1
|
Treitel R, McLaughlin J, Frigeni M. Case Report: Unusual Neurological Features of Leigh Syndrome due to m.8993T>G Pathogenic Variant in the MT-ATP6 Gene. Am J Med Genet A 2025:e64112. [PMID: 40344499 DOI: 10.1002/ajmg.a.64112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
The MT-ATP6 gene m.8993T>G pathogenic variant has been associated with Leigh syndrome, especially in patients exhibiting a high degree of heteroplasmy. Although patients may present with a wide phenotypic spectrum, characteristic findings include bilateral, symmetric hyperintensities in the basal ganglia and brainstem on brain MRI, particularly on T2-weighted and fluid-attenuated inversion recovery sequences. Additionally, the biochemical phenotype associated with this pathogenic variant often mimics that of multiple carboxylase deficiency and proximal urea cycle disorders. This report describes a male infant with an atypical neurological presentation of Leigh syndrome. At 2 months of age, he presented with status epilepticus of left temporal origin that was refractory to treatment. Initial brain MRI revealed a large region of non-enhancing signal abnormality in the left temporal lobe, raising concern for an infectious etiology. However, biochemical testing revealed hypocitrullinemia, elevated 3-hydroxyisovalerylcarnitine, elevated propionylcarnitine, and urinary excretion of lactate and pyruvate, prompting further investigation for MT-ATP6 mitochondrial disease. Mitochondrial DNA analysis confirmed the presence of a homoplasmic m.8993T>G pathogenic variant in the MT-ATP6 gene. Despite treatment with citrulline and high-dose biotin, the patient died 5 weeks later due to cardiorespiratory failure following a severe respiratory infection. Retrospective review of his newborn screening revealed two screens positive for low citrulline that were ultimately cleared on a third screen, delaying the diagnosis. This case underscores the importance of considering MT-ATP6 mitochondrial disease in the differential diagnosis of patients presenting with atypical neurological symptoms and biochemical abnormalities. It also highlights the value of newborn screening in identifying potential mitochondrial disorders, where early diagnosis and timely intervention may improve outcomes, even in severe cases.
Collapse
Affiliation(s)
- Ramya Treitel
- Department of Pediatrics, Division of Pediatric Neurology, Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Julie McLaughlin
- Department of Pediatrics, Division of Medical Genetics and Metabolism, Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Marta Frigeni
- Department of Pediatrics, Division of Medical Genetics and Metabolism, Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
- Fondazione Don Carlo Gnocchi IRCCS S. Maria Nascente, Milan, Italy
| |
Collapse
|
2
|
Plecko B. Inherited disorders of vitamin metabolism. Eur J Paediatr Neurol 2025; 55:18-32. [PMID: 40096763 DOI: 10.1016/j.ejpn.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025]
Abstract
Vitamins are essential cofactors of various enzyme reactions in amino acid, neurotransmitter, nucleotide and energy metabolism. Over the past decade a number of inborn errors of metabolism have been identified, that affect different steps in vitamin absorption, transport, activation or recycling and repair of active vitamin cofactors. According to the respective cofactor function this may result in acute or chronic multisystem disease or in disorders that selectively affect the nervous system. Most of these disorders are amenable to specific treatment with excellent results, but diagnostic delay can lead to rapid, irreversible damage or even death. Therefore, especially in case of acute and severe neurologic presentations compatible with one of the here discused disorders, a vitamin trial should be considered while awaiting results of biochemical and genetic testing. Diagnosis of these disorders is especially rewarding, as treatment is often per oral, available worldwide and comparably cheap. This article will review current knowledge of the clinical presentation, biomarkers and specific treatment of inborn errors of vitamin metabolism and illustrates why child neurologists should have vitamins in their pockets.
Collapse
Affiliation(s)
- Barbara Plecko
- Department of Pediatrics and Adolescent Medicine Division of General Pediatrics Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria.
| |
Collapse
|
3
|
Vo HVT, Kim N, Lee HJ. Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation. FRONT BIOSCI-LANDMRK 2025; 30:24072. [PMID: 39862072 DOI: 10.31083/fbl24072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment. Vitamins are an indispensable part of daily life, essential for optimal health and well-being. Beyond their recognized roles as essential nutrients, vitamins have increasingly garnered attention for their multifaceted functions within the machinery of cellular processes. In particular, vitamin Bs have emerged as a pivotal regulator within this intricate network, exerting profound effects on the functionality of metalloenzymes. Their ability to modulate metalloenzymes involved in crucial cellular pathways implicated in cancer progression presents a compelling avenue for therapeutic intervention. Key findings indicate that vitamin Bs can influence the activity and expression of metalloenzymes, thereby affecting processes such as DNA repair and cell signaling, which are critical in cancer development and progression. Understanding the mechanisms by which these coenzymes regulate metalloenzymes holds great promise for developing novel anticancer strategies. This review summarizes current knowledge on the interactions between vitamin Bs and metalloenzymes, highlighting their potential as anticancer agents and paving the way for innovative, cell-targeted cancer treatments.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Heath O, Feichtinger RG, Achleitner MT, Hofbauer P, Mayr D, Merkevicius K, Spenger J, Steinbrücker K, Steindl C, Tiefenthaler E, Mayr JA, Wortmann SB. Mitochondrial disorder diagnosis and management- what the pediatric neurologist wants to know. Eur J Paediatr Neurol 2025; 54:75-88. [PMID: 39793294 DOI: 10.1016/j.ejpn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025]
Abstract
Childhood-onset mitochondrial disorders are rare genetic diseases that often manifest with neurological impairment due to altered mitochondrial structure or function. To date, pathogenic variants in 373 genes across the nuclear and mitochondrial genomes have been linked to mitochondrial disease, but the ensuing genetic and clinical complexity of these disorders poses considerable challenges to their diagnosis and management. Nevertheless, despite the current lack of curative treatment, recent advances in next generation sequencing and -omics technologies have laid the foundation for precision mitochondrial medicine through enhanced diagnostic accuracy and greater insight into pathomechanisms. This holds promise for the development of targeted treatments in this group of patients. Against a backdrop of inherent challenges and recent technological advances in mitochondrial medicine, this review discusses the current diagnostic approach to a child with suspected mitochondrial disease and outlines management considerations of particular relevance to paediatric neurologists. We highlight the importance of mitochondrial expertise centres in providing the laboratory infrastructure needed to supplement uninformative first line genomic testing with focused and/or further unbiased investigations where needed, as well as coordinating an integrated multidisciplinary model of care that is paramount to the management of patients affected by these conditions.
Collapse
Affiliation(s)
- Oliver Heath
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - René G Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Melanie T Achleitner
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Peter Hofbauer
- Department of Production, Landesapotheke Salzburg, Hospital Pharmacy, Salzburg, Austria
| | - Doris Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Kajus Merkevicius
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Johannes Spenger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Katja Steinbrücker
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Carina Steindl
- Institut für Klinische Psychologie der UK für Psychiatrie, Psychotherapie und Psychosomatik der PMU, Salzburg, Austria
| | - Elke Tiefenthaler
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, Department of Paediatrics, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Gabriel F, Spriestersbach L, Fuhrmann A, Jungnickel KEJ, Mostafavi S, Pardon E, Steyaert J, Löw C. Structural basis of thiamine transport and drug recognition by SLC19A3. Nat Commun 2024; 15:8542. [PMID: 39358356 PMCID: PMC11447181 DOI: 10.1038/s41467-024-52872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Thiamine (vitamin B1) functions as an essential coenzyme in cells. Humans and other mammals cannot synthesise this vitamin de novo and thus have to take it up from their diet. Eventually, every cell needs to import thiamine across its plasma membrane, which is mainly mediated by the two specific thiamine transporters SLC19A2 and SLC19A3. Loss of function mutations in either of these transporters lead to detrimental, life-threatening metabolic disorders. SLC19A3 is furthermore a major site of drug interactions. Many medications, including antidepressants, antibiotics and chemotherapeutics are known to inhibit this transporter, with potentially fatal consequences for patients. Despite a thorough functional characterisation over the past two decades, the structural basis of its transport mechanism and drug interactions has remained elusive. Here, we report seven cryo-electron microscopy (cryo-EM) structures of the human thiamine transporter SLC19A3 in complex with various ligands. Conformation-specific nanobodies enable us to capture different states of SLC19A3's transport cycle, revealing the molecular details of thiamine recognition and transport. We identify seven previously unknown drug interactions of SLC19A3 and present structures of the transporter in complex with the inhibitors fedratinib, amprolium and hydroxychloroquine. These data allow us to develop an understanding of the transport mechanism and ligand recognition of SLC19A3.
Collapse
Affiliation(s)
- Florian Gabriel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Lea Spriestersbach
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Antonia Fuhrmann
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Katharina E J Jungnickel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Siavash Mostafavi
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| |
Collapse
|
6
|
Mascarenhas S, Yeole M, Rao LP, do Rosario MC, Majethia P, Nair KV, Sharma S, Barala PK, Puri RD, Pal S, Siddiqui S, Shukla A. Report of a novel recurrent homozygous variant c.620A>T in three unrelated families with thiamine metabolism dysfunction syndrome 5 and review of literature. Clin Dysmorphol 2024; 33:160-166. [PMID: 39140381 PMCID: PMC11383744 DOI: 10.1097/mcd.0000000000000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Biallelic variants in thiamine pyrophosphokinase 1 ( TPK1 ) are known to cause thiamine metabolism dysfunction syndrome 5 (THMD5). This disorder is characterized by neuroregression, ataxia and dystonia with basal ganglia abnormalities on neuroimaging. To date, 27 families have been reported with THMD5 due to variants in TPK1 . METHODS We ascertained three individuals from three unrelated families. Singleton exome sequencing was performed on all three individuals, followed by in silico mutagenesis of the mutant TPK protein. Additionally, we reviewed the genotypic and phenotypic information of 27 previously reported individuals with THMD5. RESULTS Singleton exome sequencing revealed a novel homozygous variant c.620A>T p.(Asp207Val) in TPK1 (NM_022445.4) in all three individuals. In silico mutagenesis of the mutant protein revealed a decrease in protein stability and altered interactions with its neighboring residues compared to the wild-type protein. Thus, based on strikingly similar clinical and radiological findings compared to the previously reported individuals and with the support of in silico mutagenesis findings, the above-mentioned variant appears to be the probable cause for the condition observed in the affected individuals in this study. CONCLUSION We report a novel homozygous variant in TPK1 , which appears to be recurrent among the Indian population.
