1
|
Bakhshi Sichani S, Khorshid M, Yongabi D, Urbán CT, Schreurs M, Verstrepen KJ, Lettinga MP, Schöning MJ, Lieberzeit P, Wagner P. Design of a Multiparametric Biosensing Platform and Its Validation in a Study on Spontaneous Cell Detachment from Temperature Gradients. ACS Sens 2024; 9:3967-3978. [PMID: 39079008 DOI: 10.1021/acssensors.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
This article reports on a bioanalytical sensor device that hosts three different transducer principles: impedance spectroscopy, quartz-crystal microbalance with dissipation monitoring, and the thermal-current-based heat-transfer method. These principles utilize a single chip, allowing one to perform either microbalance and heat transfer measurements in parallel or heat transfer and impedance measurements. When taking specific precautions, the three measurement modalities can even be used truly simultaneously. The probed parameters are distinctly different, so that one may speak about multiparametric or "orthogonal" sensing without crosstalk between the sensing circuits. Hence, this sensor allows one to identify which of these label-free sensing principles performs best for a given bioanalytical application in terms of a high signal amplitude and signal-to-noise ratio. As a proof-of-concept, the three-parameter sensor was validated by studying the spontaneous, collective detachment of eukaryotic cells in the presence of a temperature gradient between the QCM chip and the supernatant liquid. In addition to heat transfer, detachment can also be monitored by the impedance- and QCM-related signals. These features allow for the distinguishing between different yeast strains that differ in their flocculation genes, and the sensor device enables proliferation monitoring of yeast colonies over time.
Collapse
Affiliation(s)
- Soroush Bakhshi Sichani
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Derick Yongabi
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Csongor Tibor Urbán
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Michiel Schreurs
- Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Minne Paul Lettinga
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
- Biomolecular Systems and Processes IBI-4, Institute of Biological Information Processing, Research Center Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Michael J Schöning
- Institute for Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, D-52428 Jülich, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Währinger Strasse 42, AT-1090 Vienna, Austria
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
2
|
Qatan AAI, Tanbara S, Inamori M, Fukumori K, Kino–oka M. Spatial heterogeneity analysis of seeding of human induced pluripotent stem cells for neuroectodermal differentiation. Regen Ther 2024; 26:922-931. [PMID: 39508058 PMCID: PMC11539164 DOI: 10.1016/j.reth.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Preparing a uniform cell population in high-density seeding of adherent human induced pluripotent stem cells (hiPSC) requires stable culture conditions and consistent culture operation. In this study, we evaluated cell distribution patterns by changing cell seeding operations and their impact on differentiation toward the neuroectodermal lineage. Methods The hiPSC line 201B7 was seeded at 1.23 × 105 cells/cm2 following a conventional operation, prolongated time of cell seeding suspension or vessel tilting during cell seeding operation. Fluorescent imaging of cell nuclei was performed 24 h following cell seeding and used for spatial heterogeneity analysis. Flow cytometric analysis was also performed seven days after cell differentiation induction toward neuroectodermal lineage. Results Indices for spatial heterogeneity following high-density cell seeding were proposed to assess cell distribution patterns. Global heterogeneity (H G) was shown to be mostly affected by vessel tilting during cell seeding operation, while local heterogeneity (H L) was affected by prolongated time of cell seeding suspension. Changes in both spatial heterogeneities in the hiPSC population resulted in a lower yield of target neuroectodermal cells compared with the control operation. Conclusion High-density hiPSC seeding is critical for achieving a higher yield of target cells of neuroectodermal lineage. Understanding the spatial heterogeneity in early stages detects errors in cell culture motion and predicts cell fate in later stages of cell culture.
Collapse
Affiliation(s)
- Ali Ahmed Issa Qatan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Shinji Tanbara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Masakazu Inamori
- Cell Manufacturing Systems Engineering (Healios) Joint Research Chair, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Kazuhiro Fukumori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Masahiro Kino–oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
- Cell Manufacturing Systems Engineering (Healios) Joint Research Chair, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
- Research Base for Cell Manufacturability, TechnoArena, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| |
Collapse
|
3
|
Wang L, Wei X, Zhang Y, Gao Y, Niu Q. A double encryption protection algorithm for stem cell bank privacy data based on improved AES and chaotic encryption technology. PLoS One 2023; 18:e0293418. [PMID: 37878640 PMCID: PMC10681628 DOI: 10.1371/journal.pone.0293418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
The unique infinite self-renewal ability and multidirectional differentiation potential of stem cells provide a strong support for the clinical treatment. In light of the growing demands for stem cell storage, how to ensure personal privacy security and comply with strict ethical supervision requirements is particularly important. In order to solve the problem of low security of traditional encryption algorithm, we proposed a double encryption protection (DEP) algorithm for stem cell bank privacy data based on improved AES and chaotic encryption technology. Firstly, we presented the hash value key decomposition algorithm, through the hash value dynamic coding, cyclic shift, conversion calculation to get the key of each subsystem in the built algorithm. Secondly, DEP algorithm for privacy data is realized with two level of encryption. The first level of encryption protection algorithm used AES as the main framework, adding dynamic coding and byte filling based on DNA coding, and carries out dynamic shift of rows and simplified mixing of columns. The second level of encryption protection algorithm conducted random encoding, operation, diffusion and decoding based on the results of our proposed sequence conversion algorithm. Finally, we raised two evaluation indexes, the number of characters change rate (NCCR) and the unified average change intensity of text (UACIT) to measure the sensitivity of encryption algorithms to changes in plain information. The experimental results of using DEP shown that the average values of histogram variance, information entropy, NCCR and UACIT are116.7883, 7.6688, 32.52% and 99.67%, respectively. DEP algorithm has a large key space, high key sensitivity, and enables dynamic encryption of private data in stem cell bank. The encryption scheme provided in this study ensures the security of the private information of stem cell bank in private cloud environment, and also provides a new method for the encryption of similar high confidentiality data.
Collapse
Affiliation(s)
- Li Wang
- School of Electrical Engineering, Henan University of Technology, Zhengzhou, Asia, China
| | - Xinyi Wei
- School of Electrical Engineering, Henan University of Technology, Zhengzhou, Asia, China
| | - Yuan Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, Asia, China
| | - Yuan Gao
- Henan Zhengda Stem Cell Bank Technology Company Limited, Zhengzhou, Asia, China
| | - Qunfeng Niu
- School of Electrical Engineering, Henan University of Technology, Zhengzhou, Asia, China
| |
Collapse
|
4
|
Goktas P, Simon Carbajo R. PPSW-SHAP: Towards Interpretable Cell Classification Using Tree-Based SHAP Image Decomposition and Restoration for High-Throughput Bright-Field Imaging. Cells 2023; 12:1384. [PMID: 37408219 DOI: 10.3390/cells12101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Advancements in high-throughput microscopy imaging have transformed cell analytics, enabling functionally relevant, rapid, and in-depth bioanalytics with Artificial Intelligence (AI) as a powerful driving force in cell therapy (CT) manufacturing. High-content microscopy screening often suffers from systematic noise, such as uneven illumination or vignetting artifacts, which can result in false-negative findings in AI models. Traditionally, AI models have been expected to learn to deal with these artifacts, but success in an inductive framework depends on sufficient training examples. To address this challenge, we propose a two-fold approach: (1) reducing noise through an image decomposition and restoration technique called the Periodic Plus Smooth Wavelet transform (PPSW) and (2) developing an interpretable machine learning (ML) platform using tree-based Shapley Additive exPlanations (SHAP) to enhance end-user understanding. By correcting artifacts during pre-processing, we lower the inductive learning load on the AI and improve end-user acceptance through a more interpretable heuristic approach to problem solving. Using a dataset of human Mesenchymal Stem Cells (MSCs) cultured under diverse density and media environment conditions, we demonstrate supervised clustering with mean SHAP values, derived from the 'DFT Modulus' applied to the decomposition of bright-field images, in the trained tree-based ML model. Our innovative ML framework offers end-to-end interpretability, leading to improved precision in cell characterization during CT manufacturing.
