. In meiosis, the special cell division that ensures the transmission of genetic information from one generation to the next, cyclins and CDKs have acquired novel functions to coordinate meiosis-specific events such as chromosome architecture, recombination, and synapsis. Interestingly, meiosis-specific cyclins and CDKs are common in evolution, some cyclins seem to have evolved to acquire CDK-independent functions, and even some CDKs associate with a non-cyclin partner. We will review the functions of these key regulators in meiosis where variation has specially flourished.
Collapse
|
33
|
Li AH, Chen YQ, Chen YQ, Song Y, Li D. CCNB1 and CCNB2 involvement in the pathogenesis of psoriasis: a bioinformatics study. J Int Med Res 2022; 50:3000605221117138. [PMID: 35949173 PMCID: PMC9373137 DOI: 10.1177/03000605221117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective The cell cycle-related proteins cyclin B1 (CCNB1) and cyclin B2 (CCNB2) are
potentially involved in the underlying mechanisms of psoriasis. The present
study aimed to explore this possibility using bioinformatics approaches. Methods CCNB1 and CCNB2 protein levels were evaluated in 14 psoriasis patients and
five healthy controls by enzyme-linked immunosorbent assays, and their mRNA
levels were evaluated using data from four publicly available datasets
(GSE53552, GSE41664, GSE14905, and GSE13355). Comparison of high- and
low-expressing groups were performed to reveal CCNB1- and CCNB2-related
differentially expressed genes, which were then assessed based on gene
ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses.
Correlation analyses between CCNB1 and
CCNB2 levels and immune infiltration, as well as
typical targets of psoriasis, were also performed. Results Overall, 12 CCNB1 and CCNB2 common immune-related targets potentially
involved in psoriasis were identified. These could regulate the cell cycle
of through multiple pathways. In addition, CCNB1 and CCNB2 were
found to potentially support the release of key molecular targets of
psoriasis through the regulation of mast cell activation and macrophage
polarization. Conclusions These findings suggest that CCNB1 and CCNB2 may represent valuable molecular
biomarkers of psoriasis, contributing to its onset and progression.
Collapse
Affiliation(s)
- An-Hai Li
- Department of Dermatology, 609297Qingdao Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Yong-Qing Chen
- Department of Blood Transfusion, 609297Qingdao Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Yu-Qian Chen
- Department of Traditional Chinese Medicine, 609297Qingdao Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Yun Song
- Department of Traditional Chinese Medicine, 609297Qingdao Huangdao District Central Hospital, Qingdao, Shandong, China
| | - Ding Li
- Department of Dermatology, 609297Qingdao Huangdao District Central Hospital, Qingdao, Shandong, China.,Department of Traditional Chinese Medicine, 235960The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
34
|
Yang S, Liu Z, Wu S, Zou L, Cao Y, Xu H, Huang J, Tian Q, Wu F, Li P, Peng S, Shuai C. Meiosis resumption in human primordial germ cells from induced pluripotent stem cells by in vitro activation and reconstruction of ovarian nests. Stem Cell Res Ther 2022; 13:339. [PMID: 35883163 PMCID: PMC9327357 DOI: 10.1186/s13287-022-03019-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Background The differentiation of human induced pluripotent stem cells (iPSCs) into oocytes, which involves the transformation from mitosis to meiosis, has been a hotspot of biological research for many years and represents a desirable experimental model and potential strategy for treating infertility. At present, studies have shown that most cells stagnate in the oogonium stage after differentiation into primordial germ cells (PGCs) from human iPSCs. Methods iPSCs carrying a SYCP3-mkate2 knock-in reporter were generated by the CRISPR/Cas9 strategy to monitor meiosis status during induced differentiation from iPSCs into oocytes. These induced PGCs/oogonia were activated by small molecules from the Wnt signaling pathway and then cocultured with reconstructed human ovarian nests in vivo for further development. Results First, human PGCs and oogonia were efficiently induced from iPSCs. Second, induced dormant PGCs resumed meiosis and then differentiated into primary oocytes through the in vitro activation of the Wnt signaling pathway. Finally, a new coculture system involving the reconstruction of ovarian nests in vitro could facilitate the differentiation of oocytes. Conclusions Human PGCs/oogonia induced from iPSCs can be activated and used to resume meiosis by molecules of the Wnt signaling pathway. The coculture of activated PGCs and reconstruction of ovarian nests facilitated differentiation into primary oocytes and the generation of haploid human oocytes in vivo. These findings established a new strategy for germline competence in primary oocytes and provided a keystone for human gametogenesis in vitro and in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03019-3.
