1
|
Moradi B, Ardestani RM, Shirazi M, Eslamian L, Kazemi MA. Fetal intracranial hemorrhage and infarct: Main sonographic and MRI characteristics: A review article. Eur J Obstet Gynecol Reprod Biol X 2024; 24:100351. [PMID: 39610469 PMCID: PMC11603015 DOI: 10.1016/j.eurox.2024.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Early detection of fetal intracranial hemorrhage and infarct during pregnancy is crucial for preventing lethal and debilitating complications in neonatal life. Every radiologist must be aware of the imaging features of these conditions to refer patients to specialists. Sonographic and MRI features of fetal intracranial hemorrhage and infarct have been discussed in many previous articles. The aim of this article is to organize and categorize these findings into a practical guideline for improved application in diagnosing these diseases. The use of MRI sequences, such as DWI and multiplanar EPI should be developed for suspected prenatal infarct and intracranial hemorrhage and can serve as additional tools for early detection. In this review article, we first explain possible etiologic factors contributing to the development of fetal IVH and infarct. Then we discuss the different imaging features of these disorders on sonography and MRI separately, as well as their differential diagnosis. Finally, the mortality and morbidity associated with these two concerning fetal abnormalities will be addressed.
Collapse
Affiliation(s)
- Behnaz Moradi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Yas Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihaneh Mortazavi Ardestani
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Shirazi
- Maternal, Fetal and Neonatal Research Center, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Eslamian
- Department of Obstetric and Gynecology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Kazemi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chang FC, James MM, Zhou Y, Ando Y, Zareie HM, Yang J, Zhang M. Human Neural Stem Cell Expansion in Natural Polymer Scaffolds Under Chemically Defined Condition. Adv Biol (Weinh) 2024; 8:e2400224. [PMID: 38963310 DOI: 10.1002/adbi.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The maintenance and expansion of human neural stem cells (hNSCs) in 3D tissue scaffolds is a promising strategy in producing cost-effective hNSCs with quality and quantity applicable for clinical applications. A few biopolymers have been extensively used to fabricate 3D scaffolds, including hyaluronic acid, collagen, alginate, and chitosan, due to their bioactive nature and availability. However, these polymers are usually applied in combination with other biomolecules, leading to their responses difficult to ascribe to. Here, scaffolds made of chitosan, alginate, hyaluronic acid, or collagen, are explored for hNSC expansion under xeno-free and chemically defined conditions and compared for hNSC multipotency maintenance. This study shows that the scaffolds made of pure chitosan support the highest adhesion and growth of hNSCs, yielding the most viable cells with NSC marker protein expression. In contrast, the presence of alginate, hyaluronic acid, or collagen induces differentiation toward immature neurons and astrocytes even in the maintenance medium and absence of differentiation factors. The cells in pure chitosan scaffolds preserve the level of transmembrane protein profile similar to that of standard culture. These findings point to the potential of using pure chitosan scaffolds as a base scaffolding material for hNSC expansion in 3D.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Matthew Michael James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yoshiki Ando
- Materials Department, Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Yasu, Shiga, 520-2362, Japan
| | - Hadi M Zareie
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jihui Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Li Z, Chen X, Zhang X, Jiang R, Chen S. Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics. Genome Res 2023; 33:1757-1773. [PMID: 37903634 PMCID: PMC10691543 DOI: 10.1101/gr.277891.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023]
Abstract
Rapid advances in spatial transcriptomics (ST) have revolutionized the interrogation of spatial heterogeneity and increase the demand for comprehensive methods to effectively characterize spatial domains. As a prerequisite for ST data analysis, spatial domain characterization is a crucial step for downstream analyses and biological implications. Here we propose a prior-based self-attention framework for spatial transcriptomics (PAST), a variational graph convolutional autoencoder for ST, which effectively integrates prior information via a Bayesian neural network, captures spatial patterns via a self-attention mechanism, and enables scalable application via a ripple walk sampler strategy. Through comprehensive experiments on data sets generated by different technologies, we show that PAST can effectively characterize spatial domains and facilitate various downstream analyses, including ST visualization, spatial trajectory inference and pseudotime analysis. Also, we highlight the advantages of PAST for multislice joint embedding and automatic annotation of spatial domains in newly sequenced ST data. Compared with existing methods, PAST is the first ST method that integrates reference data to analyze ST data. We anticipate that PAST will open up new avenues for researchers to decipher ST data with customized reference data, which expands the applicability of ST technology.
Collapse
Affiliation(s)
- Zhen Li
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Chen
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
George H, Mercer GV, Stapleton D, Dawson L, MacCallum PE, Spring S, Sled JG, Blundell J, Cahill LS. Structural brain abnormalities in endothelial nitric oxide synthase-deficient mice revealed by high-resolution magnetic resonance imaging. Brain Behav 2022; 12:e2801. [PMID: 36259950 PMCID: PMC9660425 DOI: 10.1002/brb3.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 10/08/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Endothelial nitric oxide synthase (eNOS) produces nitric oxide, which is essential for a variety of physiological functions in the brain. Previous work has demonstrated the detrimental effects of eNOS deficiency on brain function in male eNOS knockout (eNOS KO) mice. However, the effect of eNOS deficiency on brain structure and any association between these effects and sex is unknown. METHODS This study used three-dimensional high-resolution ex vivo magnetic resonance imaging and behavioral tests of anxiety and cognitive performance to investigate structure-function relationships in the brain of female and male eNOS KO mice in young adulthood. RESULTS While there were no differences in anxiety-like behavior or locomotion, there was a sex-specific deficit in contextual fear memory retention in male, but not in female, eNOS mice compared to wild-type controls. Moreover, we found that eNOS deficiency induced changes in multiple brain regions that are involved in learning and fear memory including the hippocampus, amygdala, hypothalamus, and areas of the cortex. Several of these MRI-detectable neuroanatomical changes were dependent on sex. CONCLUSION The observation that eNOS deficiency impacts brain structure at an early age demonstrates the importance of eNOS for healthy brain development.
Collapse
Affiliation(s)
- Hannah George
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Darcie Stapleton
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Laura Dawson
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.,Translational Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada.,Discipline of Radiology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
5
|
Li Q, Lou J, Yang T, Wei Z, Li S, Zhang F. Ischemic Preconditioning Induces Oligodendrogenesis in Mouse Brain: Effects of Nrf2 Deficiency. Cell Mol Neurobiol 2022; 42:1859-1873. [PMID: 33666795 PMCID: PMC11421701 DOI: 10.1007/s10571-021-01068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Ischemic preconditioning (IPC) is an approach of protection against cerebral ischemia by inducing endogenous cytoprotective machinery. However, few studies in neurogenesis and oligodendrogenesis after IPC have been reported, especially the latter. The purpose of this study is to test our hypothesis that IPC may also induce cell proliferation and oligodendrogenesis in the subventricular zone and striatum, as well as to investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) on oligodendrogenesis. IPC was induced in mice by 12-min ischemia through the occlusion of the middle cerebral artery. Newly generated cells were labeled with 5-bromo-2'-deoxyuridine. Our findings demonstrated that IPC stimulated the proliferation of neural stem cells in the subventricular zone, promoted the generation of oligodendrocyte precursor cells in the striatum and corpus callosum/external capsule (CC/EC), and stimulated oligodendrocyte precursor cells differentiation into oligodendrocytes in the striatum and the CC/EC. Furthermore, we describe a crucial role for Nrf2 in IPC-induced oligodendrogenesis in the subventricular zone, striatum, and CC/EC and show for the first time that Nrf2 promoted the migration and differentiation of oligodendrocyte precursor cells into oligodendrocytes in the striatum and CC/EC. Our data imply that IPC stimulates the oligodendrogenesis in the brain and that Nrf2 signaling may contribute to the oligodendrogenesis.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiyu Lou
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhishuo Wei
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Senmiao Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
García Vicente AM, Pérez-Beteta J, Bosque JJ, Soriano Castrejón ÁM, Pérez-García VM. Multiple and Diffuse Gliomas by 18F-Fluorocholine PET/CT: Two Sides of the Same Coin. Clin Nucl Med 2022; 47:e457-e465. [PMID: 35507438 DOI: 10.1097/rlu.0000000000004145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Gliomas are characterized by an inherent diffuse and irregular morphology that prevents defining a boundary between tumor and healthy tissue, both in imaging assessment and surgical field. The effective identification of the extent of the disease in diffuse and multiple gliomas is crucial for their management but doing so by radiological means can be challenging. We present a broad spectrum of diffuse and multiple gliomas using 18F-fluorocholine PET/CT, demonstrating the potential of metabolic imaging in the evaluation of these gliomas, with implications in patient clinical management and outcome.
