1
|
Chen CD, Franklin EE, Li Y, Joseph-Mathurin N, Burns AL, Hobbs DA, McCullough AA, Schultz SA, Xiong C, Wang G, Masellis M, Hsiung GYR, Gauthier S, Berman SB, Roberson ED, Honig LS, Clarnette R, Ringman JM, Galvin JE, Brooks W, Suzuki K, Black S, Levin J, Aggarwal NT, Jucker M, Frosch MP, Kofler JK, White C, Keene CD, Chen J, Daniels A, Gordon BA, Ibanez L, Karch CM, Llibre-Guerra J, McDade E, Morris JC, Supnet-Bell C, Allegri RF, Lee JH, Day GS, Lopera F, Roh JH, Schofield PR, Mills S, Benzinger TLS, Bateman RJ, Perrin RJ, DIAN-TU Study Team, DIAN-Obs Study Team. Immunohistochemical evaluation of a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease. Acta Neuropathol 2025; 149:57. [PMID: 40459787 PMCID: PMC12133910 DOI: 10.1007/s00401-025-02890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/22/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025]
Abstract
Clinical trials of anti-amyloid-β (Aβ) monoclonal antibodies in Alzheimer disease (AD) infer target engagement from Aβ positron emission tomography (PET) and/or fluid biomarkers such as cerebrospinal fluid (CSF) Aβ42/40. However, these biomarkers measure brain Aβ deposits indirectly and/or incompletely. In contrast, neuropathologic assessments allow direct investigation of treatment effects on brain Aβ deposits-and on potentially myriad 'downstream' pathologic features. From a clinical trial of anti-Aβ monoclonal antibodies in dominantly inherited AD (DIAD), in the largest study of its kind, we measured immunohistochemistry area fractions (AFs) for Aβ deposits (10D5), tauopathy (PHF1), microgliosis (IBA1), and astrocytosis (GFAP) in 10 brain regions from 10 trial cases-gantenerumab (n = 4), solanezumab (n = 4), placebo/no treatment (n = 2)-and 10 DIAD observational study cases. Strikingly, in proportion to total drug received, Aβ deposit AFs were significantly lower in the gantenerumab arm versus controls in almost all areas examined, including frontal, temporal, parietal, and occipital cortices, anterior cingulate, hippocampus, caudate, putamen, thalamus, and cerebellar gray matter; only posterior cingulate and cerebellar white matter comparisons were non-significant. In contrast, AFs of tauopathy, microgliosis, and astrocytosis showed no differences across groups. Our results demonstrate with direct histologic evidence that gantenerumab treatment in DIAD can reduce parenchymal Aβ deposits throughout the brain in a dose-dependent manner, suggesting that more complete removal may be possible with earlier and more aggressive treatment regimens. Although AFs of tauopathy, microgliosis, and astrocytosis showed no clear response to partial Aβ removal in this limited autopsy cohort, future examination of these cases with more sensitive techniques (e.g., mass spectrometry) may reveal more subtle 'downstream' effects.
Collapse
Affiliation(s)
| | | | - Yan Li
- Washington University in St. Louis, St. Louis, MO, USA
| | | | - Aime L Burns
- Washington University in St. Louis, St. Louis, MO, USA
| | - Diana A Hobbs
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | - Guoqiao Wang
- Washington University in St. Louis, St. Louis, MO, USA
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | - Lawrence S Honig
- Taub Institute, Sergievsky Center, and Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - James E Galvin
- University of Miami Miller School of Medicine, Atlantis, FL, USA
| | - William Brooks
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | | | - Sandra Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | | | | | - Jie Chen
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Laura Ibanez
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Eric McDade
- Washington University in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | | | - Ricardo F Allegri
- Instituto de Investigaciones Neurológicas Fleni, Buenos Aires, Argentina
| | - Jae-Hong Lee
- Korea University College of Medicine, Seoul, Korea
| | | | | | - Jee Hoon Roh
- Korea University College of Medicine, Seoul, Korea
| | - Peter R Schofield
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Susan Mills
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
Collaborators
Randall Bateman, Alisha J Daniels, Laura Courtney, Jorge J Llibre-Guerra, Chengie Xiong, Xiong Xu, Ruijin Lu, Emily Gremminger, Gina Jerome, Elizabeth Herries, Jennifer Stauber, Bryce Baker, Matthew Minton, Carlos Cruchaga, Alison M Goate, Alan E Renton, Danielle M Picarello, Tammie Benzinger, Russell Hornbeck, Jason Hassenstab, Jennifer Smith, Sarah Stout, Andrew J Aschenbrenner, Jacob Marsh, David M Holtzman, Nicolas Barthelemy, Jinbin Xu, James M Noble, Snezana Ikonomovic, Neelesh K Nadkarni, Neill R Graff-Radford, Martin Farlow, Jasmeer P Chhatwal, Takeshi Ikeuchi, Kensaku Kasuga, Yoshiki Niimi, Edward D Huey, Stephen Salloway, William S Brooks, Jacob A Bechara, Ralph Martins, Nick C Fox, David M Cash, Natalie S Ryan, Christoph Laske, Anna Hofmann, Elke Kuder-Buletta, Susanne Graber-Sultan, Ulrike Obermueller, Yvonne Roedenbeck, Jonathan Vӧglein, Raquel Sanchez-Valle, Pedro Rosa-Neto, Patricio Chrem Mendez, Ezequiel Surace, Silvia Vazquez, Yudy Milena Leon, Laura Ramirez, David Aguillon, Allan I Levey, Erik C B Johnson, Nicholas T Seyfried, John Ringman, Anne M Fagan, Hiroshi Mori,
Collapse
|
2
|
Huyghe L, Quenon L, Salman Y, Colmant L, Gérard T, Malotaux V, Boyer E, Dricot L, Lhommel R, Woodard JL, Ivanoiu A, Hanseeuw B. Entorhinal tau impairs short-term memory binding in preclinical Alzheimer's disease. J Int Neuropsychol Soc 2025:1-12. [PMID: 40400392 DOI: 10.1017/s1355617725000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
OBJECTIVE The entorhinal cortex (EC) is the first cortical region affected by tau pathology in Alzheimer's disease (AD), but its functions remain unclear. The EC is thought to support memory binding, which can be tested using the Visual Short-Term Memory Binding Test (VSTMBT). We aimed to test whether VSTMBT performance can identify individuals with preclinical AD before noticeable episodic memory impairment and whether these performances are related to amyloid (Aβ) pathology and/or EC tau burden. METHODS Ninety-four participants underwent the VSTMBT (including a shape-only condition (SOC) and a shape-color binding condition (SCBC)), standard neuropsychological assessment including the Preclinical Alzheimer Cognitive Composite (PACC5), an Aβ status examination, a 3D-T1 MRI and a [18F]-MK-6240 tau-PET scan. Participants were classified as follows: 54 Aβ-negative cognitively normal (Aβ - CN), 22 Aβ-positive CN (Aβ + CN, preclinical AD), and 18 Aβ + individuals with Mild Cognitive Impairment (Aβ + MCI, prodromal AD). RESULTS Aβ + CN individuals performed worse than Aβ-CN participants in the SCBC while the SOC only distinguished Aβ - CN from MCI participants. The SCBC performance was predicted by tau burden in the EC after adjusting for Aβ, white matter hypointensities, inferior temporal cortex (ITC) tau burden, age, sex, and education. The SCBC was more sensitive than the PACC5 in identifying CN individuals with a positive tau-PET scan. CONCLUSION Impaired visual short-term memory binding performance was evident from the preclinical stage of sporadic AD and related to tau pathology in the EC, suggesting that SCBC performance could detect early tau pathology in the EC among CN individuals.
Collapse
Affiliation(s)
- Lara Huyghe
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Lisa Quenon
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
| | - Yasmine Salman
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Lise Colmant
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
| | - Thomas Gérard
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Nuclear Medicine Department, Saint-Luc University Hospital, Brussels, Belgium
| | | | - Emilien Boyer
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Renaud Lhommel
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Nuclear Medicine Department, Saint-Luc University Hospital, Brussels, Belgium
| | - John L Woodard
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Adrian Ivanoiu
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
- Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
3
|
Sun P, He Z, Chu E, Fan X, Cai Y, Lan G, Liu L, Shi D, Liang L, Yang J, Li A, Zhu Y, Zhou X, Fang L, Wang Y, Zhang L, Liu Z, Ma T, Cheng G, Xu L, Guo T. White matter fractional anisotropy decreases precede hyperintensities in Alzheimer's disease. Cell Rep Med 2025:102138. [PMID: 40398415 DOI: 10.1016/j.xcrm.2025.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Accepted: 04/23/2025] [Indexed: 05/23/2025]
Abstract
The associations of β-amyloid (Aβ) and tau deposition with white matter (WM) degeneration in Alzheimer's disease (AD) remain inadequately elucidated. We investigate baseline and longitudinal changes of microstructural fractional anisotropy (FA) and macrostructural white matter hyperintensities (WMHs) and their relationships with Aβ and tau positron emission tomography (PET) and vascular risk factors in different Aβ/tau stages defined by PET imaging. Lower levels and faster decline rates of FA occur in the AD continuum, particularly in tau-positive individuals. Tau-related FA decreases are correlated with higher burden and faster increase rates of WMH but not vice versa. These results are substantially replicated in an independent cohort. This study suggests that tau is tightly linked with microstructural WM degeneration, appearing earlier than macrostructural WM alteration in AD. Our findings provide valuable insights for detecting and monitoring early WM degeneration in AD, highlighting the importance of targeting tau clearance to maintain healthy WM integrity.