Collapse
Affiliation(s)
- Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Lakshmi Priya Rao
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Vijay Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Praveen Kumar Barala
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Swasti Pal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Shahyan Siddiqui
- Department of Neuroimaging and Interventional Radiology, STAR Institute of Neurosciences, STAR Hospitals, Hyderabad, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Gan Y, Li G, Wei Z, Feng Y, Shi Y, Deng Y. Precision diagnosis and treatment of vitamin metabolism-related epilepsy. ACTA EPILEPTOLOGICA 2024; 6:27. [PMID: 40217438 PMCID: PMC11960229 DOI: 10.1186/s42494-024-00169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/23/2024] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is a chronic disorder of the nervous system caused by abnormal discharges from brain cells. Structural, infectious, metabolic, immunologic, and unknown causes can contribute to the development of seizures. In recent years, there has been increasing attention on epilepsy caused by genetic metabolic disorders. More than two hundred inherited metabolic disorders have been identified as potential cause of seizures, and they are mainly associated with energy deficiency in the brain, accumulation of toxic substances, abnormal neurotransmitter transmission, and deficiency of cofactors. Vitamins play a crucial role as components of several enzymes or coenzymes. Impaired metabolism of thiamine, biotin, vitamin B6, vitamin B12 and folic acid can contribute to early-onset seizures and developmental abnormalities in infants. However, timely supplementation therapy can significantly improve patient prognosis of affected patients. Therefore, a thorough understanding and investigation of the metabolic basis of epilepsy is essential for the development of precise therapeutic approaches, which could provide significant therapeutic benefits for patients.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Yuqing Shi
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, 710000, People's Republic of China.
| |
Collapse
|
8
|
Karachaliou CE, Livaniou E. Biotin Homeostasis and Human Disorders: Recent Findings and Perspectives. Int J Mol Sci 2024; 25:6578. [PMID: 38928282 PMCID: PMC11203980 DOI: 10.3390/ijms25126578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/"pharmacological" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
9
|
Huang H, Jiang H, Yang M, Gao Y, Cao L. Case report: biotin-thiamine-responsive basal ganglia disease with severe subdural hematoma on magnetic resonance imaging. Int J Neurosci 2024; 134:184-192. [PMID: 35775132 DOI: 10.1080/00207454.2022.2097080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Background: Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare, treatable autosomal recessive neurometabolic disorder. This condition eventually leads to severe disability and death if not treated correctly. The clinical features of BTBGD, especially those with unusual complications, are not widely known by neurologists or pediatricians.Case presentation: A 4-month-old male infant was admitted to the hospital with a history of cough for the past 7 days and convulsions of 6 h duration. Physical examination showed confusion, bilateral pupillary light reflex delays, hypertonia of limbs, and brisk tendon reflexes of the limbs. Brain magnetic resonance imaging (MRI) showed multiple abnormal signals in the bilateral basal ganglia, lobes, corpus callosum, brainstem, and brain atrophy. However, his condition continued to worsen. Computed tomography performed 3 months later showed severe subdural hematoma and effusion. Subsequently, he underwent puncture drainage; however, his condition did not improve postoperatively. Repeated MRIs showed increasing subdural hematoma and effusion, and brain atrophy. The patient was diagnosed with BTBGD following whole-genome sequencing, which identified a novel compound heterozygous mutation of SLC19A3 gene. He was treated with biotin and thiamine, and the symptoms gradually improved. Subsequent MRIs showed a decrease in the subdural hematoma and effusion and partial improvement in brain atrophy.Conclusion: To the best of our knowledge, this is the first reported case of BTBGD, complicated by severe subdural hematoma. These observations extend our understanding of the clinical features, neuroimaging spectrum, and gene mutation spectrum of BTBGD. The phenotypic spectrum and pathophysiology of BTBGD are not completely understood and need to be studied further.
Collapse
Affiliation(s)
- Huasheng Huang
- Department of Neurology, Liuzhou People's Hospital, Liuzhou, China
| | - Hongliang Jiang
- Department of Neurology, The Third People's Hospital of Yiyang City, Yiyang, China
| | - Mingxiu Yang
- Department of Neurology, Liuzhou People's Hospital, Liuzhou, China
| | - Yujuan Gao
- Department of Neurology, Hechi People's Hospital, Hechi, China
| | - Liming Cao
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Aldosari AN. Efficacy of high thiamine dosage in treating patients with biotin thiamine responsive basal ganglia disease: a two case reports. Int J Neurosci 2024:1-5. [PMID: 38709666 DOI: 10.1080/00207454.2024.2352769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare, autosomal recessive neurometabolic disorder caused by mutations in the SLC19A3 gene and characterized by recurrent sub-acute episodes of encephalopathy. Patients with BTBGD have classical neuroimaging findings and a dramatic response to high doses of thiamine. OBJECTIVE To highlight the advantages of administering a higher dose of thiamine for patients with BTBGD who have not shown improvement with the standard recommended dosage. RESULTS Herein, we report on two Saudi girls with classical clinical and radiological findings of BTBGD. Hallmark symptoms in these patients included an acute onset of ataxia, tremor, slurred speech, dystonia, and dysphagia. The initial routine laboratory workups were unremarkable. Brain magnetic resonance imaging revealed extensive hyperintense signals in the bilateral basal ganglia, which suggested the diagnosis of a BTBGD. Hence started empirically on biotin 10 mg/kg/day and thiamine 40 mg/kg/day, but there was no noticeable improvement. After increasing the thiamine to 75 mg/kg/day the patients started to improve significantly. Genetic testing was requested and came positive for the mutation of the SLC19A3 gene. After two months of initiating the management, thiamine was reduced to 30 mg/kg/day. Subsequent follow-ups showed complete improvement in their condition with no apparent long-term sequel or relapse. CONCLUSION we conclude that administration of thiamine at a dosage of up to 40 mg/kg/day may not be sufficient in treating certain patients with BTBGD. Thus, considering a significantly higher dosage could potentially contribute to achieving remission.
Collapse
|
11
|
Aldosari AN, Arisha A, Ibrahim A, Gongi M. Developing of Biotin-Thiamine Responsive Basal Ganglia Disease after Accidental Ingestion of Ethyl Alcohol: A Case Report. J Epilepsy Res 2023; 13:59-62. [PMID: 38223361 PMCID: PMC10783965 DOI: 10.14581/jer.23010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare, inherited neurometabolic disorder caused by mutations in the SLC19A3 gene and characterized by recurrent sub-acute episodes of encephalopathy that are often triggered by infections. Patients with BTBGD have classical neuroimaging findings and a dramatic response to high doses of thiamine. Herein, we report a 2 and a half-year-old Saudi girl presented with an acute onset of ataxia, slurred speech, and dysphagia, which was preceded by a history of accidental ingestion of around 20 mL of ethyl alcohol that is used in formulating perfumes 1 day earlier. Her older brother had a similar clinical presentation and was diagnosed with BTBGD. The patient was fully alert and spoke in full sentences with dysarthria. She was unable to walk unassisted. Investigation revealed a positive toxicity test for ethyl alcohol (10 mg/dL), and brain magnetic resonance imaging showed basal ganglia changes consistent with BTBGD. The dramatic response to high doses of thiamine suggested SLC19A3 as a strong candidate gene, and Sanger sequencing revealed a homozygous (NM_025243.4): c.1264A>G (p.Thr422Ala) mutation. Patients with BTBGD should be cautious and aware of ethyl alcohol products, which can lead to a BTBGD crisis. The administration of a high dose of thiamin may be required in patients who have not responded to the recommended dose. Further clinical research is required to determine the optimal doses.
Collapse
Affiliation(s)
| | - Aida Arisha
- Al Taif Children Hospital, Taif,
Saudi Arabia
| | | | - Mohamed Gongi
- Department of Radiology, Al Taif Children Hospital, Al Taif,
Saudi Arabia
| |
Collapse
|
12
|
Felhi R, Sfaihi L, Charif M, Frikha F, Aoiadni N, Kamoun T, Lenaers G, Fakhfakh F. Vitamin B1 deficiency leads to high oxidative stress and mtDNA depletion caused by SLC19A3 mutation in consanguineous family with Leigh syndrome. Metab Brain Dis 2023; 38:2489-2497. [PMID: 37642897 DOI: 10.1007/s11011-023-01280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Leigh syndrome (LS) and Leigh-like spectrum are the most common infantile mitochondrial disorders characterized by heterogeneous neurologic and metabolic manifestations. Pathogenic variants in SLC carriers are frequently reported in LS given their important role in transporting various solutes across the blood-brain barrier. SLC19A3 (THTR2) is one of these carriers transporting vitamin-B1 (vitB1, thiamine) into the cell. Targeted NGS of nuclear genes involved in mitochondrial diseases was performed in a patient belonging to a consanguineous Tunisian family with LS and revealed a homozygous c.1264 A > G (p.T422A) variant in SLC19A3. Molecular docking revealed that the p.T422A aa change is located at a key position interacting with vitB1 and causes conformational changes compromising vitB1 import. We further disclosed decreased plasma antioxidant activities of CAT, SOD and GSH enzymes, and a 42% decrease of the mtDNA copy number in patient blood.Altogether, our results disclose that the c.1264 A > G (p.T422A) variant in SLC19A3 affects vitB1 transport, induces a mtDNA depletion and reduces the expression level of oxidative stress enzymes, altogether contributing to the LS phenotype of the patient.
Collapse
Affiliation(s)
- Rahma Felhi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra. Km 3., Sfax, Tunisia.
| | - Lamia Sfaihi
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Majida Charif
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Thouraya Kamoun
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Guy Lenaers
- Université d'Angers, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR- ICAT, Equipe MitoLab, 49933, Angers, France
- Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra. Km 3., Sfax, Tunisia
| |
Collapse
|
13
|
Aburezq M, Alahmad A, Alsafi R, Al-Tawari A, Ramadan D, Shafik M, Abdelaty O, Makhseed N, Elshafie R, Ayed M, Hayat A, Dashti F, Marafi D, Albash B, Bastaki L, Alsharhan H. Biotin-thiamine responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of cases in Kuwait with novel variants. Orphanet J Rare Dis 2023; 18:271. [PMID: 37670342 PMCID: PMC10478457 DOI: 10.1186/s13023-023-02888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare autosomal recessive neurometabolic disorder that is caused by biallelic pathogenic SLC19A3 variants and is characterized by subacute encephalopathy associated with confusion, convulsions, dysphagia, dysarthria, or other neurological manifestations. METHODS A retrospective review of the data registry in Kuwait Medical Genetics Center for all cases diagnosed clinically and radiographically and confirmed genetically with BTBGD. RESULTS Twenty one cases from 13 different families were diagnosed with BTBGD in Kuwait. Most cases (86%) presented with confusion, dystonia, convulsions, or dysarthria, while three individuals were diagnosed pre-symptomatically during familial targeted genetic screening. Symptoms resolved completely within 2-week of treatment in two-thirds of the symptomatic cases but progressed in six of them to a variety of severe symptoms including severe cogwheel rigidity, dystonia and quadriparesis due to delayed presentation and management. Neuroradiological findings of the symptomatic cases revealed bilateral central changes in the basal ganglia. Two novel homozygous missense SLC19A3 variants were detected in a Kuwaiti and a Jordanian individuals, in addition to the previously reported Saudi founder homozygous variant, c.1264A > G; p.(Thr422Ala) in the remaining cases. Age of diagnosis ranged from newborn to 32 years, with a median age of 2-3 years. All cases are still alive receiving high doses of biotin and thiamine. CONCLUSION This is the first study reporting the phenotypic and genotypic spectrum of 21 individuals with BTBGD in Kuwait and describing two novel SLC19A3 variants. BTBGD is a treatable neurometabolic disease that requires early recognition and treatment initiation. This study highlights the importance of performing targeted molecular testing of the founder variant in patients presenting with acute encephalopathy in the region.
