1
|
Latchney SE, Raheja AC, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Glial changes in the dentate gyrus of neuronal-specific PTEN knockout mice correlate with changes in cell proliferation. J Neuroimmunol 2025; 404:578604. [PMID: 40188528 PMCID: PMC12097938 DOI: 10.1016/j.jneuroim.2025.578604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
Dysregulated hippocampal neurogenesis is a feature of temporal lobe epilepsy (TLE), marked by increased neuronal proliferation. The tumor suppressor gene phosphatase and tensin homolog (PTEN) regulates neuronal proliferation, and its deletion is implicated in TLE. We have previously shown that deletion of neuronal subset-specific (NS)-PTEN in mice increases the number of proliferating cells throughout the dentate gyrus, including subregions that are typically devoid of neurons but rich in glial cells, most notably the Hilus and Molecular Layer. In this study, we hypothesized that NS-PTEN knockout mice would exhibit increased numbers of microglia and astrocytes in these same dentate gyrus subregions. We performed immunohistochemistry for Iba1 (microglia) and GFAP (reactive astrocytes) on wild-type and NS-PTEN knockout mice at 4 and 10 weeks of age. Our data reveal that NS-PTEN knockout mice exhibit increased Iba1+ cell density at both ages, with some male-specific effects. Subregional analysis of the dentate gyrus showed that at 4 weeks, NS-PTEN knockout mice had greater Iba1+ cell density in the Granule Cell Layer (GCL) and Hilus, and at 10 weeks, increases were observed in the GCL, Hilus, and Molecular Layer. Additionally, we observed an increased number of microglia with an amoeboid morphology and fewer with thin, ramified processes. Contrast to Iba1+ microglia, GFAP+ reactive astrocytes were localized to the neurogenic GCL. Importantly, increases in both glial types strongly correlated with heightened cell proliferation (Ki67+ cells), as reported in our previous study, underscoring the role of glial cells in the spatial dysregulation of neurogenesis in NS-PTEN knockout mice.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.
| | - Anjali C Raheja
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Brayan R Ruiz Lopez
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| |
Collapse
|
2
|
Baker TL, Wright DK, Thergarajan P, Uboldi AD, Vo A, Wilson T, Tonkin CJ, O'Brien TJ, Antonic-Baker A, Asmussen MJ, McDonald SJ, Casillas-Espinosa PM, Jones NC, Ali I, Sun M, Shultz SR. A pre-existing chronic Toxoplasma gondii infection promotes epileptogenesis and neuropathology in a mouse model of mesial temporal lobe epilepsy. Brain Behav Immun 2025; 128:440-455. [PMID: 40268065 DOI: 10.1016/j.bbi.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/19/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE There is initial evidence that the common neurotropic parasite Toxoplasma gondii is a risk factor for the development of epilepsy; however, whether it influences epileptogenesis is unknown. This study investigated whether a pre-existing chronic T. gondii infection alters epileptogenesis and neuropathology in a mouse model of mesial temporal lobe epilepsy. METHODS Male and female C57BL/6Jax mice were intraperitoneally administered T. gondii tachyzoites or vehicle control. After 6 weeks, mice underwent self-sustained electrical status epilepticus (SSSE) through an implanted bipolar electrode, or a sham procedure. Continuous video-EEG recordings were taken 0-4- and 12-16-weeks post-SSSE to detect spontaneous seizures. Neuroinflammatory markers were assessed within 1-week post-SSSE, behavior testing was done at 8-12 weeks post-SSSE, and ex vivo MRI was conducted at 16 weeks post-SSSE. RESULTS Male T. gondii + SSSE mice had an increased incidence of epilepsy compared to Vehicle + SSSE, while female T. gondii + SSSE mice had worse seizure severity compared to non-infected SSSE mice. There was amplified neuroinflammation in both male and female T. gondii + SSSE mice compared to Vehicle + SSSE mice. T. gondii infection in the absence of SSSE also resulted in epilepsy and neuroinflammation. MRI revealed abnormalities in brain morphology in T. gondii + SSSE male and female mice and changes in white matter integrity in male T. gondii + SSSE mice, compared to both non-infected SSSE and T. gondii control mice. SSSE and T. gondii infection impacted anxiety and spatial memory in males, and anxiety and social behavior in females. INTERPRETATION These findings demonstrate that a chronic T. gondii infection can result in epilepsy, and that a pre-existing T. gondii infection exacerbates epileptogenesis following a brain insult, in mice.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - David K Wright
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Peravina Thergarajan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Alessandro D Uboldi
- Division of Infection and Global Health, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, VIC 3010, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC 3168, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC 3168, Australia
| | - Christopher J Tonkin
- Division of Infection and Global Health, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, VIC 3010, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, VIC 3010, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Ana Antonic-Baker
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael J Asmussen
- Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | - Stuart J McDonald
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, VIC 3010, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, VIC 3010, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, VIC 3010, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia; Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada.
| |
Collapse
|
3
|
Sharma D, Rajbongshi B, Isphak T, Basumatary S, Dutta K, Rudrapal M, Goswami AK. Plant-Based Therapies to Ameliorate Neuroinflammation in Parkinson's Disease, Alzheimer's Disease, and Epilepsy: A Narrative Review. Chem Biodivers 2025:e202500038. [PMID: 40237742 DOI: 10.1002/cbdv.202500038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Neuroinflammation plays a crucial role in the etiology of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and epilepsy. Several key inflammatory pathways are pivotal in the development of neuroinflammation in PD, AD, and epilepsy. The NF-κB pathway is a central regulator of inflammation, and its chronic activation triggers the transcription of genes that drive inflammatory responses. JAK-STAT signaling system triggers the production of cytokines and chemokines that generate neuroinflammation; mitogen-activated protein kinases mediate the p38 pathway and control the synthesis of cytokines. Activation of the NO signaling pathway causes oxidative stress and neuronal damage. Plant-based therapeutics are gaining attention due to their anti-neuroinflammatory and neuroprotective phytochemicals, which shield the neurons from damage. Some of the examples are curcumin, resveratrol, ginsenosides, cannabidiol, notoginseng, quercetin, and so on. Clinical studies also indicate that certain plant-based formulations like Wei Li Bai, IPX066, Bushen huoxue, and so on can be effective alternatives to presently available remedies. The review is an attempt at assimilating the information from available literature on the role of different neurotransmitters involved in neuroinflammation and their connection in AD, PD, and epilepsy and applications of plant-based therapies in the prevention and cure of the above-mentioned diseases.
Collapse
Affiliation(s)
- Dharmaraj Sharma
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
| | - Bitupan Rajbongshi
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
| | - Tarik Isphak
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
| | - Sunfung Basumatary
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
| | - Kundan Dutta
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, India
| | - Ashis Kumar Goswami
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
4
|
Xue S, Yi P, Mao Y, Zhan Z, Cai Y, Song Z, Wang K, Yang K, Song Y, Wang X, Long H. Nucleus accumbens shell electrical lesion attenuates seizures and gliosis in chronic temporal lobe epilepsy rats. Epileptic Disord 2025; 27:204-218. [PMID: 39570088 PMCID: PMC12065120 DOI: 10.1002/epd2.20316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most prevalent form of epilepsy. Prior research has indicated the involvement of the nucleus accumbens shell (NAcSh) in the process of epileptogenesis, thereby implying its potential as a therapeutic target for TLE. In the present study, we investigated the antiepileptic effect of the NAcSh electrical lesion. METHODS Chronic TLE was induced by stereotactic injection of kainic acid (KA) into the hippocampus 3 weeks after KA administration, and NAcSh electrical lesions were performed. Seizures in rats were monitored by video electroencephalogram (EEG) 1 week following the NAcSh electrical lesion. Besides, the spatial memory function assessment in rats was conducted using the Morris water maze (MWM) test in the final week of the experiment. Later, hippocampal glial cell activation and neuron loss in rats were evaluated through immunohistochemistry. RESULTS TLE rats subjected to NAcSh electrical lesion exhibited a significant reduction in the frequency of seizures compared to untreated TLE rats. Furthermore, NAcSh electrical lesion led to less activation of hippocampal glial cells and fewer neuronal loss in TLE rats. It is worth noting that the NAcSh electrical lesion did not cause additional memory impairment. SIGNIFICANCE In the present study, the NAcSh electrical lesion exhibited a definitive therapeutic effect on the chronic TLE rat model, potentially due to decreased hippocampal TLE-induced activation of glial cells and neuron loss. In conclusion, our results indicated that the NAcSh is a promising therapeutic target for TLE and possesses high potential for clinical application.
Collapse
Affiliation(s)
- Shuaishuai Xue
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Peiyao Yi
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Yangqi Mao
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Zhengming Zhan
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Yonghua Cai
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Zibin Song
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Kewan Wang
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Kaijun Yang
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Ye Song
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Xingqin Wang
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Hao Long
- Department of Neurosurgery, Institute of Brain DiseasesNanfang Hospital of Southern Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Wu M, Zhang R, Fu P, Mei Y. Disrupted astrocyte-neuron signaling reshapes brain activity in epilepsy and Alzheimer's disease. Neuroscience 2025; 570:132-151. [PMID: 39986432 DOI: 10.1016/j.neuroscience.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Astrocytes establish dynamic interactions with surrounding neurons and synchronize neuronal networks within a specific range. However, these reciprocal astrocyte-neuronal interactions are selectively disrupted in epilepsy and Alzheimer's disease (AD), which contributes to the initiation and progression of network hypersynchrony. Deciphering how disrupted astrocyte-neuronal signaling reshapes brain activity is crucial to prevent subclinical epileptiform activity in epilepsy and AD. In this review, we provide an overview of the diverse astrocyte-neuronal crosstalk in maintaining of network activity via homeostatic control of extracellular ions and transmitters, synapse formation and elimination. More importantly, since AD and epilepsy share the common symptoms of neuronal hyperexcitability and astrogliosis, we then explore the crosstalk between astrocytes and neurons in the context of epilepsy and AD and discuss how these disrupted interactions reshape brain activity in pathological conditions. Collectively, this review sheds light on how disrupted astrocyte-neuronal signaling reshapes brain activity in epilepsy and AD, and highlights that modifying astrocyte-neuronal signaling could be a therapeutic approach to prevent epileptiform activity in AD.