Collapse
Affiliation(s)
- Pan Sun
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhengbo He
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Erwei Chu
- Department of Medical Imaging, Shenzhen Guangming District People's Hospital, Shenzhen 518000, China
| | - Xiang Fan
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yue Cai
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Guoyu Lan
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lin Liu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Dai Shi
- Neurology Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Li Liang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jie Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Anqi Li
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yalin Zhu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xin Zhou
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Lili Fang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yiying Wang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Laihong Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhen Liu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ting Ma
- School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Linsen Xu
- Department of Medical Imaging, Shenzhen Guangming District People's Hospital, Shenzhen 518000, China.
| | - Tengfei Guo
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
4
|
Liu H, Bui Q, Hassenstab J, Gordon BA, Benzinger TLS, Timsina J, Sung YJ, Karch C, Renton AE, Daniels A, Morris JC, Xiong C, Ibanez L, Perrin RJ, Llibre‐Guerra JJ, Day GS, Supnet‐Bell C, Xu X, Berman SB, Chhatwal JP, Ikeuchi T, Kasuga K, Niimi Y, Huey ED, Schofield PR, Brooks WS, Ryan NS, Jucker M, Laske C, Levin J, Vöglein J, Roh JH, Lopera F, Bateman RJ, Cruchaga C, McDade EM, For DIAN study team. Ubiquitin-proteasome system in the different stages of dominantly inherited Alzheimer's disease. Alzheimers Dement 2025; 21:e70243. [PMID: 40411302 PMCID: PMC12102666 DOI: 10.1002/alz.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/26/2025]
Abstract
INTRODUCTION This study investigated the role of the ubiquitin-proteasome system (UPS) in dominantly inherited Alzheimer's disease (DIAD) by examining cerebrospinal fluid (CSF) levels of UPS proteins. METHOD The SOMAscan assay was used to detect changes in UPS proteins in mutation carriers (MCs) relative to disease progression; imaging and CSF biomarkers of amyloid, tau, and neurodegeneration measures; and Clinical Dementia Rating scale. RESULTS Subtle increases in specific ubiquitin enzymes were detected in MCs up to two decades before symptom onset, with more pronounced elevations in UPS-activating enzymes near symptom onset. Significant correlations were found between UPS proteins and Alzheimer's disease (AD) biomarkers, especially between autophagy markers and late-stage tau biomarkers, microglia, and axonal degeneration. DISCUSSION The rise in UPS proteins alongside tau-related markers suggests UPS involvement in tau neurofibrillary tangles. Elevated CSF UPS proteins in DIAD MCs may serve as indicators of disease progression, and may support the UPS as a therapeutic target in AD. HIGHLIGHTS This study investigates the ubiquitin-proteasome system (UPS) in Dominantly Inherited Alzheimer's Disease (DIAD), highlighting early molecular changes linked to disease progression. Using SOMAscan proteomics, we identified significant UPS protein alterations in cerebrospinal fluid of mutation carriers, notably up to 20 years before clinical symptom onset. Correlations between UPS protein levels and Alzheimer's biomarkers, particularly tau and neurodegeneration markers, suggest a strong association between UPS dysregulation and tau pathology in DIAD. Dynamic UPS changes align with A/T biological staging: UPS proteins were shown to increase across Aβ/tau (A/T) groups, with largest increases in the A+/T+ group, reinforcing their role in late-stage tau pathology and disease progression. These findings underscore the potential of UPS proteins as early biomarkers for Alzheimer's disease progression and as novel therapeutic targets, especially in tau-pathology-driven neurodegeneration. This work contributes to understanding AD pathogenesis, by emphasizing the importance of protein quality control systems and by offering avenues for future biomarker discovery and therapeutic development in Alzheimer's disease.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Quoc Bui
- Department of BiostatisticsWashington University in St. LouisSt. LouisMissouriUSA
| | - Jason Hassenstab
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Brian A. Gordon
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Jigyasha Timsina
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Yun Ju Sung
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Celeste Karch
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Alan E. Renton
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alisha Daniels
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - John C. Morris
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Chengjie Xiong
- Department of BiostatisticsWashington University in St. LouisSt. LouisMissouriUSA
| | - Laura Ibanez
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Richard J. Perrin
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Gregory S. Day
- Department of NeurologyMayo Clinic in FloridaJacksonvilleFloridaUSA
| | | | - Xiong Xu
- Department of BiostatisticsWashington University in St. LouisSt. LouisMissouriUSA
| | - Sarah B. Berman
- Departments of Neurology and Clinical & Translational ScienceUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jasmeer P. Chhatwal
- Brigham and Women's Hospital, Massachusetts General HospitalHarvard Medical SchoolCambridgeMassachusettsUSA
| | | | | | - Yoshiki Niimi
- Specially appointed lecturer, Unit for Early and Exploratory Clinical DevelopmentThe University of TokyoTokyoJapan
| | - Edward D. Huey
- Memory and Aging Program, Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - William S. Brooks
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Natalie S. Ryan
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE) TübingenTübingenGermany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research, Department of Psychiatry and PsychotherapyUniversity of TübingenTübingenGermany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE) TübingenTübingenGermany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research, Department of Psychiatry and PsychotherapyUniversity of TübingenTübingenGermany
| | - Johannes Levin
- German Center for Neurodegenerative DiseasesSite MunichMunichGermany
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Jonathan Vöglein
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
- Department of NeurologyLMU University HospitalLMU MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Jee Hoon Roh
- Departments of Neurology and PhysiologyKorea University Anam HospitalKorea University College of MedicineSeoulSouth Korea
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA), Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Randall J. Bateman
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Eric M. McDade
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | | |
Collapse
|
5
|
Teunissen CE, Vermunt L. Implications of AD plasma and PET biomarker discordance. Nat Rev Neurol 2025:10.1038/s41582-025-01091-w. [PMID: 40312572 DOI: 10.1038/s41582-025-01091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Llibre-Guerra JJ, Fernandez MV, Joseph-Mathurin N, Bian S, Carter K, Li Y, Aschenbrenner AJ, Pottier C, Sigurdson W, McDade E, Gordon BA, Renton AE, Benzinger TLS, Ibañez L, Barthelemy N, Johnson M, Hassenstab J, Wang G, Goate AM, Western D, Wang C, Hobbs D, Daniels A, Karch C, Morris JC, Cruchaga C, Johnson ECB, Bateman RJ, Aguillon D, Allegri RF, Aschenbrenner AJ, Baena A, Baker B, Banks J, Barthélemy NR, Bartzel J, Bateman R, Bechara JA, Benzinger TLS, Berman SB, Bocanegra Y, Brooks WS, Cash DM, Chen A, Chen C, Chhatwal JP, Mendez PC, Courtney L, Cruchaga C, Daniels AJ, Day GS, Devenney E, Fagan AM, Farlow M, Flores S, Fox NC, Franklin E, Fulton-Howard B, Goate AM, Gordon BA, Goyal M, Graber-Sultan S, Graff-Radford NR, Gremminger E, Hassenstab J, Hellm C, Hobbs D, Holtzman DM, Hornbeck R, Huey ED, Ibanez L, Ikeuchi T, Ikonomovic S, Ishiguro T, Ishii K, Jackson K, Jerome G, Johnson ECB, Joseph-Mathurin N, Jucker M, Karch CM, Kasuga K, Keefe S, Koudelis D, Kuder-Buletta E, la Fougère C, Laske C, Lee JH, Levey AI, Levin J, Li Y, Leon YM, Llibre-Guerra JJ, Lopera F, Lu R, Maa C, Marsh J, Martin M, Martins R, Massoumzadeh P, et alLlibre-Guerra JJ, Fernandez MV, Joseph-Mathurin N, Bian S, Carter K, Li Y, Aschenbrenner AJ, Pottier C, Sigurdson W, McDade E, Gordon BA, Renton AE, Benzinger TLS, Ibañez L, Barthelemy N, Johnson M, Hassenstab J, Wang G, Goate AM, Western D, Wang C, Hobbs D, Daniels A, Karch C, Morris JC, Cruchaga C, Johnson ECB, Bateman RJ, Aguillon D, Allegri