1
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
2
|
Mommaerts MY, Deman F, Verwilghen D, De Meurechy N. Lateral pterygoid muscle enthesis reconstruction in alloplastic total temporomandibular joint replacement: An animal experiment with histological verification. J Craniomaxillofac Surg 2025; 53:476-483. [PMID: 39870560 DOI: 10.1016/j.jcms.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025] Open
Abstract
In current alloplastic total temporomandibular joint replacements (TMJRs) typically the lateral pterygoid muscle (LPM) insertion is sacrificed, affecting joint function. This study assesses a novel additively manufactured TMJR (CADskills BV, Gent, Belgium) designed to enable LPM reinsertion through a scaffold feature on the implant. Thirteen TMJRs were implanted in Swifter crossbreed sheep, with follow-up CT scans after 288 days to evaluate LPM reintegration. Five specimens showed a close approximation between the LPM enthesis and the scaffold. Histological analysis with Masson-Goldner staining and microscopy revealed close bony enthesis alignment with the scaffold, although true bony ingrowth was not observed. One specimen could not be fully evaluated due to preparation issues, limiting conclusions on osseointegration. Random samples from the ramal scaffold showed good integration with the native mandible, with osteogenic activity noted, but no bony ingrowth from the reattached enthesis into the bone grafted titanium scaffold. Despite this, all samples displayed a continuous fibrotic attachment, suggesting functional restoration of the LPM. Findings indicate that while the TMJR design supports fibrotic attachment, further optimization of reattachment techniques, scaffold properties, and post-operative care may improve osseointegration and functional outcomes in future human TMJRs.
Collapse
Affiliation(s)
- Maurice Y Mommaerts
- European Face Centre, Universitair Ziekenhuis Brussel, Brussels, Belgium; Face Ahead® Surgicentre, Antwerp, Antwerp, Belgium.
| | | | - Denis Verwilghen
- Sydney School of Veterinary Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | | |
Collapse
|
3
|
Yang C, Chen C, Chen R, Yang F, Xiao H, Geng B, Xia Y. Application and optimization of bioengineering strategies in facilitating tendon-bone healing. Biomed Eng Online 2025; 24:46. [PMID: 40269911 PMCID: PMC12016306 DOI: 10.1186/s12938-025-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Tendon-bone insertion trauma is prevalent in both rotator cuff and anterior cruciate ligament injuries, which are frequently encountered conditions in the field of sports medicine. The main treatment for such injuries is reconstructive surgery. The primary determinant impacting this process is the graft's capacity to integrate with the bone tunnel. In recent years, researchers have attempted to use a variety of methods to facilitate tendon-bone healing after reconstructive surgery. Such as the implantation of biological materials, cytokines and the local application of permanently differentiated cells from various sources. However, there are limitations to the efficacy of one therapy alone in facilitating tendon-bone healing. Therefore, researchers are trying to combine strategies to overcome this conundrum. At present, most studies are based on biomaterial combined with other therapeutic strategies for tissue repair and regeneration. Biomaterials mainly include the application of bioengineering scaffolds, hydrogels and bioabsorbable interference screws. By conducting a thorough review of relevant literature, this study provides a comprehensive overview of the present research progress in enhancing tendon-bone healing using biomaterials. Additionally, it explores the potential benefits of combining biomaterials with other approaches to promote tendon-bone healing. The ultimate goal is to offer insights for future basic research endeavors and establish a solid groundwork for advancing clinical applications in the near future.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
- Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou City, Gansu Province, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Xu T, Rao J, Mo Y, Lam ACH, Yang Y, Wong SWF, Wong KH, Zhao X. 3D printing in musculoskeletal interface engineering: Current progress and future directions. Adv Drug Deliv Rev 2025; 219:115552. [PMID: 40032068 DOI: 10.1016/j.addr.2025.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The musculoskeletal system relies on critical tissue interfaces for its function; however, these interfaces are often compromised by injuries and diseases. Restoration of these interfaces is complex by nature which renders traditional treatments inadequate. An emerging solution is three-dimensional printing, which allows for precise fabrication of biomimetic scaffolds to enhance tissue regeneration. This review summarizes the use of 3D printing in creating scaffolds for musculoskeletal interfaces, mainly focusing on advanced techniques such as multi-material printing, bioprinting, and 4D printing. We emphasize the significance of mimicking natural tissue gradients and the selection of appropriate biomaterials to ensure scaffold success. The review outlines state-of-the-art 3D printing technologies, varying from extrusion, inkjet and laser-assisted bioprinting, which are crucial for producing scaffolds with tailored mechanical and biological properties. Applications in cartilage-bone, intervertebral disc, tendon/ligament-bone, and muscle-tendon junction engineering are discussed, highlighting the potential for improved integration and functionality. Furthermore, we address challenges in material development, printing resolution, and the in vivo performance of scaffolds, as well as the prospects for clinical translation. The review concludes by underscoring the transformative potential of 3D printing to advance orthopedic medicine, offering a roadmap for future research at the intersection of biomaterials, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Jingdong Rao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yongyi Mo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Sidney Wing-Fai Wong
- Industrial Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Roets B, Abrahamse H, Crous A. Biomaterial Properties and Differentiation Strategies for Tenogenic Differentiation of Mesenchymal Stem Cells. Cells 2025; 14:452. [PMID: 40136701 PMCID: PMC11940850 DOI: 10.3390/cells14060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Tendinopathy is a prevalent musculoskeletal condition that affects both aging populations and individuals involved in repetitive, high-intensity activities, such as athletes. Current treatment options primarily address symptom management or involve surgery, which carries a significant risk of complications and re-injury. This highlights the need for regenerative medicine approaches that combine stem cells, biomaterials, and growth factors. However, achieving effective tenogenic differentiation remains challenging due to the absence of standardized differentiation protocols. Consequently, a review of existing research has been conducted to identify optimal biomaterial properties and growth factor protocols. Findings suggest that the ideal biomaterial for tenogenic differentiation should feature a 3D structure to preserve tenogenic expression, incorporate a combination of aligned micro- and nanofibers to promote differentiation, and require further investigation into optimal stiffness. Additionally, growth factor protocols should include an induction phase to initiate tenogenic lineage commitment, followed by a maintenance phase to support matrix production and maturation.
Collapse
Affiliation(s)
| | | | - Anine Crous
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (B.R.); (H.A.)
| |
Collapse
|
6
|
Xu T, Gan L, Chen W, Zheng D, Li H, Deng S, Qian D, Gu T, Lian Q, Shen G, An Q, Li W, Zhang Z, Yang GY, Ruan H, Cui W, Tang Y. Bridging immune-neurovascular crosstalk via the immunomodulatory microspheres for promoting neural repair. Bioact Mater 2025; 44:558-571. [PMID: 39584066 PMCID: PMC11583666 DOI: 10.1016/j.bioactmat.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
The crosstalk between immune cells and the neurovascular unit plays a pivotal role in neural regeneration following central nervous system (CNS) injury. Maintaining brain immune homeostasis is crucial for restoring neurovascular function. In this study, an interactive bridge was developed via an immunomodulatory hydrogel microsphere to link the interaction network between microglia and the neurovascular unit, thereby precisely regulating immune-neurovascular crosstalk and achieving neural function recovery. This immunomodulatory crosstalk microsphere (MP/RIL4) was composed of microglia-targeted RAP12 peptide-modified interleukin-4 (IL-4) nanoparticles and boronic ester-functionalized hydrogel using biotin-avidin reaction and air-microfluidic techniques. We confirmed that the immunomodulatory microspheres reduced the expression of pro-inflammatory factors including IL-1β, iNOS, and CD86, while upregulating levels of anti-inflammatory factors such as IL-10, Arg-1, and CD206 in microglia. In addition, injection of the MP/RIL4 significantly mitigated brain atrophy volume in a mouse model of ischemic stroke, promoted neurobehavioral recovery, and enhanced the crosstalk between immune cells and the neurovascular unit, thus increasing angiogenesis and neurogenesis of stroke mice. In summary, the immunomodulatory microspheres, capable of orchestrating the interaction between immune cells and neurovascular unit, hold considerable therapeutic potential for ischemic stroke and other CNS diseases.