Collapse
Affiliation(s)
- Sheng Yang
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China. .,Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China.
| | - Zhen Liu
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Shengda Wu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China.,Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, People's Republic of China
| | - Lang Zou
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yanpei Cao
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China
| | - Hongjia Xu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China
| | - Jingfeng Huang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China
| | - Qingyan Tian
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Fanggui Wu
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Panpan Li
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.
| | - Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, People's Republic of China. .,State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
35
|
Meng TG, Lei WL, Lu X, Liu XY, Ma XS, Nie XQ, Zhao ZH, Li QN, Huang L, Hou Y, Ouyang YC, Li L, Tang TS, Schatten H, Xie W, Gao SR, Ou XH, Wang ZB, Sun QY. Maternal EHMT2 is essential for homologous chromosome segregation by regulating Cyclin B3 transcription in oocyte meiosis. Int J Biol Sci 2022; 18:4513-4531. [PMID: 35864958 PMCID: PMC9295060 DOI: 10.7150/ijbs.75298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
During oocyte growth, various epigenetic modifications are gradually established, accompanied by accumulation of large amounts of mRNAs and proteins. However, little is known about the relationship between epigenetic modifications and meiotic progression. Here, by using Gdf9-Cre to achieve oocyte-specific ablation of Ehmt2 (Euchromatic-Histone-Lysine-Methyltransferase 2) from the primordial follicle stage, we found that female mutant mice were infertile. Oocyte-specific knockout of Ehmt2 caused failure of homologous chromosome separation independent of persistently activated SAC during the first meiosis. Further studies revealed that lacking maternal Ehmt2 affected the transcriptional level of Ccnb3, while microinjection of exogenous Ccnb3 mRNA could partly rescue the failure of homologous chromosome segregation. Of particular importance was that EHMT2 regulated ccnb3 transcriptions by regulating CTCF binding near ccnb3 gene body in genome in oocytes. In addition, the mRNA level of Ccnb3 significantly decreased in the follicles microinjected with Ctcf siRNA. Therefore, our findings highlight the novel function of maternal EHMT2 on the metaphase I-to-anaphase I transition in mouse oocytes: regulating the transcription of Ccnb3.
Collapse
Affiliation(s)
- Tie-Gang Meng
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.,Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Yu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xue-Shan Ma
- The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, Shandong, 271000, China
| | - Xiao-Qing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Nan Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Center for Clinical Medicine Research, The Affiliated Hospital of Southwest Medical University, Luzhou 6460000, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Wei Xie
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.,Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shao-Rong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Yan F, Ouyang Y, Meng T, Zhang H, Yue W, Zhang X, Xue Y, Wang Z, Sun Q. Toxic effects of AZD1208 on mouse oocytes and its possible mechanisms. J Cell Physiol 2022; 237:3661-3670. [DOI: 10.1002/jcp.30835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Feng‐Ze Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Science Beijing China
| | - Ying‐Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Tie‐Gang Meng
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Hong‐Yong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Science Beijing China
| | - Xin‐Ran Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Science Beijing China
| | - Yue Xue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qing‐Yuan Sun
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| |
Collapse
|
37
|
A Potential Role of Cyclic Dependent Kinase 1 (CDK1) in Late Stage of Retinal Degeneration. Cells 2022; 11:cells11142143. [PMID: 35883586 PMCID: PMC9317054 DOI: 10.3390/cells11142143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
Cyclin dependent kinase 1 (CDK1) has long been known to drive the cell cycle and to regulate the division and differentiation of cells. Apart from its role in mitosis regulation, it also exerts multiple functions as a protein kinase, including engagement in cell death, possibly via a cell cycle-independent mechanism. The latter is suggested, since CDK1 re-expression can be found in non-dividing and terminally differentiated neurons in several neurodegeneration models. However, the details of if and how CDK1 might be involved in the neurodegenerative condition, retinitis pigmentosa (RP), which displays progressive vision loss, are unclear. In the present study, we investigated CDK1 in degenerating RP photoreceptors of the rd1 RP model, including whether there is a link between this kinase and the cGMP-PKG system, which is regarded as a disease driver. With experiments performed using either in vivo retinal tissue or in vitro material, via organotypic retinal explants, our results showed that CDK1 appears in the photoreceptors at a late stage of their degeneration, and in such a position, it may be associated with the cGMP-PKG network.