RF, Aschenbrenner AJ, Baena A, Baker B, Banks J, Barthélemy NR, Bartzel J, Bateman R, Bechara JA, Benzinger TLS, Berman SB, Bocanegra Y, Brooks WS, Cash DM, Chen A, Chen C, Chhatwal JP, Mendez PC, Courtney L, Cruchaga C, Daniels AJ, Day GS, Devenney E, Fagan AM, Farlow M, Flores S, Fox NC, Franklin E, Fulton-Howard B, Goate AM, Gordon BA, Goyal M, Graber-Sultan S, Graff-Radford NR, Gremminger E, Hassenstab J, Hellm C, Hobbs D, Holtzman DM, Hornbeck R, Huey ED, Ibanez L, Ikeuchi T, Ikonomovic S, Ishiguro T, Ishii K, Jackson K, Jerome G, Johnson ECB, Joseph-Mathurin N, Jucker M, Karch CM, Kasuga K, Keefe S, Koudelis D, Kuder-Buletta E, la Fougère C, Laske C, Lee JH, Levey AI, Levin J, Li Y, Leon YM, Llibre-Guerra JJ, Lopera F, Lu R, Maa C, Marsh J, Martin M, Martins R, Massoumzadeh P, Masters C, McCullough A, McDade E, McKay N, Minton M, Mori H, Morris JC, Nicklaus J, Nie Y, Niimi Y, Noble JM, Obermueller U, Perrin RJ, Picarello DM, Pulizos C, Ramirez L, Reischl G, Renton AE, Ringman J, Rizzo J, Rödenbeck Y, Roh JH, Rosa-Neto P, Ryan NS, Sabaredzovic E, Salloway S, Sanchez-Valle R, Schofield PR, Scott J, Senda M, Serna L, Seyfried NT, Simmons A, Skrbec K, Smith J, Stauber J, Stout S, Supnet-Bell C, Surace E, Timofejavaite R, Vazquez S, Vlassenko A, Vöglein J, Wang G, Wang Q, Wang Y, Xiong C, Xu X, Xu J, Ziegemeier A, Ziegemeier E. Longitudinal analysis of a dominantly inherited Alzheimer disease mutation carrier protected from dementia. Nat Med 2025; 31:1267-1275. [PMID: 39930140 PMCID: PMC12024232 DOI: 10.1038/s41591-025-03494-0] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
We conducted an in-depth longitudinal study on an individual carrying the presenilin 2 p.Asn141Ile mutation, traditionally associated with dominantly inherited Alzheimer's disease (AD), who has remarkably remained asymptomatic past the expected age of clinical onset. This study combines genetic, neuroimaging and biomarker analyses to explore the underpinnings of this resilience. Unlike typical progression in dominantly inherited AD, tau pathology in this case was confined to the occipital region without evidence of spread, potentially explaining the preservation of cognitive functions. Genetic analysis revealed several variants that, although not previously associated with protection against AD, suggest new avenues for understanding disease resistance. Notably, environmental factors such as significant heat exposure and a unique proteomic profile rich in heat shock proteins might indicate adaptive mechanisms contributing to the observed phenotype. This case underscores the complexity of Alzheimer's pathology and suggests that blocking tau deposition could be a promising target for therapeutic intervention. The study highlights the need for further research to identify and validate the mechanisms that could inhibit or localize tau pathology as a strategy to mitigate or delay the onset of Alzheimer's dementia.
Collapse
Affiliation(s)
- Jorge J. Llibre-Guerra
- Washington University in St Louis, St Louis, MO, USA
- These authors contributed equally: Jorge J. Llibre-Guerra, M. Victoria Fernandez, Nelly Joseph-Mathurin
| | - M. Victoria Fernandez
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- These authors contributed equally: Jorge J. Llibre-Guerra, M. Victoria Fernandez, Nelly Joseph-Mathurin
| | - Nelly Joseph-Mathurin
- Washington University in St Louis, St Louis, MO, USA
- These authors contributed equally: Jorge J. Llibre-Guerra, M. Victoria Fernandez, Nelly Joseph-Mathurin
| | - Shijia Bian
- Emory University School of Medicine, Atlanta, GA, USA
| | | | - Yan Li
- Washington University in St Louis, St Louis, MO, USA
| | | | - Cyril Pottier
- Washington University in St Louis, St Louis, MO, USA
| | | | - Eric McDade
- Washington University in St Louis, St Louis, MO, USA
| | | | - Alan E. Renton
- Ronald M. Loeb Center for Alzheimer’s Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Laura Ibañez
- Washington University in St Louis, St Louis, MO, USA
| | | | | | | | - Guoqiao Wang
- Washington University in St Louis, St Louis, MO, USA
| | - Alison M. Goate
- Ronald M. Loeb Center for Alzheimer’s Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Western
- Washington University in St Louis, St Louis, MO, USA
| | - Ciyang Wang
- Washington University in St Louis, St Louis, MO, USA
| | - Diana Hobbs
- Washington University in St Louis, St Louis, MO, USA
| | | | - Celeste Karch
- Washington University in St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University in St Louis, St Louis, MO, USA
- These authors jointly supervised this work: Carlos Cruchaga, Erik C. B. Johnson, Randall J. Bateman
| | - Erik C. B. Johnson
- Ronald M. Loeb Center for Alzheimer’s Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- These authors jointly supervised this work: Carlos Cruchaga, Erik C. B. Johnson, Randall J. Bateman
| | - Randall J. Bateman
- Washington University in St Louis, St Louis, MO, USA
- These authors jointly supervised this work: Carlos Cruchaga, Erik C. B. Johnson, Randall J. Bateman
| | - David Aguillon
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Ana Baena
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Bryce Baker
- Washington University in St Louis, St Louis, MO, USA
| | - Jessica Banks
- Washington University in St Louis, St Louis, MO, USA
| | | | - Jamie Bartzel
- Washington University in St Louis, St Louis, MO, USA
| | | | - Jacob A. Bechara
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | | | | | - Yamile Bocanegra
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - David M. Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Allison Chen
- Washington University in St Louis, St Louis, MO, USA
| | - Charles Chen
- Washington University in St Louis, St Louis, MO, USA
| | - Jasmeer P. Chhatwal
- Massachusetts General Hospital, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Carlos Cruchaga
- Washington University in St Louis, St Louis, MO, USA
- These authors jointly supervised this work: Carlos Cruchaga, Erik C. B. Johnson, Randall J. Bateman
| | | | | | - Emma Devenney
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Anne M. Fagan
- Washington University in St Louis, St Louis, MO, USA
| | - Martin Farlow
- Indiana University, School of Medicine, Bloomington, IN, USA
| | - Shaney Flores
- Washington University in St Louis, St Louis, MO, USA
| | - Nick C. Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Erin Franklin
- Washington University in St Louis, St Louis, MO, USA
| | - Brian Fulton-Howard
- Ronald M. Loeb Center for Alzheimer’s Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M. Goate
- Ronald M. Loeb Center for Alzheimer’s Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Manu Goyal
- Washington University in St Louis, St Louis, MO, USA
| | | | | | | | | | | | - Diana Hobbs
- Washington University in St Louis, St Louis, MO, USA
| | | | - Russ Hornbeck
- Washington University in St Louis, St Louis, MO, USA
| | - Edward D. Huey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - Laura Ibanez
- Washington University in St Louis, St Louis, MO, USA
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | - Kenji Ishii
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Gina Jerome
- Washington University in St Louis, St Louis, MO, USA
| | - Erik C. B. Johnson
- Ronald M. Loeb Center for Alzheimer’s Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- These authors jointly supervised this work: Carlos Cruchaga, Erik C. B. Johnson, Randall J. Bateman
| | - Nelly Joseph-Mathurin
- Washington University in St Louis, St Louis, MO, USA
- These authors contributed equally: Jorge J. Llibre-Guerra, M. Victoria Fernandez, Nelly Joseph-Mathurin
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Kensaku Kasuga
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Sarah Keefe
- Washington University in St Louis, St Louis, MO, USA
| | | | | | | | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jae-Hong Lee
- Korea University College of Medicine, Seoul, Republic of South Korea
| | - Allan I. Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - Johannes Levin
- German Center for Neurodegenerative Diseases, Munich, Munich, Germany
| | - Yan Li
- Washington University in St Louis, St Louis, MO, USA
| | - Yudy Milena Leon
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jorge J. Llibre-Guerra
- Washington University in St Louis, St Louis, MO, USA
- These authors contributed equally: Jorge J. Llibre-Guerra, M. Victoria Fernandez, Nelly Joseph-Mathurin
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Ruijin Lu
- Washington University in St Louis, St Louis, MO, USA
| | - Courtney Maa
- Massachusetts General Hospital, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob Marsh
- Washington University in St Louis, St Louis, MO, USA
| | | | - Ralph Martins
- Edith Cowan University, Perth, Western Australia, Australia
| | | | - Colin Masters
- Florey Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Eric McDade