Collapse
Affiliation(s)
- Maryam Aburezq
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Ahmad Alahmad
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Rasha Alsafi
- Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya, Kuwait
| | - Asma Al-Tawari
- Department of Pediatrics, Al-Sabah Hospital, Ministry of Health, Shuwaikh, Kuwait
| | - Dina Ramadan
- Department of Pediatrics, Al-Sabah Hospital, Ministry of Health, Shuwaikh, Kuwait
| | - Magdy Shafik
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Omar Abdelaty
- Department of Radiology, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Nawal Makhseed
- Department of Pediatrics, Al-Jahra Hospital, Ministry of Health, Al-Jahra, Kuwait
| | - Reem Elshafie
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Mariam Ayed
- Department of Neonatology, Maternity Hospital, Ministry of Health, Shuwaikh, Kuwait
| | - Abrar Hayat
- Department of Radiology, Adan Hospital, Ministry of Health, Hadiya, Kuwait
| | - Fatima Dashti
- Department of Radiology, Ibn Sina Hospital, Ministry of Health, Shuwaikh, Kuwait
| | - Dana Marafi
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
- Department of Pediatrics, Faculty of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, Safat 13110, Postal Code 90805, Jabriya, Kuwait
| | - Buthaina Albash
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Laila Bastaki
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Hind Alsharhan
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait.
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait.
- Department of Pediatrics, Faculty of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, Safat 13110, Postal Code 90805, Jabriya, Kuwait.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Burgunder JM. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat Rev Neurol 2023:10.1038/s41582-023-00811-4. [PMID: 37202496 DOI: 10.1038/s41582-023-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
Neurological diseases associated with pathogenic variants in a specific gene, or even with a specific pathogenic variant, can show profound phenotypic variation with regard to symptom presentation, age at onset and disease course. Highlighting examples from a range of neurogenetic disorders, this Review explores emerging mechanisms that are involved in this variability, including environmental, genetic and epigenetic factors that influence the expressivity and penetrance of pathogenic variants. Environmental factors, some of which can potentially be modified to prevent disease, include trauma, stress and metabolic changes. Dynamic patterns of pathogenic variants might explain some of the phenotypic variations, for example, in the case of disorders caused by DNA repeat expansions such as Huntington disease (HD). An important role for modifier genes has also been identified in some neurogenetic disorders, including HD, spinocerebellar ataxia and X-linked dystonia-parkinsonism. In other disorders, such as spastic paraplegia, the basis for most of the phenotypic variability remains unclear. Epigenetic factors have been implicated in disorders such as SGCE-related myoclonus-dystonia and HD. Knowledge of the mechanisms underlying phenotypic variation is already starting to influence management strategies and clinical trials for neurogenetic disorders.
Collapse
|
15
|
Kareem O, Nisar S, Tanvir M, Muzaffer U, Bader GN. Thiamine deficiency in pregnancy and lactation: implications and present perspectives. Front Nutr 2023; 10:1080611. [PMID: 37153911 PMCID: PMC10158844 DOI: 10.3389/fnut.2023.1080611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
During pregnancy, many physiologic changes occur in order to accommodate fetal growth. These changes require an increase in many of the nutritional needs to prevent long-term consequences for both mother and the offspring. One of the main vitamins that are needed throughout the pregnancy is thiamine (vitamin B1) which is a water-soluble vitamin that plays an important role in many metabolic and physiologic processes in the human body. Thiamine deficiency during pregnancy can cause can have many cardiac, neurologic, and psychological effects on the mother. It can also dispose the fetus to gastrointestinal, pulmonological, cardiac, and neurologic conditions. This paper reviews the recently published literature about thiamine and its physiologic roles, thiamine deficiency in pregnancy, its prevalence, its impact on infants and subsequent consequences in them. This review also highlights the knowledge gaps within these topics.
Collapse
Affiliation(s)
- Ozaifa Kareem
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Ozaifa Kareem, ,
| | - Sobia Nisar
- Department of Medicine, Government Medical College, Srinagar, India
| | - Masood Tanvir
- Department of Medicine, Government Medical College, Srinagar, India
| | - Umar Muzaffer
- Department of Medicine, Government Medical College, Srinagar, India
| | - G. N. Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- G. N. Bader,
| |
Collapse
|
16
|
Alsini H, Alnozha A, Asmat Z, Hundallah K, Alfadhel M, Tabarki B. Beyond the caudate nucleus: Early atypical neuroimaging findings in biotin-thiamine- responsive basal ganglia disease. Brain Dev 2022; 44:618-622. [PMID: 35811190 DOI: 10.1016/j.braindev.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a treatable neurometabolic disease caused by variants in SLC19A3. Typical imaging features include symmetrical involvement of the caudate nuclei and putamina. OBJECTIVE The study sought to explore classical BTBGD without caudate nucleus involvement, to highlight the importance of recognizing this new pattern early in the disease. METHODS Individuals with genetically confirmed BTBGD who harbored the same homozygous variant: NM_025243.4 (SLC19A3): c.1264A > G (p.Thr422Ala) and had atypical neuroimaging were recruited. RESULTS Nine patients with BTBGD had atypical neuroimaging findings on the first MRI scan. The median age at symptom onset was 3 years. All patients presented with classical clinical features of subacute encephalopathy, dystonia, ataxia, and seizures. During the acute crisis, MRI revealed bilateral and symmetric involvement of the putamina in all patients; one showed small caudate nuclei involvement. In addition, the thalami, cerebellum, and brain stem were involved in six patients, seven patients, and three patients, respectively. Treatment included a combination of high doses of thiamine and biotin. One patient died; he did not receive any vitamin supplementation. Two patients who were treated late had severe neurological sequelae, including generalized dystonia and quadriplegia. Six patients treated early had good outcomes with minimal sequelae, including mild dystonia and dysarthria. Two patients showed the classical chronic atrophic and necrotic changes already described. CONCLUSION The early atypical neuroimaging pattern of BTBGD described here, particularly the lack of caudate nucleus involvement, should not dissuade the clinician and radiologist from considering a diagnosis of BTBGD.
Collapse
Affiliation(s)
- Hanin Alsini
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Aisha Alnozha
- Department of Pediatrics, Children Hospital, AL-Madinah Al-Munawarah, Saudi Arabia
| | - Zeeshan Asmat
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Bajaj S, Vatkar A, Barot V, Barot S. Rare Case of Biotin-Thiamine-Responsive Basal Ganglia Disease Presenting in a Neonate. JOURNAL OF CHILD SCIENCE 2022. [DOI: 10.1055/s-0042-1757150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shruti Bajaj
- Department of Pediatrics, Ankur Hospital, Mumbai, Maharashtra, India
- Department of Pediatrics, The Purple Gene Clinic, Mumbai, Maharashtra, India
| | - Amit Vatkar
- Department of Pediatrics, Ankur Hospital, Mumbai, Maharashtra, India
| | - Vaibhavi Barot
- Department of Pediatrics, Ankur Hospital, Mumbai, Maharashtra, India
| | - Shailesh Barot
- Department of Pediatrics, Ankur Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
18
|
Munzuroğlu M, Danışman B, Akçay G, Yelli İ, Aslan M, Derin N. Effects Of Biotin Deficiency On Short Term Memory: The Role Of Glutamate, Glutamic Acid, Dopamine And Protein Kinase A. Brain Res 2022; 1792:148031. [PMID: 35901964 DOI: 10.1016/j.brainres.2022.148031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Insufficient dietary biotin intake, biotinidase deficiency, drug-biotin interactions can cause biotin deficiency which may result in central nervous system dysfunctions. We hypothesized that biotin deficiency could disrupt learning and memory functions by altering glutamate, glutamine, dopamine levels and protein kinase A (PKA) activity in the hippocampus. Sixteen female and 4 male Wistar rats were mated and females were separated into 4 groups. Three pups were selected from each mother and a total of 48 pups were divided into the following experimental groups. NN group, normal diet in the prenatal and postnatal period. NB group, normal diet in the prenatal and a biotin-deficient diet in the postnatal period. BN group: biotin-deficient diet in the prenatal and a normal diet in the postnatal period, BB group: biotin-deficient diet in both the prenatal and postnatal period. Open Field, Y-Maze, Object Location, and Novel Object Recognition Tests were performed in all groups and rats were sacrificed. Glutamine, glutamate, dopamine levels and PKA activity were analyzed in the hippocampus. In the open field test, distance and velocity values of NB, BN and BB groups were decreased with respect to the NN group. Learning and memory functions of NB, BN and BB groups were found to be impaired in behavioral tests. Dopamine levels and PKA activity were also decreased in all rat pups fed with a biotin deficient diet. In conclusion, we demonstrated that biotin deficiency deteriorates short-term memory and locomotor activity. This impairment may relate to decreased dopamine levels and PKA activity in the hippocampus.
Collapse
Affiliation(s)
- Mustafa Munzuroğlu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya 07070,Turkey
| | - Betül Danışman
- Department of Biophysics, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Güven Akçay
- Department of Biophysics, Faculty of Medicine, Hitit University, Çorum 19040, Turkey
| | - İhsan Yelli
- Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya 07070,Turkey.
| |
Collapse
|
19
|
Al-Anezi A, Sotirova-Koulli V, Shalaby O, Ibrahim A, Abdulmotagalli N, Youssef R, Hossam El-Din M. Biotin-thiamine responsive basal ganglia disease in the era of COVID-19 outbreak diagnosis not to be missed: A case report. Brain Dev 2022; 44:303-307. [PMID: 34953623 PMCID: PMC8696467 DOI: 10.1016/j.braindev.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Biotin-thiamine-responsive basal ganglia disease (BTRBGD) is a rare treatable autosomal recessive neurometabolic disorder characterized by progressive encephalopathy that eventually leads to severe disability and death if not treated with biotin and thiamine. BTRBGD is caused by mutations in the SLC19A3 gene on chromosome 2q36.6, encoding human thiamine transporter 2 (hTHTR2). Episodes of BTRBGD are often triggered by febrile illness. CASE REPORT The patient was 2 years 10 months old male child presented with fever and progressive acute encephalopathy associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus infection. MRI revealed bilateral symmetrical high signal involving both basal ganglia and medial thalami which is swollen with central necrosis, initially diagnosed as acute necrotizing encephalomyelitis with increased severity. Genetic analysis revealed BTRBGD. CONCLUSION BTRBGD requires high index of suspicion in any patient presenting with acute encephalopathy, characteristic MRI findings (that are difficult to differentiate from necrotizing encephalopathy), regardless of the existence of a proven viral infection.