Collapse
|
38
|
Iron-overloaded follicular fluid increases the risk of endometriosis-related infertility by triggering granulosa cell ferroptosis and oocyte dysmaturity. Cell Death Dis 2022; 13:579. [PMID: 35787614 PMCID: PMC9253011 DOI: 10.1038/s41419-022-05037-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023]
Abstract
Endometriosis (EMs) occurs in approximately 50% of women with infertility. The main causes of EMs-related infertility are follicle dysplasia and reduced oocyte quality. Iron overload occurs in ovarian follicular fluid (FF) of patients with EMs, and this condition is associated with oocyte maturation disorder. However, the underlying molecular mechanism remains largely unknown. In the present study, we identified the mechanism underlying ferroptosis in ovarian granulosa cells and oocyte maturation failure in EMs based on a retrospective review of in vitro fertilization/intracytoplasmic sperm injection-frozen embryo transfer outcomes in infertile patients with EMs. Mouse granulosa cells were treated with EMs-related infertile patients' follicular fluid (EMFF) in vitro. Western blot analysis, quantitative polymerase chain reaction, fluorescence staining, and transmission electron microscopy were used to assess granulosa cells ferroptosis. The effects of exosomes were examined by nanoparticle tracking analysis, RNA-seq, and Western blot analysis. Finally, the therapeutic values of vitamin E and iron chelator (deferoxamine mesylate) in vivo were evaluated in an EMs-related infertility model. Patients with ovarian EMs experienced poorer oocyte fertility than patients with non-ovarian EMs. We observed that EMFF with iron overload-induced granulosa cell ferroptosis in vitro and in vivo. Mechanically, nuclear receptor coactivator four-dependent ferritinophagy was involved in this process. Notably, granulosa cells undergoing ferroptosis further suppressed oocyte maturation by releasing exosomes from granulosa cells. In therapeutic studies, vitamin E and iron chelators effectively alleviated EMs-related infertility models. Our study indicates a novel mechanism through which EMFF with iron overload induces ferroptosis of granulosa cells and oocyte dysmaturity in EMs-related infertility, providing a potential therapeutic strategy for EMs-related infertility.
Collapse
|
39
|
Zhang XR, Ouyang YC, Meng TG, Zhang HY, Yue W, Yan FZ, Xue Y, Schatten H, Wang ZB, Sun QY. OTSSP167 leads to follicular dysplasia and negatively affects oocyte quality in mice. Toxicology 2022; 476:153243. [PMID: 35760214 DOI: 10.1016/j.tox.2022.153243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
OTSSP167 is an anti-tumor drug significantly inhibiting tumor growth in xenotransplantation studies using mouse breast, lung, prostate, and pancreatic cancer cell lines. Its phase I clinical trial has been completed, indicating its great potential for future treatment of solid tumors. However, its drug-related adverse effects on reproductive systems have not yet been reported. In this study, we evaluated the effects of OTSSP167 on reproduction of female mice by determining oocyte quality and follicular development. We selected four-week-old female ICR mice for a 21-day intraperitoneal injection of OTSSP167 at a dose of 5mg/kg/d. We found that OTSSP167 could block the meiotic process of oocytes, leading to a decrease in oocyte maturation and ovulated oocyte numbers, as well as a decrease in the quality of oocytes. The results showed that OTSSP167 treatment caused disordered spindle assembly, decreased mitochondria membrane potential, and increased accumulation of reactive oxygen species in oocytes. Further investigation showed that OTSSP167 induced DNA double-strand breaks, as indicated by increased levels of γH2AX in oocytes of primordial follicles and granulosa cells of growing follicles, which induced follicular atresia and decreased the numbers of follicles at various growing stages. Our study suggests that OTSSP167 treatment may have serious effects on the ovary and consequences for female cancer patients, providing strong evidence for the necessity of protecting female fertility in clinical OTSSP167 trials.