- Washington University in St Louis, St Louis, MO, USA
| | - Nicole McKay
- Washington University in St Louis, St Louis, MO, USA
| | | | | | | | | | - Yuzheng Nie
- Washington University in St Louis, St Louis, MO, USA
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Danielle M. Picarello
- Ronald M. Loeb Center for Alzheimer’s Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Laura Ramirez
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gerald Reischl
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alan E. Renton
- Ronald M. Loeb Center for Alzheimer’s Disease, Dept of Genetics and Genomic Sciences, and Nash Family Dept of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Ringman
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | | | - Yvonne Rödenbeck
- German Center for Neurodegenerative Diseases, Munich, Munich, Germany
| | - Jee Hoon Roh
- Korea University College of Medicine, Seoul, Republic of South Korea
| | | | - Natalie S. Ryan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - Stephen Salloway
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | | | | | - Jalen Scott
- Washington University in St Louis, St Louis, MO, USA
| | - Michio Senda
- Kobe City Medical Center General Hospital, Kobe, Japan
| | - Laura Serna
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Nicholas T. Seyfried
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | | | - Karina Skrbec
- Washington University in St Louis, St Louis, MO, USA
| | | | | | - Sarah Stout
- Washington University in St Louis, St Louis, MO, USA
| | | | - Ezequiel Surace
- Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | | | - Silvia Vazquez
- Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | | | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases, Munich, Munich, Germany
| | - Guoqiao Wang
- Washington University in St Louis, St Louis, MO, USA
| | - Qing Wang
- Washington University in St Louis, St Louis, MO, USA
| | - Yong Wang
- Washington University in St Louis, St Louis, MO, USA
| | | | - Xiong Xu
- Washington University in St Louis, St Louis, MO, USA
| | - Jinbin Xu
- Washington University in St Louis, St Louis, MO, USA
| | | | | |
Collapse
|
7
|
Cash DM, Morgan KE, O'Connor A, Veale TD, Malone IB, Poole T, Benzinger TL, Gordon BA, Ibanez L, Li Y, Llibre-Guerra JJ, McDade E, Wang G, Chhatwal JP, Day GS, Huey E, Jucker M, Levin J, Niimi Y, Noble JM, Roh JH, Sánchez-Valle R, Schofield PR, Bateman RJ, Frost C, Fox NC. Sample size estimates for biomarker-based outcome measures in clinical trials in autosomal dominant Alzheimer's disease. J Prev Alzheimers Dis 2025:100133. [PMID: 40118731 DOI: 10.1016/j.tjpad.2025.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Alzheimer disease (AD)-modifying therapies are approved for treatment of early-symptomatic AD. Autosomal dominant AD (ADAD) provides a unique opportunity to test therapies in presymptomatic individuals. METHODS Using data from the Dominantly Inherited Alzheimer Network (DIAN), sample sizes for clinical trials were estimated for various cognitive, imaging, and CSF outcomes. Sample sizes were computed for detecting a reduction of either absolute levels of AD-related pathology (amyloid, tau) or change over time in neurodegeneration (atrophy, hypometabolism, cognitive change). RESULTS Biomarkers measuring amyloid and tau pathology had required sample sizes below 200 participants per arm (examples CSF Aβ42/40: 47[95 %CI 25,104], cortical PIB 49[28,99], CSF p-tau181 74[48,125]) for a four-year trial in presymptomatic individuals (CDR=0) to have 80 % power (5 % statistical significance) to detect a 25 % reduction in absolute levels of pathology, allowing 40 % dropout. For cognitive, MRI, and FDG, it was more appropriate to detect a 50 % reduction in rate of change. Sample sizes ranged from 250 to 900 (examples hippocampal volume: 338[131,2096], cognitive composite: 326[157,1074]). MRI, FDG and cognitive outcomes had lower sample sizes when including indivduals with mild impairment (CDR=0.5 and 1) as well as presymptomatic individuals (CDR=0). DISCUSSION Despite the rarity of ADAD, presymptomatic clinical trials with feasible sample sizes given the number of cases appear possible.
Collapse
Affiliation(s)
- David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK; UK Dementia Research Institute, 6th Floor, Maple House, Tottenham Court Road, London W1T 7NF, UK.
| | - Katy E Morgan
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Thomas D Veale
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Teresa Poole
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Tammie Ls Benzinger
- Department of Radiology. Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Brian A Gordon
- Department of Radiology. Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., Suite 200, St. Louis, MO 63108 USA
| | - Laura Ibanez
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA; Department of Psychiarty, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Yan Li
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Guoqiao Wang
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Jasmeer P Chhatwal
- Brigham and Women's Hospital, Massachusetts General Hospital; Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| | - Edward Huey
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, 222 Richmond St., Providence, RI 02903, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller Strasse 27, 72076 Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, 72076 Tübingen, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, Marchioninistr. 15 D-81377, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yoshiki Niimi
- Unit for early and exploratory clinical development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievksy Center, Columbia University, 710W 168th St #3, New York, NY 10032, USA
| | - Jee Hoon Roh
- Departments of Neurology and Physiology, Korea University Anam Hospital, Korea University College of Medicine, 73 goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic Of Korea
| | - Racquel Sánchez-Valle
- Alzheimer's disease and other cognitive disorders group. Hospital Clínic de Barcelona. FRCB-IDIBAPS. University of Barcelona, Carrer de Villarroel, 170, L'Eixample, 08036 Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Margarete Ainsworth Building Barker Street, Randwick NSW 2031 Australia; School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW 2052 Australia
| | - Randall J Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., Suite 200, St. Louis, MO 63108 USA; Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA; Hope Center for Neurological Disorders, Washington University in St Louis, 4370 Duncan Ave., St. Louis, MO 63110, USA
| | - Chris Frost
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK; UK Dementia Research Institute, 6th Floor, Maple House, Tottenham Court Road, London W1T 7NF, UK
| |
Collapse
|
8
|
Cash DM, Morgan KE, O’Connor A, Veale TD, Malone IB, Poole T, Benzinger TLS, Gordon BA, Ibanez L, Li Y, Llibre-Guerra JJ, McDade E, Wang G, Chhatwal JP, Day GS, Huey E, Jucker M, Levin J, Niimi Y, Noble JM, Roh JH, Sánchez-Valle R, Schofield PR, Bateman RJ, Frost C, Fox NC, The Dominantly Inherited Alzheimer Network (DIAN). Sample size estimates for biomarker-based outcome measures in clinical trials in autosomal dominant Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.11.12.24316919. [PMID: 39606328 PMCID: PMC11601746 DOI: 10.1101/2024.11.12.24316919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Alzheimer disease (AD)-modifying therapies are approved for treatment of early-symptomatic AD. Autosomal dominant AD (ADAD) provides a unique opportunity to test therapies in presymptomatic individuals. METHODS Using data from the Dominantly Inherited Alzheimer Network (DIAN), sample sizes for clinical trials were estimated for various cognitive, imaging, and CSF outcomes. Sample sizes were computed for detecting a reduction of either absolute levels of AD-related pathology (amyloid, tau) or change over time in neurodegeneration (atrophy, hypometabolism, cognitive change). RESULTS Biomarkers measuring amyloid and tau pathology had required sample sizes below 200 participants per arm (examples CSF Aβ42/40: 47[95%CI 25,104], cortical PIB 49[28,99], CSF p-tau181 74[48,125]) for a four-year trial in presymptomatic individuals (CDR=0) to have 80% power (5% statistical significance) to detect a 25% reduction in absolute levels of pathology, allowing 40% dropout. For cognitive, MRI, and FDG, it was more appropriate to detect a 50% reduction in rate of change. Sample sizes ranged from 250-900 (examples hippocampal volume: 338[131,2096], cognitive composite: 326[157,1074]). MRI, FDG and cognitive outcomes had lower sample sizes when including indivduals with mild impairment (CDR=0.5 and 1) as well as presymptomatic individuals (CDR=0). DISCUSSION Despite the rarity of ADAD, presymptomatic clinical trials with feasible sample sizes given the number of cases appear possible.