Collapse
Affiliation(s)
| | - Julian Pérez-Beteta
- Mathematical Oncology Laboratory, Castilla-La Mancha University, Ciudad Real, Spain
| | - Jesús J Bosque
- Mathematical Oncology Laboratory, Castilla-La Mancha University, Ciudad Real, Spain
| | | | | |
Collapse
|
7
|
Campolo M, Crupi R, Cordaro M, Cardali SM, Ardizzone A, Casili G, Scuderi SA, Siracusa R, Esposito E, Conti A, Cuzzocrea S. Co-Ultra PEALut Enhances Endogenous Repair Response Following Moderate Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22168717. [PMID: 34445417 PMCID: PMC8395716 DOI: 10.3390/ijms22168717] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | | | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Alfredo Conti
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
8
|
Mourtzi T, Dimitrakopoulos D, Kakogiannis D, Salodimitris C, Botsakis K, Meri DK, Anesti M, Dimopoulou A, Charalampopoulos I, Gravanis A, Matsokis N, Angelatou F, Kazanis I. Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20. Stem Cell Res Ther 2021; 12:335. [PMID: 34112234 PMCID: PMC8193896 DOI: 10.1186/s13287-021-02398-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson’s disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the “weaver” mouse model of PD. Here, we assessed its potential effects on neurogenesis. Methods We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and “weaver” mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20. Results Our analysis revealed the existence of a low-rate turnover of dopaminergic neurons in the normal SNpc and showed, using three independent lines of experiments (stereologic cell counts, BrdU and DiI tracing), that the administration of BNN-20 leads to increased neurogenesis in the SNpc and to partial reversal of dopaminergic cell loss. The newly born dopaminergic neurons, that are partially originated from the SEZ, follow the typical nigral maturation pathway, expressing the transcription factor FoxA2. Importantly, the pro-cytogenic effects of BNN-20 were very strong in the SNpc, but were absent in other brain areas such as the cortex or the stem cell niche of the hippocampus. Moreover, although the in vitro assays showed that BNN-20 enhances the differentiation of NSCs towards glia and neurons, its in vivo administration stimulated only neurogenesis. Conclusions Our results demonstrate the existence of a neurogenic system in the SNpc that can be manipulated in order to regenerate the depleted dopaminergic cell population in the “weaver” PD mouse model. Microneurotrophin BNN-20 emerges as an excellent candidate for future PD cell replacement therapies, due to its area-specific, pro-neurogenic effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02398-3.
Collapse
Affiliation(s)
- Theodora Mourtzi
- Department of Physiology, Medical School, University of Patras, 26504, Patras, Greece. .,Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece.
| | | | - Dimitrios Kakogiannis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Charalampos Salodimitris
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Konstantinos Botsakis
- Department of Physiology, Medical School, University of Patras, 26504, Patras, Greece
| | - Danai Kassandra Meri
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Maria Anesti
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece.,Lab of Human and Animal Physiology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Aggeliki Dimopoulou
- Department of Physiology, Medical School, University of Patras, 26504, Patras, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71500, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Achilleas Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71500, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Nikolaos Matsokis
- Lab of Human and Animal Physiology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Fevronia Angelatou
- Department of Physiology, Medical School, University of Patras, 26504, Patras, Greece
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
9
|
A Brief Review on Erythropoietin and Mesenchymal Stem Cell Therapies for Paediatric Neurological Disorders. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Qi W, Luo JY, Li ZL, Zhang QJ, Liu ZD, Liao QP, Han Q, Yan JY. Clinical analysis of eight cases of fetal intracranial hemorrhage in pregnancy. J Matern Fetal Neonatal Med 2019; 34:2609-2615. [PMID: 31588836 DOI: 10.1080/14767058.2019.1670791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To explore the clinical characteristics, treatment and prognosis of fetal intracranial hemorrhage in pregnancy and to improve the level of diagnosis and treatment. METHODS We retrospectively analyzed the clinical data of eight cases of fetal intracranial hemorrhage in our hospital from 2014 to 2017, including the clinical manifestations, etiology, imaging features, treatment and prognosis. RESULTS All the cases were diagnosed by prenatal color ultrasound or magnetic resonance imaging (MRI); one of the cases had decreased fetal movements and abnormal fetal heart rate monitoring, and the remaining seven cases had no special clinical symptoms. No clear cause was found in all the cases. Two patients with grade I fetal intracranial hemorrhage and 1 patient with grade II had a cesarean delivery, and no neurological sequelae were found in these neonates after 6 months of follow-up. There was one patient with grade III and four patients with grade IV fetal intracranial hemorrhage; one of the patients with grade IV was stillborn at the time of the discovery, and cesarean section was selected due to scarring of the uterus; intra-amniotic injection of ethacridine lactate was selected to induce labor in three cases, and vaginal delivery was selected; one of the patients with grade IV chose vaginal delivery, and the neonatal cranial brain magnetic resonance imaging after delivery showed no increase in intracranial lesions but showed incomplete development of the remaining nervous system. CONCLUSION Fetal intracranial hemorrhage can be diagnosed by prenatal color ultrasound and MRI, yet it is often impossible to determine the cause. The prognosis of fetal intracranial hemorrhage is related to grade, and the prognosis of cerebral hemorrhage in patients with grades III-IV is poor.
Collapse
Affiliation(s)
- Wei Qi
- Obstetrics and Gynecology Department, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Jin-Ying Luo
- Obstetrics and Gynecology Department, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Ze-Long Li
- Obstetrics and Gynecology Department, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Qin-Jian Zhang
- Obstetrics and Gynecology Department, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Zhao-Dong Liu
- Obstetrics and Gynecology Department, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Qiu-Ping Liao
- Obstetrics and Gynecology Department, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Qing Han
- Obstetrics and Gynecology Department, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Jian-Ying Yan
- Obstetrics and Gynecology Department, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| |
Collapse
|
11
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
12
|
Zibara K, Ballout N, Mondello S, Karnib N, Ramadan N, Omais S, Nabbouh A, Caliz D, Clavijo A, Hu Z, Ghanem N, Gajavelli S, Kobeissy F. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2018; 145:177-198. [PMID: 30267729 DOI: 10.1016/j.neuropharm.2018.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nabil Karnib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Naify Ramadan
- Department of Women's and Children's Health (KBH), Division of Clinical Pediatrics, Karolinska Institute, Sweden
| | - Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali Nabbouh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Daniela Caliz
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Angelica Clavijo
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Zhen Hu
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shyam Gajavelli
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
13
|
Glioblastoma niches: from the concept to the phenotypical reality. Neurol Sci 2018; 39:1161-1168. [PMID: 29736738 DOI: 10.1007/s10072-018-3408-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/05/2018] [Indexed: 12/24/2022]
Abstract
Recently, the concept of niches as sites of tumor progression, invasion, and angiogenesis in glioblastoma (GB) has been extensively debated. Niches, considered the sites in which glioblastoma stem cells (GSCs) reside, have been classified as perivascular, perinecrotic, and invasive. However, from a neuropathological point of view, it is not easy to establish when a tumor structure can be considered a niche. The relevant literature has been reviewed in the light of our recent experience on the subject. As for perinecrotic niches, the occurrence of GSCs around necrosis is interpreted as triggered by hypoxia through HIF-1α. Our alternative hypothesis is that, together with progenitors, they are the cell constituents of hyper-proliferative areas of GB, where perinecrotic niches have developed, and they would, therefore, represent the remnants of GSCs/progenitors spared by the developing necrosis. Perivascular structures originate from both transport vessels and exchange vessels, i.e., venules, arterioles, or the undefinable neo-formed small vessels, but only those in which a direct contact between GSCs/progenitors and endothelial cells occurs can be called niches. Both pericytes and microglia/macrophages play a role in niche function: Macrophages of blood origin invade GB only after the appearance of "mother vessels" with consequent blood-brain barrier disruption. Not all vessel/tumor cell structures can be considered niches, that is, crucial sites of tumor progression, invasion, and angiogenesis.