Collapse
Affiliation(s)
- Tongtong Xu
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Gan
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Dandan Zheng
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hanlai Li
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shiyu Deng
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Dongliang Qian
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Tingting Gu
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Qianyuan Lian
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Gracie Shen
- Loomis Chaffee School, 4 Batchelder Road, Windsor, CT, 06095, USA
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Wanlu Li
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhijun Zhang
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Guo-Yuan Yang
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Huitong Ruan
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wenguo Cui
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yaohui Tang
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| |
Collapse
|
7
|
Pitts J, Hänsch R, Roger Y, Hoffmann A, Menzel H. 3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering. Polymers (Basel) 2025; 17:383. [PMID: 39940585 PMCID: PMC11820431 DOI: 10.3390/polym17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Tissue engineering has emerged as a promising approach for improved regeneration of native tissue and could increase the quality of life of many patients. However, the treatment of injured tissue transitions is still in its early stages, relying primarily on a purely physical approach in medical surgery. A biodegradable implant with a modified surface that is capable of biological active protein delivery via a nanoparticulate release system could advance the field of musculoskeletal disorder treatments enormously. In this study, interconnected 3D macroporous scaffolds based on Polycaprolactone (PCL) were fabricated in a successive process of blending, annealing and leaching. Blending with varying parts of Polyethylene oxide (PEO), NaCl and (powdered) sucrose and altering processing conditions yielded scaffolds with a huge variety of morphologies. The resulting unmodified hydrophobic scaffolds were modified using two graft polymers (CS-g-PCLx) with x = 29 and 56 (x = PCL units per chitosan unit). Due to the chitosan backbone hydrophilicity was increased and a platform for a versatile nanoparticulate release system was introduced. The graft polymers were synthesized via ring opening polymerization (ROP) of ε-Caprolactone using hydroxy groups of the chitosan backbone as initiators (grafting from). The suspected impact on biocompatibility of the modification was investigated by in vitro cell testing. In addition, the CS-g-PCL modification opened up the possibility of Layer by Layer (LbL) coating with alginate (ALG) and TGF-β3-loaded chitosan tripolyphosphate (CS-TGF-β3-TPP) nanoparticles. The subsequent release study showed promising amounts of growth factor released regarding successful in vitro cell differentiation and therefore could have a possible therapeutic impact.
Collapse
Affiliation(s)
- Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopaedic Surgery, Biological Basics for Biohybrid Implants, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Alhaskawi A, Dong Y, Zou X, Zhou W, Ezzi SHA, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Abdalbary S, Lu H. Advancements in biomaterials and scaffold design for tendon repair and regeneration. J Appl Biomater Funct Mater 2025; 23:22808000241310684. [PMID: 40420476 DOI: 10.1177/22808000241310684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Tendon injuries present a significant clinical challenge due to their limited natural healing capacity and the mechanical demands placed on these tissues. This review provides a comprehensive evaluation of the current strategies and advancements in tendon repair and regeneration, focusing on biomaterial innovations and scaffold design. Through a systematic literature search of databases such as PubMed, Scopus, and Web of Science, key studies were analyzed to assess the efficacy of biocompatible materials like hydrogels, synthetic polymers, and fiber-reinforced scaffolds in promoting tendon healing. Emphasis is placed on the role of collagen fiber architecture, including fiber diameter, alignment, and crimping, in restoring the mechanical strength and functional properties of tendons. Additionally, the review highlights emerging techniques such as electrospinning, melt electrowriting, and hybrid textile methods that allow for precise scaffold designs mimicking native tendon structures. Cutting-edge approaches in regenerative medicine, including stem cell therapies, bioelectronic devices, and bioactive molecules, are also explored for their potential to enhance tendon repair. The findings underscore the transformative impact of these technologies on improving tendon biomechanics and functional recovery. Future research directions are outlined, aiming to overcome the current limitations in scaffold mechanical properties and integration at tendon-bone and tendon-muscle junctions. This review contributes to the development of more effective strategies for tendon regeneration, advancing both clinical outcomes and the field of orthopedic tissue engineering.
Collapse
Affiliation(s)
- Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Xiaodi Zou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
- Department of Orthopedics, Zhejiang Chinese Medical University, The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Weijie Zhou
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, Zhejiang Province, P. R. China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Vishnu Goutham Kota
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | | | - Sahar Abdalbary
- Faculty of Physical Therapy, Department of Orthopedic Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
9
|
Yuan Y, Mao Y, Sun B, Chen C. Injectable Fibrocartilage-Forming Cores Enhance Bone-Tendon Healing in a Rat Rotator Cuff Model. Am J Sports Med 2025; 53:66-79. [PMID: 39741471 DOI: 10.1177/03635465241300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
BACKGROUND After surgical repair of rotator cuff (RC) tears, the torn tendon heals unsatisfactorily to the greater tuberosity owing to limited regeneration of the bone-tendon (BT) insertion. This situation motivates the need for new interventions to enhance BT healing in the RC repair site. PURPOSE To develop injectable fibrocartilage-forming cores by tethering fibroblast growth factor 18 (FGF18) on acellular fibrocartilage matrix microparticles (AFM-MPs) and evaluate their efficacy on BT healing. STUDY DESIGN Controlled laboratory study. METHODS We harvested normal fibrocartilage tissue from the porcine RC insertion, after which it was decellularized and then micronized for fabricating AFM-MPs. The collagen-binding domain was fused into the N-terminus of FGF18 to synthesize recombinant FGF18 (CBD-FGF18), which was tethered to the collagen fibers of AFM-MPs to prepare the injectable fibrocartilage-forming cores (CBD-FGF18@AFM-MPs). After examining the influence of the CBD-FGF18@AFM-MPs on the viability and chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro, we determined the function of the CBD-FGF18@AFM-MPs on BT healing in a rat RC tear model. A total of 80 Sprague-Dawley rats with RC injuries were randomly assigned to 4 supplemental treatments during RC repair: saline injection (control group), AFM-MPs injection, natural FGF18@AFM-MPs injection, and CBD-FGF18@AFM-MPs injection. At 4 and 8 weeks postoperatively, the harvested RC specimens were evaluated via micro-computed tomography, histologic staining, and mechanical testing. RESULTS In vitro, the CBD-FGF18@AFM-MPs were highly biomimetic, suitable for cell growth and proliferation, and superior in stimulating chondrogenesis. In vivo micro-computed tomography results showed that the CBD-FGF18@AFM-MPs group had significantly more new bone formation and better bone remodeling than the other 3 groups. Histologically, at 4 and 8 weeks postoperatively, the CBD-FGF18@AFM-MPs group had the best continuity of the BT insertion with regular collagen alignment and extensive fibrocartilage regeneration. Importantly, at 8 weeks postoperatively, the RC specimens from the CBD-FGF18@AFM-MPs group presented the highest failure load and stiffness. CONCLUSION The injectable fibrocartilage-forming cores provide a new biological intervention to promote RC healing. CLINICAL RELEVANCE The injectable fibrocartilage-forming cores may be a new complementary treatment for surgical repair of RC tears.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiyang Mao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Buhua Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Park S, Rahaman KA, Kim YC, Jeon H, Han HS. Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioact Mater 2024; 40:345-365. [PMID: 38978804 PMCID: PMC11228556 DOI: 10.1016/j.bioactmat.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
The musculoskeletal system, which is vital for movement, support, and protection, can be impaired by disorders such as osteoporosis, osteoarthritis, and muscular dystrophy. This review focuses on the advances in tissue engineering and regenerative medicine, specifically aimed at alleviating these disorders. It explores the roles of cell therapy, particularly Mesenchymal Stem Cells (MSCs) and Adipose-Derived Stem Cells (ADSCs), biomaterials, and biomolecules/external stimulations in fostering bone and muscle regeneration. The current research underscores the potential of MSCs and ADSCs despite the persistent challenges of cell scarcity, inconsistent outcomes, and safety concerns. Moreover, integrating exogenous materials such as scaffolds and external stimuli like electrical stimulation and growth factors shows promise in enhancing musculoskeletal regeneration. This review emphasizes the need for comprehensive studies and adopting innovative techniques together to refine and advance these multi-therapeutic strategies, ultimately benefiting patients with musculoskeletal disorders.
Collapse
Affiliation(s)
- Soyeon Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Khandoker Asiqur Rahaman
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
11
|
Su W, Yang Q, Li T, Xu J, Yin P, Han M, Lin Z, Deng Y, Wu Y, Huang W, Wang L. Electrospun Aligned Nanofiber Yarns Constructed Biomimetic M-Type Interface Integrated into Precise Co-Culture System as Muscle-Tendon Junction-on-a-Chip for Drug Development. SMALL METHODS 2024; 8:e2301754. [PMID: 38593371 DOI: 10.1002/smtd.202301754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The incorporation of engineered muscle-tendon junction (MTJ) with organ-on-a-chip technology provides promising in vitro models for the understanding of cell-cell interaction at the interface between muscle and tendon tissues. However, developing engineered MTJ tissue with biomimetic anatomical interface structure remains challenging, and the precise co-culture of engineered interface tissue is further regarded as a remarkable obstacle. Herein, an interwoven waving approach is presented to develop engineered MTJ tissue with a biomimetic "M-type" interface structure, and further integrated into a precise co-culture microfluidic device for functional MTJ-on-a-chip fabrication. These multiscale MTJ scaffolds based on electrospun nanofiber yarns enabled 3D cellular alignment and differentiation, and the "M-type" structure led to cellular organization and interaction at the interface zone. Crucially, a compartmentalized co-culture system is integrated into an MTJ-on-a-chip device for the precise co-culture of muscle and tendon zones using their medium at the same time. Such an MTJ-on-a-chip device is further served for drug-associated MTJ toxic or protective efficacy investigations. These results highlight that these interwoven nanofibrous scaffolds with biomimetic "M-type" interface are beneficial for engineered MTJ tissue development, and MTJ-on-a-chip with precise co-culture system indicated their promising potential as in vitro musculoskeletal models for drug development and biological mechanism studies.