Collapse
Affiliation(s)
- David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
- UK Dementia Research Institute, 6th Floor, Maple House, Tottenham Court Road, London W1T 7NF, UK
| | - Katy E Morgan
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Antoinette O’Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Thomas D Veale
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Teresa Poole
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Tammie LS Benzinger
- Department of Radiology. Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Brian A Gordon
- Department of Radiology. Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., Suite 200, St. Louis, MO 63108 USA
| | - Laura Ibanez
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
- Department of Psychiarty, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Yan Li
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Jorge J. Llibre-Guerra
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Guoqiao Wang
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Jasmeer P Chhatwal
- Brigham and Women’s Hospital; Massachusetts General Hospital; Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| | - Edward Huey
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, 222 Richmond St., Providence, RI 02903, USA
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, 72076 Tübingen, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, Marchioninistr. 15 D-81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17,81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yoshiki Niimi
- Unit for early and exploratory clinical development, The UniVersity of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, GH Sergievksy Center, Columbia University, 710 W 168th St #3, New York, NY 10032, USA
| | - Jee Hoon Roh
- Departments of Neurology and Physiology, Korea University Anam Hospital, Korea University College of Medicine, 73 goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic Of Korea
| | - Racquel Sánchez-Valle
- Alzheimer’s disease and other cognitive disorders group. Hospital Clínic de Barcelona. FRCB-IDIBAPS. University of Barcelona, Carrer de Villarroel, 170, L’Eixample, 08036 Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Margarete Ainsworth Building Barker Street, Randwick NSW 2031 Australia
- School of Biomedical Sciences, University of New South Wales, UNSW Sydney, NSW 2052 Australia
| | - Randall J Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., Suite 200, St. Louis, MO 63108 USA
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Ave., St. Louis, MO 63110 USA
- Hope Center for Neurological Disorders, Washington University in St Louis, 4370 Duncan Ave., St. Louis, MO 63110, USA
| | - Chris Frost
- London School of Hygiene and Tropical Medicine, Keppel Street London, WC1E 7HT, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, First floor, 8-11 Queen Square, London, WC1N 3AR, UK
- UK Dementia Research Institute, 6th Floor, Maple House, Tottenham Court Road, London W1T 7NF, UK
| | | |
Collapse
|
9
|
Stojanovic M, Millar PR, McKay NS, Aschenbrenner AJ, Balota DA, Hassenstab J, Benzinger TL, Morris JC, Ances BM. The associations between attentional control, episodic memory, and Alzheimer's disease biomarkers of tau and neurodegeneration. J Alzheimers Dis 2025; 104:351-363. [PMID: 39994995 DOI: 10.1177/13872877251316801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
BACKGROUND While episodic memory decline is the most common cognitive symptom of Alzheimer's disease (AD), changes in attentional control have also been found to be sensitive to early AD pathology. The relations between longitudinal trajectories of these specific cognitive domains, especially attentional control, and biomarkers of tau and neurodegeneration have not been thoroughly examined. OBJECTIVE We examined whether baseline tau positron emission tomography (PET) and cortical thickness, relatively later markers within the AD cascade, predicted cross-sectional and longitudinal changes in episodic memory and attentional control. METHODS Cognitively normal individuals ([Clinical Dementia Rating CDR®] = 0; n = 249) at baseline completed a magnetic resonance imaging (MRI), tau PET, and multiple assessments of episodic memory and attentional control. Generalized additive mixed-effects models examined whether tau PET summary measure and cortical thickness signature predicted cross-sectional and longitudinal trajectories of attentional control and episodic memory. RESULTS Higher tau PET and lower MRI cortical thickness were generally associated with worse cross-sectional cognitive performance. Our exploratory analyses found cortex-wide associations between tau PET and episodic memory, with limited suggestions of region-specific associations with attentional control. On longitudinal follow-up, higher tau PET was associated with a greater decline in episodic memory. CONCLUSIONS These results indicate that tau PET is particularly sensitive to detecting longitudinal changes in episodic memory. This further informs relevant endpoints for clinical drug trials in cognitively normal individuals. Future studies might consider longer follow-ups and lag associations between changes in AD biomarkers and changes in cognition.
Collapse
Affiliation(s)
- Marta Stojanovic
- Department of Psychological & Brain Sciences, Washington University in St Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter R Millar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole S McKay
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - David A Balota
- Department of Psychological & Brain Sciences, Washington University in St Louis, St. Louis, MO, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie Ls Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Zhou Z, Wang Q, Liu L, Wang Q, Zhang X, Li C, Liu J, Wei Y, Gao J, Fu L, Wang R. Investigating the Aβ and tau pathology in autosomal dominant Alzheimer's disease: insights from hybrid PET/MRI and network mapping. Alzheimers Res Ther 2025; 17:45. [PMID: 39962560 PMCID: PMC11831832 DOI: 10.1186/s13195-025-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Autosomal dominant Alzheimer's disease (ADAD) offers a distinct framework to study the preclinical phase of Alzheimer's disease (AD), due to its predictable symptom onset and high penetrance of causative mutations. The study aims to examine the spatial distribution and temporal progression of amyloid-beta (Aβ) and tau pathologies, along with mapping the pathology-functional connectivity network, in asymptomatic ADAD mutation carriers using hybrid positron emission tomography/magnetic resonance imaging (PET/MRI). METHODS Participants were recruited from the Chinese Familial Alzheimer's Disease Network, comprising 14 asymptomatic ADAD mutation carriers and 20 cognitively normal healthy controls (CN). Aβ deposition was evaluated using 11C-PIB PET, while tau aggregation was assessed via 18F-MK6240 PET imaging. Resting-state functional connectivity (rsFC) was analyzed to investigate relationships between pathological burden and neural network changes. Through qualitative analysis, ADAD carriers with marked 18F-MK6240 uptake in intracranial regions were categorized into Group 2, while others were designated as Group 1. RESULTS Asymptomatic ADAD carriers demonstrated a significantly greater Aβ burden across the cortex and striatum compared to CN, although tau PET binding did not differ significantly between the groups. Group 2 participants exhibited elevated 11C-PIB uptake in the neocortex and striatum, and increased 18F-MK6240-PET uptake in the medial temporal and other cortical regions. Compared with Group 1, network mapping of rsFC in Group 2 indicated increased connectivity associated with tau deposition in limbic, posterior cortical, and bilateral temporal regions, overlapping with the default mode network, suggesting potential compensatory mechanisms. Additionally, reduced connectivity in the left medial inferior temporal cortex and fusiform gyrus aligned with findings in sporadic AD cases. CONCLUSIONS This study shows the spatiotemporal progression of Aβ and tau pathologies in preclinical ADAD, supporting the hypothesis that Aβ deposition precedes tau pathology. The rsFC alterations observed associate with tau deposition in asymptomatic carriers indicate early network disruptions. Tau network mapping presents a valuable approach for assessing individualized brain connectivity changes in preclinical AD, mitigating single-subject variability and advancing precision assessment in early-stage AD diagnosis.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Neurology, China-Japan Friendship Hospital, Yinghua East Road Hepingli, Beijing, 100029, China
| | - Qigeng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Changchun Street 45, Beijing, 100037, China
| | - Linwen Liu
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongdan Santiao 9, Beijing, 100730, China
| | - Qi Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Changchun Street 45, Beijing, 100037, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100039, China
| | - Can Li
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100039, China
| | - Jiajin Liu
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100039, China
| | - Yidan Wei
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Yinghua East Road Hepingli, Beijing, 100029, China
| | - Jin Gao
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Yinghua East Road Hepingli, Beijing, 100029, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Yinghua East Road Hepingli, Beijing, 100029, China.
| | - Ruimin Wang
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100039, China.
| |
Collapse
|
11
|
Luu B, Bangen KJ, Clark AL, Weigand AJ, Rantins P, Garcia ME, Urias U, Merritt VC, Thomas KR. PTSD moderates the association between subjective cognitive decline and Alzheimer's disease biomarkers in older veterans. Aging Ment Health 2025; 29:315-323. [PMID: 39118434 PMCID: PMC11698016 DOI: 10.1080/13607863.2024.2389547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Post-traumatic stress disorder (PTSD) and subjective cognitive decline (SCD) are independent risk factors for Alzheimer's disease (AD) and dementia, but the association of their interaction on AD biomarkers have yet to be characterized. This study aimed to examine the impact of PTSD on the association between SCD and tau and amyloid positron emission tomography (PET) as well as global cognition in older Veterans. METHOD This study included 87 Vietnam-Era Veterans without dementia (42 with PTSD; 45 without PTSD) from the Department of Defense-Alzheimer's Disease Neuroimaging Initiative. All participants had both tau and amyloid PET imaging as well as cognitive testing. SCD was measured using the Everyday Cognition questionnaire. RESULTS While SCD was associated with tau PET, amyloid PET, and global cognition, PTSD moderated these associations for tau and amyloid PET levels. Specifically, Veterans without PTSD had a stronger positive relationship between SCD and AD biomarkers when compared to those with PTSD. CONCLUSION Higher SCD was associated with greater tau and amyloid burden and worse cognitive performance across the sample, though the tau and amyloid associations were stronger for Veterans without PTSD. Results highlight the potential benefit of comprehensive clinical assessments including consideration of mental health among older Veterans with SCD to understand the underlying cause of the cognitive concerns. Additionally, more work is needed to understand alternative mechanisms driving SCD in older Veterans with PTSD.