Collapse
|
14
|
L'Episcopo F, Tirolo C, Serapide MF, Caniglia S, Testa N, Leggio L, Vivarelli S, Iraci N, Pluchino S, Marchetti B. Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Front Aging Neurosci 2018; 10:12. [PMID: 29483868 PMCID: PMC5816064 DOI: 10.3389/fnagi.2018.00012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroinflammatory processes are recognized key contributory factors in Parkinson's disease (PD) physiopathology. While the causes responsible for the progressive loss of midbrain dopaminergic (mDA) neuronal cell bodies in the subtantia nigra pars compacta are poorly understood, aging, genetics, environmental toxicity, and particularly inflammation, represent prominent etiological factors in PD development. Especially, reactive astrocytes, microglial cells, and infiltrating monocyte-derived macrophages play dual beneficial/harmful effects, via a panel of pro- or anti-inflammatory cytokines, chemokines, neurotrophic and neurogenic transcription factors. Notably, with age, microglia may adopt a potent neurotoxic, pro-inflammatory “primed” (M1) phenotype when challenged with inflammatory or neurotoxic stimuli that hamper brain's own restorative potential and inhibit endogenous neurorepair mechanisms. In the last decade we have provided evidence for a major role of microglial crosstalk with astrocytes, mDA neurons and neural stem progenitor cells (NSCs) in the MPTP- (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-) mouse model of PD, and identified Wnt/β-catenin signaling, a pivotal morphogen for mDA neurodevelopment, neuroprotection, and neuroinflammatory modulation, as a critical actor in glia-neuron and glia-NSCs crosstalk. With age however, Wnt signaling and glia-NSC-neuron crosstalk become dysfunctional with harmful consequences for mDA neuron plasticity and repair. These findings are of importance given the deregulation of Wnt signaling in PD and the emerging link between most PD related genes, Wnt signaling and inflammation. Especially, in light of the expanding field of microRNAs and inflammatory PD-related genes as modulators of microglial-proinflammatory status, uncovering the complex molecular circuitry linking PD and neuroinflammation will permit the identification of new druggable targets for the cure of the disease. Here we summarize recent findings unveiling major microglial inflammatory and oxidative stress pathways converging in the regulation of Wnt/β-catenin signaling, and reciprocally, the ability of Wnt signaling pathways to modulate microglial activation in PD. Unraveling the key factors and conditons promoting the switch of the proinflammatory M1 microglia status into a neuroprotective and regenerative M2 phenotype will have important consequences for neuroimmune interactions and neuronal outcome under inflammatory and/or neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Maria F Serapide
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | | | | | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bianca Marchetti
- Oasi ResearchInstitute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Al Fauzi A, Sumorejo P, Suroto NS, Parenrengi MA, Wahyuhadi J, Turchan A, Mahyudin F, Suroto H, Rantam FA, Machfoed MH, Bajamal AH, Lumenta CB. Clinical Outcomes of Repeated Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Chronic Haemorrhagic Stroke. A One-Year Follow Up. Open Neurol J 2017; 11:74-83. [PMID: 29290837 PMCID: PMC5738743 DOI: 10.2174/1874205x01711010074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/11/2017] [Accepted: 11/23/2017] [Indexed: 01/09/2023] Open
Abstract
Object: Stroke, one of the most devastating diseases, is a leading cause of death and disability throughout the world and is also associated with emotional and economic problems. The main goal of this study was to investigate the clinical outcome of the intraventricular transplantation of bone marrow mesenchymal stem cells (BM-MSCs) in post-haemorrhagic stroke patients. Method: This study was done consisting of eight patients with supratentorial haemorrhagic stroke, who had undergone 24 weeks of standard treatment of stroke with stable neurological deficits. All of the patients received stem cell transplantation intraventricularly using autologous BM-MSCs. Six months and Twelve months after stem cells treatment, the clinical outcomes were measured using the National Institute of Health Stroke Scale (NIHSS) and adverse effect also observed. Result: The results of this study showed improvement of NIHSS score values before and after the treatment in five patients. No adverse effects or complications were detected during the 1-year observation. Conclusion: Intraventricular transplantation of BM-MSCs has shown benefits in improving the functional status of post-haemorrhagic stroke patients with no adverse effect.
Collapse
Affiliation(s)
- Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya Neuroscience Institute, Surabaya, Indonesia
| | - Purwati Sumorejo
- Cell and Tissue Bank, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Nur Setiawan Suroto
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya Neuroscience Institute, Surabaya, Indonesia
| | - Muhammad Arifin Parenrengi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya Neuroscience Institute, Surabaya, Indonesia
| | - Joni Wahyuhadi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya Neuroscience Institute, Surabaya, Indonesia
| | - Agus Turchan
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya Neuroscience Institute, Surabaya, Indonesia
| | | | - Heri Suroto
- Cell and Tissue Bank, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Mochammad Hasan Machfoed
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya Neuroscience Institute, Surabaya, Indonesia
| | - Christianto Benjamin Lumenta
- Department of Neurosurgery, Academic Teaching Hospital Munich-Bogenhausen, Technical University of Munich, Germany
| |
Collapse
|
16
|
Waschek JA, Cohen JR, Chi GC, Proszynski TJ, Niewiadomski P. PACAP Promotes Matrix-Driven Adhesion of Cultured Adult Murine Neural Progenitors. ASN Neuro 2017; 9:1759091417708720. [PMID: 28523979 PMCID: PMC5439654 DOI: 10.1177/1759091417708720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
New neurons are born throughout the life of mammals in germinal zones of the brain known as neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus. These niches contain a subpopulation of cells known as adult neural progenitor cells (aNPCs), which self-renew and give rise to new neurons and glia. aNPCs are regulated by many factors present in the niche, including the extracellular matrix (ECM). We show that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) affects subventricular zone-derived aNPCs by increasing their surface adhesion. Gene array and reconstitution assays indicate that this effect can be attributed to the regulation of ECM components and ECM-modifying enzymes in aNPCs by PACAP. Our work suggests that PACAP regulates a bidirectional interaction between the aNPCs and their niche: PACAP modifies ECM production and remodeling, in turn the ECM regulates progenitor cell adherence. We speculate that PACAP may in this manner help restrict adult neural progenitors to the stem cell niche in vivo, with potential significance for aNPC function in physiological and pathological states.
Collapse
Affiliation(s)
- James A Waschek
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Joseph R Cohen
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gloria C Chi
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tomasz J Proszynski
- 2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Niewiadomski
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,3 Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Multiple beneficial effects of melanocortin MC 4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Prog Neurobiol 2016; 148:40-56. [PMID: 27916623 DOI: 10.1016/j.pneurobio.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
Melanocortin peptides induce neuroprotection in acute and chronic experimental neurodegenerative conditions. Melanocortins likewise counteract systemic responses to brain injuries. Furthermore, they promote neurogenesis by activating critical signaling pathways. Melanocortin-induced long-lasting improvement in synaptic activity and neurological performance, including learning and memory, sensory-motor orientation and coordinated limb use, has been consistently observed in experimental models of acute and chronic neurodegeneration. Evidence indicates that the neuroprotective and neurogenic effects of melanocortins, as well as the protection against systemic responses to a brain injury, are mediated by brain melanocortin 4 (MC4) receptors, through an involvement of the vagus nerve. Here we discuss the targets and mechanisms underlying the multiple beneficial effects recently observed in animal models of neurodegeneration. We comment on the potential clinical usefulness of melanocortin MC4 receptor agonists as neuroprotective and neuroregenerative agents in ischemic stroke, subarachnoid hemorrhage, traumatic brain injury, spinal cord injury, and Alzheimer's disease.
Collapse
|
18
|
Fauzi AA, Suroto NS, Bajamal AH, Machfoed MH. Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells via Ommaya Reservoir in Persistent Vegetative State Patients after Haemorrhagic Stroke: Report of Two Cases & Review of the Literature. J Stem Cells Regen Med 2016. [PMID: 28096634 PMCID: PMC5227101 DOI: 10.46582/jsrm.1202014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: One of the most devastating diseases, stroke, is a leading cause of death and disability worldwide with severe emotional and economic consequences. The purpose of this article is mainly to report the effect of intraventricular transplantation via an Ommaya reservoir using autologous bone marrow mesenchymal stem cells (BM-MSCs) in haemorrhagic stroke patients. Case Presentations: Two patients, aged 51 and 52, bearing sequels of haemorrhagic stroke were managed by intraventricular transplantation of BM-MSCs obtained from their own bone marrow. Before the procedure, both patients were bedridden, tracheostomised, on nasogastric (NG) tube feeding and in hemiparesis. The cells were transplanted intraventricularly (20 x 106 cells/2.5 ml) using an Ommaya reservoir, and then repeated transplantations were done after 1 and 2 months consecutively. The safety and efficacy of the procedures were evaluated 3, 6 and 12 months after treatment. The National Institute of Health Stroke Scale (NIHSS) was used to evaluate the patients' neurological status before and after treatment. No adverse events derived from the procedures or transplants were observed in the one-year follow-up period, and the neurological status of both patients improved after treatment. Conclusions: Our report demonstrates that the intraventricular transplantation of BM-MSCs via an Ommaya reservoir is safe and it improves the neurological status of post-haemorrhagic stroke patients. The repeated transplantation procedure is easier and safer to perform via a subcutaneously implanted Ommaya reservoir. Key Words: Haemorrhagic stroke, bone marrow mesenchymal stem cells (BM-MSCs), intraventricular transplantation.