Collapse
Affiliation(s)
- Polat Goktas
- UCD School of Computer Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- CeADAR: Ireland's Centre for Applied Artificial Intelligence, Clonskeagh, D04 V2N9 Dublin, Ireland
| | - Ricardo Simon Carbajo
- UCD School of Computer Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- CeADAR: Ireland's Centre for Applied Artificial Intelligence, Clonskeagh, D04 V2N9 Dublin, Ireland
| |
Collapse
|
5
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
6
|
Linke JA, Rayat A, Ward JM. Production of indigo by recombinant bacteria. BIORESOUR BIOPROCESS 2023; 10:20. [PMID: 36936720 PMCID: PMC10011309 DOI: 10.1186/s40643-023-00626-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 03/15/2023] Open
Abstract
Indigo is an economically important dye, especially for the textile industry and the dyeing of denim fabrics for jeans and garments. Around 80,000 tonnes of indigo are chemically produced each year with the use of non-renewable petrochemicals and the use and generation of toxic compounds. As many microorganisms and their enzymes are able to synthesise indigo after the expression of specific oxygenases and hydroxylases, microbial fermentation could offer a more sustainable and environmentally friendly manufacturing platform. Although multiple small-scale studies have been performed, several existing research gaps still hinder the effective translation of these biochemical approaches. No article has evaluated the feasibility and relevance of the current understanding and development of indigo biocatalysis for real-life industrial applications. There is no record of either established or practically tested large-scale bioprocess for the biosynthesis of indigo. To address this, upstream and downstream processing considerations were carried out for indigo biosynthesis. 5 classes of potential biocatalysts were identified, and 2 possible bioprocess flowsheets were designed that facilitate generating either a pre-reduced dye solution or a dry powder product. Furthermore, considering the publicly available data on the development of relevant technology and common bioprocess facilities, possible platform and process values were estimated, including titre, DSP yield, potential plant capacities, fermenter size and batch schedule. This allowed us to project the realistic annual output of a potential indigo biosynthesis platform as 540 tonnes. This was interpreted as an industrially relevant quantity, sufficient to provide an annual dye supply to a single industrial-size denim dyeing plant. The conducted sensitivity analysis showed that this anticipated output is most sensitive to changes in the reaction titer, which can bring a 27.8% increase or a 94.4% drop. Thus, although such a biological platform would require careful consideration, fine-tuning and optimization before real-life implementation, the recombinant indigo biosynthesis was found as already attractive for business exploitation for both, luxury segment customers and mass-producers of denim garments. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s40643-023-00626-7.
Collapse
Affiliation(s)
- Julia A. Linke
- grid.83440.3b0000000121901201Chemical Engineering Department, University College London (UCL), Torrington Place, London, WC1E 7JE UK
- grid.83440.3b0000000121901201Division of Medicine, University College London (UCL), 5 University Street, London, WC1E 6JF UK
| | - Andrea Rayat
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| | - John M. Ward
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| |
Collapse
|
7
|
Sherstneva AA, Demina TS, Monteiro APF, Akopova TA, Grandfils C, Ilangala AB. Biodegradable Microparticles for Regenerative Medicine: A State of the Art and Trends to Clinical Application. Polymers (Basel) 2022; 14:1314. [PMID: 35406187 PMCID: PMC9003224 DOI: 10.3390/polym14071314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering and cell therapy are very attractive in terms of potential applications but remain quite challenging regarding the clinical aspects. Amongst the different strategies proposed to facilitate their implementation in clinical practices, biodegradable microparticles have shown promising outcomes with several advantages and potentialities. This critical review aims to establish a survey of the most relevant materials and processing techniques to prepare these micro vehicles. Special attention will be paid to their main potential applications, considering the regulatory constraints and the relative easiness to implement their production at an industrial level to better evaluate their application in clinical practices.
Collapse
Affiliation(s)
- Anastasia A. Sherstneva
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ana P. F. Monteiro
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Christian Grandfils
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Ange B. Ilangala
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| |
Collapse
|
8
|
Kim MH, Kino-Oka M. Mechanobiological conceptual framework for assessing stem cell bioprocess effectiveness. Biotechnol Bioeng 2021; 118:4537-4549. [PMID: 34460101 DOI: 10.1002/bit.27929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Fully realizing the enormous potential of stem cells requires developing efficient bioprocesses and optimizations founded in mechanobiological considerations. Here, we emphasize the importance of mechanotransduction as one of the governing principles of stem cell bioprocesses, underscoring the need to further explore the behavioral mechanisms involved in sensing mechanical cues and coordinating transcriptional responses. We identify the sources of intrinsic, extrinsic, and external noise in bioprocesses requiring further study, and discuss the criteria and indicators that may be used to assess and predict cell-to-cell variability resulting from environmental fluctuations. Specifically, we propose a conceptual framework to explain the impact of mechanical forces within the cellular environment, identify key cell state determinants in bioprocesses, and discuss downstream implementation challenges.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
9
|
van Schalkwyk MCI, van der Stegen SJC, Bosshard-Carter L, Graves H, Papa S, Parente-Pereira AC, Farzaneh F, Fisher CD, Hope A, Adami A, Maher J. Development and Validation of a Good Manufacturing Process for IL-4-Driven Expansion of Chimeric Cytokine Receptor-Expressing CAR T-Cells. Cells 2021; 10:cells10071797. [PMID: 34359966 PMCID: PMC8307141 DOI: 10.3390/cells10071797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Adoptive cancer immunotherapy using chimeric antigen receptor (CAR) engineered T-cells holds great promise, although several obstacles hinder the efficient generation of cell products under good manufacturing practice (GMP). Patients are often immune compromised, rendering it challenging to produce sufficient numbers of gene-modified cells. Manufacturing protocols are labour intensive and frequently involve one or more open processing steps, leading to increased risk of contamination. We set out to develop a simplified process to generate autologous gamma retrovirus-transduced T-cells for clinical evaluation in patients with head and neck cancer. T-cells were engineered to co-express a panErbB-specific CAR (T1E28z) and a chimeric cytokine receptor (4αβ) that permits their selective expansion in response to interleukin (IL)-4. Using peripheral blood as starting material, sterile culture procedures were conducted in gas-permeable bags under static conditions. Pre-aliquoted medium and cytokines, bespoke connector devices and sterile welding/sealing were used to maximise the use of closed manufacturing steps. Reproducible IL-4-dependent expansion and enrichment of CAR-engineered T-cells under GMP was achieved, both from patients and healthy donors. We also describe the development and approach taken to validate a panel of monitoring and critical release assays, which provide objective data on cell product quality.