Collapse
Affiliation(s)
- Britney Luu
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Katherine J. Bangen
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA, USA
| | - Alexandra L. Clark
- Department of Psychology, University of Texas at Austin,
Austin, TX, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California, San
Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Peter Rantins
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Mary Ellen Garcia
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA, USA
| | - Uriel Urias
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Victoria C. Merritt
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VASDHS,
San Diego, CA, USA
| | - Kelsey R. Thomas
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Boccalini C, Dodich A, Scheffler M, Laganà V, Fratto E, Frisoni GB, Bruni AC, Colao R, Perani D, Garibotto V. In Vivo Tau and Neurodegeneration Imaging in a Family With the Presenilin 1 Met146Leu Pathogenic Variant. Neurology 2024; 103:e210103. [PMID: 39586047 PMCID: PMC12053147 DOI: 10.1212/wnl.0000000000210103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVES We investigated tau and neurodegeneration patterns and clinical phenotypes in carriers of a specific pathogenic variant in the PSEN1 gene and 1 nonaffected relative. METHODS We included 3 symptomatic carriers of the c.436 A>C, p.Met146Leu, NM_000021.4, rs63750306 variant in the PSEN1 gene, pathogenic for autosomal dominant Alzheimer disease (AD), 1 asymptomatic carrier of the same variant, and 1 noncarrier, all belonging to the same "N" family. All subjects underwent clinical evaluations, 18F-flortaucipir-PET, and MRI. 18F-fludeoxyglucose-PET was available for 3 cases. RESULTS All symptomatic carriers showed advanced AD tau patterns. Symptomatic female carriers presented an earlier age at onset and more pronounced tau pathology in temporoparietal and frontal regions than male carriers, at comparable disease severity and duration. The presymptomatic male carrier showed a negative tau scan 4 years before symptom onset. MRI showed no severe cortical and hippocampal atrophy in all individuals. Brain metabolism showed neurodegeneration patterns typical of AD in symptomatic carriers. DISCUSSION In PSEN1 Met146Leu variant carriers, high cortical tau load, without significant atrophy, was present during early memory deficits. In the asymptomatic phase, all biomarkers were negative. More pronounced tau pathology in female than male individuals highlights the need to investigate sex differences in autosomal dominant AD.
Collapse
Affiliation(s)
- Cecilia Boccalini
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Alessandra Dodich
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Max Scheffler
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Valentina Laganà
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Enrico Fratto
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Giovanni B Frisoni
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Amalia Cecilia Bruni
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Rosanna Colao
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Daniela Perani
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| | - Valentina Garibotto
- From the Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab) (C.B.), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Switzerland; Center for Mind/Brain Sciences (A.D.), CIMeC, University of Trento, Italy; Division of Radiology (M.S.), Geneva University Hospitals, Switzerland; Department of Primary Care (V.L., A.C.B., R.C.), Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme; Institute of Neurology (E.F.), Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Geneva Memory Center (G.B.F.), Geneva University Hospitals, Switzerland; Nuclear Medicine Unit (D.P.), San Raffaele Hospital, Milan; Vita-Salute San Raffaele University (D.P.), Milan, Italy; and Division of Nuclear Medicine and Molecular Imaging (V.G.), Geneva University Hospitals, Switzerland
| |
Collapse
|
13
|
van Nifterick AM, de Haan W, Stam CJ, Hillebrand A, Scheltens P, van Kesteren RE, Gouw AA. Functional network disruption in cognitively unimpaired autosomal dominant Alzheimer's disease: a magnetoencephalography study. Brain Commun 2024; 6:fcae423. [PMID: 39713236 PMCID: PMC11660908 DOI: 10.1093/braincomms/fcae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Understanding the nature and onset of neurophysiological changes, and the selective vulnerability of central hub regions in the functional network, may aid in managing the growing impact of Alzheimer's disease on society. However, the precise neurophysiological alterations occurring in the pre-clinical stage of human Alzheimer's disease remain controversial. This study aims to provide increased insights on quantitative neurophysiological alterations during a true early stage of Alzheimer's disease. Using high spatial resolution source-reconstructed magnetoencephalography, we investigated regional and whole-brain neurophysiological changes in a unique cohort of 11 cognitively unimpaired individuals with pathogenic mutations in the presenilin-1 or amyloid precursor protein gene and a 1:3 matched control group (n = 33) with a median age of 49 years. We examined several quantitative magnetoencephalography measures that have been shown robust in detecting differences in sporadic Alzheimer's disease patients and are sensitive to excitation-inhibition imbalance. This includes spectral power and functional connectivity in different frequency bands. We also investigated hub vulnerability using the hub disruption index. To understand how magnetoencephalography measures change as the disease progresses through its pre-clinical stage, correlations between magnetoencephalography outcomes and various clinical variables like age were analysed. A comparison of spectral power between mutation carriers and controls revealed oscillatory slowing, characterized by widespread higher theta (4-8 Hz) power, a lower posterior peak frequency and lower occipital alpha 2 (10-13 Hz) power. Functional connectivity analyses presented a lower whole-brain (amplitude-based) functional connectivity in the alpha (8-13 Hz) and beta (13-30 Hz) bands, predominantly located in parieto-temporal hub regions. Furthermore, we found a significant hub disruption index for (phase-based) functional connectivity in the theta band, attributed to both higher functional connectivity in 'non-hub' regions alongside a hub disruption. Neurophysiological changes did not correlate with indicators of pre-clinical disease progression in mutation carriers after multiple comparisons correction. Our findings provide evidence that oscillatory slowing and functional connectivity differences occur before cognitive impairment in individuals with autosomal dominant mutations leading to early onset Alzheimer's disease. The nature and direction of these alterations are comparable to those observed in the clinical stages of Alzheimer's disease, suggest an early excitation-inhibition imbalance, and fit with the activity-dependent functional degeneration hypothesis. These insights may prove useful for early diagnosis and intervention in the future.
Collapse
Affiliation(s)
- Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Feldman HH, Cummings JL, Boxer AL, Staffaroni AM, Knopman DS, Sukoff Rizzo SJ, Territo PR, Arnold SE, Ballard C, Beher D, Boeve BF, Dacks PA, Diaz K, Ewen C, Fiske B, Gonzalez MI, Harris GA, Hoffman BJ, Martinez TN, McDade E, Nisenbaum LK, Palma J, Quintana M, Rabinovici GD, Rohrer JD, Rosen HJ, Troyer MD, Kim DY, Tanzi RE, Zetterberg H, Ziogas NK, May PC, Rommel A. A framework for translating tauopathy therapeutics: Drug discovery to clinical trials. Alzheimers Dement 2024; 20:8129-8152. [PMID: 39316411 PMCID: PMC11567863 DOI: 10.1002/alz.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
The tauopathies are defined by pathological tau protein aggregates within a spectrum of clinically heterogeneous neurodegenerative diseases. The primary tauopathies meet the definition of rare diseases in the United States. There is no approved treatment for primary tauopathies. In this context, designing the most efficient development programs to translate promising targets and treatments from preclinical studies to early-phase clinical trials is vital. In September 2022, the Rainwater Charitable Foundation convened an international expert workshop focused on the translation of tauopathy therapeutics through early-phase trials. Our report on the workshop recommends a framework for principled drug development and a companion lexicon to facilitate communication focusing on reproducibility and achieving common elements. Topics include the selection of targets, drugs, biomarkers, participants, and study designs. The maturation of pharmacodynamic biomarkers to demonstrate target engagement and surrogate disease biomarkers is a crucial unmet need. HIGHLIGHTS: Experts provided a framework to translate therapeutics (discovery to clinical trials). Experts focused on the "5 Rights" (target, drug, biomarker, participants, trial). Current research on frontotemporal degeneration, progressive supranuclear palsy, and corticobasal syndrome therapeutics includes 32 trials (37% on biologics) Tau therapeutics are being tested in Alzheimer's disease; primary tauopathies have a large unmet need.