Collapse
Affiliation(s)
| | | | | | - Moh Hasan Machfoed
- Department of Neurology, Airlangga University, Dr. Soetomo General Hospital , Surabaya, Indonesia
| |
Collapse
|
19
|
Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream. Sci Rep 2016; 6:32203. [PMID: 27573347 PMCID: PMC5004164 DOI: 10.1038/srep32203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
The subventricular zone (SVZ) provides a constant supply of new neurons to the olfactory bulb (OB). Different studies have investigated the role of olfactory sensory input to neural precursor cell (NPC) turnover in the SVZ but it was not addressed if a reduced demand specifically for periglomerular neurons impacts on NPC-traits in the rostral migratory stream (RMS). We here report that membrane type-1 matrix metalloproteinase (MT1-MMP) deficient mice have reduced complexity of the nasal turbinates, decreased sensory innervation of the OB, reduced numbers of olfactory glomeruli and reduced OB-size without alterations in SVZ neurogenesis. Large parts of the RMS were fully preserved in MT1-MMP-deficient mice, but we detected an increase in cell death-levels and a decrease in SVZ-derived neuroblasts in the distal RMS, as compared to controls. BrdU-tracking experiments showed that homing of NPCs specifically to the glomerular layer was reduced in MT1-MMP-deficient mice in contrast to controls while numbers of tracked cells remained equal in other OB-layers throughout all experimental groups. Altogether, our data show the demand for olfactory interneurons in the glomerular layer modulates cell turnover in the RMS, but has no impact on subventricular neurogenesis.
Collapse
|
20
|
Adult neurogenesis and reproductive functions in mammals. Theriogenology 2016; 86:313-23. [PMID: 27177964 DOI: 10.1016/j.theriogenology.2016.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/21/2022]
Abstract
During adulthood, the mammalian brain retains the capacity to generate new cells and new neurons in particular. It is now well established that the birth of these new neurons occurs in well-described sites: the hippocampus and the subventricular zone of the lateral ventricle, as well as in other brain regions including the hypothalamus. In this review, we describe the canonical neurogenic niches and illustrate the functional relevance of adult-born neurons of each neurogenic niche in the reproductive physiology. More specifically, we highlight the effect of reproductive social stimuli on the neurogenic processes and conversely, the contributions of adult-born neurons to the reproductive physiology and behavior. We next review the recent discovery of a novel neurogenic niche located in the hypothalamus and the median eminence and the compelling evidence of the link existing between the new-born hypothalamic neurons and the regulation of metabolism. In addition, new perspectives on the possible involvement of hypothalamic neurogenesis in the control of photoperiodic reproductive physiology in seasonal mammals are discussed. Altogether, the studies highlighted in this review demonstrate the potential role of neurogenesis in reproductive function and emphasize the importance of increasing our knowledge on the regulation processes and the physiological relevance of these adult-born neurons. This constitutes a necessary step toward a potential manipulation of these plasticity mechanisms.
Collapse
|
21
|
Crupi R, Impellizzeri D, Bruschetta G, Cordaro M, Paterniti I, Siracusa R, Cuzzocrea S, Esposito E. Co-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury. Front Pharmacol 2016; 7:47. [PMID: 27014061 PMCID: PMC4782663 DOI: 10.3389/fphar.2016.00047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultraPEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5-T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally) daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor, and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Daniela Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Giuseppe Bruschetta
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Rosalba Siracusa
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of MessinaMessina, Italy; Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, The University of ManchesterManchester, UK
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| |
Collapse
|
22
|
Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev Rep 2016; 11:288-97. [PMID: 25420577 DOI: 10.1007/s12015-014-9576-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It was recently shown that the conditioned media (CM) of Human Umbilical Cord Perivascular Cells (HUCPVCs), a mesenchymal progenitor population residing within the Wharton Jelly of the umbilical cord, was able to modulate in vitro the survival and viability of different neuronal and glial cells populations. In the present work, we aimed to assess if the secretome of HUCPVCs is able to 1) induce the differentiation of human telencephalon neural precursor cells (htNPCs) in vitro, and 2) modulate neural/glial proliferation, differentiation and survival in the dentate gyrus (DG) of adult rat hippocampus. For this purpose, two separate experimental setups were performed: 1) htNPCs were incubated with HUCPVCs-CM for 5 days after which neuronal differentiation was assessed and, 2) HUCPVCs, or their respective CM, were injected into the DG of young adult rats and their effects assessed 7 days later. Results revealed that the secretome of HUCPVCs was able to increase neuronal cell differentiation in vitro; indeed, higher densities of immature (DCX(+) cells) and mature neurons (MAP-2(+) cells) were observed when htNPCs were incubated with the HUCPVCs-CM. Additionally, when HUCPVCs and their CM were injected in the DG, results revealed that both cells or CM were able to increase the endogenous proliferation (BrdU(+) cells) 7 days after injection. It was also possible to observe an increased number of newborn neurons (DCX(+) cells), upon injection of HUCPVCs or their respective CM. Finally western blot analysis revealed that after CM or HUCPVCs transplantation, there was an increase of fibroblast growth factor-2 (FGF-2) and, to a lesser extent, of nerve growth factor (NGF) in the DG tissue. Concluding, our results have shown that the transplantation of HUCPVCs or the administration of their secretome were able to potentiate neuronal survival and differentiation in vitro and in vivo.
Collapse
|
23
|
Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res 2015; 1628:327-342. [DOI: 10.1016/j.brainres.2015.04.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
|
24
|
Ellis HP, Greenslade M, Powell B, Spiteri I, Sottoriva A, Kurian KM. Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence. Front Oncol 2015; 5:251. [PMID: 26636033 PMCID: PMC4644939 DOI: 10.3389/fonc.2015.00251] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GB) is the most common primary malignant brain tumor, and despite the availability of chemotherapy and radiotherapy to combat the disease, overall survival remains low with a high incidence of tumor recurrence. Technological advances are continually improving our understanding of the disease, and in particular, our knowledge of clonal evolution, intratumor heterogeneity, and possible reservoirs of residual disease. These may inform how we approach clinical treatment and recurrence in GB. Mathematical modeling (including neural networks) and strategies such as multiple sampling during tumor resection and genetic analysis of circulating cancer cells, may be of great future benefit to help predict the nature of residual disease and resistance to standard and molecular therapies in GB.
Collapse
Affiliation(s)
- Hayley P Ellis
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| | - Mark Greenslade
- Bristol Genetics Laboratory, North Bristol NHS Trust , Bristol , UK
| | - Ben Powell
- School of Mathematics, University of Bristol , Bristol , UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research , London , UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research , London , UK
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| |
Collapse
|
25
|
Zhong XM, Zhang F, Yang M, Wen XH, Zhang X, Duan XH, Shen J. In Vivo Targeted Magnetic Resonance Imaging of Endogenous Neural Stem Cells in the Adult Rodent Brain. BIOMED RESEARCH INTERNATIONAL 2015; 2015:131054. [PMID: 26583085 PMCID: PMC4637027 DOI: 10.1155/2015/131054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
Abstract
Neural stem cells in the adult mammalian brain have a significant level of neurogenesis plasticity. In vivo monitoring of adult endogenous NSCs would be of great benefit to the understanding of the neurogenesis plasticity under normal and pathological conditions. Here we show the feasibility of in vivo targeted MR imaging of endogenous NSCs in adult mouse brain by intraventricular delivery of monoclonal anti-CD15 antibody conjugated superparamagnetic iron oxide nanoparticles. After intraventricular administration of these nanoparticles, the subpopulation of NSCs in the anterior subventricular zone and the beginning of the rostral migratory stream could be in situ labeled and were in vivo visualized with 7.0-T MR imaging during a period from 1 day to 7 days after the injection. Histology confirmed that the injected targeted nanoparticles were specifically bound to CD15 positive cells and their surrounding extracellular matrix. Our results suggest that in vivo targeted MR imaging of endogenous neural stem cells in adult rodent brain could be achieved by using anti-CD15-SPIONs as the molecular probe; and this targeting imaging strategy has the advantage of a rapid in vivo monitoring of the subpopulation of endogenous NSCs in adult brains.