Collapse
Affiliation(s)
- Weiwei Su
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiao Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Panjing Yin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mingying Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhuosheng Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuping Deng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, China
| | - Ling Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
12
|
Tong S, Sun Y, Kuang B, Wang M, Chen Z, Zhang W, Chen J. A Comprehensive Review of Muscle-Tendon Junction: Structure, Function, Injury and Repair. Biomedicines 2024; 12:423. [PMID: 38398025 PMCID: PMC10886980 DOI: 10.3390/biomedicines12020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The muscle-tendon junction (MTJ) is a highly specific tissue interface where the muscle's fascia intersects with the extracellular matrix of the tendon. The MTJ functions as the particular structure facilitating the transmission of force from contractive muscle fibers to the skeletal system, enabling movement. Considering that the MTJ is continuously exposed to constant mechanical forces during physical activity, it is susceptible to injuries. Ruptures at the MTJ often accompany damage to both tendon and muscle tissues. In this review, we attempt to provide a precise definition of the MTJ, describe its subtle structure in detail, and introduce therapeutic approaches related to MTJ tissue engineering. We hope that our detailed illustration of the MTJ and summary of the representative research achievements will help researchers gain a deeper understanding of the MTJ and inspire fresh insights and breakthroughs for future research.
Collapse
Affiliation(s)
- Siqi Tong
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Yuzhi Sun
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Baian Kuang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
13
|
Xu B, Wang Y, He G, Tang KL, Guo L, Chen W. A novel and efficient murine model for investigating tendon-to-bone healing. J Orthop Surg Res 2024; 19:90. [PMID: 38273383 PMCID: PMC10809630 DOI: 10.1186/s13018-023-04496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Tendon-to-bone healing is a critical challenge in sports medicine, with its cellular and molecular mechanisms yet to be explored. An efficient murine model could significantly advance our understanding of this process. However, most existing murine animal models face limitations, including a propensity for bleeding, restricted operational space, and a steep learning curve. Thus, the need for a novel and efficient murine animal model to investigate the cellular and molecular mechanisms of tendon-to-bone healing is becoming increasingly evident. METHODS In our study, forty-four 9-week-old male C57/BL6 mice underwent transection and reattachment of the Achilles tendon insertion to investigate tendon-to-bone healing. At 2 and 4 weeks postoperatively, mice were killed for histological, Micro-CT, biomechanical, and real-time polymerase chain reaction tests. RESULTS Histological staining revealed that the original tissue structure was disrupted and replaced by a fibrovascular scar. Although glycosaminoglycan deposition was present in the cartilage area, the native structure had been destroyed. Biomechanical tests showed that the failure force constituted approximately 44.2% and 77.5% of that in intact tissues, and the ultimate tensile strength increased from 2 to 4 weeks postoperatively. Micro-CT imaging demonstrated a gradual healing process in the bone tunnel from 2 to 4 weeks postoperatively. The expression levels of ACAN, SOX9, Collagen I, and MMPs were detected, with all genes being overexpressed compared to the control group and maintaining high levels at 2 and 4 weeks postoperatively. CONCLUSIONS Our results demonstrate that the healing process in our model is aligned with the natural healing process, suggesting the potential for creating a new, efficient, and reproducible mouse animal model to investigate the cellular and molecular mechanisms of tendon-to-bone healing.
Collapse
Affiliation(s)
- Baoyun Xu
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Yunjiao Wang
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Gang He
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Kang-Lai Tang
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China.
| | - Lin Guo
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China.
| | - Wan Chen
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
14
|
Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: A review. Int J Biol Macromol 2024; 254:127891. [PMID: 37931866 DOI: 10.1016/j.ijbiomac.2023.127891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Tissue engineering (TE) has become a primary research topic for the treatment of diseased or damaged tendon/ligament (T/L) tissue. T/L injuries pose a severe clinical burden worldwide, necessitating the development of effective strategies for T/L repair and tissue regeneration. TE has emerged as a promising strategy for restoring T/L function using decellularized extracellular matrix (dECM)-based scaffolds. dECM scaffolds have gained significant prominence because of their native structure, relatively high bioactivity, low immunogenicity, and ability to function as scaffolds for cell attachment, proliferation, and differentiation, which are difficult to imitate using synthetic materials. Here, we review the recent advances and possible future prospects for the advancement of dECM scaffolds for T/L tissue regeneration. We focus on crucial scaffold properties and functions, as well as various engineering strategies employed for biomaterial design in T/L regeneration. dECM provides both the physical and mechanical microenvironments required by cells to survive and proliferate. Various decellularization methods and sources of allogeneic and xenogeneic dECM in T/L repair and regeneration are critically discussed. Additionally, dECM hydrogels, bio-inks in 3D bioprinting, and nanofibers are briefly explored. Understanding the opportunities and challenges associated with dECM-based scaffold development is crucial for advancing T/L repairs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mohammad Saeed
- Dr. A.P.J Abdul Kalam Technical University, Lucknow 226031, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Balestri W, Hickman GJ, Morris RH, Hunt JA, Reinwald Y. Triphasic 3D In Vitro Model of Bone-Tendon-Muscle Interfaces to Study Their Regeneration. Cells 2023; 12:313. [PMID: 36672248 PMCID: PMC9856925 DOI: 10.3390/cells12020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The transition areas between different tissues, known as tissue interfaces, have limited ability to regenerate after damage, which can lead to incomplete healing. Previous studies focussed on single interfaces, most commonly bone-tendon and bone-cartilage interfaces. Herein, we develop a 3D in vitro model to study the regeneration of the bone-tendon-muscle interface. The 3D model was prepared from collagen and agarose, with different concentrations of hydroxyapatite to graduate the tissues from bones to muscles, resulting in a stiffness gradient. This graduated structure was fabricated using indirect 3D printing to provide biologically relevant surface topographies. MG-63, human dermal fibroblasts, and Sket.4U cells were found suitable cell models for bones, tendons, and muscles, respectively. The biphasic and triphasic hydrogels composing the 3D model were shown to be suitable for cell growth. Cells were co-cultured on the 3D model for over 21 days before assessing cell proliferation, metabolic activity, viability, cytotoxicity, tissue-specific markers, and matrix deposition to determine interface formations. The studies were conducted in a newly developed growth chamber that allowed cell communication while the cell culture media was compartmentalised. The 3D model promoted cell viability, tissue-specific marker expression, and new matrix deposition over 21 days, thereby showing promise for the development of new interfaces.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Graham J. Hickman
- Imaging Suite, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Robert H. Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - John A. Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- College of Biomedical Engineering, China Medical University, Taichung 40402, Taiwan
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
16
|
Gao S, Hu C, Wang Y, Zhang J, Tang K. Comparison of cortical versus cancellous bone fixation in tendon-to-bone healing with a rat trans-calcaneal suture model for Achilles tendon sleeve avulsion. J Orthop Surg Res 2023; 18:15. [PMID: 36604674 PMCID: PMC9817399 DOI: 10.1186/s13018-022-03469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Trans-calcaneal suture technique is an economical and effective method for repairing Achilles tendon sleeve avulsion. Whether cancellous bone fixation upon this technique could accelerate tendon-to-bone healing is unknown. The purpose of this study is to compare the effect of cortical versus cancellous bone fixation on tendon-bone healing with a novel rat trans-calcaneal suture model. METHODS Trans-calcaneal suture treatment was carried out on the right hindlimb in male Sprague-Dawley rats (N = 80). They were randomly divided into the cortical group (Achilles fixed to the calcaneal cortical bone, n = 40) and the cancellous group (Achilles fixed to the calcaneal cancellous bone, n = 40). Gait analysis and immunohistochemistry were performed 1, 4, 7, and 14 days after the operation. Gross observation, biomechanical analysis, micro-CT, and histological analysis were performed 4 and 8 weeks after surgery. Independent-samples t tests were used for comparison between groups. RESULTS At 1, 4, and 7 days, the swing time of the affected limb in the cancellous group decreased, while the duty cycle, the maximum contact area, the print area, and the mean intensity increased significantly. The cross-sectional area of the tendon-bone junction in the cancellous group was smaller, and the failure load and stiffness were higher 4 weeks after the operation. The cancellous group showed more proportion of new bone and a relatively well-organized and dense connective tissue interface with better fibrocartilage-like tissue at 4 weeks after the operation. The ratio of ED2 + macrophages in the cancellous group was significantly higher than in the cortical group on 1, 4, 7, and 14 days. There were no significant differences in gait at 2 weeks, in appearance, biomechanics, new bone formation, and histology at 8 weeks after surgery between the two groups. CONCLUSION In the new rat trans-calcaneal suture model, cancellous fixation can accelerate tendon-to-bone healing in the early stage, which perhaps is related to the abundant bone marrow tissue in the cancellous bone that modulates the inflammatory processes.