Collapse
Affiliation(s)
| | | | | | - Ahmed Ibrahim
- Department of Pediatrics, Al-Jahra Hospital, Kuwait.
| | | | - Ramy Youssef
- Department of Pediatrics, Al-Jahra Hospital, Kuwait
| | | |
Collapse
|
20
|
ADIGÜZEL H, KAYIHAN H, SARIKABADAYI Ü, ELBASAN B. Case Report: Motor and Sensory Development of a Case Followed with Suspicion of Neonatal Thiamine Metabolism Dysfunction Syndrome. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.833672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to follow early motor and sensory development of the infant with Thiamine Metabolism Dysfunction Syndrome (TMDS). Newborn with 38 weeks gestational age, 2600 kilograms weight admitted to neonatal intensive care unit (NICU) due to respiratory distress, absence of suction reflex, and floppy appearance. Case had respiratory support during 5 weeks. Infant was referred to SANKO University
Physiotherapy unit on postterm 12th week due to hypotonia after discharge. Prechtl’s General Movements (GMs) and Hammersmith Infant Neurological Evaluation (HINE) was performed at 3rd and 4th months. Sensory processing parameters were evaluated with the Newborn Sensory Profile-2 (NSP-2). Case had no Fidgety movements (FMs). The HINE score was 37-45 in the 3th and 4th month respectively. Total score
in NSP-2 was 33 in the 3rd month (general = 12, auditory = 7, visual = 8, tactile = 2, movement = 2, oral sensory processing = 1). While the case’s Newborn Sensory Profile-2 (NSP-2) total score was in newborn norms, visual, tactile, movement but oral sensory parameters and auditory parameters were in low limits. The low motor performance was associated with low NSP-2 score and showed interaction with motor-sensory development. It is concluded that early physiotherapy program can be effective.
Collapse
|
21
|
Majumdar S, Salamon N. Biotin-thiamine-responsive basal ganglia disease: A case report. Radiol Case Rep 2021; 17:753-758. [PMID: 35003475 PMCID: PMC8717433 DOI: 10.1016/j.radcr.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Biotin-Thiamine-Responsive Basal Ganglia Disease is an extremely rare autosomal recessive neurometabolic disorder characterized by recurrent waxing and waning episodes of subacute encephalopathy and seizures. High dose biotin and thiamine administration has been shown to improve symptoms within days, and the symptoms may reappear rapidly if supplementation is discontinued. Here we present a case of a 20-year-old male with classical clinical and imaging findings of Biotin-Thiamine-Responsive Basal Ganglia Disease, with a 12-year delay in diagnosis, finally diagnosed after presenting at our institution based on imaging and subsequent reexamination of exome sequencing. In this report, we review the classic imaging findings in this disease and examine why making the diagnosis can be extremely challenging due to its wide differential. Both clinically and radiographically, this condition demonstrates significant overlap with a vast array of disease entities, ranging from viral or autoimmune encephalitis to metabolic disorders. Finally, we discuss the various negative prognostic predictors described in the literature, several of which were observed in this patient's clinical course.
Collapse
|
22
|
Mir A, Almudhry M, Alghamdi F, Albaradie R, Ibrahim M, Aldurayhim F, Alhedaithy A, Alamr M, Bawazir M, Mohammad S, Abdelhay S, Bashir S, Housawi Y. SLC gene mutations and pediatric neurological disorders: diverse clinical phenotypes in a Saudi Arabian population. Hum Genet 2021; 141:81-99. [PMID: 34797406 DOI: 10.1007/s00439-021-02404-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
The uptake and efflux of solutes across a plasma membrane is controlled by transporters. There are two main superfamilies of transporters, adenosine 5'-triphosphate (ATP) binding cassettes (ABCs) and solute carriers (SLCs). In the brain, SLC transporters are involved in transporting various solutes across the blood-brain barrier, blood-cerebrospinal fluid barrier, astrocytes, neurons, and other brain cell types including oligodendrocytes and microglial cells. SLCs play an important role in maintaining normal brain function. Hence, mutations in the genes that encode SLC transporters can cause a variety of neurological disorders. We identified the following SLC gene variants in 25 patients in our cohort: SLC1A2, SLC2A1, SLC5A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC12A6, SLC13A5, SLC16A1, SLC17A5, SLC19A3, SLC25A12, SLC25A15, SLC27A4, SLC45A1, SLC46A1, and SLC52A3. Eight patients harbored pathogenic or likely pathogenic mutations (SLC5A1, SLC9A6, SLC12A6, SLC16A1, SLC19A3, and SLC52A3), and 12 patients were found to have variants of unknown clinical significance (VOUS); these variants occurred in 11 genes (SLC1A2, SLC2A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC13A5, SLC25A12, SLC27A4, and SLC45A1). Five patients were excluded as they were carriers. In the remaining 20 patients with SLC gene variants, we identified 16 possible distinct neurological disorders. Based on the clinical presentation, we categorized them into genes causing intellectual delay (ID) or autism spectrum disorder (ASD), those causing epilepsy, those causing vitamin-related disorders, and those causing other neurological diseases. Several variants were detected that indicated possible personalized therapies: SLC2A1 led to dystonia or epilepsy, which can be treated with a ketogenic diet; SLC6A3 led to infantile parkinsonism-dystonia 1, which can be treated with levodopa; SLC6A5 led to hyperekplexia 3, for which unnecessary treatment with antiepileptic drugs should be avoided; SLC6A8 led to creatine deficiency syndrome type 1, which can be treated with creatine monohydrate; SLC16A1 led to monocarboxylate transporter 1 deficiency, which causes seizures that should not be treated with a ketogenic diet; SLC19A3 led to biotin-thiamine-responsive basal ganglia disease, which can be treated with biotin and thiamine; and SLC52A3 led to Brown-Vialetto-Van-Laere syndrome 1, which can be treated with riboflavin. The present study examines the prevalence of SLC gene mutations in our cohort of children with epilepsy and other neurological disorders. It highlights the diverse phenotypes associated with mutations in this large family of SLC transporter proteins, and an opportunity for personalized genomics and personalized therapeutics.
Collapse
Affiliation(s)
- Ali Mir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia.
| | - Montaha Almudhry
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Fouad Alghamdi
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Raidah Albaradie
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Mona Ibrahim
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Fatimah Aldurayhim
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Abdullah Alhedaithy
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Mushari Alamr
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Maryam Bawazir
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Sahar Mohammad
- Department of Pediatric, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Salma Abdelhay
- Department of Pediatric, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Shahid Bashir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Yousef Housawi
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Abstract
The first reports of a link between thiamine and diabetes date back to the 1940s. Some years later, a role for thiamine deficiency in diabetic neuropathy became evident, and some pilot studies evaluated the putative effects of thiamine supplementation. However, the administration of thiamine and its lipophilic derivative benfotiamine for the treatment of this complication gained consensus only at the end of the '90 s. The first evidence of the beneficial effects of thiamine on microvascular cells involved in diabetic complications dates to 1996: from then on, several papers based on in vitro and animal models have addressed the potential use of this vitamin in counteracting diabetic microangiopathy. A few pilot studies in humans reported beneficial effects of thiamine administration on diabetic nephropathy, but, despite all promising proofs-of-concept, the possible role of thiamine in counteracting development or progression of retinopathy has not been addressed until now. Thiamine is a water-soluble vitamin, rapidly expelled from the body, with no issues of over-dosage or accumulation; unfortunately, it is non-patentable, and neither industry nor independent donors are interested in investing in large-scale randomized controlled clinical trials to investigate its potential in diabetes and its complications. Consequently, science will not be able to disprove a promising hypothesis and, more importantly, diabetic people remain deprived of a possible way to ameliorate their condition.
Collapse
Affiliation(s)
- Elena Beltramo
- Dept. Medical Sciences, University of Torino, Corso AM Dogliotti 14, 10126, Torino, Italy.
| | - Aurora Mazzeo
- Dept. Medical Sciences, University of Torino, Corso AM Dogliotti 14, 10126, Torino, Italy
| | - Massimo Porta
- Dept. Medical Sciences, University of Torino, Corso AM Dogliotti 14, 10126, Torino, Italy
| |
Collapse
|
24
|
Wesół-Kucharska D, Greczan M, Kaczor M, Pajdowska M, Piekutowska-Abramczuk D, Ciara E, Halat-Wolska P, Kowalski P, Jurkiewicz E, Rokicki D. Early treatment of biotin-thiamine-responsive basal ganglia disease improves the prognosis. Mol Genet Metab Rep 2021; 29:100801. [PMID: 34631424 PMCID: PMC8488057 DOI: 10.1016/j.ymgmr.2021.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Background Biotin–thiamine–responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder associated with pathogenic variants in SLC19A3 gene. The clinical picture includes symptoms of subacute encephalopathy (e.g. confusion, dysphagia, dysarthria, and seizures), which respond very well to early treatment with thiamine and biotin. Method A retrospective review of clinical characteristics, magnetic resonance imaging and molecular findings in 3 patients with BTBGD. Results The first symptoms in all patients occurred at 12–24 months of age and they had subacute encephalopathy, ataxia and dystonia. The baseline magnetic resonance imaging demonstrated abnormal signal intensity in the basal ganglia with atrophy and necrosis of the basal ganglia during follow-up in two patients. One patient was diagnosed and the treatment was initiated after a long period from symptoms onset and he is currently severely affected, with dystonia, quadriparesis and seizures. The other two patients were diagnosed early in life and are currently stable on treatment, without the clinical symptoms. Genetic testing demonstrated pathogenic variants in SLC19A3 gene. Conclusion To avoid diagnostic errors and delayed or incorrect treatment, BTBGD must be recognized early. Adequate prompt treatment gives the chance of significant clinical improvement. Unexplained encephalopathy and MRI abnormalities including bilateral abnormal signal in the basal ganglia should alert the clinician to consider BTBGD in the differential, and the treatment with biotin and thiamine should be introduced immediately.