Collapse
Affiliation(s)
- Mengjie Wu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruonan Zhang
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Fu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Wang J, Kuang S, Wei Z, Liang S. Research progress of connexins in epileptogensis. ACTA EPILEPTOLOGICA 2025; 7:14. [PMID: 40217413 PMCID: PMC11960343 DOI: 10.1186/s42494-025-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/12/2025] [Indexed: 04/15/2025] Open
Abstract
Epilepsy, a chronic neurological disorder, is characterized by dysfunction in neural networks. Gap junctions and hemichannels, which are integral to the astrocyte connection network, play a critical role in epilepsy. Connexins, the components of astrocyte gap junctions and hemichannels, can be activated to transfer glutamate, adenosine triphosphate, and other chemicals, potentially leading to seizures. Connexins therefore hold significant potential for epilepsy treatment. This review focuses on connexin 43 and provides a brief overview of other connexins and pannexin 1. Understanding the relationship between connexins and epilepsy offers theoretical support for developing new antiseizure medications.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56, South Lishi Road, Xicheng District, Beijing, 100045, China
| | - Suhui Kuang
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56, South Lishi Road, Xicheng District, Beijing, 100045, China
| | - Zhirong Wei
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56, South Lishi Road, Xicheng District, Beijing, 100045, China
| | - Shuli Liang
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56, South Lishi Road, Xicheng District, Beijing, 100045, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China.
| |
Collapse
|
7
|
Di Chiano M, Milior P, Poulot‐Becq‐Giraudon Y, Lanfredini R, Milior G. The Role of Complexity Theory in Understanding Brain's Neuron-Glia Interactions. Eur J Neurosci 2025; 61:e70050. [PMID: 40074717 PMCID: PMC11903385 DOI: 10.1111/ejn.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/05/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Brain information processing complexity is conventionally recognized as derived from neuronal activity, with neurons and their dynamic signalling responsible for the transfer and processing of information. However, the brain also contains other non-neuronal cells, glial cells, which exceed the number of neurons and are involved in the processes related with information coding by neural networks and underlying brain functions. Decisive advances in the characterization of the molecular and physiological properties of glial cells shed light on their active roles in neurotransmission and neuronal physiopathology. This expanded relationship between neurons and glia challenges traditional neurobiology by highlighting their reciprocal influence, where it is difficult to determine whether neuronal or glial processes initiate and drive the interactions. This interplay creates a dilemma, where the causal hierarchy between these two cell types remains unresolved. A philosophical tool, the 'Theory of Complexity' of Edgard Morin can help to better explain and study the complexity of neuron-glia interactions. Morin's proposal on complexity is useful to transform brain knowledge, in order to review the brain molecular functions in antireductionist pattern. In this manuscript, we will discuss how to use the 'retroactive loop' principle from Morin's 'Theory of Complexity' at the brain molecular level, proposing a new philosophical-experimental grid that can help neuroscientists for a better understanding of the glia-neuron interactions in the brain.
Collapse
Affiliation(s)
- M. Di Chiano
- Department of Translational Biomedicine and Neuroscience (DiBraiN)University of Bari Aldo MoroBariItaly
| | - P. Milior
- Philosophy Coaching, Department of HumanitiesUniversity of FlorenceFlorenceItaly
| | - Y. Poulot‐Becq‐Giraudon
- Laboratory of Neurodegenerative Diseases, CNRS, Molecular Imaging Center (MIRcen)Paris‐Saclay University, French Alternative Energies and Atomic Energy Commission (CEA)Fontenay‐aux‐RosesFrance
| | - R. Lanfredini
- Theoretical Philosophy, Department of HumanitiesUniversity of FlorenceFlorenceItaly
| | - G. Milior
- Laboratory of Neurodegenerative Diseases, CNRS, Molecular Imaging Center (MIRcen)Paris‐Saclay University, French Alternative Energies and Atomic Energy Commission (CEA)Fontenay‐aux‐RosesFrance
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERMUniversité PSLParisFrance
| |
Collapse
|
8
|
Tyurikova O, Kopach O, Zheng K, Rathore D, Codadu N, Wu SY, Shen Y, Campbell RE, Wykes RC, Volynski K, Savtchenko LP, Rusakov DA. Astrocyte Kir4.1 expression level territorially controls excitatory transmission in the brain. Cell Rep 2025; 44:115299. [PMID: 39951378 DOI: 10.1016/j.celrep.2025.115299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Intense brain activity elevates extracellular potassium, potentially leading to overexcitation and seizures. Astrocytes are crucial for restoring healthy potassium levels, and an emerging focus on their Kir4.1 channels has reopened the quest into the underlying mechanisms. We find that the Kir4.1 level in individual astrocytes sets the kinetics of their potassium and glutamate uptake current. Combining electrophysiology with multiplexed optical sensor imaging and FLIM reveals that rises in extracellular potassium would normally boost presynaptic Ca2+ entry and release probability at excitatory synapses unless such synapses are surrounded by the Kir4.1-overexpressing astrocytes. Inside the territories of Kir4.1-overexpressing astrocytes, high-frequency afferent stimulation fails to induce long-term synaptic potentiation, and the high-potassium waves of cortical spreading depolarization are markedly attenuated. Biophysical exploration explains how astrocytes can regulate local potassium homeostasis by engaging Kir4.1 channels. Our findings thus point to a fundamental astrocytic mechanism that can restrain the activity-driven rise of excitability in brain circuits.
Collapse
Affiliation(s)
- Olga Tyurikova
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Olga Kopach
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Neuroscience and Cell Biology Research Institute, City St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Kaiyu Zheng
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Daman Rathore
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Neela Codadu
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rob C Wykes
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Division of Neuroscience & Centre for Nanotechnology in Medicine, The University of Manchester, Manchester M13 9PL, UK
| | - Kirill Volynski
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Leonid P Savtchenko
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
9
|
Kompier NF, Siemonsmeier G, Meyer N, Kettenmann H, Rathjen FG. Visualization of Gap Junction-Mediated Astrocyte Coupling in Acute Mouse Brain Slices. Bio Protoc 2025; 15:e5220. [PMID: 40028015 PMCID: PMC11865822 DOI: 10.21769/bioprotoc.5220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 03/05/2025] Open
Abstract
Gap junctions are transmembrane protein channels that enable the exchange of small molecules such as ions, second messengers, and metabolites between adjacent cells. Gap junctions are found in various mammalian organs, including skin, endothelium, liver, pancreas, muscle, and central nervous system (CNS). In the CNS, they mediate coupling between neural cells including glial cells, and the resulting panglial networks are vital for brain homeostasis. Tracers of sufficiently small molecular mass can diffuse across gap junctions and are used to visualize the extent of cell-to-cell coupling in situ by delivering them to a single cell through sharp electrodes or patch-clamp micropipettes. Here, we describe a protocol for pre-labeling and identification of astrocytes in acute mouse forebrain slices using Sulforhodamine 101 (SR101). Fluorescent cells can then be targeted for whole-cell patch-clamp, which allows for further confirmation of astroglial identity by assessing their electrophysiological properties, as well as for passive dialysis with a tracer such as biocytin. Slices can then be subjected to chemical fixation and immunostaining to detect dye-coupled networks. This protocol provides a method for the identification of astrocytes in live tissue through SR101 labeling. Alternatively, transgenic reporter mice can also be used to identify astrocytes. While we illustrate the use of this protocol for the study of glial networks in the mouse brain, the general principles are applicable to other species, tissues, and cell types. Key features • Pre-labeling of live astrocytes in acute adult mouse brain slices using the dye Sulforhodamine 101. • Dialysis of biocytin into individual astrocytes using whole-cell patch-clamp electrophysiology. • Staining of biocytin by streptavidin and immunostaining of GFAP, imaging, and analysis of dye-coupled astrocytic networks. • Can be used for other glial cell types and might be adapted to other tissues and species.