Collapse
Affiliation(s)
- Shang Gao
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Gaotanyan Street. 30, Shapingba District, Chongqing, 400038 China
| | - Chao Hu
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Gaotanyan Street. 30, Shapingba District, Chongqing, 400038 China
| | - Yunjiao Wang
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Gaotanyan Street. 30, Shapingba District, Chongqing, 400038 China
| | - Jiqiang Zhang
- Department of Neurology, Third Military Medical University, Chongqing, China
| | - Kanglai Tang
- Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Gaotanyan Street. 30, Shapingba District, Chongqing, 400038 China
| |
Collapse
|
17
|
Shiroud Heidari B, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater 2023; 19:179-197. [PMID: 35510172 PMCID: PMC9034322 DOI: 10.1016/j.bioactmat.2022.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Tendon and ligament (TL) injuries affect millions of people annually. Biopolymers play a significant role in TL tissue repair, whether the treatment relies on tissue engineering strategies or using artificial tendon grafts. The biopolymer governs the mechanical properties, biocompatibility, degradation, and fabrication method of the TL scaffold. Many natural, synthetic and hybrid biopolymers have been studied in TL regeneration, often combined with therapeutic agents and minerals to engineer novel scaffold systems. However, most of the advanced biopolymers have not advanced to clinical use yet. Here, we aim to review recent biopolymers and discuss their features for TL tissue engineering. After introducing the properties of the native tissue, we discuss different types of natural, synthetic and hybrid biopolymers used in TL tissue engineering. Then, we review biopolymers used in commercial absorbable and non-absorbable TL grafts. Finally, we explain the challenges and future directions for the development of novel biopolymers in TL regenerative treatment.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Peilin Chen
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Elena M. De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Australia
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- BHF Centre for Cardiovascular Science, The University of Edinburgh, UK
| |
Collapse
|
18
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
19
|
Staresinic M, Japjec M, Vranes H, Prtoric A, Zizek H, Krezic I, Gojkovic S, Smoday IM, Oroz K, Staresinic E, Dretar V, Yago H, Milavic M, Sikiric S, Lovric E, Batelja Vuletic L, Simeon P, Dobric I, Strbe S, Kokot A, Vlainic J, Blagaic AB, Skrtic A, Seiwerth S, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 and Striated, Smooth, and Heart Muscle. Biomedicines 2022; 10:3221. [PMID: 36551977 PMCID: PMC9775659 DOI: 10.3390/biomedicines10123221] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
First, we review the definitively severed myotendinous junction and recovery by the cytoprotective stable gastric pentadecapeptide BPC 157 therapy, its healing that might combine both transected and detached tendon and transected muscle, ligament and bone injuries, applied alone, as native peptide therapy, effective in rat injury, given intraperitoneally or in drinking water or topically, at the site of injury. As a follow up, we reviewed that with the BPC 157 therapy, its cytoprotective ability to organize simultaneous healing of different tissues of and full recovery of the myotendinous junction might represent the particular muscle therapy against distinctive etiopathology muscle disabilities and weakness. In this, BPC 157 therapy might recover many of muscle disabilities (i.e., succinylcholine, vascular occlusion, spinal cord compression, stroke, traumatic brain injury, severe electrolyte disturbances, neurotoxins, neuroleptics, alcohol, serotonin syndrome and NO-system blockade and tumor-cachexia). These might provide practical realization of the multimodal muscle-axis impact able to react depending on the condition and the given agent(s) and the symptoms distinctively related to the prime injurious cause symptoms in the wide healing concept, the concept of cytoprotection, in particular. Further, the BPC 157 therapy might be the recovery for the disabled heart functioning, and disabled smooth muscle functioning (various sphincters function recovery). Finally, BPC 157, native and stable in human gastric juice, might be a prototype of anti-ulcer cytoprotective peptide for the muscle therapy with high curing potential (very safe profile (lethal dose not achieved), with suited wide effective range (µg-ng regimens) and ways of application).
Collapse
Affiliation(s)
- Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mladen Japjec
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Prtoric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Eva Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vilim Dretar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Haidi Yago
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Paris Simeon
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, lnstitute Ruder Boskovic, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
The joint Orthoplastic management of an Achilles tendon avulsion: A rare case report. JPRAS Open 2022; 34:60-63. [PMID: 36177147 PMCID: PMC9513724 DOI: 10.1016/j.jpra.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 12/05/2022] Open
Abstract
Rupture of the Achilles tendon typically occurs at the mid-substance, and less commonly at the distal insertion or proximal musculotendinous junction. We report the case of a 60-year-old multi-morbid patient presenting with an avulsion of the Achilles tendon from the gastrocnemius-soleus complex - a variant of injury previously unrecorded in the literature. Initial Orthoplastic management involved debridement and primary fixation of the avulsed tendon to the muscle with a concurrent lateral rotational flap. Flap failure and loss of tendon viability necessitated further debridement and eventual split-skin grafting (SSG). A residual dorsiflexion deformity will undoubtedly require further operative intervention. Here, we report the management of this unreported variant of Achilles tendon injury and discuss alternatives to our initial management that could have resulted in fewer procedures and improved long-term functional outcomes.
Collapse
|
21
|
Włodarczyk-Biegun MK, Villiou M, Koch M, Muth C, Wang P, Ott J, del Campo A. Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork. ACS Biomater Sci Eng 2022; 8:3899-3911. [PMID: 35984428 PMCID: PMC9472227 DOI: 10.1021/acsbiomaterials.2c00623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 μm and fiber diameters of 10-12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.
Collapse
Affiliation(s)
| | - Maria Villiou
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christina Muth
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Peixi Wang
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| | - Jenna Ott
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Aranzazu del Campo
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
22
|
Kim WJ, Kim GH. A bioprinted complex tissue model for myotendinous junction with biochemical and biophysical cues. Bioeng Transl Med 2022; 7:e10321. [PMID: 36176596 PMCID: PMC9472009 DOI: 10.1002/btm2.10321] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/07/2022] Open
Abstract
In the musculoskeletal system, the myotendinous junction (MTJ) is optimally designed from the aspect of force transmission generated from a muscle through a tendon onto the bone to induce movement. Although the MTJ is a key complex tissue in force transmission, the realistic fabrication, and formation of complex tissues can be limited. To obtain the MTJ construct, we prepared two bioinks, muscle- and tendon-derived decellularized extracellular matrix (dECM), which can induce myogenic and tenogenic differentiation of human adipose-derived stem cells (hASCs). By using a modified bioprinting process supplemented with a nozzle consisting of a single-core channel and double-sheath channels, we can achieve three different types of MTJ units, composed of muscle, tendon, and interface zones. Our results indicated that the bioprinted dECM-based constructs induced hASCs to myogenic and tenogenic differentiation. In addition, a significantly higher MTJ-associated gene expression was detected at the MTJ interface with a cell-mixing zone than in the other interface models. Based on the results, the bioprinted MTJ model can be a potential platform for understanding the interaction between muscle and tendon cells, and even the bioprinting method can be extensively applied to obtain complex tissues.
Collapse
Affiliation(s)
- Won Jin Kim
- Department of Biomechatronic EngineeringCollege of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronic EngineeringCollege of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU)SuwonRepublic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
23
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
24
|
Zuo R, Liu J, Zhang Y, Zhang H, Li J, Wu J, Ji Y, Mao S, Li C, Zhou Y, Wu Y, Cai D, Sun Y, Zhang C. In situ regeneration of bone-to-tendon structures: Comparisons between costal-cartilage derived stem cells and BMSCs in the rat model. Acta Biomater 2022; 145:62-76. [PMID: 35381396 DOI: 10.1016/j.actbio.2022.03.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/01/2022]
Abstract
Bone-tendon interface (BTI), also called enthesis, is composed of the bone, fibrocartilage, and tendon/ligament with gradual structural characteristics. The unique gradient structure is particularly important for mechanical stress transfer between bone and soft tissues. However, BTI injuries result in fibrous scar repairs and high incidences of re-rupture, which is attributed to the lack of local stem cells with tenogenic and osteogenic potentials. In the rat model, we identified unique stem cells from costal cartilage (CDSCs) with a high in situ regeneration potential of BTI structures. Compared to bone-marrow mesenchymal stem cells (BMSCs), CDSCs exhibit higher self-renewal capacities, better adaptability to low-oxygen and low-nutrient post-transplantation environments, as well as strong bi-potent differentiation abilities of osteogenesis and tenogenesis. After transplantation, CDSCs can survive, proliferate, and in situ gradually regenerate BTI structures. Therefore, CDSCs have a great potential for tissue engineering regeneration in BTI injuries, and have future clinical application prospects. STATEMENT OF SIGNIFICANCE: Tissue engineering is a promising technique for bone-to-tendon interface (BTI) regeneration after injury, but it is still a long way from clinical application. One of the major reasons is the lack of suitable seed cells. This study found an ideal source of seed cells derived from costal cartilages (CDSCs). Compared to the traditional seed cell BMSCs, CDSCs have higher proliferation ability, strong chondrogenic and tenogenic differentiation potential, and better adaptability to low-oxygen and low nutrient conditions. CDSCs were able to survive, proliferate, and regenerate BTI structures in situ, in contrast to BMSCs. CDSCs transplantation showed strong BTI structures regeneration potential both histologically and biomechanically, making it a suitable seed cell for the tissue engineering regeneration of BTI.