Collapse
Affiliation(s)
- Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Pajdowska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Paulina Halat-Wolska
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Paweł Kowalski
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
25
|
Wang J, Wang J, Han X, Liu Z, Ma Y, Chen G, Zhang H, Sun D, Xu R, Liu Y, Zhang Y, Wen Y, Bao X, Chen Q, Fang F. Report of the Largest Chinese Cohort With SLC19A3 Gene Defect and Literature Review. Front Genet 2021; 12:683255. [PMID: 34276785 PMCID: PMC8281341 DOI: 10.3389/fgene.2021.683255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Thiamine metabolism dysfunction syndrome 2 (THMD2) is a rare metabolic disorder caused by SLC19A3 mutations, inherited in autosomal recessive pattern. As a treatable disease, early diagnosis and therapy with vitamin supplementation is important to improve the prognosis. So far, the reported cases were mainly from Saudi Arab regions, and presented with relatively simple clinical course because of the hot spot mutation (T422A). Rare Chinese cases were described until now. In this study, we investigated 18 Chinese THMD2 patients with variable phenotypes, and identified 23 novel SLC19A3 mutations, which expanded the genetic and clinical spectrum of the disorder. Meanwhile, we reviewed all 146 reported patients from different countries. Approximately 2/3 of patients presented with classical BTBGD, while 1/3 of patients manifested as much earlier onset and poor prognosis, including infantile Leigh-like syndrome, infantile spasms, neonatal lactic acidosis and infantile BTBGD. Literature review showed that elevated lactate in blood and CSF, as well as abnormal OXPHOS activities of muscle or skin usually correlated with infantile phenotypes, which indicated poor outcome. Brainstem involvement on MRI was more common in deceased cases. Thiamine supplementation is indispensable in the treatment of THMD2, whereas combination of biotin and thiamine is not superior to thiamine alone. But biotin supplementation does work in some patients. Genotypic-phenotypic correlation remains unclear which needs further investigation, and biallelic truncated mutations usually led to more severe phenotype.
Collapse
Affiliation(s)
- Jiaping Wang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junling Wang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaodi Han
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhimei Liu
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanli Ma
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Guohong Chen
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Haoya Zhang
- Department of Neurology, Wuhan Children's Hospital, Wuhan, China
| | - Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Wuhan, China
| | - Ruifeng Xu
- Department of Neurology, Gansu Maternal and Children's Hospital, Lanzhou, China
| | - Yi Liu
- Jinan Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Yuqin Zhang
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Yongxin Wen
- Department of Pediatric Neurology, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatric Neurology, Peking University First Hospital, Beijing, China
| | - Qian Chen
- Department of Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Mishra R, Bijarnia-Mahay S, Kumar P, Buxi TBS, Kulshrestha S, Kuldeep J, Gupta D, Saxena R, Sabharwal RK. Early Infantile Thiamine Transporter-2 Deficiency with Epileptic Spasms—A Phenotypic Spectrum with a Novel Mutation. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0041-1731018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractEpileptic seizures are a frequent feature of thiamine transporter deficiency that may present as a clinical continuum between severe epileptic encephalopathy and mixed focal or generalized seizures. Thiamine metabolism dysfunction syndrome 2 (MIM: 607483) or biotin-thiamine-responsive basal ganglia disease (BTBGD) due to biallelic pathogenic mutation in the SLC19A3 gene is a well-recognized cause of early infantile encephalopathy with a Leigh syndrome-like presentation and a lesser-known phenotype of atypical infantile spasms. We reported a 4-month-old infant who presented with progressive epileptic spasms since 1 month of age, psychomotor retardation, and lactic acidosis. Magnetic resonance imaging (MRI) revealed altered signal intensities in bilateral thalamic and basal ganglia, cerebellum, brainstem, cortical and subcortical white matter. Whole exome sequencing identified a homozygous ENST00000258403.3: c.871G > C (p.Gly291Arg) variant in the SLC19A3 gene. We elucidate the features in the proband, which were an amalgamation of both the above subtypes of the SLC19A3 associated with early infantile encephalopathy. We also highlight the features which were atypical for either “Leigh syndrome-like” or “atypical infantile spasm” phenotypes and suggest that the two separate entities can be merged as a clinical continuum. Treatment outcome with high-dose biotin and thiamine is promising. In addition, we report a novel pathogenic variant in the SLC19A3 gene.
Collapse
Affiliation(s)
- Ranjana Mishra
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Kumar
- Department of Pediatric Neurology, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Jitendra Kuldeep
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Deepti Gupta
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Rama Kant Sabharwal
- Department of Pediatric Neurology, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
27
|
Reduced Thiamine Availability and Hyperglycemia Impair Thiamine Transport in Renal Glomerular Cells through Modulation of Thiamine Transporter 2. Biomedicines 2021; 9:biomedicines9040385. [PMID: 33916491 PMCID: PMC8067431 DOI: 10.3390/biomedicines9040385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/19/2023] Open
Abstract
Thiamine helps transketolase in removing toxic metabolites, counteracting high glucose-induced damage in microvascular cells, and progression of diabetic retinopathy/nephropathy in diabetic animals. Diabetic subjects show reduced thiamine levels. Hyperglycemia and reduced thiamine availability concur in impairing thiamine transport inside the blood-retinal barrier, with thiamine transporter-2 (THTR2) primarily involved. Here, we examined the behavior of thiamine transporter-1 (THTR1), THTR2, and their transcription factor Sp1 in response to high glucose and altered thiamine availability in renal cells involved in diabetic nephropathy. Human proximal tubule epithelial cells, podocytes, glomerular endothelial, and mesangial cells were exposed to high glucose and/or thiamine deficiency/oversupplementation. Localization and modulation of THTR1, THTR2, and Sp1; intracellular thiamine; transketolase activity; and permeability to thiamine were examined. Reduced thiamine availability and hyperglycemia impaired thiamine transport and THTR2/Sp1 expression. Intracellular thiamine, transketolase activity, and permeability were strongly dependent on thiamine concentrations and, partly, excess glucose. Glomerular endothelial cells were the most affected by the microenvironmental conditions. Our results confirmed the primary role of THTR2 in altered thiamine transport in cells involved in diabetic microvascular complications. Lack of thiamine concurs with hyperglycemia in impairing thiamine transport. Thiamine supplementation could represent a therapeutic option to prevent or slow the progression of these complications.
Collapse
|
28
|
Verlani J, Agarwal S, Singh DP, Nandan D, Singh R. Biotin–Thiamine Responsive Basal Ganglia Disease Presented as Intractable Seizure in a 1-Month-Old Infant. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0040-1716346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractBiotin–thiamine responsive basal ganglia disease is a neurometabolic disorder, seen in children presenting with encephalopathy, seizures, and positive family history. The disease is diagnosed based on typical magnetic resonance imaging (MRI) findings and whole exome sequencing but may be initially misdiagnosed as a mitochondrial encephalopathy or an inborn error of metabolism (IEM). We describe the case of an infant who presented with uncontrolled seizures and encephalopathy, responding to high doses of thiamine and biotin. Life-long supplementation of biotin (2–10 mg/kg/day) and thiamine (200–300 mg/day) improves the symptomatology and prevents relapse. Outcomes of the disease are heterogeneous, ranging in scope from complete remission to severe neurological sequelae.
Collapse
Affiliation(s)
- Jaya Verlani
- Department of Pediatrics, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sheetal Agarwal
- Department of Pediatrics, Division of Pediatric Pulmonology and Intensive Care, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India Hospital, New Delhi, India
| | - Dhirendra P. Singh
- Department of Pediatrics, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Devki Nandan
- Dr. Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India
| | - Ruby Singh
- Department of Pediatrics, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
29
|
Saini AG, Sharma S. Biotin-Thiamine-Responsive Basal Ganglia Disease in Children: A Treatable Neurometabolic Disorder. Ann Indian Acad Neurol 2021; 24:173-177. [PMID: 34220059 PMCID: PMC8232498 DOI: 10.4103/aian.aian_952_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Biotin-thiamine-responsive basal ganglia disease is a rare, autosomal recessive, treatable, neurometabolic disorder associated with biallelic pathogenic variations in the SLC19A3 gene. The condition may present as an early-childhood encephalopathy, an early-infantile lethal encephalopathy with lactic acidosis, with or without infantile spasms, or a late-onset Wernicke-like encephalopathy. The key radiological features are bilateral, symmetrical lesions in the caudate, putamen, and medial thalamus, with variable extension into the brain stem, cerebral cortex, and cerebellum. Treatment is life long and includes initiation of high dose biotin and thiamine. Genetic testing confirms the diagnosis. The prognosis depends on the time from diagnosis to the time of vitamin supplementation. The genotype-phenotype correlations are not clear yet, but the early infantile phenotype portends a poorer prognosis. We provide a brief overview of the disorder and emphasize the initiation of high-dose biotin and thiamine in infants and children with unexplained encephalopathy and basal ganglia involvement.
Collapse
Affiliation(s)
- Arushi G. Saini
- Pediatric Neurology, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
30
|
Single gene, two diseases, and multiple clinical presentations: Biotin-thiamine-responsive basal ganglia disease. Brain Dev 2020; 42:572-580. [PMID: 32600842 DOI: 10.1016/j.braindev.2020.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
Abstract
AIM To present seven new genetically confirmed cases of biotin-thiamin-responsive basal ganglia disease (BTBGD) with different clinical and brain magnetic resonance imaging (MRI) characteristics. MATERIAL AND METHODS Genetic variants, clinical presentations, brain MRI findings, treatment response, and prognosis of seven selected patients with BTBGD, diagnosed with SLC19A3 mutations were described. RESULTS Among seven patients diagnosed with BTBGD, two had early infantile form, four had classic childhood form, and one was asymptomatic. Four different homozygous variants were found in the SLC19A3. Two patients with early infantile form presented with encephalopathy, dystonia, and refractory seizure in the neonatal period and have different variants. Their MRI findings were similar and pathognomonic for the early infantile form. Three siblings had same variants: one presented seizure and encephalopathy at the age of 4 months, one presented seizure at 14 years, and another was asymptomatic at 20 years. Only one of them had normal MRI findings, and the others MRI findings were similar and suggestive of the classic form. Other two siblings; one of them presented with developmental delay, seizure, and dystonia at 18 months and the other presented with subacute encephalopathy and ataxia at 20 months. Their MRI findings were also similar and suggestive of the classic form. CONCLUSION BTBGD may present with dissimilar clinical characteristics or remain asymptomatic for a long time period even in a family or patients with same variants. Brain MRI patterns may be important for the early diagnosis of BTBGD that would save children's lives.