Collapse
Affiliation(s)
- Howard H. Feldman
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jeffrey L. Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada at Las VegasLas VegasNevadaUSA
| | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Paul R. Territo
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Steven E. Arnold
- Department of NeurologyHarvard Medical SchoolMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Clive Ballard
- College of Medicine and HealthUniversity of ExeterExeterUK
| | | | | | - Penny A. Dacks
- The Association for Frontotemporal DegenerationKing of PrussiaPennsylvaniaUSA
| | | | | | - Brian Fiske
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | | | | | | | | | - Eric McDade
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Jose‐Alberto Palma
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | | | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jonathan D. Rohrer
- Department of Neurodegenerative DiseaseDementia Research CentreQueen Square Institute of NeurologyUniversity College of LondonLondonUK
| | - Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Doo Yeon Kim
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Rudolph E. Tanzi
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistrySahlgrenska Academy at the University of GothenburgMölndalSweden
| | | | - Patrick C. May
- ADvantage Neuroscience Consulting LLCFort WayneIndianaUSA
| | - Amy Rommel
- Rainwater Charitable FoundationFort WorthTexasUSA
| |
Collapse
|
15
|
Lu J, Wang J, Wu J, Zhang H, Ma X, Zhu Y, Wang J, Yang Y, Xiao Z, Li M, Zhou X, Ju Z, Xu Q, Ge J, Ding D, Yen T, Zuo C, Guan Y, Zhao Q. Pilot implementation of the revised criteria for staging of Alzheimer's disease by the Alzheimer's Association Workgroup in a tertiary memory clinic. Alzheimers Dement 2024; 20:7831-7846. [PMID: 39287564 PMCID: PMC11567817 DOI: 10.1002/alz.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION We aimed to evaluate the feasibility of the 2024 Alzheimer's Association Workgroup's integrated clinical-biological staging scheme in outpatient settings within a tertiary memory clinic. METHODS The 2018 syndromal cognitive staging system, coupled with a binary biomarker classification, was implemented for 236 outpatients with cognitive concerns. The 2024 numeric clinical staging framework, incorporating biomarker staging, was specifically applied to 154 individuals within the Alzheimer's disease (AD) continuum. RESULTS The 2024 staging scheme accurately classified 95.5% AD. Among these, 56.5% exhibited concordant clinical and biological stages (canonical), 34.7% demonstrated more advanced clinical stages than biologically expected (susceptible), and 8.8% displayed the inverse pattern (resilient). The susceptible group was characterized by a higher burden of neurodegeneration and inflammation than anticipated from tau, whereas the resilient group showed the opposite. DISCUSSION The 2024 staging scheme is generally feasible. A discrepancy between clinical and biological stages is relatively frequent among symptomatic patients with AD. HIGHLIGHTS The 2024 AA staging scheme is generally feasible in a tertiary memory clinic. A discrepancy between clinical and biological stages is relatively frequent in AD. The mismatch may be influenced by a non-specific pathological process involved in AD. Individual profiles like aging and lifestyles may contribute to such a mismatch. Matched and mismatched cases converge toward similar clinical outcomes.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Jing Wang
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Jie Wu
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Huiwei Zhang
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Xiaoxi Ma
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Yuhua Zhu
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Jie Wang
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Yunhao Yang
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Zhenxu Xiao
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Ming Li
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Xiaowen Zhou
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Zizhao Ju
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Qian Xu
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Jingjie Ge
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Ding Ding
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Tzu‐Chen Yen
- APRINOIA Therapeutics Co. LtdSuzhou Industrial ParkSuzhouChina
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- Human Phenome InstituteFudan UniversityPudong DistrictShanghaiChina
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Qianhua Zhao
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityXuhui DistrictShanghaiChina
| |
Collapse
|
16
|
Gonzales MM, O'Donnell A, Ghosh S, Thibault E, Tanner J, Satizabal CL, Decarli CS, Fakhri GE, Johnson KA, Beiser AS, Seshadri S, Pase M. Associations of cerebral amyloid beta and tau with cognition from midlife. Alzheimers Dement 2024; 20:5901-5911. [PMID: 39039896 PMCID: PMC11497641 DOI: 10.1002/alz.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Understanding early neuropathological changes and their associations with cognition may aid dementia prevention. This study investigated associations of cerebral amyloid and tau positron emission tomography (PET) retention with cognition in a predominately middle-aged community-based cohort and examined factors that may modify these relationships. METHODS 11C-Pittsburgh compound B amyloid and 18F-flortaucipir tau PET imaging were performed. Associations of amyloid and tau PET with cognition were evaluated using linear regression. Interactions with age, apolipoprotein E (APOE) ε4 status, and education were examined. RESULTS Amyloid and tau PET were not associated with cognition in the overall sample (N = 423; mean: 57 ± 10 years; 50% female). However, younger age (< 55 years) and APOE ε4 were significant effect modifiers, worsening cognition in the presence of higher amyloid and tau. DISCUSSION Higher levels of Aβ and tau may have a pernicious effect on cognition among APOE ε4 carriers and younger adults, suggesting a potential role for targeted early interventions. HIGHLIGHTS Risk and resilience factors influenced cognitive vulnerability due to Aβ and tau. Higher fusiform tau associated with poorer visuospatial skills in younger adults. APOE ε4 interacted with Aβ and tau to worsen cognition across multiple domains.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Department of NeurologyCedars Sinai Medical CenterLos AngelesCaliforniaUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Adrienne O'Donnell
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Saptaparni Ghosh
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Emma Thibault
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeremy Tanner
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyUniversity of California DavisSacramentoCaliforniaUSA
| | - Charles S. Decarli
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Georges El Fakhri
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyYale School of MedicineNew HavenUnited States
| | - Keith A. Johnson
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexa S. Beiser
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Matthew Pase
- The Framingham Heart StudyFraminghamMassachusettsUSA
- School of Psychological SciencesTurner Institute for Brain and Mental HealthMonash UniversityClaytonVICAustralia
| |
Collapse
|
17
|
Livingston G, Huntley J, Liu KY, Costafreda SG, Selbæk G, Alladi S, Ames D, Banerjee S, Burns A, Brayne C, Fox NC, Ferri CP, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Nakasujja N, Rockwood K, Samus Q, Shirai K, Singh-Manoux A, Schneider LS, Walsh S, Yao Y, Sommerlad A, Mukadam N. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024; 404:572-628. [PMID: 39096926 DOI: 10.1016/s0140-6736(24)01296-0] [Citation(s) in RCA: 510] [Impact Index Per Article: 510.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/08/2024] [Accepted: 06/16/2024] [Indexed: 08/05/2024]
Affiliation(s)
- Gill Livingston
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK.
| | - Jonathan Huntley
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Sergi G Costafreda
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Geriatric Department, Oslo University Hospital, Oslo, Norway
| | - Suvarna Alladi
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - David Ames
- National Ageing Research Institute, Melbourne, VIC, Australia; University of Melbourne Academic Unit for Psychiatry of Old Age, Melbourne, VIC, Australia
| | - Sube Banerjee
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Nick C Fox
- The Dementia Research Centre, Department of Neurodegenerative Disease, University College London, London, UK
| | - Cleusa P Ferri
- Health Technology Assessment Unit, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil; Department of Psychiatry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Laura N Gitlin
- College of Nursing and Health Professions, AgeWell Collaboratory, Drexel University, Philadelphia, PA, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Helen C Kales
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Mika Kivimäki
- Division of Psychiatry, University College London, London, UK; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Noeline Nakasujja
- Department of Psychiatry College of Health Sciences, Makerere University College of Health Sciences, Makerere University, Kampala City, Uganda
| | - Kenneth Rockwood
- Centre for the Health Care of Elderly People, Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
| | - Quincy Samus
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins University, Baltimore, MD, USA
| | - Kokoro Shirai
- Graduate School of Social and Environmental Medicine, Osaka University, Osaka, Japan
| | - Archana Singh-Manoux
- Division of Psychiatry, University College London, London, UK; Université Paris Cité, Inserm U1153, Paris, France
| | - Lon S Schneider
- Department of Psychiatry and the Behavioural Sciences and Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Walsh
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Yao Yao
- China Center for Health Development Studies, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Andrew Sommerlad
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Naaheed Mukadam
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Daniels AJ, McDade E, Llibre-Guerra JJ, Xiong C, Perrin RJ, Ibanez L, Supnet-Bell C, Cruchaga C, Goate A, Renton AE, Benzinger TL, Gordon BA, Hassenstab J, Karch C, Popp B, Levey A, Morris J, Buckles V, Allegri RF, Chrem P, Berman SB, Chhatwal JP, Farlow MR, Fox NC, Day GS, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Takada L, Sosa AL, Martins R, Mori H, Noble JM, Salloway S, Huey E, Rosa-Neto P, Sánchez-Valle R, Schofield PR, Roh JH, Bateman RJ, Dominantly Inherited Alzheimer Network. 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311689. [PMID: 39148846 PMCID: PMC11326320 DOI: 10.1101/2024.08.08.24311689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.