Collapse
|
25
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
26
|
Supercritical CO2 elimination of solvent residues from active pharmaceutical ingredients: Beclometasone dipropionate and Budesonide. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Japjec M, Horvat Pavlov K, Petrovic A, Staresinic M, Sebecic B, Buljan M, Vranes H, Giljanovic A, Drmic D, Japjec M, Prtoric A, Lovric E, Batelja Vuletic L, Dobric I, Boban Blagaic A, Skrtic A, Seiwerth S, Predrag S. Stable Gastric Pentadecapeptide BPC 157 as a Therapy for the Disable Myotendinous Junctions in Rats. Biomedicines 2021; 9:1547. [PMID: 34829776 PMCID: PMC8615275 DOI: 10.3390/biomedicines9111547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Aim: The stable gastric pentadecapeptide BPC 157 is known to heal transected muscle, tendon, and ligament. Thereby, in this study, we investigated the effect of BPC 157 on the dissection of the quadriceps tendon from the quadriceps muscle in rats. (2) Materials and Methods: Myotendinous junction defect, which cannot heal spontaneously in rats, as evidenced with consistent macro/microscopic, biomechanical, functional assessments, eNOS, and COX-2 mRNA levels and oxidative stress and NO-levels in the myotendinous junctions. BPC 157 (10 µg/kg, 10 ng/kg) regimen was given (i) intraperitoneally, first application immediately after surgery, last 24 h before sacrifice; (ii) per-orally, in drinking water (0.16 µg/mL, 0.16 ng/mL, 12 mL/rat/day), till the sacrifice at 7, 14, 28 and 42 postoperative days. (3) Results: These BPC 157 regimens document prominent therapy effects (macro/microscopic, biomechanical, functional much like eNOS and COX-2 mRNA levels and counteracted oxidative stress and NO-levels in the myotendinous junctions), while controls have a poor presentation. Especially, in rats with the disabled myotendinous junction, along with full functional recovery, BPC 157 counteracts muscle atrophy that is regularly progressive and brings muscle presentation close to normal. Accordingly, unlike the perilous course in controls, those rats, when receiving BPC 157 therapy, exhibit a smaller defect, and finally defects completely disappear. Microscopically, there are no more inflammatory infiltrate, well-oriented recovered tissue of musculotendon junction appears in BPC 157 treated rats at the 28 days and 42 days. (4) Conclusions: BPC 157 restores myotendinous junction in accordance with the healing of the transected muscle, tendon, and ligament.
Collapse
Affiliation(s)
- Mladen Japjec
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.J.); (M.S.); (B.S.); (A.P.); (I.D.)
| | - Katarina Horvat Pavlov
- Department of Pathology, School of Medicine, University of Zagreb, P.O. Box 910, Salata 10, 10000 Zagreb, Croatia; (K.H.P.); (A.P.); (E.L.); (L.B.V.); (S.S.)
| | - Andreja Petrovic
- Department of Pathology, School of Medicine, University of Zagreb, P.O. Box 910, Salata 10, 10000 Zagreb, Croatia; (K.H.P.); (A.P.); (E.L.); (L.B.V.); (S.S.)
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.J.); (M.S.); (B.S.); (A.P.); (I.D.)
| | - Bozidar Sebecic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.J.); (M.S.); (B.S.); (A.P.); (I.D.)
| | - Matko Buljan
- Department of Pharmacology, School of Medicine, University of Zagreb, P.O. Box, 916, Salata 11, 10000 Zagreb, Croatia; (M.B.); (H.V.); (A.G.); (D.D.); (M.J.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, P.O. Box, 916, Salata 11, 10000 Zagreb, Croatia; (M.B.); (H.V.); (A.G.); (D.D.); (M.J.); (A.B.B.)
| | - Ana Giljanovic
- Department of Pharmacology, School of Medicine, University of Zagreb, P.O. Box, 916, Salata 11, 10000 Zagreb, Croatia; (M.B.); (H.V.); (A.G.); (D.D.); (M.J.); (A.B.B.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, P.O. Box, 916, Salata 11, 10000 Zagreb, Croatia; (M.B.); (H.V.); (A.G.); (D.D.); (M.J.); (A.B.B.)
| | - Miroslav Japjec
- Department of Pharmacology, School of Medicine, University of Zagreb, P.O. Box, 916, Salata 11, 10000 Zagreb, Croatia; (M.B.); (H.V.); (A.G.); (D.D.); (M.J.); (A.B.B.)
| | - Andreja Prtoric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.J.); (M.S.); (B.S.); (A.P.); (I.D.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, P.O. Box 910, Salata 10, 10000 Zagreb, Croatia; (K.H.P.); (A.P.); (E.L.); (L.B.V.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, School of Medicine, University of Zagreb, P.O. Box 910, Salata 10, 10000 Zagreb, Croatia; (K.H.P.); (A.P.); (E.L.); (L.B.V.); (S.S.)
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.J.); (M.S.); (B.S.); (A.P.); (I.D.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, P.O. Box, 916, Salata 11, 10000 Zagreb, Croatia; (M.B.); (H.V.); (A.G.); (D.D.); (M.J.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, P.O. Box 910, Salata 10, 10000 Zagreb, Croatia; (K.H.P.); (A.P.); (E.L.); (L.B.V.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, P.O. Box 910, Salata 10, 10000 Zagreb, Croatia; (K.H.P.); (A.P.); (E.L.); (L.B.V.); (S.S.)
| | - Sikiric Predrag
- Department of Pharmacology, School of Medicine, University of Zagreb, P.O. Box, 916, Salata 11, 10000 Zagreb, Croatia; (M.B.); (H.V.); (A.G.); (D.D.); (M.J.); (A.B.B.)
| |
Collapse
|
28
|
Sarno M, Scudieri C, Ponticorvo E, Baldino L, Cardea S, Reverchon E. High performance PVDF HFP_RuO2 supercapacitors production by supercritical drying. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Naghieh S, Lindberg G, Tamaddon M, Liu C. Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering (Basel) 2021; 8:123. [PMID: 34562945 PMCID: PMC8466376 DOI: 10.3390/bioengineering8090123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biofabrication has emerged as an attractive strategy to personalise medical care and provide new treatments for common organ damage or diseases. While it has made impactful headway in e.g., skin grafting, drug testing and cancer research purposes, its application to treat musculoskeletal tissue disorders in a clinical setting remains scarce. Albeit with several in vitro breakthroughs over the past decade, standard musculoskeletal treatments are still limited to palliative care or surgical interventions with limited long-term effects and biological functionality. To better understand this lack of translation, it is important to study connections between basic science challenges and developments with translational hurdles and evolving frameworks for this fully disruptive technology that is biofabrication. This review paper thus looks closely at the processing stage of biofabrication, specifically at the bioinks suitable for musculoskeletal tissue fabrication and their trends of usage. This includes underlying composite bioink strategies to address the shortfalls of sole biomaterials. We also review recent advances made to overcome long-standing challenges in the field of biofabrication, namely bioprinting of low-viscosity bioinks, controlled delivery of growth factors, and the fabrication of spatially graded biological and structural scaffolds to help biofabricate more clinically relevant constructs. We further explore the clinical application of biofabricated musculoskeletal structures, regulatory pathways, and challenges for clinical translation, while identifying the opportunities that currently lie closest to clinical translation. In this article, we consider the next era of biofabrication and the overarching challenges that need to be addressed to reach clinical relevance.
Collapse
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Gabriella Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| |
Collapse
|
30
|
Bramson MTK, Van Houten SK, Corr DT. Mechanobiology in Tendon, Ligament, and Skeletal Muscle Tissue Engineering. J Biomech Eng 2021; 143:070801. [PMID: 33537704 DOI: 10.1115/1.4050035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/28/2022]
Abstract
Tendon, ligament, and skeletal muscle are highly organized tissues that largely rely on a hierarchical collagenous matrix to withstand high tensile loads experienced in activities of daily life. This critical biomechanical role predisposes these tissues to injury, and current treatments fail to recapitulate the biomechanical function of native tissue. This has prompted researchers to pursue engineering functional tissue replacements, or dysfunction/disease/development models, by emulating in vivo stimuli within in vitro tissue engineering platforms-specifically mechanical stimulation, as well as active contraction in skeletal muscle. Mechanical loading is critical for matrix production and organization in the development, maturation, and maintenance of native tendon, ligament, and skeletal muscle, as well as their interfaces. Tissue engineers seek to harness these mechanobiological benefits using bioreactors to apply both static and dynamic mechanical stimulation to tissue constructs, and induce active contraction in engineered skeletal muscle. The vast majority of engineering approaches in these tissues are scaffold-based, providing interim structure and support to engineered constructs, and sufficient integrity to withstand mechanical loading. Alternatively, some recent studies have employed developmentally inspired scaffold-free techniques, relying on cellular self-assembly and matrix production to form tissue constructs. Whether utilizing a scaffold or not, incorporation of mechanobiological stimuli has been shown to improve the composition, structure, and biomechanical function of engineered tendon, ligament, and skeletal muscle. Together, these findings highlight the importance of mechanobiology and suggest how it can be leveraged to engineer these tissues and their interfaces, and to create functional multitissue constructs.