Collapse
|
31
|
Li D, Song J, Li X, Liu Y, Dong H, Kang L, Liu Y, Zhang Y, Jin Y, Guan H, Zhou C, Yang Y. Eleven novel mutations and clinical characteristics in seven Chinese patients with thiamine metabolism dysfunction syndrome. Eur J Med Genet 2020; 63:104003. [PMID: 32679198 DOI: 10.1016/j.ejmg.2020.104003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
Thiamine metabolism dysfunction syndrome (THMD) comprises a group of clinically and genetically heterogeneous encephalopathies with autosomal recessive inheritance. Four genes, SLC19A3, SLC25A19, SLC19A2, and TPK1, are associated with this disorder. This study aimed to explore the clinical, biochemical and molecular characteristics of seven Chinese patients with THMD. Targeted next-generation sequencing of mitochondrial DNA and nuclear DNA was used to identify the causative mutations. The patients presented with subacute encephalopathy between the ages of 1-27 months. Brain magnetic resonance imaging (MRI) revealed abnormalities in the basal ganglia, indicating Leigh syndrome. Urine α-ketoglutarate in five patients was elevated. In four patients, five novel mutations (c.1276_1278delTAC, c.265A > C, c.197T > C, c.850T > C, whole gene deletion) were found in SLC19A3, which is associated with THMD2. In two patients, four novel mutations (c.194C > T, c.454C > A, c.481G > A, and c.550G > C) were identified in SLC25A19, supporting a diagnosis of THMD4. In one patient, two novel mutations (c.395T > C and c.614-1G > A) were detected in TPK1, which is indicative of THMD5. The patients received thiamine, biotin, and symptomatic therapy, upon which six patients demonstrated clinical improvement. Our findings expanded the phenotypic and genotypic spectrum of THMD, with eleven novel mutations identified in seven Chinese patients. Early diagnosis and treatment have a significant impact on prognosis.
Collapse
Affiliation(s)
- Dongxiao Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xiyuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Lulu Kang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yupeng Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hanzhou Guan
- Department of Pediatrics, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Chongchen Zhou
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
32
|
Fourcade S, Goicoechea L, Parameswaran J, Schlüter A, Launay N, Ruiz M, Seyer A, Colsch B, Calingasan NY, Ferrer I, Beal MF, Sedel F, Pujol A. High-dose biotin restores redox balance, energy and lipid homeostasis, and axonal health in a model of adrenoleukodystrophy. Brain Pathol 2020; 30:945-963. [PMID: 32511826 DOI: 10.1111/bpa.12869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Biotin is an essential cofactor for carboxylases that regulates the energy metabolism. Recently, high-dose pharmaceutical-grade biotin (MD1003) was shown to improve clinical parameters in a subset of patients with chronic progressive multiple sclerosis. To gain insight into the mechanisms of action, we investigated the efficacy of high-dose biotin in a genetic model of chronic axonopathy caused by oxidative damage and bioenergetic failure, the Abcd1- mouse model of adrenomyeloneuropathy. High-dose biotin restored redox homeostasis driven by NRF-2, mitochondria biogenesis and ATP levels, and reversed axonal demise and locomotor impairment. Moreover, we uncovered a concerted dysregulation of the transcriptional program for lipid synthesis and degradation in the spinal cord likely driven by aberrant SREBP-1c/mTORC1signaling. This resulted in increased triglyceride levels and lipid droplets in motor neurons. High-dose biotin normalized the hyperactivation of mTORC1, thus restoring lipid homeostasis. These results shed light into the mechanism of action of high-dose biotin of relevance for neurodegenerative and metabolic disorders.
Collapse
Affiliation(s)
- Stéphane Fourcade
- Neurometabolic Diseases Laboratory, IDIBELL, Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Leire Goicoechea
- Neurometabolic Diseases Laboratory, IDIBELL, Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory, IDIBELL, Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, IDIBELL, Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, IDIBELL, Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, IDIBELL, Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | | | - Benoit Colsch
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, F-91191, France
| | - Noel Ylagan Calingasan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, IDIBELL, Faculty of Medicine, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08907, Spain.,Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - M Flint Beal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, USA
| | | | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
33
|
Nemani T, Mehta P, Udwadia-Hegde A. Biotin–Thiamine Responsive Basal Ganglia Disease: A Treatable Metabolic Encephalopathy—Not to Be Missed! JOURNAL OF PEDIATRIC NEUROLOGY 2020. [DOI: 10.1055/s-0038-1676811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AbstractBiotin–thiamine responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder, characterized by encephalopathy, extrapyramidal signs following mild infection, trauma or surgery and is potentially reversible with treatment. We describe a 15-month-old female child of Indian-Muslim origin with characteristic clinical and radiological features of BTBGD that showed complete resolution with treatment. A comparison with previously reported cases reveals a different mutation (exon 2 vs. exon 5 in middle east cases) in the SLC19A3 gene that could be specific for the Indian subcontinent. We also emphasize the importance of a trial of vitamins in patients with acute metabolic encephalopathy.
Collapse
Affiliation(s)
- Tarishi Nemani
- Department of Pediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Puja Mehta
- Department of Child Neurology, SRCC Children's Hospital, Managed by Narayana Health, Mumbai, Maharashtra, India
| | - Anaita Udwadia-Hegde
- Department of Pediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Beltramo E, Mazzeo A, Lopatina T, Trento M, Porta M. Thiamine transporter 2 is involved in high glucose-induced damage and altered thiamine availability in cell models of diabetic retinopathy. Diab Vasc Dis Res 2020; 17:1479164119878427. [PMID: 31726874 PMCID: PMC7510357 DOI: 10.1177/1479164119878427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Thiamine prevents high glucose-induced damage in microvasculature, and progression of retinopathy and nephropathy in diabetic animals. Impaired thiamine availability causes renal damage in diabetic patients. Two single-nucleotide polymorphisms in SLC19A3 locus encoding for thiamine transporter 2 are associated with absent/minimal diabetic retinopathy and nephropathy despite long-term type 1 diabetes. We investigated the involvement of thiamine transporter 1 and thiamine transporter 2, and their transcription factor specificity protein 1, in high glucose-induced damage and altered thiamine availability in cells of the inner blood-retinal barrier. Human endothelial cells, pericytes and Müller cells were exposed to hyperglycaemic-like conditions and/or thiamine deficiency/over-supplementation in single/co-cultures. Expression and localization of thiamine transporter 1, thiamine transporter 2 and transcription factor specificity protein 1 were evaluated together with intracellular thiamine concentration, transketolase activity and permeability to thiamine. The effects of thiamine depletion on cell function (viability, apoptosis and migration) were also addressed. Thiamine transporter 2 and transcription factor specificity protein 1 expression were modulated by hyperglycaemic-like conditions. Transketolase activity, intracellular thiamine and permeability to thiamine were decreased in cells cultured in thiamine deficiency, and in pericytes in hyperglycaemic-like conditions. Thiamine depletion reduced cell viability and proliferation, while thiamine over-supplementation compensated for thiamine transporter 2 reduction by restoring thiamine uptake and transketolase activity. High glucose and reduced thiamine determine impairment in thiamine transport inside retinal cells and through the inner blood-retinal barrier. Thiamine transporter 2 modulation in our cell models suggests its major role in thiamine transport in retinal cells and its involvement in high glucose-induced damage and impaired thiamine availability.
Collapse
Affiliation(s)
- Elena Beltramo
- Department of Medical Sciences, University of Turin,
Turin, Italy
| | - Aurora Mazzeo
- Department of Medical Sciences, University of Turin,
Turin, Italy
| | - Tatiana Lopatina
- Department of Medical Sciences, University of Turin,
Turin, Italy
| | - Marina Trento
- Department of Medical Sciences, University of Turin,
Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, University of Turin,
Turin, Italy
| |
Collapse
|
35
|
Alfadhel M, Umair M, Almuzzaini B, Alsaif S, AlMohaimeed SA, Almashary MA, Alharbi W, Alayyar L, Alasiri A, Ballow M, AlAbdulrahman A, Alaujan M, Nashabat M, Al-Odaib A, Altwaijri W, Al-Rumayyan A, Alrifai MT, Alfares A, AlBalwi M, Tabarki B. Targeted SLC19A3 gene sequencing of 3000 Saudi newborn: a pilot study toward newborn screening. Ann Clin Transl Neurol 2019; 6:2097-2103. [PMID: 31557427 PMCID: PMC6801173 DOI: 10.1002/acn3.50898] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background Biotin–thiamine‐responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder mostly presented in children. The disorder is described as having subacute encephalopathy with confusion, dystonia, and dysarthria triggered by febrile illness that leads to neuroregression and death if untreated. Using biotin and thiamine at an early stage of the disease can lead to significant improvement. Methods BTBGD is a treatable disease if diagnosed at an early age and has been frequently reported in Saudi population. Keeping this in mind, the current study screened 3000 Saudi newborns for the SLC19A3 gene mutations using target sequencing, aiming to determine the carrier frequency in Saudi Population and whether BTBGD is a good candidate to be included in the newborn‐screened disorders. Results Using targeted gene sequencing, DNA from 3000 newborns Saudi was screened for the SLC19A3 gene mutations using standard methods. Screening of the SLC19A3 gene revealed a previously reported heterozygous missense mutation (c.1264A>G (p.Thr422Ala) in six unrelated newborns. No probands having homozygous pathogenic mutations were found in the studied cohort. The variant has been frequently reported previously in homozygous state in Saudi population, making it a hot spot mutation. The current study showed that the carrier frequency of SLC19A3 gene mutation is 1 of 500 in Saudi newborns. Conclusion For the first time in the literature, we determined the carrier frequency of SLC19A3 gene mutation in Saudi population. The estimated prevalence is too rare in Saudi population (at least one in million); therefore, the data are not in favor of including such very rare disorders in newborn screening program at population level. However, a larger cohort is needed for a more accurate estimate.
Collapse
Affiliation(s)
- Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Saif Alsaif
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Department of Neonatology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Sulaiman A AlMohaimeed
- Pediatric Intensive Care Unit, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Maher A Almashary
- Pediatric Intensive Care Unit, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Wardah Alharbi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Latifah Alayyar
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Abdulrahman Alasiri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Mariam Ballow
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Abdulkareem AlAbdulrahman
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Monira Alaujan
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Division of Pediatric Neurology, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Ahmed Al-Rumayyan
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Muhammad T Alrifai
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Department of Pediatrics, Qassim University, Almulyda, Buraydah, Saudi Arabia
| | - Mohammed AlBalwi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
León-Del-Río A. Biotin in metabolism, gene expression, and human disease. J Inherit Metab Dis 2019; 42:647-654. [PMID: 30746739 DOI: 10.1002/jimd.12073] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Biotin is a water-soluble vitamin that belongs to the vitamin B complex and which is an essential nutrient of all living organisms from bacteria to man. In eukaryotic cells biotin functions as a prosthetic group of enzymes, collectively known as biotin-dependent carboxylases that catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Enzyme-bound biotin acts as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In recent years, evidence has mounted that biotin also regulates gene expression through a mechanism beyond its role as a prosthetic group of carboxylases. These activities may offer a mechanistic background to a developing literature on the action of biotin in neurological disorders. This review summarizes the role of biotin in activating carboxylases and proposed mechanisms associated with a role in gene expression and in ameliorating neurological disease.