Collapse
Affiliation(s)
- Nine F. Kompier
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Niklas Meyer
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fritz G. Rathjen
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
10
|
Wang HT, Lu ST, Xia ZH, Xu T, Zou WY, Sun MQ. Ciliary neurotrophic factor activation of astrocytes mediates neuronal damage via the IL‑6/IL‑6R pathway. Mol Med Rep 2025; 31:32. [PMID: 39575470 PMCID: PMC11600100 DOI: 10.3892/mmr.2024.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/24/2024] [Indexed: 11/29/2024] Open
Abstract
The occurrence of epilepsy is a spontaneous and recurring process due to abnormal neuronal firing in the brain. Epilepsy is understood to be caused by an imbalance between excitatory and inhibitory neurotransmitters in the neural network. The close association between astrocytes and synapses can regulate the excitability of neurons through the clearance of neurotransmitters. Therefore, the abnormal function of astrocytes can lead to the onset and development of epilepsy. The onset of epilepsy can produce a large number of inflammatory mediators, which can aggravate epileptic seizures, leading to a vicious cycle. Neurons and glial cells interact to promote the onset and maintenance of epilepsy, but the specific underlying molecular mechanisms need to be further studied. Ciliary neurotrophic factor (CNTF) belongs to the IL‑6 cytokine family and is mainly secreted by astrocytes and Schwann cells. In the normal physiological state, CNTF levels are low, but in an epileptic state, CNTF levels in the serum and tears of patients are elevated. Astrocyte activation plays an important role in epileptic seizures. CNTF activates astrocytes to produce a variety of secreted proteins, which are secreted into the astrocyte culture medium (ACM), thus forming a distinct culture medium (CNTF‑ACM) that can be used to study the effect of astrocytes on neurons in vitro. CNTF‑activated astrocytes increase the secretion of the pro‑inflammatory factor IL‑6. In the present study, CNTF‑ACM was applied to primary cerebral cortical neurons to observe the specific effects of IL‑6 in CNTF‑ACM on neuronal activity and excitability. The results suggested that CNTF‑ACM can reduce neuronal activity via the IL‑6/IL‑6R pathway, promote neuronal apoptosis, increase Ca2+ inflow, activate the large conductance calcium‑activated potassium channel and enhance neuronal excitability. The results of the present study further revealed the functional changes of astrocytes after CNTF activated astrocytes and the effects on neuronal activity and excitability, thereby providing new experimental evidence for the role of communication between astrocytes and neurons in the mechanism of epileptic seizures.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
| | - Si-Tong Lu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Histology and Embryology, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Stomatology, Wuhan College of Arts and Science, Wuhan, Hubei 430101, P.R. China
| | - Zhi-Hui Xia
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Histology and Embryology, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
| | - Tao Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Clinical Laboratory and Diagnostics, Laboratory Medicine College, Bengbu Medical University, Bengbu, Anhui, 233030, P.R. China
| | - Wei-Yan Zou
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Histology and Embryology, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
| | - Mei-Qun Sun
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Histology and Embryology, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
11
|
Eberhard J, Henning L, Fülle L, Knöpper K, Böhringer J, Graelmann FJ, Hänschke L, Kenzler J, Brosseron F, Heneka MT, Domingos AI, Eyerich S, Lochner M, Weighardt H, Bedner P, Steinhäuser C, Förster I. Ablation of CCL17-positive hippocampal neurons induces inflammation-dependent epilepsy. Epilepsia 2025; 66:554-568. [PMID: 39607395 PMCID: PMC11827734 DOI: 10.1111/epi.18200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Neuronal cell death and neuroinflammation are characteristic features of epilepsy, but it remains unclear whether neuronal cell death as such is causative for the development of epileptic seizures. To test this hypothesis, we established a novel mouse line permitting inducible ablation of pyramidal neurons by inserting simian diphtheria toxin (DT) receptor (DTR) cDNA into the Ccl17 locus. The chemokine CCL17 is expressed in pyramidal CA1 neurons in adult mice controlling microglial quiescence. METHODS Seizure activity in CCL17-DTR mice was analyzed by electroencephalographic recordings following treatment with DT for 3 consecutive days. Neuroinflammation and neuronal cell death were evaluated by (immuno)histochemistry. Pharmacological inhibition of TNFR1 signaling was achieved by treatment with XPro1595, a dominant-negative inhibitor of soluble tumor necrosis factor. RESULTS Neuronal cell death was detectable 7 days (d7) after the first DT injection in heterozygous CCL17-DTR mice. Spontaneous epileptic seizures were observed in the vast majority of mice, often with an initial peak at d6-9, followed by a period of reduced activity and a gradual increase during the 1-month observation period. Microglial reactivity was overt from d5 after DT administration not only in the CA1 region but also in the CA2/CA3 area, shortly followed by astrogliosis. Reactive microgliosis and astrogliosis persisted until d30 and, together with neuronal loss and stratum radiatum shrinkage, reflected important features of human hippocampal sclerosis. Granule cell dispersion was detectable only 3 months after DT treatment. Application of XPro1595 significantly reduced chronic seizure burden without affecting the development of hippocampal sclerosis. SIGNIFICANCE In conclusion, our data demonstrate that sterile pyramidal neuronal death is sufficient to cause epilepsy in the absence of other pathological processes. The CCL17-DTR mouse line may thus be a valuable model for further mechanistic studies on epilepsy and assessment of antiseizure medication.
Collapse
Affiliation(s)
- Judith Eberhard
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical FacultyUniversity of BonnBonnGermany
- Deutsche ForschungsgemeinschaftBonnGermany
| | - Lorenz Fülle
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
- Business Development Europe Research Services, WuXi Biologics, Leverkusen, Germany
| | - Konrad Knöpper
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
- Howard Hughes Medical Institute and Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jana Böhringer
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Frederike J. Graelmann
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Lea Hänschke
- Molecular Developmental Biology, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Julia Kenzler
- Institute of Cellular Neurosciences, Medical FacultyUniversity of BonnBonnGermany
- Sanofi‐Aventis DeutschlandMedical Operations General Medicines in Germany, Switzerland, Austria (GSA)BerlinGermany
| | | | - Michael T. Heneka
- German Center for Neurodegenerative DiseasesBonnGermany
- Luxembourg Center for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Ana I. Domingos
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| | - Stefanie Eyerich
- Institute for Medical Microbiology, Immunology, and HygieneTechnical University of MunichMunichGermany
- ZAUM—Center of Allergy and EnvironmentTechnical University and Helmholtz Center MunichMunichGermany
| | - Matthias Lochner
- Institute for Medical Microbiology, Immunology, and HygieneTechnical University of MunichMunichGermany
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
| | - Heike Weighardt
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical FacultyUniversity of BonnBonnGermany
| | | | - Irmgard Förster
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| |
Collapse
|
12
|
Ghouli MR, Binder DK. Neuroglia in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:69-86. [PMID: 40148058 DOI: 10.1016/b978-0-443-19102-2.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Epilepsy is a group of neurologic diseases characterized by spontaneous, repetitive disruption to neuronal activity. Neurons have been at the core of epilepsy research efforts, and pharmacotherapies historically have been generated by targeting neuronal mechanisms. As a result, most currently available antiseizure drugs (ASDs) work to either decrease excitatory glutamatergic neurotransmission or to increase inhibitory GABAergic neurotransmission. However, ASDs may have undesirable side effects on cognition and also fail to control seizures in approximately 30% of epilepsy patients. In recent years, glia have surfaced as essential modulators of neuronal function in health and disease. The redirection of focus onto neuroglia provides new perspectives and opportunities to generate novel therapeutic targets that may treat refractory epilepsy and diminish the unwanted side effect profile of current treatments. In this chapter, we discuss the contribution of astroglia, oligodendroglia, and microglia to the genesis, development, and progression of epilepsy, and we highlight key enzymes, receptors, transporters, and channels that may be pursued as nonneuronal targets for novel ASDs.
Collapse
Affiliation(s)
- Manolia R Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
13
|
Peter-Okaka U, Boison D. Neuroglia and brain energy metabolism. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:117-126. [PMID: 40122620 PMCID: PMC12011283 DOI: 10.1016/b978-0-443-19104-6.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The glial control of energy homeostasis is of crucial importance for health and disease. Astrocytes in particular play a major role in controlling the equilibrium among adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine. Any energy crisis leads to a drop in ATP, and the resulting increase in adenosine is an evolutionary ancient mechanism to suppress energy-consuming activities. The maintenance of brain energy homeostasis, in turn, requires the availability of energy sources, such as glucose and ketones. Astrocytes have assumed an important role in enabling efficient energy utilization by neurons. In addition, neurons are under the metabolic control of astrocytes through regulation of glutamate and GABA levels. The intricate interplay between glial brain energy metabolism and brain function can be best understood once the homeostatic system of energy metabolism is brought out of control. This has best been studied within the context of epilepsy where metabolic treatments provide unprecedented opportunities for the control of seizures that are refractory to conventional antiseizure medications. This chapter will discuss astroglial energy metabolism in the healthy brain and will use epilepsy as a model condition in which glial brain energy homeostasis is disrupted. We will conclude with an outlook on how those principles can be applied to other conditions such as Alzheimer disease.
Collapse
Affiliation(s)
- Uchenna Peter-Okaka
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
14
|
Dzyubenko E, Hermann DM. Neuroglia and extracellular matrix molecules. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:197-211. [PMID: 40122625 DOI: 10.1016/b978-0-443-19104-6.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter provides a comprehensive overview of the roles of astrocytes, microglia, and the extracellular matrix (ECM) in regulating neuroplasticity and maintaining brain homeostasis. Astrocytes provide essential metabolic support to neurons, regulate synapse development, support neuroplasticity mechanisms, and modulate neurotransmission. Microglia, the resident immune cells of the brain, play a critical role in neuroinflammatory responses and homeostatic brain regulation by modulating synapse formation and pruning. The extracellular space (ECS) mediates intercellular interactions, provides a highly regulated environment for intercellular communication, and is filled with ECM molecules. Proteoglycans and polysaccharides of the ECM play a vital role not only in brain development but also in brain function throughout life. In the injured brain, neuroplasticity and regeneration can be bidirectionally regulated as a result of the interplay between ECM, astrocytes, and microglia. The modulation of synaptic strength, structural remodeling, and modification of intrinsic neuronal properties are among the central mechanisms that contribute to neuronal plasticity in health and disease. We believe that the understanding of ECM-glia interactions and their role in neuroplasticity regulation is key to the development of novel therapeutic strategies in neurologic disorders.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
15
|
Muñoz-Ballester C, Leitzel O, Golf S, Phillips CM, Zeitz MJ, Pandit R, Smyth JW, Lamouille S, Robel S. Astrocytic connexin43 phosphorylation contributes to seizure susceptibility after mild Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623104. [PMID: 39605358 PMCID: PMC11601309 DOI: 10.1101/2024.11.12.623104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Astrocytes play a crucial role in maintaining brain homeostasis through functional gap junctions (GJs) primarily formed by connexin43 (Cx43). These GJs facilitate electrical and metabolic coupling between astrocytes, allowing the passage of ions, glucose, and metabolites. Dysregulation of Cx43 has been implicated in various pathologies, including traumatic brain injury (TBI) and acquired epilepsy. We previously identified a subset of atypical astrocytes after mild TBI that exhibit reduced Cx43 expression and coupling and are correlated with the development of spontaneous seizures. Given that mild TBI affects millions globally and can lead to long-term complications, including post-traumatic epilepsy, understanding the molecular events post-TBI is critical for developing therapeutic strategies. In the present study, we assessed the heterogeneity of Cx43 protein expression after mild TBI. In accordance with our previous findings, a subset of astrocytes lost Cx43 expression. As previously reported after TBI, we also found a significant increase in total Cx43 protein expression after mild TBI, predominantly in the soluble form, suggesting that while junctional Cx43 protein levels remained stable, hemichannels and cytoplasmic Cx43 were increased. We then investigated the phosphorylation of Cx43 at serine 368 after TBI, which is known to influence GJ assembly and function. Phosphorylation of Cx43 at serine 368 is elevated following TBI and Cx43S368A mutant mice, lacking this phosphorylation, exhibited reduced susceptibility to seizures induced by pentylenetetrazol (PTZ). These findings suggest that TBI-induced Cx43 phosphorylation enhances seizure susceptibility, while inhibiting this modification presents a potential therapeutic avenue for mitigating neuronal hyperexcitability and seizure development.