Collapse
Affiliation(s)
- Xiao-Mei Zhong
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, Guangdong 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, Guangdong 510120, China
| | - Ming Yang
- Department of Radiology, Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Xue-Hua Wen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, Guangdong 510120, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, Guangdong 510120, China
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, Guangdong 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, Guangdong 510120, China
| |
Collapse
|
26
|
Gamma-aminobutyric acid receptor agonists, aquaporin-4, and neuromyelitis optica: a potential link. Med Hypotheses 2015; 85:628-30. [PMID: 26323247 DOI: 10.1016/j.mehy.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/04/2015] [Accepted: 08/01/2015] [Indexed: 01/29/2023]
Abstract
Neuromyelitis optica (NMO; also termed Devic's disease) is a severely disabling autoimmune disorder of the central nervous system (CNS), which predominantly affects the optic nerves and spinal cord. In up to 80% of cases, NMO is associated with antibodies to aquaporin-4 (AQP4-IgG), the most abundant water channel in the CNS. AQP4-IgG have been demonstrated to be directly pathogenic. Gamma-aminobutyric acid A receptor (GABAAR) agonists are frequently used in patients with NMO, e.g., for symptomatic treatment of spasticity or epilepsy or for non-NMO-related indications such as treatment of insomnia. However, GABAAR signaling has recently been shown to strongly promote AQP4 expression. This is of potential clinical importance since any increase in AQP4 membrane expression during acute NMO attacks may enhance the complement-mediated humoral immune reaction against AQP4-expressing cells characteristic for NMO and, thus, result in more severe CNS damage. We therefore hypothesize that GABAAR agonist-induced AQP4 upregulation may be a potential risk factor in NMO. This would also include a potential role for (GABAAR-enhanced) damage to the subependymal zone neural stem cells, the major source of both glial cells and neuroblasts in the adult brain, in NMO. We also make proposals on how to test that hypothesis and underline the general need for evaluating possible detrimental effects of commonly used drugs affecting AQP4 expression in NMO.
Collapse
|
27
|
Cell Junction Pathology of Neural Stem Cells Is Associated With Ventricular Zone Disruption, Hydrocephalus, and Abnormal Neurogenesis. J Neuropathol Exp Neurol 2015; 74:653-71. [PMID: 26079447 DOI: 10.1097/nen.0000000000000203] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fetal-onset hydrocephalus affects 1 to 3 per 1,000 live births. It is not only a disorder of cerebrospinal fluid dynamics but also a brain disorder that corrective surgery does not ameliorate. We hypothesized that cell junction abnormalities of neural stem cells (NSCs) lead to the inseparable phenomena of fetal-onset hydrocephalus and abnormal neurogenesis. We used bromodeoxyuridine labeling, immunocytochemistry, electron microscopy, and cell culture to study the telencephalon of hydrocephalic HTx rats and correlated our findings with those in human hydrocephalic and nonhydrocephalic human fetal brains (n = 12 each). Our results suggest that abnormal expression of the intercellular junction proteins N-cadherin and connexin-43 in NSC leads to 1) disruption of the ventricular and subventricular zones, loss of NSCs and neural progenitor cells; and 2) abnormalities in neurogenesis such as periventricular heterotopias and abnormal neuroblast migration. In HTx rats, the disrupted NSC and progenitor cells are shed into the cerebrospinal fluid and can be grown into neurospheres that display intercellular junction abnormalities similar to those of NSC of the disrupted ventricular zone; nevertheless, they maintain their potential for differentiating into neurons and glia. These NSCs can be used to investigate cellular and molecular mechanisms underlying this condition, thereby opening the avenue for stem cell therapy.
Collapse
|
28
|
Regional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum. Proteomes 2015; 3:74-88. [PMID: 28248263 PMCID: PMC5217373 DOI: 10.3390/proteomes3020074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022] Open
Abstract
Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements.
Collapse
|
29
|
Zarzosa A, Grassme K, Tanaka E, Taniguchi Y, Bramke S, Kurth T, Epperlein H. Axolotls with an under- or oversupply of neural crest can regulate the sizes of their dorsal root ganglia to normal levels. Dev Biol 2014; 394:65-82. [PMID: 25111151 DOI: 10.1016/j.ydbio.2014.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/23/2014] [Accepted: 08/01/2014] [Indexed: 11/29/2022]
Abstract
How animals adjust the size of their organs is a fundamental, enduring question in biology. Here we manipulate the amount of neural crest (NC) precursors for the dorsal root ganglia (DRG) in axolotl. We produce embryos with an under- or over-supply of pre-migratory NC in order to find out if DRG can regulate their sizes during development. Axolotl embryos are perfectly suitable for this research. Firstly, they are optimal for microsurgical manipulations and tissue repair. Secondly, they possess, unlike most other vertebrates, only one neural crest string located on top of the neural tube. This condition and position enables NC cells to migrate to either side of the embryo and participate in the regulation of NC cell distribution. We show that size compensation of DRG in axolotl occurs in 2 cm juveniles after undersupply of NC (up-regulation) and in 5 cm juveniles after oversupply of NC (down-regulation). The size of DRG is likely to be regulated locally within the DRG and not via adaptations of the pre-migratory NC or during NC cell migration. Ipsi- and contralateral NC cell migration occurs both in embryos with one and two neural folds, and contralateral migration of NC is the only source for contralateral DRG formation in embryos with only one neural fold. Compensatory size increase is accompanied by an increase in cell division of a DRG precursor pool (PCNA+/SOX2-), rather than by DRG neurons or glial cells. During compensatory size decrease, increased apoptosis and reduced proliferation of DRG cells are observed.
Collapse
Affiliation(s)
- Ana Zarzosa
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Kathrin Grassme
- University of Münster, Angiogenesis Laboratory, Röntgenstr. 20, 48149 Münster, Germany
| | - Elly Tanaka
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Yuka Taniguchi
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany; Department of Anatomy, Technische Universität, Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Silvia Bramke
- Department of Anatomy, Technische Universität, Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Kurth
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Hans Epperlein
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany; Department of Anatomy, Technische Universität, Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
30
|
Butti E, Cusimano M, Bacigaluppi M, Martino G. Neurogenic and non-neurogenic functions of endogenous neural stem cells. Front Neurosci 2014; 8:92. [PMID: 24808821 PMCID: PMC4010760 DOI: 10.3389/fnins.2014.00092] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/09/2014] [Indexed: 12/27/2022] Open
Abstract
Adult neurogenesis is a lifelong process that occurs in two main neurogenic niches of the brain, namely in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus. In the 1960s, studies on adult neurogenesis have been hampered by the lack of established phenotypic markers. The precise tracing of neural stem/progenitor cells (NPCs) was therefore, not properly feasible. After the (partial) identification of those markers, it was the lack of specific tools that hindered a proper experimental elimination and tracing of those cells to demonstrate their terminal fate and commitment. Nowadays, irradiation, cytotoxic drugs as well as genetic tracing/ablation procedures have moved the field forward and increased our understanding of neurogenesis processes in both physiological and pathological conditions. Newly formed NPC progeny from the SVZ can replace granule cells in the olfactory bulbs of rodents, thus contributing to orchestrate sophisticated odor behavior. SGZ-derived new granule cells, instead, integrate within the DG where they play an essential role in memory functions. Furthermore, converging evidence claim that endogenous NPCs not only exert neurogenic functions, but might also have non-neurogenic homeostatic functions by the release of different types of neuroprotective molecules. Remarkably, these non-neurogenic homeostatic functions seem to be necessary, both in healthy and diseased conditions, for example for preventing or limiting tissue damage. In this review, we will discuss the neurogenic and the non-neurogenic functions of adult NPCs both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Erica Butti
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute Milan, Italy
| | - Melania Cusimano
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute Milan, Italy
| |
Collapse
|
31
|
Nemati R, Mehdizadeh S, Nabipour I, Salimipour H, Iranpour D, Assadi M. Radiolabeled neurogenesis marker imaging: a revolution in the neurological diseases management? Med Hypotheses 2014; 82:215-218. [PMID: 24365279 DOI: 10.1016/j.mehy.2013.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/11/2013] [Accepted: 11/30/2013] [Indexed: 11/17/2022]
Abstract
A reduced rate of neurogenesis occurs in the adult brain of patients with neurological diseases, with the rate of new neuron proliferation not sufficient to replace neuron loss. Neurogenesis can be induced by several factors, including basic fibroblast growth factor, epidermal growth factor, and brain-derived neurotrophic factor. Neurogenesis determination is a valuable parameter for determining disease progression and monitoring various treatments. Currently, neurogenesis detection is possible by invasive methods, such as bromodeoxyuridine (BrdU) cell labeling and immunohistological analysis of immature neuron markers. However, these are not compatible with alive model examination. Neurogenesis detection by noninvasive methods, such as radiolabeling of specific antibodies and scintigraphy imaging, could shed light on immature neuronal markers. We propose that brain scintigraphy after radiolabeling of a specific antibody of an immature neuronal marker is a useful new modality for neurogenesis detection and that it would aid the management of neurological diseases.