Collapse
Affiliation(s)
- Alfonso León-Del-Río
- Programa de Investigación en Cáncer de Mama and Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
37
|
Marcé-Grau A, Martí-Sánchez L, Baide-Mairena H, Ortigoza-Escobar JD, Pérez-Dueñas B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J Inherit Metab Dis 2019; 42:581-597. [PMID: 31095747 DOI: 10.1002/jimd.12125] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023]
Abstract
Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes within the cytosol, mitochondria, and peroxisomes. Currently, four genetic defects have been described causing impairment of thiamine transport and metabolism: SLC19A2 dysfunction leads to diabetes mellitus, megaloblastic anemia and sensory-neural hearing loss, whereas SLC19A3, SLC25A19, and TPK1-related disorders result in recurrent encephalopathy, basal ganglia necrosis, generalized dystonia, severe disability, and early death. In order to achieve early diagnosis and treatment, biomarkers play an important role. SLC19A3 patients present a profound decrease of free-thiamine in cerebrospinal fluid (CSF) and fibroblasts. TPK1 patients show decreased concentrations of thiamine pyrophosphate in blood and muscle. Thiamine supplementation has been shown to improve diabetes and anemia control in Rogers' syndrome patients due to SLC19A2 deficiency. In a significant number of patients with SLC19A3, thiamine improves clinical outcome and survival, and prevents further metabolic crisis. In SLC25A19 and TPK1 defects, thiamine has also led to clinical stabilization in single cases. Moreover, thiamine supplementation leads to normal concentrations of free-thiamine in the CSF of SLC19A3 patients. Herein, we present a literature review of the current knowledge of the disease including related clinical phenotypes, treatment approaches, update of pathogenic variants, as well as in vitro and in vivo functional models that provide pathogenic evidence and propose mechanisms for thiamine deficiency in humans.
Collapse
Affiliation(s)
- Anna Marcé-Grau
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
| | - Laura Martí-Sánchez
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Heidy Baide-Mairena
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
| | | | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
- Centre for Biochemical Research in Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
38
|
Savasta S, Bassanese F, Buschini C, Foiadelli T, Trabatti C, Efthymiou S, Salpietro V, Houlden H, Simoncelli A, Marseglia GL. Biotin-Thiamine Responsive Encephalopathy: Report of an Egyptian Family with a Novel SLC19A3 Mutation and Review of the Literature. J Pediatr Genet 2018; 8:100-108. [PMID: 31061755 DOI: 10.1055/s-0038-1676603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/27/2018] [Indexed: 10/27/2022]
Abstract
Biotin-thiamine responsive basal ganglia disease (BTRBGD) is an autosomal recessive neurometabolic disorder with poor genotype-phenotype correlation, caused by mutations in the SLC19A3 gene on chromosome 2q36.6. The disease is characterized by three stages: stage 1 is a sub-acute encephalopathy often triggered by febrile illness; stage 2 is an acute encephalopathy with seizures, loss of motor function, developmental regression, dystonia, external ophthalmoplegia, dysphagia, and dysarthria; stage 3 is represented by chronic or slowly progressive encephalopathy. Clinical and biochemical findings, as well as the magnetic resonance imaging (MRI) pattern, resemble those of Leigh's syndrome, so that BTRBGD can be misdiagnosed as a mitochondrial encephalopathy.Here we report the clinical and radiological phenotypes of two siblings diagnosed with BTRBGD in which a novel SLC19A3 mutation (NM_025243.3: c.548C > T; p.Ala183Val) was found by whole exome sequencing (WES) of the family members.
Collapse
Affiliation(s)
- Salvatore Savasta
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Francesco Bassanese
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Chiara Buschini
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Chiara Trabatti
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | | | - Gian Luigi Marseglia
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| |
Collapse
|
39
|
Ebrahimi‐Fakhari D, Van Karnebeek C, Münchau A. Movement Disorders in Treatable Inborn Errors of Metabolism. Mov Disord 2018; 34:598-613. [DOI: 10.1002/mds.27568] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Darius Ebrahimi‐Fakhari
- Department of Neurology, Boston Children's HospitalHarvard Medical School Boston Massachusetts USA
| | - Clara Van Karnebeek
- Departments of Pediatrics and Clinical GeneticsAmsterdam University Medical Centres Amsterdam The Netherlands
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| |
Collapse
|
40
|
Koens LH, Tijssen MAJ, Lange F, Wolffenbuttel BHR, Rufa A, Zee DS, de Koning TJ. Eye movement disorders and neurological symptoms in late-onset inborn errors of metabolism. Mov Disord 2018; 33:1844-1856. [PMID: 30485556 PMCID: PMC6587951 DOI: 10.1002/mds.27484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022] Open
Abstract
Inborn errors of metabolism in adults are still largely unexplored. Despite the fact that adult‐onset phenotypes have been known for many years, little attention is given to these disorders in neurological practice. The adult‐onset presentation differs from childhood‐onset phenotypes, often leading to considerable diagnostic delay. The identification of these patients at the earliest stage of disease is important, given that early treatment may prevent or lessen further brain damage. Neurological and psychiatric symptoms occur more frequently in adult forms. Abnormalities of eye movements are also common and can be the presenting sign. Eye movement disorders can be classified as central or peripheral. Central forms are frequently observed in lysosomal storage disorders, whereas peripheral forms are a key feature of mitochondrial disease. Furthermore, oculogyric crisis is an important feature in disorders affecting dopamine syntheses or transport. Ocular motor disorders are often not reported by the patient, and abnormalities can be easily overlooked in a general examination. In adults with unexplained psychiatric and neurological symptoms, a special focus on examination of eye movements can serve as a relatively simple clinical tool to detect a metabolic disorder. Eye movements can be easily quantified and analyzed with video‐oculography, making them a valuable biomarker for following the natural course of disease or the response to therapies. Here, we review, for the first time, eye movement disorders that can occur in inborn errors of metabolism, with a focus on late‐onset forms. We provide a step‐by‐step overview that will help clinicians to examine and interpret eye movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lisette H Koens
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Fiete Lange
- University of Groningen, University Medical Center Groningen, Department of Clinical Neurophysiology, Groningen, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alessandra Rufa
- Department of Medicine Surgery and Neurosciences, University of Siena, Eye tracking and Visual Application Lab (EVA Lab)-Neurology and Neurometabolic Unit, Siena, Italy
| | - David S Zee
- Department of Neuroscience, Department of Ophthalmology, The Johns Hopkins University, The Johns Hopkins Hospital, Department of Neurology, Department of Otolaryngology-Head and Neck Surgery, Baltimore, Maryland, USA
| | - Tom J de Koning
- University of Groningen, Division of Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Kamaşak T, Havalı C, İnce H, Eyüboğlu İ, Çebi AH, Sahin S, Cansu A, Aydin K. Are diagnostic magnetic resonance patterns life-saving in children with biotin-thiamine-responsive basal ganglia disease? Eur J Paediatr Neurol 2018; 22:1139-1149. [PMID: 30054086 DOI: 10.1016/j.ejpn.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Biotin-thiamine responsive basal ganglia disease (BTBGD) is an autosomal recessive disorder caused by mutations in the SLC19A3 gene and characterized by recurrent sub-acute episodes of encephalopathy that typically starts in early childhood. This study describes characteristic clinical and magnetic resonance imaging (MRI) findings of six cases of BTBGD diagnosed with newly identified mutations and genetically confirmed, with very early and different presentations compared to cases in the previous literature. METHODS Six patients referred from different centers with similar clinical findings were diagnosed with BTBGD with newly identified mutations in the SLC19A3 gene. Two novel mutations in the SLC19A3 gene were identified in two patients at whole exome sequencing analysis. The clinical characteristics, responses to treatment, and electroencephalography (EEG) and MRI findings of these patients were examined. The other four patients presented with similar clinical and cranial MRI findings. These patients were therefore started on high-dose biotin and thiamine therapy, and mutation analysis concerning the SLC19A3 gene was performed. Responses to treatment, clinical courses, EEG findings and follow-up MRI were recorded for all these patients. RESULTS Age at onset of symptoms ranged from 1 to 3 months. The first symptoms were generally persistent crying and restlessness. Seizures occurred in five of the six patients. Cranial magnetic resonance imaging revealed involvement in the basal ganglia, brain stem, and the parietal and frontal regions in general. The first two patients were siblings, and both exhibited a novel mutation of the SLC19A3 gene. The third and fourth patients were also siblings and also exhibited a similar novel mutation of the SLC19A3 gene. The fifth and sixth patients were not related, and a newly identified mutation was detected in both these subjects. Three novel mutations were thus detected in six patients. CONCLUSION BTBGD is a progressive disease that can lead to severe disability and death. Early diagnosis of treatable diseases such as BTBGD is important in order to prevent long-term complications and disability.
Collapse
Affiliation(s)
- Tülay Kamaşak
- Karadeniz Technical University, Department of Pediatric Neurology, Trabzon, Turkey.
| | - Cengiz Havalı
- University of Health Sciences Bursa Training and Research Hospital, Bursa, Turkey.
| | - Hülya İnce
- Bahcesehir University Medical Faculty Hospital, Samsun, Turkey.
| | - İlker Eyüboğlu
- Karadeniz Technical University, Department of Radiology, Trabzon, Turkey.
| | - Alper Han Çebi
- Karadeniz Technical University, Department of Genetic, Trabzon, Turkey.
| | - Sevim Sahin
- Karadeniz Technical University, Department of Pediatric Neurology, Trabzon, Turkey.
| | - Ali Cansu
- Karadeniz Technical University, Department of Pediatric Neurology, Trabzon, Turkey.
| | - Kursad Aydin
- Medipol University of Hospital, İstanbul, Turkey.
| |
Collapse
|
42
|
Biotin-Thiamine-Responsive Basal Ganglia Disease-A Treatable Metabolic Disorder. Pediatr Neurol 2018; 87:80-81. [PMID: 30119991 DOI: 10.1016/j.pediatrneurol.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022]
|
43
|
Alves CAPF, Gonçalves FG, Grieb D, Lucato LT, Goldstein AC, Zuccoli G. Neuroimaging of Mitochondrial Cytopathies. Top Magn Reson Imaging 2018; 27:219-240. [PMID: 30086109 DOI: 10.1097/rmr.0000000000000173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mitochondrial diseases are a complex and heterogeneous group of genetic disorders that occur as a result of either nuclear DNA or mitochondrial DNA pathogenic variants, leading to a decrease in oxidative phosphorylation and cellular energy (ATP) production. Increasing knowledge about molecular, biochemical, and genetic abnormalities related to mitochondrial dysfunction has expanded the neuroimaging phenotypes of mitochondrial disorders. As a consequence of this growing field, the imaging recognition patterns of mitochondrial cytopathies are continually evolving. In this review, we describe the main neuroimaging characteristics of pediatric mitochondrial diseases, ranging from classical to more recent and challenging features. Due to the increased knowledge about the imaging findings of mitochondrial cytopathies, the pediatric neuroradiologist plays a crucial role in the diagnosis and evaluation of these patients.