Collapse
Affiliation(s)
- Carmen Muñoz-Ballester
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
| | - Owen Leitzel
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
| | - Samantha Golf
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
| | - Chelsea M Phillips
- Fralin Biomedical Research Institute at Virginia Tech Carilion,
Roanoke, 24016, VA
| | - Michael J Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion,
Roanoke, 24016, VA
| | - Rahul Pandit
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
| | - James W. Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion,
Roanoke, 24016, VA
- Department of Biological Sciences, College of Science, Virginia
Tech, Blacksburg, 24061, VA
- Virginia Tech Carilion School of Medicine, Roanoke, 24016,
VA
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion,
Roanoke, 24016, VA
- Department of Biological Sciences, College of Science, Virginia
Tech, Blacksburg, 24061, VA
- Virginia Tech Carilion School of Medicine, Roanoke, 24016,
VA
| | - Stefanie Robel
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
- Department of Physical Medicine and Rehabilitation, University of
Alabama at Birmingham, Birmingham, 35212, AL
| |
Collapse
|
16
|
Hung CF, Chiu WC, Chen JC, Chuang WC, Wang SJ. NRICM101 prevents kainic acid-induced seizures in rats by modulating neuroinflammation and the glutamatergic system. Int Immunopharmacol 2024; 140:112842. [PMID: 39094361 DOI: 10.1016/j.intimp.2024.112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Taiwan Chingguan Yihau (NRICM101) is a Traditional Chinese medicine (TCM) formula used to treat coronavirus disease 2019; however, its impact on epilepsy has not been revealed. Therefore, the present study evaluated the anti-epileptogenic effect of orally administered NRICM101 on kainic acid (KA)-induced seizures in rats and investigated its possible mechanisms of action. Sprague-Dawley rats were administered NRICM101 (300 mg/kg) by oral gavage for 7 consecutive days before receiving an intraperitoneal injection of KA (15 mg/kg). NRICM101 considerably reduced the seizure behavior and electroencephalographic seizures induced by KA in rats. NRICM101 also significantly decreased the neuronal loss and glutamate increase and increased GLAST, GLT-1, GAD67, GDH and GS levels in the cortex and hippocampus of KA-treated rats. In addition, NRICM101 significantly suppressed astrogliosis (as determined by decreased GFAP expression); neuroinflammatory signaling (as determined by reduced HMGB1, TLR-4, IL-1β, IL-1R, IL-6, p-JAK2, p-STAT3, TNF-α, TNFR1 and p-IκB levels, and increased cytosolic p65-NFκB levels); and necroptosis (as determined by decreased p-RIPK3 and p-MLKL levels) in the cortex and hippocampus of KA-treated rats. The effects of NRICM101 were similar to those of carbamazepine, a well-recognized antiseizure drug. Furthermore, no toxic effects of NRICM101 on the liver and kidney were observed in NRICM101-treated rats. The results indicate that NRICM101 has antiepileptogenic and neuroprotective effects through the suppression of the inflammatory cues (HMGB1/TLR4, Il-1β/IL-1R1, IL-6/p-JAK2/p-STAT3, and TNF-α/TNFR1/NF-κB) and necroptosis signaling pathways (TNF-α/TNFR1/RIP3/MLKL) associated with glutamate level regulation in the brain and is innocuous. Our findings highlight the promising role of NRICM101 in the management of epilepsy.
Collapse
Affiliation(s)
- Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Che Chiu
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Department of Psychiatry, Cathay General Hospital, Taipei 106438, Taiwan
| | - Jia-Cih Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan.
| |
Collapse
|
17
|
Sanz-Gálvez R, Falardeau D, Kolta A, Inglebert Y. The role of astrocytes from synaptic to non-synaptic plasticity. Front Cell Neurosci 2024; 18:1477985. [PMID: 39493508 PMCID: PMC11527691 DOI: 10.3389/fncel.2024.1477985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Information storage and transfer in the brain require a high computational power. Neuronal network display various local or global mechanisms to allow information storage and transfer in the brain. From synaptic to intrinsic plasticity, the rules of input-output function modulation have been well characterized in neurons. In the past years, astrocytes have been suggested to increase the computational power of the brain and we are only just starting to uncover their role in information processing. Astrocytes maintain a close bidirectional communication with neurons to modify neuronal network excitability, transmission, axonal conduction, and plasticity through various mechanisms including the release of gliotransmitters or local ion homeostasis. Astrocytes have been significantly studied in the context of long-term or short-term synaptic plasticity, but this is not the only mechanism involved in memory formation. Plasticity of intrinsic neuronal excitability also participates in memory storage through regulation of voltage-gated ion channels or axonal morphological changes. Yet, the contribution of astrocytes to these other forms of non-synaptic plasticity remains to be investigated. In this review, we summarized the recent advances on the role of astrocytes in different forms of plasticity and discuss new directions and ideas to be explored regarding astrocytes-neuronal communication and regulation of plasticity.
Collapse
Affiliation(s)
- Rafael Sanz-Gálvez
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Dominic Falardeau
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Arlette Kolta
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Yanis Inglebert
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| |
Collapse
|
18
|
Genocchi B, Ahtiainen A, Niemi A, Barros MT, Tanskanen JMA, Lenk K, Hyttinen J, Puthanmadam Subramaniyam N. Astrocytes induce desynchronization and reduce predictability in neuron-astrocyte networks cultured on microelectrode arrays. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240839. [PMID: 39479242 PMCID: PMC11521599 DOI: 10.1098/rsos.240839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
In this article, we aim to study how astrocytes control electrophysiological activity during neuronal network formation. We used a combination of spike/burst analysis, classification of spike waveforms based on various signal properties and tools from information theory to demonstrate how astrocytes modulate the electrical activity of neurons using microelectrode array (MEA) signals. We cultured rat primary cortical neurons and astrocytes on 60-electrode MEAs with different neuron/astrocyte ratios ranging from 'pure' neuronal cultures to co-cultures containing 50% neurons and 50% astrocytes. Our results show that astrocytes desynchronize the network and reduce predictability in the signals and affect the repolarization phase of the action potentials. Our work highlights that it is crucial to go beyond standard MEA analysis to assess how astrocytes control neuronal cultures and investigate any dysfunction that could potentially result in neuronal hyperactivity.
Collapse
Affiliation(s)
- Barbara Genocchi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annika Niemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Michael T. Barros
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, UK
| | | | - Kerstin Lenk
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed, Graz, Austria
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | |
Collapse
|
19
|
Liotta A, Loroch S, Wallach I, Klewe K, Marcus K, Berndt N. Metabolic Adaptation in Epilepsy: From Acute Response to Chronic Impairment. Int J Mol Sci 2024; 25:9640. [PMID: 39273587 PMCID: PMC11395010 DOI: 10.3390/ijms25179640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is characterized by hypersynchronous neuronal discharges, which are associated with an increased cerebral metabolic rate of oxygen and ATP demand. Uncontrolled seizure activity (status epilepticus) results in mitochondrial exhaustion and ATP depletion, which potentially generate energy mismatch and neuronal loss. Many cells can adapt to increased energy demand by increasing metabolic capacities. However, acute metabolic adaptation during epileptic activity and its relationship to chronic epilepsy remains poorly understood. We elicited seizure-like events (SLEs) in an in vitro model of status epilepticus for eight hours. Electrophysiological recording and tissue oxygen partial pressure recordings were performed. After eight hours of ongoing SLEs, we used proteomics-based kinetic modeling to evaluate changes in metabolic capacities. We compared our findings regarding acute metabolic adaptation to published proteomic and transcriptomic data from chronic epilepsy patients. Epileptic tissue acutely responded to uninterrupted SLEs by upregulating ATP production capacity. This was achieved by a coordinated increase in the abundance of proteins from the respiratory chain and oxidative phosphorylation system. In contrast, chronic epileptic tissue shows a 25-40% decrease in ATP production capacity. In summary, our study reveals that epilepsy leads to dynamic metabolic changes. Acute epileptic activity boosts ATP production, while chronic epilepsy reduces it significantly.
Collapse
Affiliation(s)
- Agustin Liotta
- Department of Anesthesiology and Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stefan Loroch
- Medizinisches Proteom-Center, Center for Protein Diagnostics (PRODI), Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- QC-MS/Fa. Dr. Loroch, BioMedizinZentrum, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Iwona Wallach
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kristoffer Klewe
- QC-MS/Fa. Dr. Loroch, BioMedizinZentrum, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Center for Protein Diagnostics (PRODI), Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Nikolaus Berndt
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Department of Molecular Toxicology, 14558 Nuthetal, Germany
| |
Collapse
|
20
|
Shigetomi E, Suzuki H, Hirayama YJ, Sano F, Nagai Y, Yoshihara K, Koga K, Tateoka T, Yoshioka H, Shinozaki Y, Kinouchi H, Tanaka KF, Bito H, Tsuda M, Koizumi S. Disease-relevant upregulation of P2Y 1 receptor in astrocytes enhances neuronal excitability via IGFBP2. Nat Commun 2024; 15:6525. [PMID: 39117630 PMCID: PMC11310333 DOI: 10.1038/s41467-024-50190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive astrocytes play a pivotal role in the pathogenesis of neurological diseases; however, their functional phenotype and the downstream molecules by which they modify disease pathogenesis remain unclear. Here, we genetically increase P2Y1 receptor (P2Y1R) expression, which is upregulated in reactive astrocytes in several neurological diseases, in astrocytes of male mice to explore its function and the downstream molecule. This astrocyte-specific P2Y1R overexpression causes neuronal hyperexcitability by increasing both astrocytic and neuronal Ca2+ signals. We identify insulin-like growth factor-binding protein 2 (IGFBP2) as a downstream molecule of P2Y1R in astrocytes; IGFBP2 acts as an excitatory signal to cause neuronal excitation. In neurological disease models of epilepsy and stroke, reactive astrocytes upregulate P2Y1R and increase IGFBP2. The present findings identify a mechanism underlying astrocyte-driven neuronal hyperexcitability, which is likely to be shared by several neurological disorders, providing insights that might be relevant for intervention in diverse neurological disorders.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Hideaki Suzuki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yukiho J Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yuki Nagai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Koga
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Neurophysiology, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Toru Tateoka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
21
|
Araki S, Onishi I, Ikoma Y, Matsui K. Astrocyte switch to the hyperactive mode. Glia 2024; 72:1418-1434. [PMID: 38591259 DOI: 10.1002/glia.24537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Increasing pieces of evidence have suggested that astrocyte function has a strong influence on neuronal activity and plasticity, both in physiological and pathophysiological situations. In epilepsy, astrocytes have been shown to respond to epileptic neuronal seizures; however, whether they can act as a trigger for seizures has not been determined. Here, using the copper implantation method, spontaneous neuronal hyperactivity episodes were reliably induced during the week following implantation. With near 24-h continuous recording for over 1 week of the local field potential with in vivo electrophysiology and astrocyte cytosolic Ca2+ with the fiber photometry method, spontaneous occurrences of seizure episodes were captured. Approximately 1 day after the implantation, isolated aberrant astrocyte Ca2+ events were often observed before they were accompanied by neuronal hyperactivity, suggesting the role of astrocytes in epileptogenesis. Within a single developed episode, astrocyte Ca2+ increase preceded the neuronal hyperactivity by ~20 s, suggesting that actions originating from astrocytes could be the trigger for the occurrence of epileptic seizures. Astrocyte-specific stimulation by channelrhodopsin-2 or deep-brain direct current stimulation was capable of inducing neuronal hyperactivity. Injection of an astrocyte-specific metabolic inhibitor, fluorocitrate, was able to significantly reduce the magnitude of spontaneously occurring neuronal hyperactivity. These results suggest that astrocytes have a role in triggering individual seizures and the reciprocal astrocyte-neuron interactions likely amplify and exacerbate seizures. Therefore, future epilepsy treatment could be targeted at astrocytes to achieve epilepsy control.