Collapse
Affiliation(s)
- Michael T K Bramson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| | - Sarah K Van Houten
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180
| |
Collapse
|
31
|
Preparation of Absorption-Resistant Hard Tissue Using Dental Pulp-Derived Cells and Honeycomb Tricalcium Phosphate. MATERIALS 2021; 14:ma14123409. [PMID: 34202970 PMCID: PMC8234467 DOI: 10.3390/ma14123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
In recent years, there has been increasing interest in the treatment of bone defects using undifferentiated mesenchymal stem cells (MSCs) in vivo. Recently, dental pulp has been proposed as a promising source of pluripotent mesenchymal stem cells (MSCs), which can be used in various clinical applications. Dentin is the hard tissue that makes up teeth, and has the same composition and strength as bone. However, unlike bone, dentin is usually not remodeled under physiological conditions. Here, we generated odontoblast-like cells from mouse dental pulp stem cells and combined them with honeycomb tricalcium phosphate (TCP) with a 300 μm hole to create bone-like tissue under the skin of mice. The bone-like hard tissue produced in this study was different from bone tissue, i.e., was not resorbed by osteoclasts and was less easily absorbed than the bone tissue. It has been suggested that hard tissue-forming cells induced from dental pulp do not have the ability to induce osteoclast differentiation. Therefore, the newly created bone-like hard tissue has high potential for absorption-resistant hard tissue repair and regeneration procedures.
Collapse
|
32
|
Mostakhdemin M, Nand A, Ramezani M. Articular and Artificial Cartilage, Characteristics, Properties and Testing Approaches-A Review. Polymers (Basel) 2021; 13:2000. [PMID: 34207194 PMCID: PMC8234542 DOI: 10.3390/polym13122000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
The design and manufacture of artificial tissue for knee joints have been highlighted recently among researchers which necessitates an apt approach for its assessment. Even though most re-searches have focused on specific mechanical or tribological tests, other aspects have remained underexplored. In this review, elemental keys for design and testing artificial cartilage are dis-cussed and advanced methods addressed. Articular cartilage structure, its compositions in load-bearing and tribological properties of hydrogels, mechanical properties, test approaches and wear mechanisms are discussed. Bilayer hydrogels as a niche in tissue artificialization are presented, and recent gaps are assessed.
Collapse
Affiliation(s)
- Mohammad Mostakhdemin
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| | - Ashveen Nand
- School of Environmental and Animal Sciences, Unitec Institute of Technology, Auckland 1025, New Zealand;
- School of Healthcare and Social Practice, Unitec Institute of Technology, Auckland 1025, New Zealand
| | - Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| |
Collapse
|
33
|
A Novel One-Pot Synthesis and Characterization of Silk Fibroin/α-Calcium Sulfate Hemihydrate for Bone Regeneration. Polymers (Basel) 2021; 13:polym13121996. [PMID: 34207134 PMCID: PMC8235713 DOI: 10.3390/polym13121996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
This study aims to fabricate silk fibroin/calcium sulfate (SF/CS) composites by one-pot synthesis for bone regeneration applications. The SF was harvested from degummed silkworm cocoons, dissolved in a solvent system comprising of calcium chloride:ethanol:water (1:2:8), and then mixed with a stoichiometric amount of sodium sulfate to prepare various SF/CS composites. The crystal pattern, glass transition temperature, and chemical composition of SF/CS samples were analyzed by XRD, DSC, and FTIR, respectively. These characterizations revealed the successful synthesis of pure calcium sulfate dihydrate (CSD) and calcium sulfate hemihydrate (CSH) when it was combined with SF. The thermal analysis through DSC indicated molecular-level interaction between the SF and CS. The FTIR deconvolution spectra demonstrated an increment in the β-sheet content by increasing CS content in the composites. The investigation into the morphology of the composites using SEM revealed the formation of plate-like dihydrate in the pure CS sample, while rod-like structures of α-CSH surrounded by SF in the composites were observed. The compressive strength of the hydrated 10 and 20% SF-incorporated CSH composites portrayed more than a twofold enhancement (statistically significant) in comparison to that of the pure CS samples. Reduced compressive strength was observed upon further increasing the SF content, possibly due to SF agglomeration that restricted its uniform distribution. Therefore, the one-pot synthesized SF/CS composites demonstrated suitable chemical, thermal, and morphological properties. However, additional biological analysis of its potential use as bone substitutes is required.
Collapse
|
34
|
Gargano G, Oliviero A, Oliva F, Maffulli N. Small interfering RNAs in tendon homeostasis. Br Med Bull 2021; 138:58-67. [PMID: 33454750 DOI: 10.1093/bmb/ldaa040] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tenogenesis and tendon homeostasis are guided by genes encoding for the structural molecules of tendon fibres. Small interfering RNAs (siRNAs), acting on gene regulation, can therefore participate in the process of tendon healing. SOURCES OF DATA A systematic search of different databases to October 2020 identified 17 suitable studies. AREAS OF AGREEMENT SiRNAs can be useful to study reparative processes of tendons and identify possible therapeutic targets in tendon healing. AREAS OF CONTROVERSY Many genes and growth factors involved in the processes of tendinopathy and tendon healing can be regulated by siRNAs. It is however unclear which gene silencing determines the expected effect. GROWING POINTS Gene dysregulation of growth factors and tendon structural proteins can be influenced by siRNA. AREAS TIMELY FOR DEVELOPING RESEARCH It is not clear whether there is a direct action of the siRNAs that can be used to facilitate the repair processes of tendons.
Collapse
Affiliation(s)
- Giuseppe Gargano
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, 84131 Salerno, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Antonio Oliviero
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, 84131 Salerno, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Francesco Oliva
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, 84131 Salerno, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, 84131 Salerno, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy.,Centre for Sports and Exercise Medicine, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, UK
| |
Collapse
|
35
|
Vallecillo C, Toledano-Osorio M, Vallecillo-Rivas M, Toledano M, Rodriguez-Archilla A, Osorio R. Collagen Matrix vs. Autogenous Connective Tissue Graft for Soft Tissue Augmentation: A Systematic Review and Meta-Analysis. Polymers (Basel) 2021; 13:polym13111810. [PMID: 34072698 PMCID: PMC8199411 DOI: 10.3390/polym13111810] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Soft tissues have been shown to be critical for the maintenance of both teeth and implants. Currently, regenerative soft tissue techniques propose the use of collagen matrices, which can avoid the drawbacks derived from the obtainment of autogenous tissue graft. A systematic review and meta-analysis were conducted to ascertain the efficacy of collagen matrices (CM) compared to autogenous connective tissue graft (CTG) to improve soft tissue dimensions. An electronic and manual literature searches were performed to identify randomized clinical trials (RCT) or controlled clinical trials (CCT) that compared CTG and CM. Pooled data of width of keratinized tissue (KT) and mucosal thickness (MT) were collected and weighted means were calculated. Heterogeneity was determined using Higgins (I2). If I2 > 50% a random-effects model was applied. Nineteen studies were included based on the eligibility criteria. When using CTG a higher MT gain (0.32 mm, ranging from 0.49 to 0.16 mm) was obtained than when employing CM. Similar result was obtained for the width of KT gain, that was 0.46 mm higher (ranging from 0.89 to 0.02 mm) when employing CTG. However, it can be stated that, although autogenous CTG achieves higher values, CM are an effective alternative in terms of total width of KT and MT gain.
Collapse
Affiliation(s)
- Cristina Vallecillo
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (A.R.-A.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (A.R.-A.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-243-789
| | - Marta Vallecillo-Rivas
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (A.R.-A.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (A.R.-A.); (R.O.)
| | - Alberto Rodriguez-Archilla
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (A.R.-A.); (R.O.)
| | - Raquel Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (C.V.); (M.V.-R.); (M.T.); (A.R.-A.); (R.O.)
| |
Collapse
|
36
|
Pryadko A, Surmeneva MA, Surmenev RA. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications. Polymers (Basel) 2021; 13:1738. [PMID: 34073335 PMCID: PMC8199458 DOI: 10.3390/polym13111738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.
Collapse
Affiliation(s)
| | | | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050, Russia; (A.P.); (M.A.S.)
| |
Collapse
|
37
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
38
|
Sensini A, Massafra G, Gotti C, Zucchelli A, Cristofolini L. Tissue Engineering for the Insertions of Tendons and Ligaments: An Overview of Electrospun Biomaterials and Structures. Front Bioeng Biotechnol 2021; 9:645544. [PMID: 33738279 PMCID: PMC7961092 DOI: 10.3389/fbioe.2021.645544] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
The musculoskeletal system is composed by hard and soft tissue. These tissues are characterized by a wide range of mechanical properties that cause a progressive transition from one to the other. These material gradients are mandatory to reduce stress concentrations at the junction site. Nature has answered to this topic developing optimized interfaces, which enable a physiological transmission of load in a wide area over the junction. The interfaces connecting tendons and ligaments to bones are called entheses, while the ones between tendons and muscles are named myotendinous junctions. Several injuries can affect muscles, bones, tendons, or ligaments, and they often occur at the junction sites. For this reason, the main aim of the innovative field of the interfacial tissue engineering is to produce scaffolds with biomaterial gradients and mechanical properties to guide the cell growth and differentiation. Among the several strategies explored to mimic these tissues, the electrospinning technique is one of the most promising, allowing to generate polymeric nanofibers similar to the musculoskeletal extracellular matrix. Thanks to its extreme versatility, electrospinning has allowed the production of sophisticated scaffolds suitable for the regeneration of both the entheses and the myotendinous junctions. The aim of this review is to analyze the most relevant studies that applied electrospinning to produce scaffolds for the regeneration of the enthesis and the myotendinous junction, giving a comprehensive overview on the progress made in the field, in particular focusing on the electrospinning strategies to produce these scaffolds and their mechanical, in vitro, and in vivo outcomes.