Collapse
Affiliation(s)
- May C. I. van Schalkwyk
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - Sjoukje J. C. van der Stegen
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - Leticia Bosshard-Carter
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - Helen Graves
- Immune Monitoring Laboratory, Clinical Research Facility, NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | - Sophie Papa
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
- Guy’s and St Thomas’ NHS Foundation Trust, Department of Medical Oncology, Great Maze Pond, London SE1 9RT, UK
| | - Ana C. Parente-Pereira
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE5 9NU, UK;
| | - Christopher D. Fisher
- Good Manufacturing Practice Unit, Clinical Research Facility, NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, Great Maze Pond, London SE1 9RT, UK; (C.D.F.); (A.H.)
| | - Andrew Hope
- Good Manufacturing Practice Unit, Clinical Research Facility, NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, Great Maze Pond, London SE1 9RT, UK; (C.D.F.); (A.H.)
| | - Antonella Adami
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - John Maher
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
- Correspondence: ; Tel.: +44-(0)207188-1468
| |
Collapse
|
10
|
Laurent A, Scaletta C, Michetti M, Hirt-Burri N, de Buys Roessingh AS, Raffoul W, Applegate LA. GMP Tiered Cell Banking of Non-enzymatically Isolated Dermal Progenitor Fibroblasts for Allogenic Regenerative Medicine. Methods Mol Biol 2021; 2286:25-48. [PMID: 32468492 DOI: 10.1007/7651_2020_295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Non-enzymatically isolated primary dermal progenitor fibroblasts derived from fetal organ donations are ideal cell types for allogenic musculoskeletal regenerative therapeutic applications. These cell types are differentiated, highly proliferative in standard in vitro culture conditions and extremely stable throughout their defined lifespans. Technical simplicity, robustness of bioprocessing and relatively small therapeutic dose requirements enable pragmatic and efficient production of clinical progenitor fibroblast lots under cGMP standards. Herein we describe optimized and standardized monolayer culture expansion protocols using dermal progenitor fibroblasts isolated under a Fetal Transplantation Program for the establishment of GMP tiered Master, Working and End of Production cryopreserved Cell Banks. Safety, stability and quality parameters are assessed through stringent testing of progeny biological materials, in view of clinical application to human patients suffering from diverse cutaneous chronic and acute affections. These methods and approaches, coupled to adequate cell source optimization, enable the obtention of a virtually limitless source of highly consistent and safe biological therapeutic material to be used for innovative regenerative medicine applications.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Wassim Raffoul
- Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Musculoskeletal Medicine Department, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland. .,Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland. .,Oxford Suzhou Center for Advanced Research, Science and Technology Co. Ltd., Oxford University, Suzhou, People's Republic of China. .,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
13
|
Laurent A, Lin P, Scaletta C, Hirt-Burri N, Michetti M, de Buys Roessingh AS, Raffoul W, She BR, Applegate LA. Bringing Safe and Standardized Cell Therapies to Industrialized Processing for Burns and Wounds. Front Bioeng Biotechnol 2020; 8:581. [PMID: 32637400 PMCID: PMC7317026 DOI: 10.3389/fbioe.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Cultured primary progenitor cell types are worthy therapeutic candidates for regenerative medicine. Clinical translation, industrial transposition, and commercial implementation of products based on such cell sources are mainly hindered by economic or technical barriers and stringent regulatory requirements. Applied research in allogenic cellular therapies in the Lausanne University Hospital focuses on cell source selection technique optimization. Use of fetal progenitor cell sources in Switzerland is regulated through Federal Transplantation Programs and associated Fetal Biobanks. Clinical applications of cultured primary progenitor dermal fibroblasts have been optimized since the 1990s as “Progenitor Biological Bandages” for pediatric burn patients and adults presenting chronic wounds. A single organ donation procured in 2009 enabled the establishment of a standardized cell source for clinical and industrial developments to date. Non-enzymatically isolated primary dermal progenitor fibroblasts (FE002-SK2 cell type) served for the establishment of a clinical-grade Parental Cell Bank, based on a patented method. Optimized bioprocessing methodology for the FE002-SK2 cell type has demonstrated that extensive and consistent progenitor cell banks can be established. In vitro mechanistic characterization and in vivo preclinical studies have confirmed potency, preliminary safety and efficacy of therapeutic progenitor cells. Most importantly, highly successful industrial transposition and up-scaling of biobanking enabled the establishment of tiered Master and Working Cell Banks using Good Manufacturing Practices. Successive and successful transfers of technology, know-how and materials to different countries around the world have been performed. Extensive developments based on the FE002-SK2 cell source have led to clinical trials for burns and wound dressing. Said trials were approved in Japan, Taiwan, USA and are continuing in Switzerland. The Swiss Fetal Transplantation Program and pioneer clinical experience in the Lausanne Burn Center over three decades constitute concrete indicators that primary progenitor dermal fibroblasts should be considered as therapeutic flagships in the domain of wound healing and for regenerative medicine in general. Indeed, one single organ donation potentially enables millions of patients to benefit from high-quality, safe and effective regenerative therapies. This work presents a technical and translational overview of the described progenitor cell technology harnessed in Switzerland as cellular therapies for treatment of burns and wounds around the globe.
Collapse
Affiliation(s)
- Alexis Laurent
- Tec-Pharma SA, Bercher, Switzerland.,Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Poyin Lin
- Transwell Biotech Co. Ltd., Hsinchu, Taiwan
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | | | - Wassim Raffoul
- Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bin-Ru She
- Transwell Biotech Co. Ltd., Hsinchu, Taiwan
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Oxford Suzhou Center for Advanced Research, Science and Technology Co. Ltd., Oxford University, Suzhou, China.,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Guzniczak E, Otto O, Whyte G, Willoughby N, Jimenez M, Bridle H. Deformability-induced lift force in spiral microchannels for cell separation. LAB ON A CHIP 2020; 20:614-625. [PMID: 31915780 DOI: 10.1039/c9lc01000a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell sorting and isolation from a heterogeneous mixture is a crucial task in many aspects of cell biology, biotechnology and medicine. Recently, there has been an interest in methods allowing cell separation upon their intrinsic properties such as cell size and deformability, without the need for use of biochemical labels. Inertial focusing in spiral microchannels has been recognised as an attractive approach for high-throughput cell sorting for myriad point of care and clinical diagnostics. Particles of different sizes interact to a different degree with the fluid flow pattern generated within the spiral microchannel and that leads to particles ordering and separation based on size. However, the deformable nature of cells adds complexity to their ordering within the spiral channels. Herein, an additional force, deformability-induced lift force (FD), involved in the cell focusing mechanism within spiral microchannels has been identified, investigated and reported for the first time, using a cellular deformability model (where the deformability of cells is gradually altered using chemical treatments). Using this model, we demonstrated that spiral microchannels are capable of separating cells of the same size but different deformability properties, extending the capability of the previous method. We have developed a unique label-free approach for deformability-based purification through coupling the effect of FD with inertial focusing in spiral microchannels. This microfluidic-based purification strategy, free of the modifying immuno-labels, allowing cell processing at a large scale (millions of cells per min and mls of medium per minute), up to high purities and separation efficiency and without compromising cell quality.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland, UK.
| | - Oliver Otto
- Centre for Innovation Competence-Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany & Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany
| | - Graeme Whyte
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland, UK.
| | - Nicholas Willoughby
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland, UK.
| | - Melanie Jimenez
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, G12 8LT UK
| | - Helen Bridle
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland, UK.