Collapse
Affiliation(s)
- Shun Araki
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ichinosuke Onishi
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
23
|
Liu ZY, Li YQ, Wang DL, Wang Y, Qiu WT, Qiu YY, Zhang HL, You QL, Liu SM, Liang QN, Wu EJ, Hu BJ, Sun XD. Agrin-Lrp4 pathway in hippocampal astrocytes restrains development of temporal lobe epilepsy through adenosine signaling. Cell Biosci 2024; 14:66. [PMID: 38783336 PMCID: PMC11112884 DOI: 10.1186/s13578-024-01241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.
Collapse
Affiliation(s)
- Zi-Yang Liu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology of the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Die-Lin Wang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wan-Ting Qiu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu-Yang Qiu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He-Lin Zhang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiang-Long You
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shi-Min Liu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiu-Ni Liang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Er-Jian Wu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Jie Hu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiang-Dong Sun
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
25
|
Häussler U, Neres J, Vandenplas C, Eykens C, Kadiu I, Schramm C, Fleurance R, Stanley P, Godard P, de Mot L, van Eyll J, Knobeloch KP, Haas CA, Dedeurwaerdere S. Downregulation of Ubiquitin-Specific Protease 15 (USP15) Does Not Provide Therapeutic Benefit in Experimental Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2024; 61:2367-2389. [PMID: 37874479 PMCID: PMC10973041 DOI: 10.1007/s12035-023-03692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Structural epilepsies display complex immune activation signatures. However, it is unclear which neuroinflammatory pathways drive pathobiology. Transcriptome studies of brain resections from mesial temporal lobe epilepsy (mTLE) patients revealed a dysregulation of transforming growth factor β, interferon α/β, and nuclear factor erythroid 2-related factor 2 pathways. Since these pathways are regulated by ubiquitin-specific proteases (USP), in particular USP15, we hypothesized that USP15 blockade may provide therapeutic relief in treatment-resistant epilepsies. For validation, transgenic mice which either constitutively or inducibly lack Usp15 gene expression underwent intrahippocampal kainate injections to induce mTLE. We show that the severity of status epilepticus is unaltered in mice constitutively lacking Usp15 compared to wild types. Cell death, reactive gliosis, and changes in the inflammatory transcriptome were pronounced at 4 days after kainate injection. However, these brain inflammation signatures did not differ between genotypes. Likewise, induced deletion of Usp15 in chronic epilepsy did not affect seizure generation, cell death, gliosis, or the transcriptome. Concordantly, siRNA-mediated knockdown of Usp15 in a microglial cell line did not impact inflammatory responses in the form of cytokine release. Our data show that a lack of USP15 is insufficient to modulate the expression of relevant neuroinflammatory pathways in an mTLE mouse model and do not support targeting USP15 as a therapeutic approach for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany.
| | - João Neres
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Catherine Vandenplas
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Caroline Eykens
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Irena Kadiu
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Carolin Schramm
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Renaud Fleurance
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Phil Stanley
- Early Development Statistics, UCB Celltech, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - Patrice Godard
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Laurane de Mot
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Jonathan van Eyll
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Klaus-Peter Knobeloch
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104, Freiburg, Germany
| | | |
Collapse
|
26
|
Anders S, Breithausen B, Unichenko P, Herde MK, Minge D, Abramian A, Behringer C, Deshpande T, Boehlen A, Domingos C, Henning L, Pitsch J, Kim YB, Bedner P, Steinhäuser C, Henneberger C. Epileptic activity triggers rapid ROCK1-dependent astrocyte morphology changes. Glia 2024; 72:643-659. [PMID: 38031824 PMCID: PMC10842783 DOI: 10.1002/glia.24495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Long-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are. We therefore used two-photon excitation fluorescence microscopy to monitor astrocyte morphology in parallel to the induction of epileptiform activity. We uncovered astrocyte morphology changes within 10-20 min under various experimental conditions in acute hippocampal slices. In vivo, induction of status epilepticus resulted in similarly altered astrocyte morphology within 30 min. Further analysis in vitro revealed a persistent volume reduction of peripheral astrocyte processes triggered by induction of epileptiform activity. In addition, an impaired diffusion within astrocytes and within the astrocyte network was observed, which most likely is a direct consequence of the astrocyte remodeling. These astrocyte morphology changes were prevented by inhibition of the Rho GTPase RhoA and of the Rho-associated kinase (ROCK). Selective deletion of ROCK1 but not ROCK2 from astrocytes also prevented the morphology change after induction of epileptiform activity and reduced epileptiform activity. Together these observations reveal that epileptic activity triggers a rapid ROCK1-dependent astrocyte morphology change, which is mechanistically linked to the strength of epileptiform activity. This suggests that astrocytic ROCK1 signaling is a maladaptive response of astrocytes to the onset of epileptic activity.
Collapse
Affiliation(s)
- Stefanie Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Björn Breithausen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michel K. Herde
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniel Minge
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Adlin Abramian
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Charlotte Behringer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tushar Deshpande
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Cátia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
27
|
Kazis D, Chatzikonstantinou S, Ciobica A, Kamal FZ, Burlui V, Calin G, Mavroudis I. Epidemiology, Risk Factors, and Biomarkers of Post-Traumatic Epilepsy: A Comprehensive Overview. Biomedicines 2024; 12:410. [PMID: 38398011 PMCID: PMC10886732 DOI: 10.3390/biomedicines12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This paper presents an in-depth exploration of Post-Traumatic Epilepsy (PTE), a complex neurological disorder following traumatic brain injury (TBI), characterized by recurrent, unprovoked seizures. With TBI being a global health concern, understanding PTE is crucial for effective diagnosis, management, and prognosis. This study aims to provide a comprehensive overview of the epidemiology, risk factors, and emerging biomarkers of PTE, thereby informing clinical practice and guiding future research. The epidemiological aspect of the study reveals PTE as a significant contributor to acquired epilepsies, with varying incidence influenced by injury severity, age, and intracranial pathologies. The paper delves into the multifactorial nature of PTE risk factors, encompassing clinical, demographic, and genetic elements. Key insights include the association of injury severity, intracranial hemorrhages, and early seizures with increased PTE risk, and the roles of age, gender, and genetic predispositions. Advancements in neuroimaging, electroencephalography, and molecular biology are presented, highlighting their roles in identifying potential PTE biomarkers. These biomarkers, ranging from radiological signs to electroencephalography EEG patterns and molecular indicators, hold promise for enhancing PTE pathogenesis understanding, early diagnosis, and therapeutic guidance. The paper also discusses the critical roles of astrocytes and microglia in PTE, emphasizing the significance of neuroinflammation in PTE development. The insights from this review suggest potential therapeutic targets in neuroinflammation pathways. In conclusion, this paper synthesizes current knowledge in the field, emphasizing the need for continued research and a multidisciplinary approach to effectively manage PTE. Future research directions include longitudinal studies for a better understanding of TBI and PTE outcomes, and the development of targeted interventions based on individualized risk profiles. This research contributes significantly to the broader understanding of epilepsy and TBI.
Collapse
Affiliation(s)
- Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.)
| | - Symela Chatzikonstantinou
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat 26000, Morocco
| | - Vasile Burlui
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Gabriela Calin
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania;
| | - Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| |
Collapse
|
28
|
Enger R, Heuser K. Astrocytes as critical players of the fine balance between inhibition and excitation in the brain: spreading depolarization as a mechanism to curb epileptic activity. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1360297. [PMID: 38405021 PMCID: PMC10884165 DOI: 10.3389/fnetp.2024.1360297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Spreading depolarizations (SD) are slow waves of complete depolarization of brain tissue followed by neuronal silencing that may play a role in seizure termination. Even though SD was first discovered in the context of epilepsy research, the link between SD and epileptic activity remains understudied. Both seizures and SD share fundamental pathophysiological features, and recent evidence highlights the frequent occurrence of SD in experimental seizure models. Human data on co-occurring seizures and SD are limited but suggestive. This mini-review addresses possible roles of SD during epileptiform activity, shedding light on SD as a potential mechanism for terminating epileptiform activity. A common denominator for many forms of epilepsy is reactive astrogliosis, a process characterized by morphological and functional changes to astrocytes. Data suggest that SD mechanisms are potentially perturbed in reactive astrogliosis and we propose that this may affect seizure pathophysiology.