Collapse
Affiliation(s)
- Xin-Ran Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; College of Life Science, University of Chinese Academy of Science, 100101, Beijing
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hong-Yong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; College of Life Science, University of Chinese Academy of Science, 100101, Beijing
| | - Feng-Ze Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; College of Life Science, University of Chinese Academy of Science, 100101, Beijing
| | - Yue Xue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; College of Life Science, University of Chinese Academy of Science, 100101, Beijing
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
40
|
Lu PS, Wang Y, Jiao L, Sun SC. Nivalenol affects Cyclin B1 level and activates SAC for cell cycle progression in mouse oocyte meiosis. Cell Prolif 2022; 55:e13277. [PMID: 35746834 PMCID: PMC9436911 DOI: 10.1111/cpr.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Nivalenol (NIV) is a secondary metabolite of type B trichothecene mycotoxin produced by Fusarium genera, which is widely found in contaminated food and crops such as corn, wheat and peanuts. NIV is reported to have hepatotoxicity, immunotoxicity, genotoxicity, and reproductive toxicity. Previous studies indicate that NIV disturbs mammalian oocyte maturation. Here, we reported that delayed cell cycle progression might be the reason for oocyte maturation defect caused by NIV exposure. METHODS AND RESULTS We set up a NIV exposure model and showed that NIV did not affect G2/M transition for meiosis resumption, but disrupted the polar body extrusion of oocytes. Further analysis revealed that oocytes were arrested at metaphase I, which might be due to the lower expression of Cyclin B1 after NIV exposure. After cold treatment, the microtubules were disassembled in the NIV-exposed oocytes, indicating that NIV disrupted microtubule stability. Moreover, NIV affected the attachment between kinetochore and microtubules, which further induced the activation of MAD2/BUBR1 at the kinetochores, suggesting that spindle assemble checkpoint (SAC) was continuously activated during oocyte meiotic maturation. CONCLUSIONS Taken together, our study demonstrated that exposure to NIV affected Cyclin B1 expression and activated microtubule stability-dependent SAC to ultimately disturb cell cycle progression in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Jiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Zahra A, Kerslake R, Kyrou I, Randeva HS, Sisu C, Karteris E. Impact of Environmentally Relevant Concentrations of Bisphenol A (BPA) on the Gene Expression Profile in an In Vitro Model of the Normal Human Ovary. Int J Mol Sci 2022; 23:5334. [PMID: 35628146 PMCID: PMC9141570 DOI: 10.3390/ijms23105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs), including the xenoestrogen Bisphenol A (BPA), can interfere with hormonal signalling. Despite increasing reports of adverse health effects associated with exposure to EDCs, there are limited data on the effect of BPA in normal human ovaries. In this paper, we present a detailed analysis of the transcriptomic landscape in normal Human Epithelial Ovarian Cells (HOSEpiC) treated with BPA (10 and 100 nM). Gene expression profiles were determined using high-throughput RNA sequencing, followed by functional analyses using bioinformatics tools. In total, 272 and 454 differentially expressed genes (DEGs) were identified in 10 and 100 nM BPA-treated HOSEpiCs, respectively, compared to untreated controls. Biological pathways included mRNA surveillance pathways, oocyte meiosis, cellular senescence, and transcriptional misregulation in cancer. BPA exposure has a considerable impact on 10 genes: ANAPC2, AURKA, CDK1, CCNA2, CCNB1, PLK1, BUB1, KIF22, PDE3B, and CCNB3, which are also associated with progesterone-mediated oocyte maturation pathways. Future studies should further explore the effects of BPA and its metabolites in the ovaries in health and disease, making use of validated in vitro and in vivo models to generate data that will address existing knowledge gaps in basic biology, hazard characterisation, and risk assessment associated with the use of xenoestrogens such as BPA.