Collapse
Affiliation(s)
- Reza Nemati
- Department of Neurology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Mehdizadeh
- Department of Neurology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- Department of Biochemistry, The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hooman Salimipour
- Department of Neurology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Darioush Iranpour
- Department of Biochemistry, The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
32
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
33
|
Agathou S, Káradóttir RT, Kazanis I. Niche derived oligodendrocyte progenitors: a source of rejuvenation or complementation for local oligodendrogenesis? Front Cell Neurosci 2013; 7:188. [PMID: 24155691 PMCID: PMC3804763 DOI: 10.3389/fncel.2013.00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sylvia Agathou
- Department of Veterinary Medicine, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge Cambridge, UK
| | | | | |
Collapse
|
34
|
Neonatal SVZ EGFP-labeled cells produce neurons in the olfactory bulb and astrocytes in the cerebral cortex by in-vivo electroporation. Neuroreport 2013; 24:381-7. [PMID: 23568218 DOI: 10.1097/wnr.0b013e328360f7ef] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neural progenitors/stem cells (NSCs) exist in neonatal mouse subventricular zone (SVZ). To explore the differentiation of the NSCs in neonatal mouse SVZ and the distribution of the progeny cells derived from these NSCs in early adulthood, the enhanced green fluorescent protein (EGFP) plasmid was transferred into the NSCs in the lateral ventricle of newborn mice (P0) by in-vivo electroporation to trace these cells and their progeny cells. Thirty days after electroporation, histological sections of mouse brain were prepared for immunofluorescence with cell-specific antibodies to identify the type(s) of cells that were marked by EGFP. The results showed that EGFP-positive cells were distributed mainly in the olfactory bulb (OB), cortex, and SVZ, and double labeled with NeuN (neuron marker) in OB, glial fibrillary acidic protein (GFAP) (astrocyte marker) in the cortex, and Blbp and GFAP (astrocyte marker) in SVZ. However, there was no-EGFP-positive cell in the hippocampus. The present results indicate that the NSCs in SVZ of the neonatal mouse can give rise to neurons in the OB and astrocytes in the cortex in early adulthood, but not generate progeny cells residing in the hippocampus. In addition, there are still neural progenitors in SVZ until early adulthood.
Collapse
|
35
|
How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J Neuropathol Exp Neurol 2013; 72:370-85. [PMID: 23584204 DOI: 10.1097/nen.0b013e3182909f2f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The most devastating CNS bacterial infection, bacterial meningitis, has both acute and long-term neurologic consequences. The CNS defends itself against bacterial invasion through a combination of physical barriers (i.e. blood-brain barrier, meninges, and ependyma), which contain macrophages that express a range of pattern-recognition receptors that detect pathogens before they gain access to the CNS and cerebrospinal fluid. This activates an antipathogen response consisting of inflammatory cytokines, complement, and chemoattractants. Regulation of the antipathogen inflammatory response is essential for preventing irreversible brain injury and protecting stem cell populations in the ventricle wall. The severity of brain inflammation is regulated by the clearance of apoptotic inflammatory cells and neurons. Death signaling pathways are expressed by glia to stimulate apoptosis of neutrophils, lymphocytes, and damaged neurons and to regulate in flammation and remove necrotic cells. The emerging group of neuroimmunoregulatory molecules adjusts the balance of the anti-inflammatory and proinflammatory response to provide optimal conditions for effective clearance of pathogens and apoptotic cells but reduce the severity of the inflammatory response to prevent injury to brain cells, including stem cell populations. The neuroimmunoregulatory molecules and other CNS anti-inflammatory pathways represent potential therapeutic targets capable of reducing brain injury caused by bacterial infection.
Collapse
|
36
|
Marchetti B, L'Episcopo F, Morale MC, Tirolo C, Testa N, Caniglia S, Serapide MF, Pluchino S. Uncovering novel actors in astrocyte-neuron crosstalk in Parkinson's disease: the Wnt/β-catenin signaling cascade as the common final pathway for neuroprotection and self-repair. Eur J Neurosci 2013; 37:1550-63. [PMID: 23461676 PMCID: PMC3660182 DOI: 10.1111/ejn.12166] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neuronal cell bodies in the substantia nigra pars compacta and gliosis. The cause and mechanisms underlying the demise of nigrostriatal DAergic neurons are ill-defined, but interactions between genes and environmental factors are recognized to play a critical role in modulating the vulnerability to PD. Current evidence points to reactive glia as a pivotal factor in PD pathophysiology, playing both protective and destructive roles. Here, the contribution of reactive astrocytes and their ability to modulate DAergic neurodegeneration, neuroprotection and neurorepair in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD will be discussed in the light of novel emerging evidence implicating wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin signaling as a strong candidate in MPTP-induced nigrostriatal DAergic plasticity. In this work, we highlight an intrinsic Wnt1/frizzled-1/β-catenin tone that critically contributes to the survival and protection of adult midbrain DAergic neurons, with potential implications for drug design or drug action in PD. The dynamic interplay between astrocyte-derived factors and neurogenic signals in MPTP-induced nigrostriatal DAergic neurotoxicity and repair will be summarized, together with recent findings showing a critical role of glia-neural stem/progenitor cell (NPC) interactions aimed at overcoming neurodegeneration and inducing neurorestoration. Understanding the intrinsic plasticity of nigrostriatal DAergic neurons and deciphering the signals facilitating the crosstalk between astrocytes, microglia, DAergic neurons and NPCs may have major implications for the role of stem cell technology in PD, and for identifying potential therapeutic targets to induce endogenous neurorepair.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Spaccapelo L, Galantucci M, Neri L, Contri M, Pizzala R, D'Amico R, Ottani A, Sandrini M, Zaffe D, Giuliani D, Guarini S. Up-regulation of the canonical Wnt-3A and Sonic hedgehog signaling underlies melanocortin-induced neurogenesis after cerebral ischemia. Eur J Pharmacol 2013; 707:78-86. [PMID: 23535605 DOI: 10.1016/j.ejphar.2013.03.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 12/31/2022]
Abstract
In experimental cerebral ischemia, melanocortin MC4 receptor agonists induce neuroprotection and neurogenesis with subsequent long-lasting functional recovery. Here we investigated the molecular mechanisms underlying melanocortin-induced neurogenesis. Gerbils were subjected to transient global cerebral ischemia, then they were treated every 12 h, and until sacrifice, with 5-bromo-2'-deoxyuridine (BrdU; to label proliferating cells), and the melanocortin analog [Nle(4),d-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) or saline. NDP-α-MSH increased hippocampus dentate gyrus (DG) expression of Wnt-3A, β-catenin, Sonic hedgehog (Shh), Zif268, interleukin-10 (IL-10) and doublecortin (DCX), as detected at days 3, 6 and 10 after the ischemic insult. Further, an elevated number of BrdU immunoreactive cells was found at days 3 and 10, and an improved histological picture with reduced neuronal loss at day 10, associated with learning and memory recovery. Pharmacological blockade of the Wnt-3A/β-catenin and Shh pathways, as well as of melanocortin MC4 receptors, prevented all effects of NDP-α-MSH. These data indicate that, in experimental brain ischemia, treatment with melanocortins acting at MC4 receptors induces neural stem/progenitor cell proliferation in the DG by promptly and effectively triggering the canonical Wnt-3A/β-catenin and Shh signaling pathways. Activation of these pathways is associated with up-regulation of the repair factor Zif268 and the neurogenesis facilitating factor IL-10, and it seems to address mainly toward a neuronal fate, as indicated by the increase in DCX positive cells.
Collapse
Affiliation(s)
- Luca Spaccapelo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Impagnatiello F, Pluchino S, Marchetti B. Aging-induced Nrf2-ARE pathway disruption in the subventricular zone drives neurogenic impairment in parkinsonian mice via PI3K-Wnt/β-catenin dysregulation. J Neurosci 2013; 33:1462-85. [PMID: 23345222 PMCID: PMC3564519 DOI: 10.1523/jneurosci.3206-12.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022] Open
Abstract
Aging and exposure to environmental toxins including MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) are strong risk factors for developing Parkinson's disease (PD), a common neurologic disorder characterized by selective degeneration of midbrain dopaminergic (DAergic) neurons and astrogliosis. Aging and PD impair the subventricular zone (SVZ), one of the most important brain regions for adult neurogenesis. Because inflammation and oxidative stress are the hallmarks of aging and PD, we investigated the nature, timing, and signaling mechanisms contributing to aging-induced SVZ stem/neuroprogenitor cell (NPC) inhibition in aging male mice and attempted to determine to what extent manipulation of these pathways produces a functional response in the outcome of MPTP-induced DAergic toxicity. We herein reveal an imbalance of Nrf2-driven antioxidant/anti-inflammatory genes, such as Heme oxygenase1 in the SVZ niche, starting by middle age, amplified upon neurotoxin treatment and associated with an exacerbated proinflammatory SVZ microenvironment converging to dysregulate the Wingless-type MMTV integration site (Wnt)/β-catenin signaling, a key regulatory pathway for adult NPCs. In vitro experiments using coculture paradigms uncovered aged microglial proinflammatory mediators as critical inhibitors of NPC proliferative potential. We also found that interruption of PI3K (phosphatidylinositol3-kinase)/Akt and the Wnt/Fzd/β-catenin signaling cascades, which switch glycogen synthase kinase 3β (GSK-3β) activation on and off, were causally related to the impairment of SVZ-NPCs. Moreover, a synergy between dysfunctional microglia of aging mice and MPTP exposure further inhibited astrocyte proneurogenic properties, including the expression of key Wnts components. Last, pharmacological activation/antagonism studies in vivo and in vitro suggest the potential that aged SVZ manipulation is associated with DAergic functional recovery.