Collapse
Affiliation(s)
- Rune Enger
- Letten Centre and GliaLab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
29
|
Mohseni-Moghaddam P, Khaleghzadeh-Ahangar H, Atabaki R. Role of Necroptosis, a Regulated Cell Death, in Seizure and Epilepsy. Neurochem Res 2024; 49:1-13. [PMID: 37646959 DOI: 10.1007/s11064-023-04010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Epilepsy is a chronic neurological disease that is characterized by spontaneous and recurrent seizures. Regulated cell death is a controlled process and has been shown to be involved in neurodegenerative diseases. Necroptosis is a type of regulated cell death, and its association with epilepsy has been documented. Necroptosis signaling can be divided into two pathways: canonical and non-canonical pathways. Inhibition of caspase-8, dimerization of receptor-interacting protein kinase 1 (RIP1) and RIP3, activation of mixed-lineage kinase domain-like protein (MLKL), movement of MLKL to the plasma membrane, and cell rupture occurred in these pathways. Through literature review, it has been revealed that there is a relationship between seizure, neuroinflammation, and oxidative stress. The seizure activity triggers the activation of various pathways within the central nervous system, including TNF-α/matrix metalloproteases, Neogenin and Calpain/ Jun N-terminal Kinase 1, which result in distinct responses in the brain. These responses involve the activation of neurons and astrocytes, consequently leading to an increase in the expression levels of proteins and genes such as RIP1, RIP3, and MLKL in a time-dependent manner in regions such as the hippocampus (CA1, CA3, dentate gyrus, and hilus), piriform cortex, and amygdala. Furthermore, the imbalance in calcium ions, depletion of adenosine triphosphate, and elevation of extracellular glutamate and potassium within these pathways lead to the progression of necroptosis, a reduction in seizure threshold, and increased susceptibility to epilepsy. Therefore, it is plausible that therapeutic targeting of these pathways could potentially provide a promising approach for managing seizures and epilepsy.
Collapse
Affiliation(s)
- Parvaneh Mohseni-Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Rabi Atabaki
- Shahid Fakouri High School, Department of Biology Education, Department of Education, Jouybar, Iran.
| |
Collapse
|
30
|
Withers CP, Diamond JM, Yang B, Snyder K, Abdollahi S, Sarlls J, Chapeton JI, Theodore WH, Zaghloul KA, Inati SK. Identifying sources of human interictal discharges with travelling wave and white matter propagation. Brain 2023; 146:5168-5181. [PMID: 37527460 PMCID: PMC11046055 DOI: 10.1093/brain/awad259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Interictal epileptiform discharges have been shown to propagate from focal epileptogenic sources as travelling waves or through more rapid white matter conduction. We hypothesize that both modes of propagation are necessary to explain interictal discharge timing delays. We propose a method that, for the first time, incorporates both propagation modes to identify unique potential sources of interictal activity. We retrospectively analysed 38 focal epilepsy patients who underwent intracranial EEG recordings and diffusion-weighted imaging for epilepsy surgery evaluation. Interictal discharges were detected and localized to the most likely source based on relative delays in time of arrival across electrodes, incorporating travelling waves and white matter propagation. We assessed the influence of white matter propagation on distance of spread, timing and clinical interpretation of interictal activity. To evaluate accuracy, we compared our source localization results to earliest spiking regions to predict seizure outcomes. White matter propagation helps to explain the timing delays observed in interictal discharge sequences, underlying rapid and distant propagation. Sources identified based on differences in time of receipt of interictal discharges are often distinct from the leading electrode location. Receipt of activity propagating rapidly via white matter can occur earlier than more local activity propagating via slower cortical travelling waves. In our cohort, our source localization approach was more accurate in predicting seizure outcomes than the leading electrode location. Inclusion of white matter in addition to travelling wave propagation in our model of discharge spread did not improve overall accuracy but allowed for identification of unique and at times distant potential sources of activity, particularly in patients with persistent postoperative seizures. Since distant white matter propagation can occur more rapidly than local travelling wave propagation, combined modes of propagation within an interictal discharge sequence can decouple the commonly assumed relationship between spike timing and distance from the source. Our findings thus highlight the clinical importance of recognizing the presence of dual modes of propagation during interictal discharges, as this may be a cause of clinical mislocalization.
Collapse
Affiliation(s)
- C Price Withers
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua M Diamond
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Braden Yang
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn Snyder
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shervin Abdollahi
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joelle Sarlls
- NIH MRI Research Facility, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - William H Theodore
- Clinical Epilepsy Section, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara K Inati
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Brazhe A, Verisokin A, Verveyko D, Postnov D. Astrocytes: new evidence, new models, new roles. Biophys Rev 2023; 15:1303-1333. [PMID: 37975000 PMCID: PMC10643736 DOI: 10.1007/s12551-023-01145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
Astrocytes have been in the limelight of active research for about 3 decades now. Over this period, ideas about their function and role in the nervous system have evolved from simple assistance in energy supply and homeostasis maintenance to a complex informational and metabolic hub that integrates data on local neuronal activity, sensory and arousal context, and orchestrates many crucial processes in the brain. Rapid progress in experimental techniques and data analysis produces a growing body of data, which can be used as a foundation for formulation of new hypotheses, building new refined mathematical models, and ultimately should lead to a new level of understanding of the contribution of astrocytes to the cognitive tasks performed by the brain. Here, we highlight recent progress in astrocyte research, which we believe expands our understanding of how low-level signaling at a cellular level builds up to processes at the level of the whole brain and animal behavior. We start our review with revisiting data on the role of noradrenaline-mediated astrocytic signaling in locomotion, arousal, sensory integration, memory, and sleep. We then briefly review astrocyte contribution to the regulation of cerebral blood flow regulation, which is followed by a discussion of biophysical mechanisms underlying astrocyte effects on different brain processes. The experimental section is closed by an overview of recent experimental techniques available for modulation and visualization of astrocyte dynamics. We then evaluate how the new data can be potentially incorporated into the new mathematical models or where and how it already has been done. Finally, we discuss an interesting prospect that astrocytes may be key players in important processes such as the switching between sleep and wakefulness and the removal of toxic metabolites from the brain milieu.
Collapse
Affiliation(s)
- Alexey Brazhe
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/24, Moscow, 119234 Russia
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry RAS, GSP-7, Miklukho-Maklay Str., 16/10, Moscow, 117997 Russia
| | - Andrey Verisokin
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Darya Verveyko
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya st., 83, Saratov, 410012 Russia
| |
Collapse
|
33
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y, Li J. Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci 2023; 17:1217451. [PMID: 37732313 PMCID: PMC10507181 DOI: 10.3389/fnins.2023.1217451] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.
Collapse
Affiliation(s)
- Yong-mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-bei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Zhai J, Traebert M, Zimmermann K, Delaunois A, Royer L, Salvagiotto G, Carlson C, Lagrutta A. Comparative study for the IMI2-NeuroDeRisk project on microelectrode arrays to derisk drug-induced seizure liability. J Pharmacol Toxicol Methods 2023; 123:107297. [PMID: 37499956 DOI: 10.1016/j.vascn.2023.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION In the framework of the IMI2-NeuroDeRisk consortium, three in vitro electrophysiology assays were compared to improve preclinical prediction of seizure-inducing liabilities. METHODS Two cell models, primary rat cortical neurons and human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with hiPSC-derived astrocytes were tested on two different microelectrode array (MEA) platforms, Maestro Pro (Axion Biosystems) and Multiwell-MEA-System (Multi Channel Systems), in three separate laboratories. Pentylenetetrazole (PTZ) and/or picrotoxin (PTX) were included in each plate as positive (n = 3-6 wells) and ≤0.2% DMSO was used as negative controls (n = 3-12 wells). In general, concentrations in a range of 0.1-30 μM were tested, anchored, when possible, on clinically relevant exposures (unbound Cmax) were tested. Activity thresholds for drug-induced changes were set at 20%. To evaluate sensitivity, specificity and predictivity of the cell models, seizurogenic responses were defined as changes in 4 or more endpoints. Concentration dependence trends were also considered. RESULTS Neuronal activity of 33 compounds categorized as positive tool drugs, seizure-positive or seizure-negative compounds was evaluated. Acute drug effects (<60 min) were compared to baseline recordings. Time points < 15 min exhibited stronger, less variable responses to many of the test agents. For many compounds a reduction and cessation of neuronal activity was detected at higher test concentrations. There was not a single pattern of seizurogenic activity detected, even among tool compounds, likely due to different mechanisms of actions and/or off-target profiles. A post-hoc analysis focusing on changes indicative of neuronal excitation is presented. CONCLUSION All cell models showed good sensitivity, ranging from 70 to 86%. Specificity ranged from 40 to 70%. Compared to more conventional measurements of evoked activity in hippocampal slices, these plate-based models provide higher throughput and the potential to study subacute responses. Yet, they may be limited by the random, spontaneous nature of their network activity.