Collapse
Affiliation(s)
- Aeman Zahra
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Rachel Kerslake
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Cristina Sisu
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Emmanouil Karteris
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| |
Collapse
|
42
|
CCNA2 as an Immunological Biomarker Encompassing Tumor Microenvironment and Therapeutic Response in Multiple Cancer Types. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5910575. [PMID: 35401923 PMCID: PMC8989596 DOI: 10.1155/2022/5910575] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Background Cancer is a major threat to human health worldwide. Although recent innovations and advances in early detection and effective therapies such as targeted drugs and immune checkpoint inhibitors have saved more lives of cancer patients and improved their quality of life, our knowledge about cancer remains largely unknown. CCNA2 belongs to the cell cyclin family and has been demonstrated to be a tumorigenic gene in multiple solid tumor types. The aim of the present study was to make a comprehensive analysis on the role of CCNA2 at a pancancer level. Methods Multidatabases were collected to evaluate the different expression, prognostic value, DNA methylation, tumor mutation burden, microsatellite instability, mismatch repair, tumor immune microenvironment, and drug sensitivity of CCNA2 across pancancer. IHC was utilized to validate the expression and prognostic value of CCNA2 in ccRCC patients from SMMU cohort. Results CCNA2 was differentially expressed in most cancer types vs. normal tissues. CCNA2 may significantly influence the prognosis of multiple cancer types, especially clear cell renal cell carcinoma (ccRCC). CCNA2 was also frequently mutated in most cancer types. Notably, CCNA2 was significantly correlated with immune cell infiltration and immune checkpoint inhibitory genes. In addition, CCNA2 was also strongly related to drug resistance. Conclusion CCNA2 may prove to be a new biomarker for prognostic prediction, tumor immunity assessment, and drug susceptibility evaluation in pancancer level, especially in ccRCC.
Collapse
|
43
|
Li Y, Liao Z, Wang R, Liang Z, Lin Z, Deng S, Chen L, Liu Z, Feng S. Long non-coding RNA SPRY4-IT1 promotes proliferation and metastasis in nasopharyngeal carcinoma cell. PeerJ 2022; 10:e13221. [PMID: 35378932 PMCID: PMC8976472 DOI: 10.7717/peerj.13221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Long non-coding RNA SPRY4 intronic transcript 1 (Lnc RNA SPRY4-IT1) was aberrant-expressed in various kinds of cancer. Increasing evidence demonstrated that lnc RNAs involved in tumorigenesis and metastasis. In this study, we aimed to explore the biological role of SPRY4-IT1 on the phenotype of nasopharyngeal carcinoma (NPC) in vitro and in vivo. Methods The expression level of SPRY4-IT1 in NPC cell lines were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and colony formation assay were used to detect cell proliferation. Wound-healing assay, transwell assay and animal experiment were performed to evaluate the ability of cell migration and metastasis. Cell cycle distribution and apoptosis were determined by flow cytometry. Western blotting and immunofluorescence were employed to identify protein expression. Results SPRY4-IT1 was significantly up-regulated in several NPC cell lines (6-10B, CNE-2, and HONE-1) compared with human immortalized nasopharyngeal epithelial cell (NP69). Silencing of SPRY4-IT1 inhibited proliferation, migration, and metastasis, and induced significant G2/M phase arrest and apoptosis. Western blotting showed that the expression levels of cell cycle-related proteins (cyclin B1, cdc2 and p-cdc2) were down-regulated and apoptosis-associated proteins (PARP, cleaved PARP and cleaved caspase-3) were up-regulated after knockdown of SPRY4-IT1. The expression level of E-cadherin was increased and the expression of Vimentin, Snail and Twist1 were decreased after the SPRY4-IT1 knockdown. Conclusion lncRNA SPRY4-IT1 played a significant role in NPC proliferation, migration and metastasis, suggesting that SPRY4-IT1 might be a potential therapeutic target for the treatment of NPC.