| |
Collapse
|
15
|
Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, Shu W, Sakai Y, Shinohara M, Nishikawa M, Jang J, Cho DW, Nie M, Takeuchi S, Ostrovidov S, Khademhosseini A, Kamm RD, Mironov V, Moroni L, Ozbolat IT. The bioprinting roadmap. Biofabrication 2020; 12:022002. [DOI: 10.1088/1758-5090/ab5158] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Slow freezing process design for human induced pluripotent stem cells by modeling intracontainer variation. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Assessment of Post-thaw Quality of Dental Mesenchymal Stromal Cells After Long-Term Cryopreservation by Uncontrolled Freezing. Appl Biochem Biotechnol 2019; 191:728-743. [PMID: 31853872 DOI: 10.1007/s12010-019-03216-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
Cryopreservation abilities of dental tissue-derived mesenchymal stromal cells (DMSCs) including dental pulp stem cells (DPSCs) and dental follicle stem cells (DFSC) play an important role in the applications of these cells in clinical settings. In this context, we checked whether storage at - 80 °C in 10% DMSO for a longer period has any adverse effect on the functionality and genetic stability. We carried our studies on DPSC and DFSC samples that were revived after a maximum of 5 years of cryopreservation. We observed that even after long-term uncontrolled freezing at - 80 °C, these cells survived and proliferated efficiently. The assessment was made based on their post-thaw morphology, immunophenotypes, differentiation potential, growth kinetics, and genetic features. These cells retained the expression of stemness markers, differentiation ability and maintained their normal karyotype. Our results indicated no significant morphological or immunophenotypic differences between the cryopreserved DMSCs and the fresh DMSCs. Our study implies that mesenchymal stromal cells derived from the dental tissue origin are very robust and do not require any sophisticated preservation protocols. Thus, these can be an ideal source for research, stem cell banking, as well as successful clinical applications in tissue engineering and cell-based therapeutics. Graphical Abstract Schematic diagram showing the cryopreservation of DMSCs by uncontrolled freezing at -80 c has no adverse effects on their functionality and genetic stability.
Collapse
|
18
|
Variation in the manufacturing reproducibility of autologous cell-based products depending on raw material shipment conditions. Regen Ther 2019; 12:102-107. [PMID: 31890773 PMCID: PMC6933469 DOI: 10.1016/j.reth.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022] Open
Abstract
To prepare an autologous cell-based product in a cell processing facility, the raw material, which is collected from a patient, must first be shipped from a medical institution to the facility. The quality of this raw material varies depending on the patient, and variations due to transport methods also occur. Because the quality must be uniform and manufacturing processes need to be adjusted to account for these variations, determining the effect of shipment conditions on raw materials is very important for estimating cell manufacturability in the process design. In this study, a group of medical institutions located in different areas requested similar cell-based products processed by the same manufacturing method to a company that is licensed under the Act on the Safety of Regenerative Medicine in Japan. Manufacturing reproducibility was analyzed based on 456 cell batches received from two clinics that were processed used the same manufacturing method. The specific growth rates that were observed in the early growth phase supposed that the proliferative potential of the primary cells in the raw material was influenced by transit time. Simultaneously, the variation of the specific growth rates in the late phase were supposed to be hardly occurred. Thus, this study evaluated shipping conditions of the raw materials for an autologous cell-based product, and a strategy for verifying the influence of transportation on quality in manufacturing was suggested.
Collapse
|
19
|
Tan HL, Choo A. Opportunities for Antibody Discovery Using Human Pluripotent Stem Cells: Conservation of Oncofetal Targets. Int J Mol Sci 2019; 20:E5752. [PMID: 31731794 PMCID: PMC6888136 DOI: 10.3390/ijms20225752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology, (iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for regenerative medicine, thus expediting the route to the clinics.
Collapse
Affiliation(s)
- Heng Liang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138668, Singapore;
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138668, Singapore;
- Department of Biochemical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
20
|
Krause M, Phan TG, Ma H, Sobey CG, Lim R. Cell-Based Therapies for Stroke: Are We There Yet? Front Neurol 2019; 10:656. [PMID: 31293500 PMCID: PMC6603096 DOI: 10.3389/fneur.2019.00656] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Stroke is the second leading cause of death and physical disability, with a global lifetime incidence rate of 1 in 6. Currently, the only FDA approved treatment for ischemic stroke is the administration of tissue plasminogen activator (tPA). Stem cell clinical trials for stroke have been underway for close to two decades, with data suggesting that cell therapies are safe, feasible, and potentially efficacious. However, clinical trials for stroke account for <1% of all stem cell trials. Nevertheless, the resources devoted to clinical research to identify new treatments for stroke is still significant (53–64 million US$, Phase 1–4). Notably, a quarter of cell therapy clinical trials for stroke have been withdrawn (15.2%) or terminated (6.8%) to date. This review discusses the bottlenecks in delivering a successful cell therapy for stroke, and the cost-to-benefit ratio necessary to justify these expensive trials. Further, this review will critically assess the currently available data from completed stroke trials, the importance of standardization in outcome reporting, and the role of industry-led research in the development of cell therapies for stroke.
Collapse
Affiliation(s)
- Mirja Krause
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Thanh G Phan
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Henry Ma
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Kanie K, Sakai T, Imai Y, Yoshida K, Sugimoto A, Makino H, Kubo H, Kato R. Effect of mechanical vibration stress in cell culture on human induced pluripotent stem cells. Regen Ther 2019; 12:27-35. [PMID: 31890764 PMCID: PMC6933472 DOI: 10.1016/j.reth.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 01/10/2023] Open
Abstract
The development of induced pluripotent stem cell (iPSC) techniques has solved various limitations in cell culture including cellular proliferation and potency. Hence, the expectations on wider applications and the quality of manufactured iPSCs are rapidly increasing. To answer such growing expectations, enhancement of technologies to improve cell-manufacturing efficiency is now a challenge for the bioengineering field. Mechanization of conventional manual operations, aimed at automation of cell manufacturing, is quickly advancing. However, as more processes are being automated in cell manufacturing, it is need to be more critical about influential parameters that may not be as important in manual operations. As a model of such parameters, we focused on the effect of mechanical vibration, which transmits through the vessel to the cultured iPSCs. We designed 7 types of vertical vibration conditions in cell culture vessels using a vibration calibrator. These conditions cover a wide range of potential situations in cell culture, such as tapping or closing an incubator door, and examined their effects by continuous passaging (P3 to P5). Detailed evaluation of cells by time-course image analysis revealed that vibrations can enhance cell growth as an early effect but can negatively affect cell adhesion and growth profile after several passages as a delayed effect. Such unexpected reductions in cell quality are potentially critical issues in maintaining consistency in cell manufacturing. Therefore, this work reveals the importance of continuous examination across several passages with detailed, temporal, quantitative measurements obtained by non-invasive image analysis to examine when and how the unknown parameters will affect the cell culture processes.
Collapse
Affiliation(s)
- Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Teppei Sakai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kei Yoshida
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Ayako Sugimoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hodaka Makino
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns (Tokyo Women's Medical University-Waseda University Joint Institution for Advanced Biomedical Sciences), 8-1, Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Hirotsugu Kubo
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns (Tokyo Women's Medical University-Waseda University Joint Institution for Advanced Biomedical Sciences), 8-1, Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
- Stem Cell Evaluation Technology Research Center (SCETRA), Hacho-bori, Chuou-ku, Tokyo, 104-0032, Japan
- Institute of Nano-Life-Systems, Institute for Innovation for Future Society, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
- Corresponding author. Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8602, Japan. Fax: +81-52-747-6813.
| |
Collapse
|
22
|
Nguyen LTB, Odeleye AOO, Chui CY, Baudequin T, Cui Z, Ye H. Development of thermo-responsive polycaprolactone macrocarriers conjugated with Poly(N-isopropyl acrylamide) for cell culture. Sci Rep 2019; 9:3477. [PMID: 30837639 PMCID: PMC6401373 DOI: 10.1038/s41598-019-40242-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 01/20/2023] Open
Abstract
Poly(N-isopropyl acrylamide) (PNIPAAm) is a well-known 'smart' material responding to external stimuli such as temperature. PNIPAAm was successfully conjugated to polycaprolactone (PCL) bead surfaces through amidation reaction. Functionalization steps were characterized and confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and Energy Dispersion Spectroscopy. PNIPAAm-conjugated PCL allowed human dermal fibroblast cells (HDF) and mesenchymal stem cells (MSC) to adhere, spread, and grow successfully. By reducing the temperature to 30 °C, more than 70% of HDF were detached from PNIPAAm-conjugated PCL macrocarriers with 85% viability. The cell detachment ratio by trypsin treatment was slightly higher than that induced by reduced temperature, however, cell detachment from PNIPAAm-conjugated macrocarriers by lowering the temperature significantly reduced cell death and increased both cell viability and the recovery potential of the detached cells. HDF attachment and detachment were also observed by Live-Dead staining and phase contrast imaging. The expression of extracellular matrix proteins such as Laminin and Fibronectin was also affected by the trypsinization process but not by the reduced temperature process. Taken together, our results showed that thermo-responsive macrocarriers could be a promising alternative method for the non-invasive detachment of cells, in particular for tissue engineering, clinical applications and the use of bioreactors.