Collapse
Affiliation(s)
- Francesca L'Episcopo
- Oasi Maria Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Cataldo Tirolo
- Oasi Maria Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Nunzio Testa
- Oasi Maria Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Salvatore Caniglia
- Oasi Maria Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Maria C. Morale
- Oasi Maria Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | | | - Stefano Pluchino
- John van Geest Centre for Brain Repair, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Bianca Marchetti
- Oasi Maria Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, School of Medicine, University of Catania, 95125 Catania, Italy
| |
Collapse
|
39
|
Tepavčević V, Nait-Oumesmar B, Evercooren ABV. Une altération de la neurogenèse conduit à des troubles de l’olfaction dans la sclérose en plaques. Med Sci (Paris) 2012; 28:683-7. [DOI: 10.1051/medsci/2012288003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
Gely-Pernot A, Coronas V, Harnois T, Prestoz L, Mandairon N, Didier A, Berjeaud JM, Monvoisin A, Bourmeyster N, De Frutos PG, Philippe M, Benzakour O. An endogenous vitamin K-dependent mechanism regulates cell proliferation in the brain subventricular stem cell niche. Stem Cells 2012; 30:719-31. [PMID: 22290807 PMCID: PMC3601423 DOI: 10.1002/stem.1045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural stem cells (NSC) persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ stem and progenitor cell proliferation are not fully elucidated. Vitamin K-dependent proteins (VKDPs) are mainly secreted factors that were initially discovered as major regulators of blood coagulation. Warfarin ((S(-)-3-acetonylbenzyl)-4-hydroxycoumarin)), a widespread anticoagulant, is a vitamin K antagonist that inhibits the production of functional VKDP. We demonstrate that the suppression of functional VKDPs production, in vitro, by exposure of SVZ cell cultures to warfarin or, in vivo, by its intracerebroventricular injection to mice, leads to a substantial increase in SVZ cell proliferation. We identify the anticoagulant factors, protein S and its structural homolog Gas6, as the two only VKDPs produced by SVZ cells and describe the expression and activation pattern of their Tyro3, Axl, and Mer tyrosine kinase receptors. Both in vitro and in vivo loss of function studies consisting in either Gas6 gene invalidation or in endogenous protein S neutralization, provided evidence for an important novel regulatory role of these two VKDPs in the SVZ neurogenic niche. Specifically, we show that while a loss of Gas6 leads to a reduction in the numbers of stem-like cells and in olfactory bulb neurogenesis, endogenous protein S inhibits SVZ cell proliferation. Our study opens up new perspectives for investigating further the role of vitamin K, VKDPs, and anticoagulants in NSC biology in health and disease.
Collapse
Affiliation(s)
- Aurore Gely-Pernot
- Institut de Physiologie et Biologie Cellulaires, CNRS-UMR 6187 Université de Poitiers, Poitiers, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Felix MS, Popa N, Djelloul M, Boucraut J, Gauthier P, Bauer S, Matarazzo VA. Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat. Front Neurosci 2012; 6:45. [PMID: 22509147 PMCID: PMC3321502 DOI: 10.3389/fnins.2012.00045] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/19/2012] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e., brain), remain unknown. In this study, we asked whether cervical SCI could alter cell dynamics in neurogenic areas of the adult rat forebrain. To this aim, we quantified BrdU incorporation and determined the phenotypes of newly generated cells (neurons, astrocytes, or microglia) during the subchronic and chronic phases of injury. We find that subchronic SCI leads to a reduction of BrdU incorporation and neurogenesis in the olfactory bulb and in the hippocampal dentate gyrus. By contrast, subchronic SCI triggers an increased BrdU incorporation in the dorsal vagal complex of the hindbrain, where most of the newly generated cells are identified as microglia. In chronic condition 90 days after SCI, BrdU incorporation returns to control levels in all regions examined, except in the hippocampus, where SCI produces a long-term reduction of neurogenesis, indicating that this structure is particularly sensitive to SCI. Finally, we observe that SCI triggers an acute inflammatory response in all brain regions examined, as well as a hippocampal-specific decline in BDNF levels. This study provides the first demonstration that forebrain neurogenesis is vulnerable to a distal SCI.
Collapse
Affiliation(s)
- Marie-Solenne Felix
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université, CNRS-UMR 6231 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Giuliani D, Minutoli L, Ottani A, Spaccapelo L, Bitto A, Galantucci M, Altavilla D, Squadrito F, Guarini S. Melanocortins as potential therapeutic agents in severe hypoxic conditions. Front Neuroendocrinol 2012; 33:179-93. [PMID: 22531139 DOI: 10.1016/j.yfrne.2012.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 01/14/2023]
Abstract
Melanocortin peptides with the adrenocorticotropin/melanocyte-stimulating hormone (ACTH/MSH) sequences and synthetic analogs have protective and life-saving effects in experimental conditions of circulatory shock, myocardial ischemia, ischemic stroke, traumatic brain injury, respiratory arrest, renal ischemia, intestinal ischemia and testicular ischemia, as well as in experimental heart transplantation. Moreover, melanocortins improve functional recovery and stimulate neurogenesis in experimental models of cerebral ischemia. These beneficial effects of ACTH/MSH-like peptides are mostly mediated by brain melanocortin MC(3)/MC(4) receptors, whose activation triggers protective pathways that counteract the main ischemia/reperfusion-related mechanisms of damage. Induction of signaling pathways and other molecular regulators of neural stem/progenitor cell proliferation, differentiation and integration seems to be the key mechanism of neurogenesis stimulation. Synthesis of stable and highly selective agonists at MC(3) and MC(4) receptors could provide the potential for development of a new class of drugs for a novel approach to management of severe ischemic diseases.
Collapse
Affiliation(s)
- Daniela Giuliani
- Department of Biomedical Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Deleidi M, Serapide MF, Pluchino S, Marchetti B. Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease involves cross talk between inflammatory and Wnt/β-catenin signaling pathways: functional consequences for neuroprotection and repair. J Neurosci 2012; 32:2062-85. [PMID: 22323720 PMCID: PMC3556384 DOI: 10.1523/jneurosci.5259-11.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022] Open
Abstract
In Parkinson's disease (PD), neurogenesis is impaired in the subventricular zone (SVZ) of postmortem human PD brains, in primate nonhuman and rodent models of PD. The vital role of Wingless-type MMTV integration site (Wnt)/β-catenin signaling in the modulation of neurogenesis, neuroprotection, and synaptic plasticity coupled to our recent findings uncovering an active role for inflammation and Wnt/β-catenin signaling in MPTP-induced loss and repair of nigrostriatal dopaminergic (DAergic) neurons prompted us to study the impact of neuroinflammation and the Wnt/β-catenin pathway in the response of SVZ neuroprogenitors (NPCs) in MPTP-treated mice. In vivo experiments, using bromodeoxyuridine and cell-specific markers, and ex vivo time course analyses documented an inverse correlation between the reduced proliferation of NPCs and the generation of new neuroblasts with the phase of maximal exacerbation of microglia reaction, whereas a shift in the microglia proinflammatory phenotype correlated with a progressive NPC recovery. Ex vivo and in vitro experiments using microglia-NPC coculture paradigms pointed to NADPH-oxidase (gpPHOX(91)), a major source of microglial ROS, and reactive nitrogen species as candidate inhibitors of NPC neurogenic potential via the activation of glycogen synthase 3 (pGSK-3β(Tyr216)), leading to loss of β-catenin, a chief downstream transcriptional effector. Accordingly, MPTP/MPP(+) (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) caused β-catenin downregulation and pGSK-3β(Tyr216) overexpression, whereas manipulation of Wnt/β-catenin signaling with RNA interference-mediated GSK-3β knockdown or GSK-3β antagonism reversed MPTP-induced neurogenic impairment ex vivo/in vitro or in vivo. Reciprocally, pharmacological modulation of inflammation prevented β-catenin downregulation and restored neurogenesis, suggesting the possibility to modulate this endogenous system with potential consequences for DAergic neuroprotection and self-repair.