Collapse
Affiliation(s)
- Yanfei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhenpeng Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Rong Wang
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zibin Liang
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhihe Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shiqi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China,Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhigang Liu
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shaoyan Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
44
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
45
|
Wang M, Yang Q, Liu J, Hu J, Li D, Ren X, Xi Q, Zhu L, Jin L. GVBD rate is an independent predictor for pregnancy in ICSI patients with surplus immature oocytes. Front Endocrinol (Lausanne) 2022; 13:1022044. [PMID: 36699025 PMCID: PMC9868552 DOI: 10.3389/fendo.2022.1022044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION It was reported that there were still up to 30% immature retrieved oocyte at germinal vesicle (GV) or metaphase I (MI) stage. Whether the spontaneous maturity competency of immature oocytes associated to the clinical outcome of in vitro fertilization (IVF) cycles remains unclear and unexplored. This study aimed to investigate how the oocyte developmental parameters in in vitro maturation (IVM) affect clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles. METHODS This retrospective cohort study included couples undergoing ICSI in a university-affiliated hospital. Surplus immature oocytes during ICSI were collected and cultured in vitro. The numbers of germinal vesicle (GV) oocytes undergoing GV breakdown (GVBD) and polar body 1 extrusion within 24 h culture were recorded. The main outcome measurements were demographic baselines and oocyte developmental parameters in IVM associated with pregnancy outcomes. RESULTS A total of 191 couples were included with an overall GVBD rate of 63.7% (327/513) and oocyte maturation rate of 46.8% (240/513). 53.4% (102/191) of them had embryos transferred freshly, which originated from metaphase II oocytes that matured spontaneously in vivo, and 60.8% (62/102) got pregnant. Among factors with a P-value < 0.2 in univariate logistic regression analyses of pregnancy correlation, GVBD rate (OR 3.220, 95% CI 1.060-9.782, P=0.039) and progesterone level on human chorionic gonadotropin (HCG) day (OR 0.231, 95% CI 0.056-0.949, P=0.042) remained significant in the multivariate model. The area under the curve (AUC) of the predictive nomogram was 0.729 (95% CI 0.632-0.826) with an acceptable calibration. Moreover, decision curve analyses illustrated the superior overall net benefit of models that included the GVBD rate in clinical decisions within a wide range of threshold probabilities. CONCLUSION In conclusion, GVBD rate and progesterone level on HCG day may be associated with pregnancy outcomes in infertile couples during the regular ICSI procedure. An elevated GVBD rate within 24 h may greatly increase the likelihood of pregnancy in infertile couples during ICSI. This preliminary study may optimize clinical pregnancy prediction, which provides support in decision-making in clinical practice.
Collapse
Affiliation(s)
- Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiyu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lei Jin,
| |
Collapse
|
46
|
Wang PC, Chen ST, Yang ZM. Effects of Aurora kinase A on mouse decidualization via Stat3-plk1-cdk1 pathway. Reprod Biol Endocrinol 2021; 19:162. [PMID: 34715887 PMCID: PMC8557062 DOI: 10.1186/s12958-021-00847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decidualization is essential to the successful pregnancy in mice. The molecular mechanisms and effects of Aurora kinase A (Aurora A) remain poorly understood during pregnancy. This study is the first to investigate the expression and role of Aurora A during mouse decidualization. METHODS Quantitative real time polymerase chain reaction, western blotting and in situ hybridization were used to determine the expression of Aurora A in mouse uteri. Aurora A activity was inhibited by Aurora A inhibitor to explore the role of Aurora A on decidualization via regulating the Aurora A/Stat3/Plk1/Cdk1 signaling pathway. RESULTS Aurora A was strongly expressed at implantation sites compared with inter-implantation sites. Furthermore, Aurora A was also significantly increased in oil-induced deciduoma compared with control. Both Aurora A mRNA and protein were significantly increased under in vitro decidualization. Under in vitro decidualization, Prl8a2, a marker of mouse decidualization, was significantly decreased by TC-S 7010, an Aurora A inhibitor. Additionally, Prl8a2 was reduced by Stat3 inhibitor, Plk1 inhibitor and Cdk1 inhibitor, respectively. Moreover, the protein levels of p-Stat3, p-Plk1 and p-Cdk1 were suppressed by TC-S 7010. The protein levels of p-Stat3, p-Plk1 and p-Cdk1 were also suppressed by S3I-201, a Stat3 inhibitor). SBE 13 HCl (Plk1 inhibitor) could reduce the protein levels of p-Plk1 and p-Cdk1. Collectively, Aurora A could regulate Stat3/Plk1/Cdk1 signaling pathway. CONCLUSION Our study shows that Aurora A is expressed in decidual cells and should be important for mouse decidualization. Aurora A/Stat3/Plk1/Cdk1 signaling pathway may be involved in mouse decidualization.
Collapse
Affiliation(s)
- Peng-Chao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
47
|
Beverley R, Snook ML, Brieño-Enríquez MA. Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease. Front Cell Dev Biol 2021; 9:710033. [PMID: 34409039 PMCID: PMC8365356 DOI: 10.3389/fcell.2021.710033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi-protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in decreased fecundity and increased infertility and miscarriage rates with advancing maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize the human genetic studies which have identified genetic variants of cohesin proteins and the associated reproductive phenotypes including primary ovarian insufficiency, trisomy in offspring, and non-obstructive azoospermia. The association of cohesion defects with cancer predisposition and potential impact on aging are also described. Expansion of genetic testing within clinical medicine, with a focus on cohesin protein-related genes, may provide additional insight to previously unknown etiologies of disorders contributing to gamete exhaustion in females, and infertility and reproductive aging in both men and women.