Collapse
Affiliation(s)
- Linh T B Nguyen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Akinlolu O O Odeleye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
- Adaptimmune Limited, 60 Jubilee Avenue, Milton Park, Abingdon, OX14 4RX, UK
| | - Chih-Yao Chui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Timothée Baudequin
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
23
|
Ali J, Rafiq Q, Ratcliffe E. A scaled-down model for the translation of bacteriophage culture to manufacturing scale. Biotechnol Bioeng 2019; 116:972-984. [PMID: 30593659 DOI: 10.1002/bit.26911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
Abstract
Therapeutic bacteriophages are emerging as a potential alternative to antibiotics and synergistic treatment of antimicrobial-resistant infections. This is reflected by their use in an increasing number of recent clinical trials. Many more therapeutic bacteriophage is being investigated in preclinical research and due to the bespoke nature of these products with respect to their limited infection spectrum, translation to the clinic requires combined understanding of the biology underpinning the bioprocess and how this can be optimized and streamlined for efficient methods of scalable manufacture. Bacteriophage research is currently limited to laboratory scale studies ranging from 1-20 ml, emerging therapies include bacteriophage cocktails to increase the spectrum of infectivity and require multiple large-scale bioreactors (up to 50 L) containing different bacteriophage-bacterial host reactions. Scaling bioprocesses from the milliliter scale to multi-liter large-scale bioreactors is challenging in itself, but performing this for individual phage-host bioprocesses to facilitate reliable and robust manufacture of phage cocktails increases the complexity. This study used a full factorial design of experiments approach to explore key process input variables (temperature, time of infection, multiplicity of infection, agitation) for their influence on key process outputs (bacteriophage yield, infection kinetics) for two bacteriophage-bacterial host bioprocesses (T4 - Escherichia coli; Phage K - Staphylococcus aureus). The research aimed to determine common input variables that positively influence output yield and found that the temperature at the point of infection had the greatest influence on bacteriophage yield for both bioprocesses. The study also aimed to develop a scaled down shake-flask model to enable rapid optimization of bacteriophage batch bioprocessing and translate the bioprocess into a scale-up model with a 3 L working volume in stirred tank bioreactors. The optimization performed in the shake flask model achieved a 550-fold increase in bacteriophage yield and these improvements successfully translated to the large-scale cultures.
Collapse
Affiliation(s)
- Junaid Ali
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Qasim Rafiq
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Elizabeth Ratcliffe
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
24
|
Li M, Chin LY, Shukor S, Tamayo A, Maus MV, Parekkadan B. Closed loop bioreactor system for the ex vivo expansion of human T cells. Cytotherapy 2018; 21:76-82. [PMID: 30497956 DOI: 10.1016/j.jcyt.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/04/2018] [Accepted: 10/13/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND AIM Translation of therapeutic cell therapies to clinical-scale products is critical to realizing widespread success. Currently, however, there are limited tools that are accessible at the research level and readily scalable to clinical-scale needs. METHODS We herein developed and assessed a closed loop bioreactor system in which (i) a highly gas-permeable silicone material was used to fabricate cell culture bags and (ii) dynamic flow was introduced to allow for dissociation of activated T-cell aggregates. RESULTS Using this system, we find superior T-cell proliferation compared with conventional bag materials and flasks, especially at later time points. Furthermore, intermittent dynamic flow could easily break apart T-cell clusters. CONCLUSIONS Our novel closed loop bioreactor system is amenable to enhanced T-cell proliferation and has broader implications for being easily scaled for use in larger need settings.
Collapse
Affiliation(s)
- Matthew Li
- Center for Surgery, Innovation, and Bioengineering, Department of Surgery, Massachusetts General Hospital and the Shriners Hospitals for Children, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Ling-Yee Chin
- Center for Surgery, Innovation, and Bioengineering, Department of Surgery, Massachusetts General Hospital and the Shriners Hospitals for Children, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Syukri Shukor
- Center for Surgery, Innovation, and Bioengineering, Department of Surgery, Massachusetts General Hospital and the Shriners Hospitals for Children, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Alfred Tamayo
- Center for Surgery, Innovation, and Bioengineering, Department of Surgery, Massachusetts General Hospital and the Shriners Hospitals for Children, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Marcela V Maus
- Harvard Medical School, Boston, Massachusetts, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Biju Parekkadan
- Center for Surgery, Innovation, and Bioengineering, Department of Surgery, Massachusetts General Hospital and the Shriners Hospitals for Children, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
25
|
Wiraja C, Yeo DC, Lio DCS, Zheng M, Xu C. Functional Imaging with Nucleic-Acid-Based Sensors: Technology, Application and Future Healthcare Prospects. Chembiochem 2018; 20:437-450. [PMID: 30230165 DOI: 10.1002/cbic.201800430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/11/2022]
Abstract
Timely monitoring and assessment of human health plays a crucial role in maintaining the wellbeing of our advancing society. In addition to medical tools and devices, suitable probe agents are crucial to assist such monitoring, either in passive or active ways (i.e., sensors) through inducible signals. In this review we highlight recent developments in activatable optical sensors based on nucleic acids. Sensing mechanisms and bio-applications of these nucleic acid sensors in ex vivo assays, intracellular or in vivo settings are described. In addition, we discuss the limitations of these sensors and how nanotechnology can complement/enhance sensor properties to promote translation into clinical applications.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - David C Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Daniel Chin Shiuan Lio
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mengjia Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
26
|
Kikuchi T, Kino-Oka M, Wada M, Kobayashi T, Kato M, Takeda S, Kubo H, Ogawa T, Sunayama H, Tanimoto K, Mizutani M, Shimizu T, Okano T. A novel, flexible and automated manufacturing facility for cell-based health care products: Tissue Factory. Regen Ther 2018; 9:89-99. [PMID: 30525079 PMCID: PMC6223031 DOI: 10.1016/j.reth.2018.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/04/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022] Open
Abstract
Introduction Current production facilities for Cell-Based Health care Products (CBHPs), also referred as Advanced-Therapy Medicinal Products or Regenerative Medicine Products, are still dependent on manual work performed by skilled workers. A more robust, safer and efficient manufacturing system will be necessary to meet the expected expansion of this industrial field in the future. Thus, the 'flexible Modular Platform (fMP)' was newly designed to be a true "factory" utilizing the state-of-the-art technology to replace conventional "laboratory-like" manufacturing methods. Then, we built the Tissue Factory as the first actual entity of the fMP. Methods The Tissue Factory was designed based on the fMP in which several automated modules are combined to perform various culture processes. Each module has a biologically sealed chamber that can be decontaminated by hydrogen peroxide. The asepticity of the processing environment was tested according to a pharmaceutical sterility method. Then, three procedures, production of multi-layered skeletal myoblast sheets, expansion of human articular chondrocytes and passage culture of human induced pluripotent stem cells, were conducted by the system to confirm its ability to manufacture CHBPs. Results Falling or adhered microorganisms were not detected either just after decontamination or during the cell culture processes. In cell culture tests, multi-layered skeletal myoblast sheets were successfully manufactured using the method optimized for automatic processing. In addition, human articular chondrocytes and human induced-pluripotent stem cells could be propagated through three passages by the system at a yield comparable to manual operations. Conclusions The Tissue Factory, based on the fMP, successfully reproduced three tentative manufacturing processes of CBHPs without any microbial contamination. The platform will improve the manufacturability in terms of lower production cost, improved quality variance and reduced contamination risks. Moreover, its flexibility has the potential to adapt to the modern challenges in the business environment including employment issues, low operational rates, and relocation of facilities. The fMP is expected to become the standard design basis of future manufacturing facilities for CBHPs.