Collapse
Affiliation(s)
- Alberto Sensini
- Advanced Applications in Mechanical Engineering and Materials Technology – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gabriele Massafra
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Carlo Gotti
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Advanced Applications in Mechanical Engineering and Materials Technology – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Health Sciences and Technologies – Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
39
|
Balestri W, Morris RH, Hunt JA, Reinwald Y. Current Advances on the Regeneration of Musculoskeletal Interfaces. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:548-571. [PMID: 33176607 DOI: 10.1089/ten.teb.2020.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regeneration of the musculoskeletal system has been widely investigated. There is now detailed knowledge about the organs composing this system. Research has also investigated the zones between individual tissues where physical, mechanical, and biochemical properties transition. However, the understanding of the regeneration of musculoskeletal interfaces is still lacking behind. Numerous disorders and injuries can degrade or damage tissue interfaces. Their inability to regenerate can delay the tissue repair and regeneration process, leading to graft instability, high morbidity, and pain. Moreover, the knowledge of the mechanism of tissue interface development is not complete. This review presents an overview of the most recent approaches of the regeneration of musculoskeletal interfaces, including the latest in vitro, preclinical, and clinical studies. Impact statement Interfaces between soft and hard tissues are ubiquitous within the body. These transition zones are crucial for joint motion, stabilisation and load transfer between tissues, but do not seem to regenerate well after injury or deterioration. The knowledge about their biology is vast, but little is known about their development. Various musculoskeletal disorders in combination with risk factors including aging and unhealthy lifestyle, can lead to local imbalances, misalignments, inflammation, pain and restricted mobility. Our manuscript reviews the current approaches taken to promote the regeneration of musculoskeletal interfaces through in vitro, pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Robert H Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - John A Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Yvonne Reinwald
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
40
|
Shiroud Heidari B, Ruan R, De-Juan-Pardo EM, Zheng M, Doyle B. Biofabrication and Signaling Strategies for Tendon/Ligament Interfacial Tissue Engineering. ACS Biomater Sci Eng 2021; 7:383-399. [PMID: 33492125 DOI: 10.1021/acsbiomaterials.0c00731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments (TL) have poor healing capability, and for serious injuries like tears or ruptures, surgical intervention employing autografts or allografts is usually required. Current tissue replacements are nonideal and can lead to future problems such as high retear rates, poor tissue integration, or heterotopic ossification. Alternatively, tissue engineering strategies are being pursued using biodegradable scaffolds. As tendons connect muscle and bone and ligaments attach bones, the interface of TL with other tissues represent complex structures, and this intricacy must be considered in tissue engineered approaches. In this paper, we review recent biofabrication and signaling strategies for biodegradable polymeric scaffolds for TL interfacial tissue engineering. First, we discuss biodegradable polymeric scaffolds based on the fabrication techniques as well as the target tissue application. Next, we consider the effect of signaling factors, including cell culture, growth factors, and biophysical stimulation. Then, we discuss human clinical studies on TL tissue healing using commercial synthetic scaffolds that have occurred over the past decade. Finally, we highlight the challenges and future directions for biodegradable scaffolds in the field of TL and interface tissue engineering.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Elena M De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
41
|
Barajaa MA, Nair LS, Laurencin CT. Bioinspired Scaffold Designs for Regenerating Musculoskeletal Tissue Interfaces. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:451-483. [PMID: 33344758 PMCID: PMC7747886 DOI: 10.1007/s40883-019-00132-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
The musculoskeletal system works at a very advanced level of synchrony, where all the physiological movements of the body are systematically performed through well-organized actions of bone in conjunction with all the other musculoskeletal soft tissues, such as ligaments, tendons, muscles, and cartilage through tissue-tissue interfaces. Interfaces are structurally and compositionally complex, consisting of gradients of extracellular matrix components, cell phenotypes as well as biochemical compositions and are important in mediating load transfer between the distinct orthopedic tissues during body movement. When an injury occurs at interface, it must be re-established to restore its function and stability. Due to the structural and compositional complexity found in interfaces, it is anticipated that they presuppose a concomitant increase in the complexity of the associated regenerative engineering approaches and scaffold designs to achieve successful interface regeneration and seamless integration of the engineered orthopedic tissues. Herein, we discuss the various bioinspired scaffold designs utilized to regenerate orthopedic tissue interfaces. First, we start with discussing the structure-function relationship at the interface. We then discuss the current understanding of the mechanism underlying interface regeneration, followed by discussing the current treatment available in the clinic to treat interface injuries. Lastly, we comprehensively discuss the state-of-the-art scaffold designs utilized to regenerate orthopedic tissue interfaces.
Collapse
Affiliation(s)
- Mohammed A Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
42
|
Neubauer VJ, Scheibel T. Spider Silk Fusion Proteins for Controlled Collagen Binding and Biomineralization. ACS Biomater Sci Eng 2020; 6:5599-5608. [PMID: 33320578 DOI: 10.1021/acsbiomaterials.0c00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of biomaterials for the interface between tendon and bone is important for realizing functional tendon replacements. Toward the development of new materials for such applications, engineered recombinant spider silk proteins were modified with peptide tag sequences derived from noncollagenous proteins in bone, so-called SIBLING proteins, such as osteopontin and sialoprotein, which are known to interact with collagen and to initiate mineralization. Materials made of these spider silk-SIBLING hybrids were analyzed concerning mineralization and interaction with cells. They showed enhanced calcium phosphate formation upon incubation in mineralization agents. In gradient films, MC3T3-E1 mouse preosteoblasts adhered preferentially along the gradient toward the variant with a collagen binding motif.
Collapse
Affiliation(s)
- Vanessa J Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
43
|
Myotendinous junction adaptations to ladder-based resistance training: identification of a new telocyte niche. Sci Rep 2020; 10:14124. [PMID: 32839490 PMCID: PMC7445244 DOI: 10.1038/s41598-020-70971-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
The present study shows chronic adjustments in the myotendinous junction (MTJ) in response to different ladder-based resistance training (LRT) protocols. Thirty adult male Wistar rats were divided into groups: sedentary (S), calisthenics (LRT without additional load [C]), and resistance-trained (LRT with extra weight [R]). We demonstrated longer lengths of sarcoplasmatic invaginations in the trained groups; however, evaginations were seen mainly in group R. We showed a greater thickness of sarcoplasmatic invaginations in groups C and R, in addition to greater evaginations in R. We also observed thinner basal lamina in trained groups. The support collagen layer (SCL) adjacent to the MTJ and the diameters of the transverse fibrils were larger in R. We also discovered a niche of telocytes in the MTJ with electron micrographs of the plantar muscle and with immunostaining with CD34+ in the gastrocnemius muscle near the blood vessels and pericytes. We concluded that the continuous adjustments in the MTJ ultrastructure were the result of tissue plasticity induced by LRT, which is causally related to muscle hypertrophy and, consequently, to the remodeling of the contact interface. Also, we reveal the existence of a collagen layer adjacent to MTJ and discover a new micro anatomic location of telocytes.
Collapse
|
44
|
Sun Y, Kwak JM, Qi C, Kholinne E, Wang Y, Koh KH, Jeon IH. Remnant Tendon Preservation Enhances Rotator Cuff Healing: Remnant Preserving Versus Removal in a Rabbit Model. Arthroscopy 2020; 36:1834-1842. [PMID: 32272201 DOI: 10.1016/j.arthro.2020.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess whether anatomic repair preserving remnant tendon tissue can enhance tendon-to-bone healing biomechanically and histologically in a rabbit rotator cuff tear model. METHODS In this controlled laboratory study, bilateral infraspinatus tenotomy from the greater tuberosity, with remnant tendon on the footprint, was performed in 26 New Zealand white rabbits. An open transosseous technique was used to perform bilateral infraspinatus tendon repair 1 week later. Preservation and removal of the remaining tendon were performed on the left and right sides, respectively. Seven rabbits each were killed humanely for biomechanical testing and 6 rabbits each were killed humanely for histologic evaluation at 4 and 12 weeks. RESULTS Significantly superior biomechanical properties were shown in the remnant tissue-preservation group at 4 and 12 weeks in terms of maximum load (89.6 ± 24.3 N vs 68.2 ± 20.7 N at 4 weeks, P = .048; 120.8 ± 27.5 N vs 93.3 ± 25.1 N at 12 weeks, P = .035) and stiffness (25.3 ± 3.4 N/mm vs 17.7 ± 5.2 N/mm at 4 weeks, P = .009; 26.7 ± 5.2 N/mm vs 19.4 ± 5.2 N/mm at 12 weeks, P < .001). Improved bone-tendon interface histologic maturity scores (14.8 ± 0.9 vs 8.2 ± 1.5 at 4 weeks, P = .027; 16.8 ± 0.7 vs 10.5 ± 1.4 at 12 weeks, P = .027) and large metachromasia areas (0.117 ± 0.053 mm2 vs 0.032 ± 0.017 mm2 at 4 weeks, P = .022; 0.14 ± 0.046 mm2 vs 0.037 ± 0.016 mm2 at 12 weeks, P = .007) were obtained in the preservation group compared with the removal group at 4 and 12 weeks. CONCLUSIONS This study showed that preserving remnant tissue in anatomic repair can significantly improve rotator cuff healing compared with remnant tissue removal on the footprint in terms of biomechanical properties, bone-tendon interface histologic maturity scores, and metachromasia at 4 and 12 weeks after repair in a rabbit rotator cuff tear model. CLINICAL RELEVANCE The results suggest that preservation of remnant tissue on the footprint containing the native bone-tendon interface, when present, may be a better option for rotator cuff healing in rotator cuff repair surgery.