Collapse
Affiliation(s)
- Jin Zhai
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | | | | | - Coby Carlson
- Fujifilm Cellular Dynamics, Inc., Madison, WI, USA
| | | |
Collapse
|
35
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Abstract
Epilepsy is a neurological disorder caused by the pathological hyper-synchronization of neuronal discharges. The fundamental research of epilepsy mechanisms and the targets of drug design options for its treatment have focused on neurons. However, approximately 30% of patients suffering from epilepsy show resistance to standard anti-epileptic chemotherapeutic agents while the symptoms of the remaining 70% of patients can be alleviated but not completely removed by the current medications. Thus, new strategies for the treatment of epilepsy are in urgent demand. Over the past decades, with the increase in knowledge on the role of glia in the genesis and development of epilepsy, glial cells are receiving renewed attention. In a normal brain, glial cells maintain neuronal health and in partnership with neurons regulate virtually every aspect of brain function. In epilepsy, however, the supportive roles of glial cells are compromised, and their interaction with neurons is altered, which disrupts brain function. In this review, we will focus on the role of glia-related processes in epileptogenesis and their contribution to abnormal neuronal activity, with the major focus on the dysfunction of astroglial potassium channels, water channels, gap junctions, glutamate transporters, purinergic signaling, synaptogenesis, on the roles of microglial inflammatory cytokines, microglia-astrocyte interactions in epilepsy, and on the oligodendroglial potassium channels and myelin abnormalities in the epileptic brain. These recent findings suggest that glia should be considered as the promising next-generation targets for designing anti-epileptic drugs that may improve epilepsy and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Jelena Bogdanović Pristov
- Department of Life Sciences, University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Paola Nobili
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ljiljana Nikolić
- Department of Neurophysiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Nahtani M, Siahi M, Razjouyan J. Astrocytic-based Controller Shifts Epileptic Activity to the Chaotic State. Basic Clin Neurosci 2023; 14:491-499. [PMID: 38050566 PMCID: PMC10693812 DOI: 10.32598/bcn.2021.2877.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 12/06/2023] Open
Abstract
Introduction Investigating an effective controller to shift hippocampal epileptic periodicity to normal chaotic behavior will be new hope for epilepsy treatment. Astrocytes nourish and protect neurons and maintain synaptic transmission and network activity. Therefore, this study explored the ameliorating effect of the astrocyte computational model on epileptic periodicity. Methods Modified Morris-Lecar equations were used to model the hippocampal CA3 network. Network inhibitory parameters were employed to generate oscillation-induced epileptiform periodicity. The astrocyte controller was based on a functional dynamic mathematical model of brain astrocytic cells. Results Results demonstrated that the synchronization of two neural networks shifted the brain's chaotic state to periodicity. Applying an astrocytic controller to the synchronized networks returned the system to the desynchronized chaotic state. Conclusion It is concluded that astrocytes are probably a good model for controlling epileptic periodicity. However, more research is needed to delineate this effect. Highlights Modeling of CA3 neurons reproduced synchronized periodic epileptiform discharges.An astrocyte mathematical model modulated neuronal network excitability.The astrocyte controller desynchronized neural network periodic oscillations.Application of the astrocyte model restored a chaotic desynchronized state.Results suggest astrocytes may control hypersynchronous epileptiform activity. Plain Language Summary This study looked at whether a mathematical model of brain cells called astrocytes could help control seizure activity. Seizures happen when groups of brain cells become overly active and synchronized. Normally, brain cell activity is chaotic and unsynchronized. The researchers modeled a small network of hippocampus brain cells using equations. We adjusted the model to create seizure-like periodic synchronized activity. Then we added a mathematical astrocyte model to try to disrupt this unwanted synchronization. Astrocytes are a type of glial cell in the brain. They help nourish neurons and regulate brain cell communication. The researchers modeled astrocyte activity using equations based on calcium levels. Calcium levels affect how astrocytes communicate with brain cells. When the researchers added the astrocyte model to the seizure-like network activity, it was able to restore chaotic unsynchronized activity. The astrocyte model accomplished this by affecting the excitability of the neuronal network. These results suggest astrocytes could potentially be used to control seizure activity. More research is needed to further test this astrocyte model. Currently, many seizure patients do not respond fully to medication. Astrocyte-based treatments could potentially provide an alternative approach. The findings are notable because they demonstrate a biologically-based method to restore normal chaotic brain activity. Most previous efforts have used electrical stimulation. An astrocyte-based approach could modulate communication between brain cells in a more natural way.
Collapse
Affiliation(s)
- Mojde Nahtani
- Department of Computer and Electrical Science, Faculty of Engineering, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mehdi Siahi
- Department of Computer and Electrical Science, Faculty of Engineering, Garmsar Branch, Islamic Azad University, Garmsar, Iran
- Department of Electrical Engineering, Faculty of Mechanic, Electrical and Computer, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Razjouyan
- Institute for Clinical & Translational Research (ICTR), Baylor College of Medicine, Houston, The United States of America
| |
Collapse
|
38
|
Balaha MF, Alamer AA, Abdel-Kader MS, Alharthy KM. Ameliorative Potential of (-) Pseudosemiglabrin in Mice with Pilocarpine-Induced Epilepsy: Antioxidant, Anti-Inflammatory, Anti-Apoptotic, and Neurotransmission Modulation. Int J Mol Sci 2023; 24:10773. [PMID: 37445950 DOI: 10.3390/ijms241310773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
One prevalent neurological disorder is epilepsy. Modulating GABAergic/glutamatergic neurotransmission, Nrf2/HO-1, PI3K/Akt, and TLR-4/NF-B pathways might be a therapeutic strategy for epilepsy. Eight-week-old BALB/c mice were administered 12.5, 25, or 50 mg/kg (-) pseudosemiglabrin orally one hour before inducing epilepsy with an i.p. injection of 360 mg/kg pilocarpine. (-) Pseudosemiglabrin dose-dependently alleviated pilocarpine-induced epilepsy, as revealed by the complete repression of pilocarpine-induced convulsions and 100% survival rate in mice. Furthermore, (-) pseudosemiglabrin significantly enhanced mice's locomotor activities, brain GABA, SLC1A2, GABARα1 levels, glutamate decarboxylase activity, and SLC1A2 and GABARα1mRNA expression while decreasing brain glutamate, SLC6A1, GRIN1 levels, GABA transaminase activity, and SLC6A1 and GRIN1 mRNA expression. These potentials can be due to the suppression of the TLR-4/NF-κB and the enhancement of the Nrf2/HO-1 and PI3K/Akt pathways, as demonstrated by the reduction in TLR-4, NF-κB, IL-1β, TNF-α mRNA expression, MDA, NO, caspase-3, Bax levels, and Bax/Bcl-2 ratio, and the enhancement of Nrf2, HO-1, PI3K, Akt mRNA expression, GSH, Bcl-2 levels, and SOD activity. Additionally, (-) pseudosemiglabrin abrogated the pilocarpine-induced histopathological changes. Interestingly, the (-) pseudosemiglabrin intervention showed a comparable effect to the standard medication, diazepam. Therefore, (-) pseudosemiglabrin can be a promising medication for the management of epilepsy.
Collapse
Affiliation(s)
- Mohamed F Balaha
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed A Alamer
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
39
|
Bedner P, Steinhäuser C. Role of Impaired Astrocyte Gap Junction Coupling in Epileptogenesis. Cells 2023; 12:1669. [PMID: 37371139 DOI: 10.3390/cells12121669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The gap-junction-coupled astroglial network plays a central role in the regulation of neuronal activity and synchronisation, but its involvement in the pathogenesis of neuronal diseases is not yet understood. Here, we present the current state of knowledge about the impact of impaired glial coupling in the development and progression of epilepsy and discuss whether astrocytes represent alternative therapeutic targets. We focus mainly on temporal lobe epilepsy (TLE), which is the most common form of epilepsy in adults and is characterised by high therapy resistance. Functional data from TLE patients and corresponding experimental models point to a complete loss of astrocytic coupling, but preservation of the gap junction forming proteins connexin43 and connexin30 in hippocampal sclerosis. Several studies further indicate that astrocyte uncoupling is a causal event in the initiation of TLE, as it occurs very early in epileptogenesis, clearly preceding dysfunctional changes in neurons. However, more research is needed to fully understand the role of gap junction channels in epilepsy and to develop safe and effective therapeutic strategies targeting astrocytes.
Collapse
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
40
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
41
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
42
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
43
|
Tewari BP, Harshad PA, Singh M, Joshi NB, Joshi PG. Pilocarpine-induced acute seizure causes rapid area-specific astrogliosis and alters purinergic signaling in rat hippocampus. Brain Res 2023:148444. [PMID: 37290610 DOI: 10.1016/j.brainres.2023.148444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The progressive nature of acquired epilepsy warrants a thorough examination of acute changes that occur immediately after an epileptogenic insult to better understand the cellular and molecular mechanisms that trigger epileptogenesis. Astrocytes are important regulators of neuronal functions and emerging evidence suggests an involvement of astrocytic purinergic signaling in the etiology of acquired epilepsies. However, how astrocytic purinergic signaling responds immediately after an acute seizure or an epileptogenic insult to impact epileptogenesis is not well studied. In the present study, we report area-specific rapid onset of astrocytic changes in morphology, as well as in expression and functional activity of the purinergic signaling in the hippocampus that occur immediately after pilocarpine-induced stage 5 seizure. After 3 hours of stage 5 acute seizure, hippocampal astrocytes show increased intrinsic calcium activity in stratum radiatum as well as reactive astrogliosis in the stratum lacunosum moleculare and hilus regions of the hippocampus. Hilar astrocytes also upregulated the expression of P2Y1 and P2Y2 metabotropic purinergic receptors. Subsequently, P2Y1 exhibited a functional upregulation by showing a significantly higher intracellular calcium rise in ex-vivo hippocampal slices on P2Y1 activation. Our results suggest that hippocampal astrocytes undergo rapid area-specific morphological and functional changes immediately after the commencement of the seizure activity and purinergic receptors upregulation is one of the earliest changes in response to seizure activity. These changes can be considered acute astrocytic responses to seizure activity which can potentially drive the epileptogenesis and can be explored further to identify astrocyte-specific targets for seizure therapy.
Collapse
Affiliation(s)
- Bhanu P Tewari
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| | - P A Harshad
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Mahendra Singh
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nanda B Joshi
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Preeti G Joshi
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
44
|
Masala N, Pofahl M, Haubrich AN, Sameen Islam KU, Nikbakht N, Pasdarnavab M, Bohmbach K, Araki K, Kamali F, Henneberger C, Golcuk K, Ewell LA, Blaess S, Kelly T, Beck H. Targeting aberrant dendritic integration to treat cognitive comorbidities of epilepsy. Brain 2023; 146:2399-2417. [PMID: 36448426 PMCID: PMC10232249 DOI: 10.1093/brain/awac455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/22/2023] Open
Abstract
Memory deficits are a debilitating symptom of epilepsy, but little is known about mechanisms underlying cognitive deficits. Here, we describe a Na+ channel-dependent mechanism underlying altered hippocampal dendritic integration, degraded place coding and deficits in spatial memory. Two-photon glutamate uncaging experiments revealed a marked increase in the fraction of hippocampal first-order CA1 pyramidal cell dendrites capable of generating dendritic spikes in the kainate model of chronic epilepsy. Moreover, in epileptic mice dendritic spikes were generated with lower input synchrony, and with a lower threshold. The Nav1.3/1.1 selective Na+ channel blocker ICA-121431 reversed dendritic hyperexcitability in epileptic mice, while the Nav1.2/1.6 preferring anticonvulsant S-Lic did not. We used in vivo two-photon imaging to determine if aberrant dendritic excitability is associated with altered place-related firing of CA1 neurons. We show that ICA-121431 improves degraded hippocampal spatial representations in epileptic mice. Finally, behavioural experiments show that reversing aberrant dendritic excitability with ICA-121431 reverses hippocampal memory deficits. Thus, a dendritic channelopathy may underlie cognitive deficits in epilepsy and targeting it pharmacologically may constitute a new avenue to enhance cognition.