Collapse
Affiliation(s)
- Tetsutaro Kikuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.,CellSeed Incorporated, 15F (East Wing) Telecom Center Building, 2-5-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masanori Wada
- ABLE Corporation, 7-9, Nishigoken-cho, Shinjuku-ku, Tokyo 162-0812, Japan
| | | | - Midori Kato
- Hitachi Ltd., Hatoyama, Saitama 350-0395, Japan
| | | | - Hirotsugu Kubo
- Nihon Kohden Corporation, 1-31-4 Nishi-Ochiai, Shinjuku-ku, Tokyo, Japan
| | - Tetsuya Ogawa
- Nihon Kohden Corporation, 1-31-4 Nishi-Ochiai, Shinjuku-ku, Tokyo, Japan
| | - Hironobu Sunayama
- Shibuya Kogyo Co., Ltd., 2-1, Hokuyodai, Kanazawa-Shi, Ishikawa-Ken 920-0177, Japan
| | - Kazuhito Tanimoto
- Shibuya Kogyo Co., Ltd., 2-1, Hokuyodai, Kanazawa-Shi, Ishikawa-Ken 920-0177, Japan
| | - Manabu Mizutani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
27
|
LYSAGHT TAMRA, MUNSIE MEGAN, CASTRICUM ADAM, HUI JAMESH, OKADA KYOSHI, SATO YOJI, SAWA YOSHIKI, STEWART CAMERON, TAN LIPKUN, TAN LYNNH, SUGII SHIGEKI. A roundtable on responsible innovation with autologous stem cells in Australia, Japan and Singapore. Cytotherapy 2018; 20:1103-1109. [DOI: 10.1016/j.jcyt.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
|
28
|
Pereira Chilima TD, Moncaubeig F, Farid SS. Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Misener R, Allenby MC, Fuentes-Garí M, Gupta K, Wiggins T, Panoskaltsis N, Pistikopoulos EN, Mantalaris A. Stem cell biomanufacturing under uncertainty: A case study in optimizing red blood cell production. AIChE J 2018; 64:3011-3022. [PMID: 30166646 PMCID: PMC6108044 DOI: 10.1002/aic.16042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Indexed: 12/12/2022]
Abstract
As breakthrough cellular therapy discoveries are translated into reliable, commercializable applications, effective stem cell biomanufacturing requires systematically developing and optimizing bioprocess design and operation. This article proposes a rigorous computational framework for stem cell biomanufacturing under uncertainty. Our mathematical tool kit incorporates: high‐fidelity modeling, single variate and multivariate sensitivity analysis, global topological superstructure optimization, and robust optimization. The advantages of the proposed bioprocess optimization framework using, as a case study, a dual hollow fiber bioreactor producing red blood cells from progenitor cells were quantitatively demonstrated. The optimization phase reduces the cost by a factor of 4, and the price of insuring process performance against uncertainty is approximately 15% over the nominal optimal solution. Mathematical modeling and optimization can guide decision making; the possible commercial impact of this cellular therapy using the disruptive technology paradigm was quantitatively evaluated. © 2017 American Institute of Chemical Engineers AIChE J, 64: 3011–3022, 2018
Collapse
Affiliation(s)
- Ruth Misener
- Dept. of Computing; Imperial College London; South Kensington London SW7 2AZ U.K
| | - Mark C. Allenby
- Dept. of Haematology; Imperial College London; Harrow London HA1 3UJ U. K
| | - María Fuentes-Garí
- Dept. of Haematology; Imperial College London; Harrow London HA1 3UJ U. K
| | - Karan Gupta
- Dept. of Haematology; Imperial College London; Harrow London HA1 3UJ U. K
| | - Thomas Wiggins
- Dept. of Haematology; Imperial College London; Harrow London HA1 3UJ U. K
| | - Nicki Panoskaltsis
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77843
| | | | | |
Collapse
|
30
|
Hunsberger JG, Shupe T, Atala A. An Industry-Driven Roadmap for Manufacturing in Regenerative Medicine. Stem Cells Transl Med 2018; 7:564-568. [PMID: 30009571 PMCID: PMC6090514 DOI: 10.1002/sctm.18-0060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/19/2018] [Indexed: 01/24/2023] Open
Abstract
Regenerative medicine is poised to become a significant industry within the medical field. As such, the development of strategies and technologies for standardized and automated regenerative medicine clinical manufacturing has become a priority. An industry‐driven roadmap toward industrial scale clinical manufacturing was developed over a 3‐year period by a consortium of companies with significant investment in the field of regenerative medicine. Additionally, this same group identified critical roadblocks that stand in the way of advanced, large‐scale regenerative medicine clinical manufacturing. This perspective article details efforts to reach a consensus among industry stakeholders on the shortest pathway for providing access to regenerative medicine therapies for those in need, both within the United States and around the world. Stem Cells Translational Medicine2018;7:564–568
Collapse
Affiliation(s)
- Joshua G Hunsberger
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
31
|
Harrison RP, Medcalf N, Rafiq QA. Cell therapy-processing economics: small-scale microfactories as a stepping stone toward large-scale macrofactories. Regen Med 2018; 13:159-173. [PMID: 29509065 DOI: 10.2217/rme-2017-0103] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM Manufacturing methods for cell-based therapies differ markedly from those established for noncellular pharmaceuticals and biologics. Attempts to 'shoehorn' these into existing frameworks have yielded poor outcomes. Some excellent clinical results have been realized, yet emergence of a 'blockbuster' cell-based therapy has so far proved elusive. MATERIALS & METHODS The pressure to provide these innovative therapies, even at a smaller scale, remains. In this process, economics research paper, we utilize cell expansion research data combined with operational cost modeling in a case study to demonstrate the alternative ways in which a novel mesenchymal stem cell-based therapy could be provided at small scale. RESULTS & CONCLUSIONS This research outlines the feasibility of cell microfactories but highlighted that there is a strong pressure to automate processes and split the quality control cost-burden over larger production batches. The study explores one potential paradigm of cell-based therapy provisioning as a potential exemplar on which to base manufacturing strategy.