Collapse
Affiliation(s)
- Rachel Beverley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L Snook
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
48
|
Jiang JC, Zhang H, Cao LR, Dai XX, Zhao LW, Liu HB, Fan HY. Oocyte meiosis-coupled poly(A) polymerase α phosphorylation and activation trigger maternal mRNA translation in mice. Nucleic Acids Res 2021; 49:5867-5880. [PMID: 34048556 PMCID: PMC8191758 DOI: 10.1093/nar/gkab431] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 01/25/2023] Open
Abstract
Mammalian oocyte maturation is driven by strictly regulated polyadenylation and translational activation of maternal mRNA stored in the cytoplasm. However, the poly(A) polymerase (PAP) that directly mediates cytoplasmic polyadenylation in mammalian oocytes has not been determined. In this study, we identified PAPα as the elusive enzyme that catalyzes cytoplasmic mRNA polyadenylation implicated in mouse oocyte maturation. PAPα was mainly localized in the germinal vesicle (GV) of fully grown oocytes but was distributed to the ooplasm after GV breakdown. Inhibition of PAPα activity impaired cytoplasmic polyadenylation and translation of maternal transcripts, thus blocking meiotic cell cycle progression. Once an oocyte resumes meiosis, activated CDK1 and ERK1/2 cooperatively mediate the phosphorylation of three serine residues of PAPα, 537, 545 and 558, thereby leading to increased activity. This mechanism is responsible for translational activation of transcripts lacking cytoplasmic polyadenylation elements in their 3′-untranslated region (3′-UTR). In turn, activated PAPα stimulated polyadenylation and translation of the mRNA encoding its own (Papola) through a positive feedback circuit. ERK1/2 promoted Papola mRNA translation in a 3′-UTR polyadenylation signal-dependent manner. Through these mechanisms, PAPα activity and levels were significantly amplified, improving the levels of global mRNA polyadenylation and translation, thus, benefiting meiotic cell cycle progression.
Collapse
Affiliation(s)
- Jun-Chao Jiang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan-Rui Cao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing-Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
49
|
Yu B, van Tol HTA, Stout TAE, Roelen BAJ. Reverse transcription priming methods affect normalisation choices for gene expression levels in oocytes and early embryos. Mol Hum Reprod 2021; 27:6307270. [PMID: 34152407 PMCID: PMC8314208 DOI: 10.1093/molehr/gaab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/05/2021] [Indexed: 11/14/2022] Open
Abstract
Mammalian oocytes and embryos rely exclusively on maternal mRNAs to accomplish early developmental processes. Since oocytes and early embryos are transcriptionally silent after meiotic resumption, most of the synthesised maternal mRNA does not undergo immediate translation but is instead stored in the oocyte. Quantitative RT-PCR is commonly used to quantify mRNA levels, and correct quantification relies on reverse transcription and the choice of reference genes. Different methods for reverse transcription may affect gene expression determination in oocytes. In this study, we examined the suitability of either random or oligo(dT) primers for reverse transcription to be used for quantitative RT-PCR. We further looked for changes in poly(A) length of the maternal mRNAs during oocyte maturation. Our data indicate that depending on the method of reverse transcription, the optimal combination of reference genes for normalisation differed. Surprisingly, we observed a shortening of the poly(A) tail lengths of maternal mRNA as oocytes progressed from germinal vesicle to metaphase II. Overall, our findings suggest dynamic maternal regulation of mRNA structure and gene expression during oocyte maturation and early embryo development.
Collapse
Affiliation(s)
- Bo Yu
- Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Helena T A van Tol
- Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tom A E Stout
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A J Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Correspondence address. Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands. E-mail: http://orcid.org/0000-0001-9512-4708
| |
Collapse
|
50
|
Bustamante-Jaramillo LF, Ramos C, Martín-Castellanos C. The Meiosis-Specific Crs1 Cyclin Is Required for Efficient S-Phase Progression and Stable Nuclear Architecture. Int J Mol Sci 2021; 22:ijms22115483. [PMID: 34067465 PMCID: PMC8196990 DOI: 10.3390/ijms22115483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.
Collapse
|