Collapse
Affiliation(s)
- Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, Nantong University, Nantong, China
| | - Jae-Man Kwak
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Chao Qi
- Department of Sports Medicine, Qingao University Affiliated Hospital, Qingdao, China
| | - Erica Kholinne
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea; Department of Orthopedic Surgery, St. Carolus Hospital, Jakarta, Indonesia
| | - Yang Wang
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, Nantong University, Nantong, China
| | - Kyoung-Hwan Koh
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| |
Collapse
|
45
|
No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904511. [PMID: 31814177 DOI: 10.1002/adma.201904511] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Engineering synthetic scaffolds to repair and regenerate ruptured native tendon and ligament (T/L) tissues is a significant engineering challenge due to the need to satisfy both the unique biological and biomechanical properties of these tissues. Long-term clinical outcomes of synthetic scaffolds relying solely on high uniaxial tensile strength are poor with high rates of implant rupture and synovitis. Ideal biomaterials for T/L repair and regeneration need to possess the appropriate biological and biomechanical properties necessary for the successful repair and regeneration of ruptured tendon and ligament tissues.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
46
|
Longo UG, Petrillo S, Candela V, Rizzello G, Loppini M, Maffulli N, Denaro V. Arthroscopic rotator cuff repair with and without subacromial decompression is safe and effective: a clinical study. BMC Musculoskelet Disord 2020; 21:24. [PMID: 31926559 PMCID: PMC6955088 DOI: 10.1186/s12891-019-3032-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 12/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subacromial decompression, that consists of the release of the coracoid-acromial ligament, subacromial bursectomy and anterior-inferior acromioplasty, has traditionally been performed in the management of this pathology. However, the purpose of subacromial decompression procedure is not clearly explained. Our reaserch aimed to analyse the differences among the outcomes of arthroscopic rotator cuff repair (RCR) made with suture anchors, with or without the subacromial decompression procedure. METHODS 116 shoulders of 107 patients affected by rotator cuff (RC) tear were treated with Arthroscopic RCR. In 54 subjectes, the arthroscopic RCR and the subacromial decompression procedure (group A) were executed, whereas 53 took only arthroscopic RCR (group B). Clinical outcomes were evaluated through the use of the modified UCLA shoulder rating system, Wolfgang criteria shoulder score and Oxford shoulder score (OSS). Functional outcomes were assessed utilizing active and passive range of motion (ROM) of the shoulder, and muscle strength. The duration of the follow up and the configuration of the acromion were used to realize the comparison between the two groups. RESULTS In patients with 2 to 5 year follow up, UCLA score resulted greater in group A patients. In subjectes with longer than five years of follow up, group B patients showed considerably greater UCLA score and OSS if related with group A patients. In subjectes that had the type II acromion, group B patients presented a significant greater strength in external rotation. CONCLUSION The long term clinical outcomes resulted significantly higher in patients treated only with RCR respect the ones in patients underwent to RCR with subacromial decompression.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128, Rome, Italy. .,Centro Integrato di Ricerca (CIR) Campus Bio-Medico University, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
| | - Stefano Petrillo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Centro Integrato di Ricerca (CIR) Campus Bio-Medico University, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Vincenzo Candela
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Centro Integrato di Ricerca (CIR) Campus Bio-Medico University, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Giacomo Rizzello
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Centro Integrato di Ricerca (CIR) Campus Bio-Medico University, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Mattia Loppini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy.,Department of Orthopaedic and Trauma Surgery, Humanitas Clinical and Research Center, Via Alessandro Manzoni 56, 20089, Milan, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy.,Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London, E1 4DG, England.,Keele University Faculty of Medicine, School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, England
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Centro Integrato di Ricerca (CIR) Campus Bio-Medico University, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
47
|
Luo W, Liu H, Wang C, Qin Y, Liu Q, Wang J. Bioprinting of Human Musculoskeletal Interface. ADVANCED ENGINEERING MATERIALS 2019; 21:1900019. [DOI: 10.1002/adem.201900019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 07/28/2023]
Affiliation(s)
- Wenbin Luo
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - He Liu
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Chenyu Wang
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
- Hallym University1Hallymdaehak‐gilChuncheonGangwon‐do200‐702Korea
| | - Yanguo Qin
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchun130022P. R. China
| | - Jincheng Wang
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchun130041P. R. China
| |
Collapse
|
48
|
Arrigoni C, Petta D, Bersini S, Mironov V, Candrian C, Moretti M. Engineering complex muscle-tissue interfaces through microfabrication. Biofabrication 2019; 11:032004. [PMID: 31042682 DOI: 10.1088/1758-5090/ab1e7c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a tissue with a complex and hierarchical architecture that influences its functional properties. In order to exert its contractile function, muscle tissue is connected to neural, vascular and connective compartments, comprising finely structured interfaces which are orchestrated by multiple signalling pathways. Pathological conditions such as dystrophies and trauma, or physiological situations such as exercise and aging, modify the architectural organization of these structures, hence affecting muscle functionality. To overcome current limitations of in vivo and standard in vitro models, microfluidics and biofabrication techniques have been applied to better reproduce the microarchitecture and physicochemical environment of human skeletal muscle tissue. In the present review, we aim to critically discuss the role of those techniques, taken individually or in combination, in the generation of models that mimic the complex interfaces between muscle tissue and neural/vascular/tendon compartments. The exploitation of either microfluidics or biofabrication to model different muscle interfaces has led to the development of constructs with an improved spatial organization, thus presenting a better functionality as compared to standard models. However, the achievement of models replicating muscle-tissue interfaces with adequate architecture, presence of fundamental proteins and recapitulation of signalling pathways is still far from being achieved. Increased integration between microfluidics and biofabrication, providing the possibility to pattern cells in predetermined structures with higher resolution, will help to reproduce the hierarchical and heterogeneous structure of skeletal muscle interfaces. Such strategies will further improve the functionality of these techniques, providing a key contribution towards the study of skeletal muscle functions in physiology and pathology.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900 Lugano, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Liang LL, Su ZB. In vitro effect of caveolin-1 as a slow-release material on bone-tendon junction healing: A comparative study. Kaohsiung J Med Sci 2019; 35:175-182. [PMID: 30887723 DOI: 10.1002/kjm2.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/11/2019] [Indexed: 11/07/2022] Open
Abstract
Bone tendon junction injury is hard to cure because of its special anatomical structure, and the treatment applied for bone-tendon junction injury cannot result in the perfect vascular regeneration and restoration of the fibrocartilage zone. In this article, we aim to explore the effect of caveolin-1 as a slow-release material on bone-tendon junction healing. Seventy-two New Zealand rabbits were randomly selected and assigned into the experimental, sham-operated and control groups (n = 24). Caveolin-1 microspheres and microcapsule were developed as drug delivery system. At the 4th, 8th, and 12th weeks after surgery, quadriceps muscle patella-patellar tendon (QMPPT) was obtained from each rabbit to observe the tendon-to-bone tunnel healing, and X-ray examination, histological examination and biomechanical testing were applied for evaluating new bone formation. As the X-ray showed, caveolin-1 increased the new bone area at each time point. At the 4th and 8th weeks after surgery, the rabbit treated with caveolin-1 slow release material showed repair of fibrocartilage. According to the biomechanical results, the cross-sectional area, breaking load and ultimate tensile strength were increased along with time. At the same time point, caveolin-1 increased the ultimate tensile strength. Our study demonstrates that caveolin-1 as a slow-release material could accelerate bone-tendon junction healing by promoting the formation of the transition zone.
Collapse
Affiliation(s)
- Lin-Lin Liang
- Department of Clinical Laboratory, The Second People's Hospital in Jiulongpo District Chongqing, Chongqing, China
| | - Zheng-Bing Su
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
50
|
Jun I, Han HS, Edwards JR, Jeon H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int J Mol Sci 2018; 19:E745. [PMID: 29509688 PMCID: PMC5877606 DOI: 10.3390/ijms19030745] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/26/2018] [Accepted: 03/03/2018] [Indexed: 12/23/2022] Open
Abstract
Electrospinning has been used for the fabrication of extracellular matrix (ECM)-mimicking fibrous scaffolds for several decades. Electrospun fibrous scaffolds provide nanoscale/microscale fibrous structures with interconnecting pores, resembling natural ECM in tissues, and showing a high potential to facilitate the formation of artificial functional tissues. In this review, we summarize the fundamental principles of electrospinning processes for generating complex fibrous scaffold geometries that are similar in structural complexity to the ECM of living tissues. Moreover, several approaches for the formation of three-dimensional fibrous scaffolds arranged in hierarchical structures for tissue engineering are also presented.
Collapse
Affiliation(s)
- Indong Jun
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK.
| | - Hyung-Seop Han
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK.
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea.
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK.
| | - Hojeong Jeon
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
| |
Collapse
|