Collapse
Affiliation(s)
- Richard P Harrison
- Centre for Biological Engineering, Holywell Park, Loughborough University, Loughborough, LE11 3TU, UK.,Wolfson Centre for Stem cells, Tissue Engineering & Modelling (STEM), The University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, UK.,Department for Biochemical Engineering, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Nicholas Medcalf
- Centre for Biological Engineering, Holywell Park, Loughborough University, Loughborough, LE11 3TU, UK
| | - Qasim A Rafiq
- Department of Biochemical Engineering, Faculty of Engineering Science, University College London, Gower Street, London, WC1E 6BT, UK.,Department for Biochemical Engineering, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
32
|
Kinetic analysis of cell decay during the filling process: Application to lot size determination in manufacturing systems for human induced pluripotent and mesenchymal stem cells. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Kim MH, Kino-oka M. Bioprocessing Strategies for Pluripotent Stem Cells Based on Waddington’s Epigenetic Landscape. Trends Biotechnol 2018; 36:89-104. [DOI: 10.1016/j.tibtech.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
|
34
|
Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:9640108. [PMID: 29391871 PMCID: PMC5748110 DOI: 10.1155/2017/9640108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022] Open
Abstract
Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF) manifests as the common end pathway of many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF. Mesenchymal stem cells (MSCs) have gained popularity given their propensity of promoting endogenous cellular repair of a myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.
Collapse
|
35
|
Heat and chemical treatments in adult Cyprinus carpio (Pisces cypriniformes) rapidly produce sterile gonads. Anim Reprod Sci 2017; 183:77-85. [DOI: 10.1016/j.anireprosci.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/15/2023]
|
36
|
Kim SM, Yun CK, Park JH, Hwang JW, Kim ZH, Choi YS. Efficient cryopreservation of human mesenchymal stem cells using silkworm hemolymph-derived proteins. J Tissue Eng Regen Med 2016. [DOI: 10.1002/term.2116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sun-Mi Kim
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Chang-Koo Yun
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Jin-Ho Park
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Jung Wook Hwang
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Z-Hun Kim
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology; CHA University; Seongnam Republic of Korea
| |
Collapse
|
37
|
Bolander J, Chai YC, Geris L, Schrooten J, Lambrechts D, Roberts SJ, Luyten FP. Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates. Biomaterials 2016; 86:106-18. [PMID: 26901484 DOI: 10.1016/j.biomaterials.2016.01.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 02/08/2023]
Abstract
The development of osteoinductive calcium phosphate- (CaP) based biomaterials has, and continues to be, a major focus in the field of bone tissue engineering. However, limited insight into the spatiotemporal activation of signalling pathways has hampered the optimisation of in vivo bone formation and subsequent clinical translation. To gain further knowledge regarding the early molecular events governing bone tissue formation, we combined human periosteum derived progenitor cells with three types of clinically used CaP-scaffolds, to obtain constructs with a distinct range of bone forming capacity in vivo. Protein phosphorylation together with gene expression for key ligands and target genes were investigated 24 hours after cell seeding in vitro, and 3 and 12 days post ectopic implantation in nude mice. A computational modelling approach was used to deduce critical factors for bone formation 8 weeks post implantation. The combined Ca(2+)-mediated activation of BMP-, Wnt- and PKC signalling pathways 3 days post implantation were able to discriminate the bone forming from the non-bone forming constructs. Subsequently, a mathematical model able to predict in vivo bone formation with 96% accuracy was developed. This study illustrates the importance of defining and understanding CaP-activated signalling pathways that are required and sufficient for in vivo bone formation. Furthermore, we demonstrate the reliability of mathematical modelling as a tool to analyse and deduce key factors within an empirical data set and highlight its relevance to the translation of regenerative medicine strategies.
Collapse
Affiliation(s)
- Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium
| | - Yoke Chin Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Biomechanics Research Unit, University of Liege, Chemin des Chevreuils 1, BAT 52/3, 4000 Liege 1, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C, Bus 2419, 3001 Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Bus 2450, 3001 Heverlee, Belgium
| | - Dennis Lambrechts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium
| | - Scott J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, United Kingdom
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium.
| |
Collapse
|
38
|
Rafiq QA, Ortega I, Jenkins SI, Wilson SL, Patel AK, Barnes AL, Adams CF, Delcassian D, Smith D. The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products. Regen Med 2015; 10:989-1003. [PMID: 26628407 DOI: 10.2217/rme.15.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.
Collapse
Affiliation(s)
- Qasim A Rafiq
- Centre for Biological Engineering, Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,Aston Medical Research Institute, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Ilida Ortega
- Bioengineering & Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, S10 2TA, UK
| | - Stuart I Jenkins
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Samantha L Wilson
- Academic Ophthalmology, Division of Clincial Neuroscience, Queen's Medical Centre Campus, University of Nottingham, NG7 2UH, UK
| | - Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering & Modeling, University of Nottingham, Nottingham, NG7 2RD, UK.,David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Christopher F Adams
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Derfogail Delcassian
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK.,Wolfson Centre for Stem Cells, Centre for Biological Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - David Smith
- Centre for Biological Engineering, Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,PCT, a Caladrius company, 4 Pearl Court, Suite C, Allendale, NJ 07401, USA
| |
Collapse
|
39
|
Li Q, Suasnavas E, Xiao L, Heywood S, Qi X, Zhou A, Isom SC. Label-free and non-invasive monitoring of porcine trophoblast derived cells: differentiation in serum and serum-free media. JOURNAL OF BIOPHOTONICS 2015; 8:638-645. [PMID: 25250877 DOI: 10.1002/jbio.201400062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/03/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Traditional approaches to characterize stem cell differentiation are time-consuming, lengthy and invasive. Here, Raman microspectroscopy (RM) and atomic force microscopy (AFM) - both considered as non-invasive techniques - are applied to detect the biochemical and biophysical properties of trophoblast derived stem-like cells incubated up to 10 days under conditions designed to induce differentiation. Significant biochemical and biophysical differences between control cells and differentiated cells were observed. Quantitative real time PCR was also applied to analyze gene expression. The relationship between cell differentiation and associated cellular biochemical and biomechanical changes were discussed. Monitoring trophoblast cells differentiation.
Collapse
Affiliation(s)
- Qifei Li
- Department of Biological Engineering, Utah State University, Logan, UT, 84322
| | - Edison Suasnavas
- Department of Animal Science, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322
| | - Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, UT, 84322
| | - Sierra Heywood
- Department of Animal Science, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322
| | - Xiaojun Qi
- Department of Computer Science, Utah State University, Logan, UT, 84322
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT, 84322
| | - S Clay Isom
- Department of Animal Science, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322
| |
Collapse
|
40
|
Guo X, Li S, Ji Q, Lian R, Chen J. Enhanced viability and neural differential potential in poor post-thaw hADSCs by agarose multi-well dishes and spheroid culture. Hum Cell 2015; 28:175-89. [PMID: 26054839 DOI: 10.1007/s13577-015-0116-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/09/2015] [Indexed: 01/06/2023]
Abstract
Human adipose-derived stem cells (hADSCs) are potential adult stem cells source for cell therapy. But hADSCs with multi-passage or cryopreservation often revealed poor growth performance. The aim of our work was to improve the activity of poor post-thaw hADSCs by simple and effective means. We describe here a simple method based on commercially available silicone micro-wells for creating hADSCs spheroids to improve viability and neural differentiation potential on poor post-thaw hADSCs. The isolated hADSCs positively expresse d CD29, CD44, CD105, and negatively expressed CD34, CD45, HLA-DR by flow cytometry. Meanwhile, they had adipogenic and osteogenic differentiation capacity. The post-thaw and post-spheroid hADSCs from poor growth status hADSCs showed a marked increase in cell proliferation by CKK-8 analysis, cell cycle analysis and Ki67/P27 quantitative polymerase chain reaction (qPCR) analysis. They also displayed an increase viability of anti-apoptosis by annexin v and propidium iodide assays and mitochondrial membrane potential assays. After 3 days of neural induction, the neural differentiation potential of post-thaw and post-spheroid hADSCs could be enhanced by qPCR analysis and western blotting analysis. These results suggested that the spheroid formation could improve the viability and neural differentiation potential of bad growth status hADSCs, which is conducive to ADSCs research and cell therapy.