Collapse
Affiliation(s)
| | | | - Dominik Grieb
- Department of Radiology and Neuroradiology, Sana Kliniken Duisburg, Germany
| | - Leandro Tavares Lucato
- Neuroradiology Section, Hospital das Clínicas- HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Amy C Goldstein
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Giulio Zuccoli
- Department of Radiology, University of Pittsburgh School of Medicine, Director of Pediatric Neuroradiology, Children Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
44
|
Alabdulqader MA, Al Hajjaj S. Biotin-Thiamine-Responsive Basal Ganglia Disease: Case Report and Follow-Up of a Patient With Poor Compliance. Child Neurol Open 2018; 5:2329048X18773218. [PMID: 29770345 PMCID: PMC5946631 DOI: 10.1177/2329048x18773218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/14/2018] [Accepted: 03/26/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a rare treatable autosomal recessive neurometabolic disorder characterized by progressive encephalopathy that eventually leads to severe disability and death if not treated with biotin and thiamine supplements. Objectives: We aimed to determine the optimal management of BTBGD presenting in acute encephalopathic episodes. Method: Case report. Results: An 8-year-old girl born to consanguineous parents was diagnosed with BTBGD at the age of 3 years after presenting with acute encephalopathy and ataxia. The patient was treated with biotin and thiamine, and the family was instructed to continue these medications for life. When she was 7 years old, her supplements were stopped for 2 weeks for social reasons. Afterward, the patient began to have tremor in both hands and an unsteady gait. The family then resumed the medications at the usual dosages. However, the patient remained symptomatic. The patient was admitted with acute BTBGD because of discontinuation of medications. The patient’s condition was then managed with high doses of intravenous thiamine and oral biotin. She showed gradual improvement after 48 hours. She was then discharged home 1 week later with residual mild upper and lower limb tremor, as well as right lower limb dystonia. Further follow-up showed a good neurological condition with no apparent long-term sequel. The family was further educated about the importance of strict compliance. Conclusion: Patients with BTBGD should remain on lifelong treatment with thiamine and biotin. For those who present with acute relapse, we recommend inpatient treatment with high doses of intravenous thiamine and oral biotin. Further clinical research is required to determine the optimal doses and durations.
Collapse
Affiliation(s)
- Muneera A Alabdulqader
- Department of Pediatrics, College of Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| | - Sumayah Al Hajjaj
- Department of Pediatrics, King Abdulaziz Hospital, Ministry of National Guard, Al Ahsa, Saudi Arabia.,King Abdulla International Medical Research Center/King Saud Bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia
| |
Collapse
|
45
|
Gowda VK, Srinivasan VM, Bhat M, Benakappa N. Biotin Thiamin Responsive Basal Ganglia Disease in Siblings. Indian J Pediatr 2018; 85:155-157. [PMID: 29101630 DOI: 10.1007/s12098-017-2471-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022]
Abstract
Biotin Thiamine responsive Basal Ganglia Disease (BTBGD) is a rare treatable autosomal recessive metabolic disorder caused by mutations in SLC19A3 gene. It usually presents with encephalopathy and dystonia; if not treated, can progress to quadriparesis and death. Two Indian siblings born to a consanguineous marriage presented with regression of milestones, epilepsy and dystonia. Neuroimaging showed signal changes in basal ganglia and thalami. Genetic testing showed a homozygous missense substitution p.Gly23Val (c.68G > T) in exon 2 of the SLC19A3 gene. Thus to conclude, any child who presents with neuroregression, epilepsy and dystonia in the background of basal ganglia changes on neuroimaging, a possibility of biotin thiamine responsive basal ganglia disease should be considered.
Collapse
Affiliation(s)
- Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Associate Prof of Pediatric Neurology, Bangalore, Karnataka, India.
| | - Varunvenkat M Srinivasan
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Pediatric Resident, Bangalore, Karnataka, India
| | - Maya Bhat
- Department of Neuroradiology, National Institute of Mental Health and Neurosciences, Associate Prof of Neuroradiolgy, Bangalore, Karnataka, India
| | - Naveen Benakappa
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Pediatric Resident, Bangalore, Karnataka, India
| |
Collapse
|
46
|
Eichler FS, Swoboda KJ, Hunt AL, Cestari DM, Rapalino O. Case 38-2017. A 20-Year-Old Woman with Seizures and Progressive Dystonia. N Engl J Med 2017; 377:2376-2385. [PMID: 29236641 DOI: 10.1056/nejmcpc1706109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Florian S Eichler
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| | - Kathryn J Swoboda
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| | - Ann L Hunt
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| | - Dean M Cestari
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| | - Otto Rapalino
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| |
Collapse
|
47
|
Whitford W, Hawkins I, Glamuzina E, Wilson F, Marshall A, Ashton F, Love DR, Taylor J, Hill R, Lehnert K, Snell RG, Jacobsen JC. Compound heterozygous SLC19A3 mutations further refine the critical promoter region for biotin-thiamine-responsive basal ganglia disease. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001909. [PMID: 28696212 PMCID: PMC5701311 DOI: 10.1101/mcs.a001909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the gene SLC19A3 result in thiamine metabolism dysfunction syndrome 2, also known as biotin-thiamine-responsive basal ganglia disease (BTBGD). This neurometabolic disease typically presents in early childhood with progressive neurodegeneration, including confusion, seizures, and dysphagia, advancing to coma and death. Treatment is possible via supplement of biotin and/or thiamine, with early treatment resulting in significant lifelong improvements. Here we report two siblings who received a refined diagnosis of BTBGD following whole-genome sequencing. Both children inherited compound heterozygous mutations from unaffected parents; a missense single-nucleotide variant (p.G23V) in the first transmembrane domain of the protein, and a 4808-bp deletion in exon 1 encompassing the 5′ UTR and minimal promoter region. This deletion is the smallest promoter deletion reported to date, further defining the minimal promoter region of SLC19A3. Unfortunately, one of the siblings died prior to diagnosis, but the other is showing significant improvement after commencement of therapy. This case demonstrates the power of whole-genome sequencing for the identification of structural variants and subsequent diagnosis of rare neurodevelopmental disorders.
Collapse
Affiliation(s)
- Whitney Whitford
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Isobel Hawkins
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic Service, Starship Children's Hospital, Auckland 1023, New Zealand
| | - Francessa Wilson
- Department of Paediatric Radiology, Starship Children's Hospital, Auckland 1023, New Zealand
| | - Andrew Marshall
- Department of Paediatrics and Child Health, Wellington Hospital, Wellington 6021, New Zealand
| | - Fern Ashton
- Diagnostic Genetics LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - Donald R Love
- Diagnostic Genetics LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - Juliet Taylor
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland 1023, New Zealand
| | - Rosamund Hill
- Department of Neurology, Auckland City Hospital, Auckland 1023, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Russell G Snell
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
48
|
Sofou K, de Coo IFM, Ostergaard E, Isohanni P, Naess K, De Meirleir L, Tzoulis C, Uusimaa J, Lönnqvist T, Bindoff LA, Tulinius M, Darin N. Phenotype-genotype correlations in Leigh syndrome: new insights from a multicentre study of 96 patients. J Med Genet 2017; 55:21-27. [PMID: 29101127 DOI: 10.1136/jmedgenet-2017-104891] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Leigh syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder. While some genetic defects are associated with well-described phenotypes, phenotype-genotype correlations in Leigh syndrome are not fully explored. OBJECTIVE We aimed to identify phenotype-genotype correlations in Leigh syndrome in a large cohort of systematically evaluated patients. METHODS We studied 96 patients with genetically confirmed Leigh syndrome diagnosed and followed in eight European centres specialising in mitochondrial diseases. RESULTS We found that ataxia, ophthalmoplegia and cardiomyopathy were more prevalent among patients with mitochondrial DNA defects. Patients with mutations in MT-ND and NDUF genes with complex I deficiency shared common phenotypic features, such as early development of central nervous system disease, followed by high occurrence of cardiac and ocular manifestations. The cerebral cortex was affected in patients with NDUF mutations significantly more often than the rest of the cohort. Patients with the m.8993T>G mutation in MT-ATP6 gene had more severe clinical and radiological manifestations and poorer disease outcome compared with patients with the m.8993T>C mutation. CONCLUSION Our study provides new insights into phenotype-genotype correlations in Leigh syndrome and particularly in patients with complex I deficiency and with defects in the mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Kalliopi Sofou
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Irenaeus F M de Coo
- Department of Neurology, The Erasmus University Medical Center, Rotterdam, Netherlands
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Pirjo Isohanni
- Department of Paediatric Neurology, Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Molecular Neurology, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Linda De Meirleir
- Department of Paediatric Neurology, University Hospital Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Johanna Uusimaa
- Department of Paediatrics, Institute of Clinical Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Tuula Lönnqvist
- Department of Paediatric Neurology, Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Laurence Albert Bindoff
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Már Tulinius
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Alfadhel M. Early Infantile Leigh-like SLC19A3 Gene Defects Have a Poor Prognosis: Report and Review. J Cent Nerv Syst Dis 2017; 9:1179573517737521. [PMID: 29123435 PMCID: PMC5661663 DOI: 10.1177/1179573517737521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/18/2017] [Indexed: 11/15/2022] Open
Abstract
Solute carrier family 19 (thiamine transporter), member 3 (SCL19A3) gene defect produces an autosomal recessive neurodegenerative disorder associated with different phenotypes and acronyms. One of the common presentations is early infantile lethal Leigh-like syndrome. We report a case of early infantile Leigh-like SLC19A3 gene defects of patients who died at 4 months of age with no response to a high dose of biotin and thiamine. In addition, we report a novel mutation that was not reported previously. Finally, we review the literature regarding early infantile Leigh-like SLC19A3 gene defects and compare the literature with our patient.
Collapse
Affiliation(s)
- Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Alfadhel M, Al-Bluwi A. Psychological Assessment of Patients With Biotin-Thiamine-Responsive Basal Ganglia Disease. Child Neurol Open 2017; 4:2329048X17730742. [PMID: 28944253 PMCID: PMC5604839 DOI: 10.1177/2329048x17730742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 12/02/2022] Open
Abstract
Biotin-thiamine-responsive basal ganglia disease is a devastating autosomal recessive inherited neurological disorder. We conducted a retrospective chart review of all patients with biotin-thiamine-responsive basal ganglia disease who underwent a formal psychological assessment. Six females and 3 males were included. Five patients (56%) had an average IQ, two patients (22%) had mild delay, and two (22%) had severe delay. A normal outcome was directly related to the time of diagnosis and initiation of treatment. Early diagnosis and immediate commencement of treatment were associated with a favorable outcome and vice versa. The most affected domain was visual motor integration, while understanding and mathematical problem-solving were the least affected. In summary, this is the first study discussing the psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease. The results of this study alert clinicians to consider prompt initiation of biotin and thiamine in any patient presenting with neuroregression and a basal ganglia lesion on a brain magnetic resonance imaging.
Collapse
Affiliation(s)
- Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Amal Al-Bluwi
- Division of Mental Health, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|