Collapse
Affiliation(s)
- Francesca L'Episcopo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Cataldo Tirolo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Nunzio Testa
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Salvatore Caniglia
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Maria C. Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Michela Deleidi
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria F. Serapide
- Department of Physiological Sciences, University of Catania, 95125 Catania, Italy
| | - Stefano Pluchino
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair and Stem Cell Initiative, University of Cambridge, Cambridge CB2 0PY, United Kingdom, and
| | - Bianca Marchetti
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School and Faculty of Pharmacy, University of Catania, 95125 Catania, Italy
| |
Collapse
|
44
|
Roll L, Mittmann T, Eysel UT, Faissner A. The laser lesion of the mouse visual cortex as a model to study neural extracellular matrix remodeling during degeneration, regeneration and plasticity of the CNS. Cell Tissue Res 2012; 349:133-45. [DOI: 10.1007/s00441-011-1313-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/20/2011] [Indexed: 02/06/2023]
|
45
|
Decimo I, Bifari F, Krampera M, Fumagalli G. Neural stem cell niches in health and diseases. Curr Pharm Des 2012; 18:1755-83. [PMID: 22394166 PMCID: PMC3343380 DOI: 10.2174/138161212799859611] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022]
Abstract
Presence of neural stem cells in adult mammalian brains, including human, has been clearly demonstrated by several studies. The functional significance of adult neurogenesis is slowly emerging as new data indicate the sensitivity of this event to several "every day" external stimuli such as physical activity, learning, enriched environment, aging, stress and drugs. In addition, neurogenesis appears to be instrumental for task performance involving complex cognitive functions. Despite the growing body of evidence on the functional significance of NSC and despite the bulk of data concerning the molecular and cellular properties of NSCs and their niches, several critical questions are still open. In this work we review the literature describing i) old and new sites where NSC niche have been found in the CNS; ii) the intrinsic factors regulating the NSC potential; iii) the extrinsic factors that form the niche microenvironment. Moreover, we analyse NSC niche activation in iv) physiological and v) pathological conditions. Given the not static nature of NSCs that continuously change phenotype in response to environmental clues, a unique "identity card" for NSC identification is still lacking. Moreover, the multiple location of NSC niches that increase in diseases, leaves open the question of whether and how these structures communicate throughout long distance. We propose a model where all the NSC niches in the CNS may be connected in a functional network using the threads of the meningeal net as tracks.
Collapse
Affiliation(s)
- Ilaria Decimo
- Department of Public Health and Community Medicine, Section of Pharmacology, University of Verona, Italy
| | - Francesco Bifari
- Department of Medicine, Stem Cell Research Laboratory, Section of Hematology, University of Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Stem Cell Research Laboratory, Section of Hematology, University of Verona, Italy
| | - Guido Fumagalli
- Department of Public Health and Community Medicine, Section of Pharmacology, University of Verona, Italy
| |
Collapse
|
46
|
Kazanis I, Ffrench-Constant C. The number of stem cells in the subependymal zone of the adult rodent brain is correlated with the number of ependymal cells and not with the volume of the niche. Stem Cells Dev 2011; 21:1090-6. [PMID: 21762017 DOI: 10.1089/scd.2011.0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mammalian subependymal zone (SEZ; often called subventricular) situated at the lateral walls of the lateral ventricles of the brain contains a pool of relatively quiescent adult neural stem cells whose neurogenic activity persists throughout life. These stem cells are positioned in close proximity both to the ependymal cells that provide the cerebrospinal fluid interface and to the blood vessel endothelial cells, but the relative contribution of these 2 cell types to stem cell regulation remains undetermined. Here, we address this question by analyzing a naturally occurring example of volumetric scaling of the SEZ in a comparison of the mouse SEZ with the larger rat SEZ. Our analysis reveals that the number of stem cells in the SEZ niche is correlated with the number of ependymal cells rather than with the volume, thereby indicating the importance of ependymal-derived factors in the formation and function of the SEZ. The elucidation of the factors generated by ependymal cells that regulate stem cell numbers within the SEZ is, therefore, of importance for stem cell biology and regenerative neuroscience.
Collapse
Affiliation(s)
- Ilias Kazanis
- Department of Veterinary Medicine, and MRC Cambridge Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Cambridge, United Kingdom. ik255@cam .ac.uk
| | | |
Collapse
|
47
|
Kazanis I. Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expectations in the era of regenerative biology. Neuroscientist 2011; 18:15-27. [PMID: 21536840 DOI: 10.1177/1073858410390379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since the first experimental reports showing the persistence of neurogenic activity in the adult mammalian brain, this field of neurosciences has expanded significantly. It is now widely accepted that neural stem and precursor cells survive during adulthood and are able to respond to various endogenous and exogenous cues by altering their proliferation and differentiation activity. Nevertheless, the pathway to therapeutic applications still seems to be long. This review attempts to summarize and revisit the available data regarding the plasticity potential of adult neural stem cells and of their normal microenvironment, the neurogenic niche. Recent data have demonstrated that adult neural stem cells retain a high level of pluripotency and that adult neurogenic systems can switch the balance between neurogenesis and gliogenesis and can generate a range of cell types with an efficiency that was not initially expected. Moreover, adult neural stem and precursor cells seem to be able to self-regulate their interaction with the microenvironment and even to contribute to its synthesis, altogether revealing a high level of plasticity potential. The next important step will be to elucidate the factors that limit this plasticity in vivo, and such a restrictive role for the microenvironment is discussed in more details.
Collapse
Affiliation(s)
- Ilias Kazanis
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
48
|
|
49
|
Gonzalez AM, Leadbeater WE, Burg M, Sims K, Terasaki T, Johanson CE, Stopa EG, Eliceiri BP, Baird A. Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system. BMC Neurosci 2011; 12:4. [PMID: 21214926 PMCID: PMC3025905 DOI: 10.1186/1471-2202-12-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/07/2011] [Indexed: 01/30/2023] Open
Abstract
Background Because the choroid plexus (CP) is uniquely suited to control the composition of cerebrospinal fluid (CSF), there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS) functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS. Methods A peptide library displayed on M13 bacteriophage was screened for ligands capable of internalizing into CP epithelial cells by incubating phage with CP explants for 2 hours at 37C and recovering particles with targeting capacity. Results Three peptides, identified after four rounds of screening, were analyzed for specific and dose dependant binding and internalization. Binding was deemed specific because internalization was prevented by co-incubation with cognate synthetic peptides. Furthermore, after i.c.v. injection into rat brains, each peptide was found to target phage to epithelial cells in CP and to ependyma lining the ventricles. Conclusion These data demonstrate that ligand-mediated targeting can be used as a strategy for drug delivery to the central nervous system and opens the possibility of using the choroid plexus as a portal of entry into the brain.
Collapse
Affiliation(s)
- Ana Maria Gonzalez
- School of Experimental Medicine and Dentistry, University of Birmingham, Edgbaston, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Leipzig ND, Wylie RG, Kim H, Shoichet MS. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 2010; 32:57-64. [PMID: 20934216 DOI: 10.1016/j.biomaterials.2010.09.031] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 11/17/2022]
Abstract
The adult central nervous system (CNS) contains adult neural stem/progenitor cells (NSPCs) that possess the ability to differentiate into the primary cell types found in the CNS and to regenerate lost or damaged tissue. The ability to specifically and spatially control differentiation is vital to enable cell-based CNS regenerative strategies. Here we describe the development of a protein-biomaterial system that allows rapid, stable and homogenous linking of a growth factor to a photocrosslinkable material. A bioactive recombinant fusion protein incorporating pro-neural rat interferon-γ (rIFN-γ) and the AviTag for biotinylation was successfully expressed in Escherichia coli and purified. The photocrosslinkable biopolymer, methacrylamide chitosan (MAC), was thiolated, allowing conjugation of maleimide-strepatavidin via Michael-type addition. We demonstrated that biotin-rIFN-γ binds specifically to MAC-streptavidin in stoichiometric yields at 100 and 200 ng/mL in photocrosslinked hydrogels. For cell studies, NSPCs were photo-encapsulated in 100 ng/mL biotin-rIFN-γ immobilized MAC based scaffolds and compared to similar NSPC-seeded scaffolds combining 100 ng/mL soluble biotin-rIFN-γ vs. no growth factor. Cells were cultured for 8 days after which differentiation was assayed using immunohistochemistry for lineage specific markers. Quantification showed that immobilized biotin-rIFN-γ promoted neuronal differentiation (72.8 ± 16.0%) similar to soluble biotin-rIFN-γ (71.8 ± 13.2%). The percentage of nestin-positive (stem/progenitor) cells as well as RIP-positive (oligodendrocyte) cells were significantly higher in scaffolds with soluble vs. immobilized biotin-rIFN-γ suggesting that 3-D immobilization results in a more committed lineage specification.
Collapse
Affiliation(s)
- Nic D Leipzig
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|