Collapse
Affiliation(s)
- Xiaoling Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Shanyi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Qingshan Ji
- Department of Ophthalmology, Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Ruiling Lian
- Department of Ophthalmology, The First Clinical Medical College of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China. .,Eye Institute, Medical College of Jinan University, Jinan University, Guangzhou, China. .,Department of Ophthalmology, The First Clinical Medical College of Jinan University, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
41
|
Kaul H, Ventikos Y. On the genealogy of tissue engineering and regenerative medicine. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:203-17. [PMID: 25343302 PMCID: PMC4390213 DOI: 10.1089/ten.teb.2014.0285] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed.
Collapse
Affiliation(s)
- Himanshu Kaul
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
42
|
Leijten J, Chai Y, Papantoniou I, Geris L, Schrooten J, Luyten F. Cell based advanced therapeutic medicinal products for bone repair: Keep it simple? Adv Drug Deliv Rev 2015; 84:30-44. [PMID: 25451134 DOI: 10.1016/j.addr.2014.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
The development of cell based advanced therapeutic medicinal products (ATMPs) for bone repair has been expected to revolutionize the health care system for the clinical treatment of bone defects. Despite this great promise, the clinical outcomes of the few cell based ATMPs that have been translated into clinical treatments have been far from impressive. In part, the clinical outcomes have been hampered because of the simplicity of the first wave of products. In response the field has set-out and amassed a plethora of complexities to alleviate the simplicity induced limitations. Many of these potential second wave products have remained "stuck" in the development pipeline. This is due to a number of reasons including the lack of a regulatory framework that has been evolving in the last years and the shortage of enabling technologies for industrial manufacturing to deal with these novel complexities. In this review, we reflect on the current ATMPs and give special attention to novel approaches that are able to provide complexity to ATMPs in a straightforward manner. Moreover, we discuss the potential tools able to produce or predict 'goldilocks' ATMPs, which are neither too simple nor too complex.
Collapse
|
43
|
Mitchell PD, Ratcliffe E, Hourd P, Williams DJ, Thomas RJ. A Quality-by-Design Approach to Risk Reduction and Optimization for Human Embryonic Stem Cell Cryopreservation Processes. Tissue Eng Part C Methods 2014; 20:941-50. [DOI: 10.1089/ten.tec.2013.0595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter D. Mitchell
- Healthcare Engineering Research Group, Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Elizabeth Ratcliffe
- Healthcare Engineering Research Group, Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Paul Hourd
- Healthcare Engineering Research Group, Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - David J. Williams
- Healthcare Engineering Research Group, Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Robert J. Thomas
- Healthcare Engineering Research Group, Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
44
|
Davies BM, Rikabi S, French A, Pinedo-Villanueva R, Morrey ME, Wartolowska K, Judge A, MacLaren RE, Mathur A, Williams DJ, Wall I, Birchall M, Reeve B, Atala A, Barker RW, Cui Z, Furniss D, Bure K, Snyder EY, Karp JM, Price A, Carr A, Brindley DA. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study. J Tissue Eng 2014; 5:2041731414551764. [PMID: 25383173 PMCID: PMC4221931 DOI: 10.1177/2041731414551764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/20/2014] [Indexed: 01/08/2023] Open
Abstract
There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.
Collapse
Affiliation(s)
- Benjamin M Davies
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Rikabi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna French
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - Rafael Pinedo-Villanueva
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, UK
| | - Mark E Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Karolina Wartolowska
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Judge
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Anthony Mathur
- NIHR Cardiovascular Biomedical Research Unit, London Chest Hospital, London, UK ; Department of Cardiology, Barts Health NHS Trust, London, UK ; Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - David J Williams
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK ; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea ; Biomaterials and Tissue Engineering Lab, Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, Republic of Korea
| | | | - Brock Reeve
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Richard W Barker
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - Zhanfeng Cui
- Oxford Centre for Tissue Engineering and Bioprocessing, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim Bure
- Sartorius Stedim, Göttingen, Germany
| | - Evan Y Snyder
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA ; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA ; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Jeffrey M Karp
- Harvard Stem Cell Institute, Cambridge, MA, USA ; Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Harvard Medical School, Cambridge, MA, USA
| | - Andrew Price
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - David A Brindley
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK ; Harvard Stem Cell Institute, Cambridge, MA, USA ; Centre for Behavioural Medicine, UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
45
|
Analysis of Gene Expression Signatures for Osteogenic 3D Perfusion-Bioreactor Cell Cultures Based on a Multifactorial DoE Approach. Processes (Basel) 2014. [DOI: 10.3390/pr2030639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Mittra J, Tait J, Mastroeni M, Turner ML, Mountford JC, Bruce K. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells. N Biotechnol 2014; 32:180-90. [PMID: 25094050 DOI: 10.1016/j.nbt.2014.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022]
Abstract
The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field.
Collapse
Affiliation(s)
- J Mittra
- ESRC Innogen Centre, Old Surgeons' Hall, High School Yards, University of Edinburgh, UK.
| | - J Tait
- ESRC Innogen Centre, Old Surgeons' Hall, High School Yards, University of Edinburgh, UK
| | - M Mastroeni
- ESRC Innogen Centre, Old Surgeons' Hall, High School Yards, University of Edinburgh, UK
| | - M L Turner
- Scottish National Blood Transfusion Service, UK; Roslin Cells Ltd., UK
| | - J C Mountford
- Scottish National Blood Transfusion Service, UK; Institute of Cardiovascular and Medical Services, University of Glasgow, UK
| | | |
Collapse
|
47
|
Da Silva JS, Hare JM. Cell-based therapies for myocardial repair: emerging role for bone marrow-derived mesenchymal stem cells (MSCs) in the treatment of the chronically injured heart. Methods Mol Biol 2014; 1037:145-63. [PMID: 24029934 DOI: 10.1007/978-1-62703-505-7_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulating data support the use of bone marrow (BM)-derived MSCs in animal models (e.g., swine) to restore cardiac function and tissue perfusion in chronic cardiac injury. Based on results obtained in swine, we are currently conducting phase I/II clinical trials to address the safety, cell type, cell dose, delivery technique, and efficacy of MSCs in patients with chronic heart failure. MSCs for these trials are isolated from harvested BM and then processed and expanded for intracardiac injection. The BM-MSCs in use for the clinical trials are of clinical grade having been processed successfully in an FDA-approved cGMP facility.
Collapse
|
48
|
Darkins CL, Mandenius CF. Design of large-scale manufacturing of induced pluripotent stem cell derived cardiomyocytes. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2013.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Loring JF, McDevitt TC, Palecek SP, Schaffer DV, Zandstra PW, Nerem RM. A global assessment of stem cell engineering. Tissue Eng Part A 2014; 20:2575-89. [PMID: 24428577 DOI: 10.1089/ten.tea.2013.0468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.
Collapse
Affiliation(s)
- Jeanne F Loring
- 1 Director, Center for Regenerative Medicine, the Scripps Research Institute , LaJolla, California
| | | | | | | | | | | |
Collapse
|
50
|
Sart S, Schneider YJ, Li Y, Agathos SN. Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology 2014; 66:709-22. [PMID: 24500393 DOI: 10.1007/s10616-013-9687-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022] Open
Abstract
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St, Tallahassee, FL, 32310, USA
| | | | | | | |
Collapse
|