Collapse
Affiliation(s)
- Nicola Masala
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Martin Pofahl
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - André N Haubrich
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Khondker Ushna Sameen Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Negar Nikbakht
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Maryam Pasdarnavab
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Kirsten Bohmbach
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Kunihiko Araki
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Fateme Kamali
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 53127 Bonn, Germany
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kurtulus Golcuk
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Laura A Ewell
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-3950, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Tony Kelly
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
| | - Heinz Beck
- Medical Faculty, Institute for Experimental Epileptology and Cognition Research, University of Bonn, 53127 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 53127 Bonn, Germany
| |
Collapse
|
45
|
Molnár L, Ferando I, Liu B, Mokhtar P, Domokos J, Mody I. Capturing the power of seizures: an empirical mode decomposition analysis of epileptic activity in the mouse hippocampus. Front Mol Neurosci 2023; 16:1121479. [PMID: 37256078 PMCID: PMC10225690 DOI: 10.3389/fnmol.2023.1121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Various methods have been used to determine the frequency components of seizures in scalp electroencephalography (EEG) and in intracortical recordings. Most of these methods rely on subjective or trial-and-error criteria for choosing the appropriate bandwidth for filtering the EEG or local field potential (LFP) signals to establish the frequency components that contribute most to the initiation and maintenance of seizure activity. The empirical mode decomposition (EMD) with the Hilbert-Huang transform is an unbiased method to decompose a time and frequency variant signal into its component non-stationary frequencies. The resulting components, i.e., the intrinsic mode functions (IMFs) objectively reflect the various non-stationary frequencies making up the original signal. Materials and methods We employed the EMD method to analyze the frequency components and relative power of spontaneous electrographic seizures recorded in the dentate gyri of mice during the epileptogenic period. Epilepsy was induced in mice following status epilepticus induced by suprahippocampal injection of kainic acid. The seizures were recorded as local field potentials (LFP) with electrodes implanted in the dentate gyrus. We analyzed recording segments that included a seizure (mean duration 28 s) and an equivalent time period both before and after the seizure. Each segment was divided into non-overlapping 1 s long epochs which were then analyzed to obtain their IMFs (usually 8-10), the center frequencies of the respective IMF and their spectral root-mean-squared (RMS) power. Results Our analysis yielded unbiased identification of the spectral components of seizures, and the relative power of these components during this pathological brain activity. During seizures, the power of the mid frequency components increased while the center frequency of the first IMF (with the highest frequency) dramatically decreased, providing mechanistic insights into how local seizures are generated. Discussion We expect this type of analysis to provide further insights into the mechanisms of seizure generation and potentially better seizure detection.
Collapse
Affiliation(s)
- László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu-Mures, Romania
| | - Isabella Ferando
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Neurology, School of Medicine at University of Florida, Miami, FL, United States
| | - Benjamin Liu
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Parsa Mokhtar
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - József Domokos
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu-Mures, Romania
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
46
|
Hanin A, Cespedes J, Huttner A, Strelnikov D, Gopaul M, DiStasio M, Vezzani A, Hirsch LJ, Aronica E. Neuropathology of New-Onset Refractory Status Epilepticus (NORSE). J Neurol 2023:10.1007/s00415-023-11726-x. [PMID: 37079033 DOI: 10.1007/s00415-023-11726-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
New-Onset Refractory Status Epilepticus (NORSE), including its subtype with a preceding febrile illness known as FIRES (Febrile Infection-Related Epilepsy Syndrome), is one of the most severe forms of status epilepticus. Despite an extensive workup (clinical evaluation, EEG, imaging, biological tests), the majority of NORSE cases remain unexplained (i.e., "cryptogenic NORSE"). Understanding the pathophysiological mechanisms underlying cryptogenic NORSE and the related long-term consequences is crucial to improve patient management and preventing secondary neuronal injury and drug-resistant post-NORSE epilepsy. Previously, neuropathological evaluations conducted on biopsies or autopsies have been found helpful for identifying the etiologies of some cases that were previously of unknown cause. Here, we summarize the findings of studies reporting neuropathology findings in patients with NORSE, including FIRES. We identified 64 cryptogenic cases and 66 neuropathology tissue samples, including 37 biopsies, 18 autopsies, and seven epilepsy surgeries (the type of tissue sample was not detailed for 4 cases). We describe the main neuropathology findings and place a particular emphasis on cases for which neuropathology findings helped establish a diagnosis or elucidate the pathophysiology of cryptogenic NORSE, or on described cases in which neuropathology findings supported the selection of specific treatments for patients with NORSE.
Collapse
Affiliation(s)
- Aurélie Hanin
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, DMU Neurosciences 6, Paris, France.
- Epilepsy Unit and Department of Clinical Neurophysiology, AP-HP, Hôpital de La Pitié-Salpêtrière, DMU Neurosciences 6, Paris, France.
| | - Jorge Cespedes
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- School of Medicine, Universidad Autonoma de Centro America, San Jose, Costa Rica
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Strelnikov
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Margaret Gopaul
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcello DiStasio
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Recerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
47
|
Janjic P, Solev D, Kocarev L. Non-trivial dynamics in a model of glial membrane voltage driven by open potassium pores. Biophys J 2023; 122:1470-1490. [PMID: 36919241 PMCID: PMC10147837 DOI: 10.1016/j.bpj.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Despite the molecular evidence that a nearly linear steady-state current-voltage relationship in mammalian astrocytes reflects a total current resulting from more than one differentially regulated K+ conductance, detailed ordinary differential equation (ODE) models of membrane voltage Vm are still lacking. Various experimental results reporting altered rectification of the major Kir currents in glia, dominated by Kir4.1, have motivated us to develop a detailed model of Vm dynamics incorporating the weaker potassium K2P-TREK1 current in addition to Kir4.1, and study the stability of the resting state Vr. The main question is whether, with the loss of monotonicity in glial I-V curve resulting from altered Kir rectification, the nominal resting state Vr remains stable, and the cell retains the trivial, potassium electrode behavior with Vm after EK. The minimal two-dimensional model of Vm near Vr showed that an N-shape deformed Kir I-V curve induces multistability of Vm in a model that incorporates K2P activation kinetics, and nonspecific K+ leak currents. More specifically, an asymmetrical, nonlinear decrease of outward Kir4.1 conductance, turning the channels into inward rectifiers, introduces instability of Vr. That happens through a robust bifurcation giving birth to a second, more depolarized stable resting state Vdr > -10 mV. Realistic recordings from electrographic seizures were used to perturb the model. Simulations of the model perturbed by constant current through gap junctions and seizure-like discharges as local field potentials led to depolarization and switching of Vm between the two stable states, in a downstate-upstate manner. In the event of prolonged depolarizations near Vdr, such catastrophic instability would affect all aspects of the glial function, from metabolic support to membrane transport, and practically all neuromodulatory roles assigned to glia.
Collapse
Affiliation(s)
- Predrag Janjic
- Laboratory for Complex Systems and Networks, Research Centre for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia.
| | - Dimitar Solev
- Laboratory for Complex Systems and Networks, Research Centre for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Ljupco Kocarev
- Laboratory for Complex Systems and Networks, Research Centre for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| |
Collapse
|
48
|
Dzyubenko E, Hermann DM. Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system. Semin Immunopathol 2023:10.1007/s00281-023-00989-1. [PMID: 37052711 DOI: 10.1007/s00281-023-00989-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Neuronal plasticity is critical for the maintenance and modulation of brain activity. Emerging evidence indicates that glial cells actively shape neuroplasticity, allowing for highly flexible regulation of synaptic transmission, neuronal excitability, and network synchronization. Astrocytes regulate synaptogenesis, stabilize synaptic connectivity, and preserve the balance between excitation and inhibition in neuronal networks. Microglia, the brain-resident immune cells, continuously monitor and sculpt synapses, allowing for the remodeling of brain circuits. Glia-mediated neuroplasticity is driven by neuronal activity, controlled by a plethora of feedback signaling mechanisms and crucially involves extracellular matrix remodeling in the central nervous system. This review summarizes the key findings considering neurotransmission regulation and metabolic support by astrocyte-neuronal networks, and synaptic remodeling mediated by microglia. Novel data indicate that astrocytes and microglia are pivotal for controlling brain function, indicating the necessity to rethink neurocentric neuroplasticity views.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
49
|
Henning L, Unichenko P, Bedner P, Steinhäuser C, Henneberger C. Overview Article Astrocytes as Initiators of Epilepsy. Neurochem Res 2023; 48:1091-1099. [PMID: 36244037 PMCID: PMC10030460 DOI: 10.1007/s11064-022-03773-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/22/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clearance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clearance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| |
Collapse
|
50
|
Chen ZP, Wang S, Zhao X, Fang W, Wang Z, Ye H, Wang MJ, Ke L, Huang T, Lv P, Jiang X, Zhang Q, Li L, Xie ST, Zhu JN, Hang C, Chen D, Liu X, Yan C. Lipid-accumulated reactive astrocytes promote disease progression in epilepsy. Nat Neurosci 2023; 26:542-554. [PMID: 36941428 DOI: 10.1038/s41593-023-01288-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Reactive astrocytes play an important role in neurological diseases, but their molecular and functional phenotypes in epilepsy are unclear. Here, we show that in patients with temporal lobe epilepsy (TLE) and mouse models of epilepsy, excessive lipid accumulation in astrocytes leads to the formation of lipid-accumulated reactive astrocytes (LARAs), a new reactive astrocyte subtype characterized by elevated APOE expression. Genetic knockout of APOE inhibited LARA formation and seizure activities in epileptic mice. Single-nucleus RNA sequencing in TLE patients confirmed the existence of a LARA subpopulation with a distinct molecular signature. Functional studies in epilepsy mouse models and human brain slices showed that LARAs promote neuronal hyperactivity and disease progression. Targeting LARAs by intervention with lipid transport and metabolism could thus provide new therapeutic options for drug-resistant TLE.
Collapse
Affiliation(s)
- Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Suji Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiansen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhengge Wang
- Department of Radiology, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Haojie Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng-Ju Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling Ke
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tengfei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Chunhua Hang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Xiangyu Liu
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| |
Collapse
|