Collapse
Affiliation(s)
- Alisha J. Daniels
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Eric McDade
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Richard J. Perrin
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Carlos Cruchaga
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Brian A. Gordon
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Celeste Karch
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Brent Popp
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Allan Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - John Morris
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | - Virginia Buckles
- Washington University School of Medicine, St Louis, St Louis, MO, USA
| | | | - Patricio Chrem
- Institute of Neurological Research FLENI, Buenos Aires, Argentina
| | | | - Jasmeer P. Chhatwal
- Massachusetts General and Brigham & Women’s Hospitals, Harvard Medical School, Boston MA, USA
| | | | - Nick C. Fox
- UK Dementia Research Institute at University College London, London, United Kingdom
- University College London, London, United Kingdom
| | | | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Johannes Levin
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Ana Luisa Sosa
- Instituto Nacional de Neurologia y Neurocirugla Innn, Mexico City, Mexico
| | - Ralph Martins
- Edith Cowan University, Western Australia, Australia
| | | | - James M. Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, and GH Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Edward Huey
- Brown University, Butler Hospital, Providence, RI, USA
| | - Pedro Rosa-Neto
- Centre de Recherche de L’hopital Douglas and McGill University, Montreal, Quebec
| | - Raquel Sánchez-Valle
- Hospital Clínic de Barcelona. IDIBAPS. University of Barcelona, Barcelona, Spain
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jee Hoon Roh
- Korea University, Korea University Anam Hospital, Seoul, South Korea
| | | | | |
Collapse
|
19
|
Dolatshahi M, Commean PK, Rahmani F, Liu J, Lloyd L, Nguyen C, Hantler N, Ly M, Yu G, Ippolito JE, Sirlin C, Morris JC, Benzinger TL, Raji CA. Alzheimer Disease Pathology and Neurodegeneration in Midlife Obesity: A Pilot Study. Aging Dis 2024; 15:1843-1854. [PMID: 37548931 PMCID: PMC11272197 DOI: 10.14336/ad.2023.0707] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Obesity and excess adiposity at midlife are risk factors for Alzheimer disease (AD). Visceral fat is known to be associated with insulin resistance and a pro-inflammatory state, the two mechanisms involved in AD pathology. We assessed the association of obesity, MRI-determined abdominal adipose tissue volumes, and insulin resistance with PET-determined amyloid and tau uptake in default mode network areas, and MRI-determined brain volume and cortical thickness in AD cortical signature in the cognitively normal midlife population. Thirty-two middle-aged (age: 51.27±6.12 years, 15 males, body mass index (BMI): 32.28±6.39 kg/m2) cognitively normal participants, underwent bloodwork, brain and abdominal MRI, and amyloid and tau PET scan. Visceral and subcutaneous adipose tissue (VAT, SAT) were semi-automatically segmented using VOXel Analysis Suite (Voxa). FreeSurfer was used to automatically segment brain regions using a probabilistic atlas. PET scans were acquired using [11C]PiB and AV-1451 tracers and were analyzed using PET unified pipeline. The association of brain volumes, cortical thicknesses, and PiB and AV-1451 standardized uptake value ratios (SUVRs) with BMI, VAT/SAT ratio, and insulin resistance were assessed using Spearman's partial correlation. VAT/SAT ratio was associated significantly with PiB SUVRs in the right precuneus cortex (p=0.034) overall, controlling for sex. This association was significant only in males (p=0.044), not females (p=0.166). Higher VAT/SAT ratio and PiB SUVRs in the right precuneus cortex were associated with lower cortical thickness in AD-signature areas predominantly including bilateral temporal cortices, parahippocampal, medial orbitofrontal, and cingulate cortices, with age and sex as covariates. Also, higher BMI and insulin resistance were associated with lower cortical thickness in bilateral temporal poles. In midlife cognitively normal adults, we demonstrated higher amyloid pathology in the right precuneus cortex in individuals with a higher VAT/SAT ratio, a marker of visceral obesity, along with a lower cortical thickness in AD-signature areas associated with higher visceral obesity, insulin resistance, and amyloid pathology.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Paul K Commean
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Jingxia Liu
- Washington University School of Medicine, Division of Public Health Sciences, Department of Surgery, St. Louis, Missouri, USA.
| | - LaKisha Lloyd
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Caitlyn Nguyen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Nancy Hantler
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Maria Ly
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Gary Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Claude Sirlin
- Liver Imaging Group, Department of Radiology, University of California, San Diego, La Jolla, California, USA.
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA.
| | - Tammie L.S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA.
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
20
|
Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, Hansson O, Ho C, Jagust W, McDade E, Molinuevo JL, Okonkwo OC, Pani L, Rafii MS, Scheltens P, Siemers E, Snyder HM, Sperling R, Teunissen CE, Carrillo MC. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup. Alzheimers Dement 2024; 20:5143-5169. [PMID: 38934362 PMCID: PMC11350039 DOI: 10.1002/alz.13859] [Citation(s) in RCA: 511] [Impact Index Per Article: 511.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
The National Institute on Aging and the Alzheimer's Association convened three separate work groups in 2011 and single work groups in 2012 and 2018 to create recommendations for the diagnosis and characterization of Alzheimer's disease (AD). The present document updates the 2018 research framework in response to several recent developments. Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine (e.g., oncology), and is becoming a unifying concept common to all neurodegenerative diseases, not just AD. The present document is consistent with this principle. Our intent is to present objective criteria for diagnosis and staging AD, incorporating recent advances in biomarkers, to serve as a bridge between research and clinical care. These criteria are not intended to provide step-by-step clinical practice guidelines for clinical workflow or specific treatment protocols, but rather serve as general principles to inform diagnosis and staging of AD that reflect current science. HIGHLIGHTS: We define Alzheimer's disease (AD) to be a biological process that begins with the appearance of AD neuropathologic change (ADNPC) while people are asymptomatic. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms. Early-changing Core 1 biomarkers (amyloid positron emission tomography [PET], approved cerebrospinal fluid biomarkers, and accurate plasma biomarkers [especially phosphorylated tau 217]) map onto either the amyloid beta or AD tauopathy pathway; however, these reflect the presence of ADNPC more generally (i.e., both neuritic plaques and tangles). An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of AD and to inform clinical decision making throughout the disease continuum. Later-changing Core 2 biomarkers (biofluid and tau PET) can provide prognostic information, and when abnormal, will increase confidence that AD is contributing to symptoms. An integrated biological and clinical staging scheme is described that accommodates the fact that common copathologies, cognitive reserve, and resistance may modify relationships between clinical and biological AD stages.
Collapse
Affiliation(s)
| | - J. Scott Andrews
- Global Evidence & OutcomesTakeda Pharmaceuticals Company LimitedCambridgeMassachusettsUSA
| | - Thomas G. Beach
- Civin Laboratory for NeuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Teresa Buracchio
- Office of NeuroscienceU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Ana Graf
- NovartisNeuroscience Global Drug DevelopmentBaselSwitzerland
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, MalmöLundSweden
| | - Carole Ho
- DevelopmentDenali TherapeuticsSouth San FranciscoCaliforniaUSA
| | - William Jagust
- School of Public Health and Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Eric McDade
- Department of NeurologyWashington University St. Louis School of MedicineSt. LouisMissouriUSA
| | - Jose Luis Molinuevo
- Department of Global Clinical Development H. Lundbeck A/SExperimental MedicineCopenhagenDenmark
| | - Ozioma C. Okonkwo
- Department of Medicine, Division of Geriatrics and GerontologyUniversity of Wisconsin School of MedicineMadisonWisconsinUSA
| | - Luca Pani
- University of MiamiMiller School of MedicineMiamiFloridaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of Medicine at the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Philip Scheltens
- Amsterdam University Medical Center (Emeritus)NeurologyAmsterdamthe Netherlands
| | - Eric Siemers
- Clinical ResearchAcumen PharmaceuticalsZionsvilleIndianaUSA
| | - Heather M. Snyder
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| | - Reisa Sperling
- Department of Neurology, Brigham and Women's HospitalMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Department of Laboratory MedicineAmsterdam UMC, Neurochemistry LaboratoryAmsterdamthe Netherlands
| | - Maria C. Carrillo
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
21
|
McDade E, Liu H, Bui Q, Hassenstab J, Gordon B, Benzinger T, Shen Y, Timsina J, Wang L, Sung YJ, Karch C, Renton A, Daniels A, Morris J, Xiong C, Ibanez L, Perrin R, Llibre-Guerra JJ, Day G, Supnet-Bell C, Xu X, Berman S, Chhatwal J, Ikeuchi T, Kasuga K, Niimi Y, Huey E, Schofield P, Brooks W, Ryan N, Jucker M, Laske C, Levin J, Vöglein J, Roh JH, Lopera F, Bateman R, Cruchaga C. Ubiquitin-Proteasome System in the Different Stages of Dominantly Inherited Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-4202125. [PMID: 39108475 PMCID: PMC11302696 DOI: 10.21203/rs.3.rs-4202125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explored the role of the ubiquitin-proteasome system (UPS) in dominantly inherited Alzheimer's disease (DIAD) by examining changes in cerebrospinal fluid (CSF) levels of UPS proteins along with disease progression, AD imaging biomarkers (PiB PET, tau PET), neurodegeneration imaging measures (MRI, FDG PET), and Clinical Dementia Rating® (CDR®). Using the SOMAscan assay, we detected subtle increases in specific ubiquitin enzymes associated with proteostasis in mutation carriers (MCs) up to two decades before the estimated symptom onset. This was followed by more pronounced elevations of UPS-activating enzymes, including E2 and E3 proteins, and ubiquitin-related modifiers. Our findings also demonstrated consistent correlations between UPS proteins and CSF biomarkers such as Aβ42/40 ratio, total tau, various phosphorylated tau species to total tau ratios (ptau181/T181, ptauT205/T205, ptauS202/S202, ptauT217/T217), and MTBR-tau243, alongside Neurofilament light chain (NfL) and the CDR®. Notably, a positive association was observed with imaging markers (PiB PET, tau PET) and a negative correlation with markers of neurodegeneration (FDG PET, MRI), highlighting a significant link between UPS dysregulation and neurodegenerative processes. The correlations suggest that the increase in multiple UPS proteins with rising tau levels and tau-tangle associated markers, indicating a potential role for the UPS in relation to misfolded tau/neurofibrillary tangles (NFTs) and symptom onset. These findings indicate that elevated CSF UPS proteins in DIAD MCs could serve as early indicators of disease progression and suggest a link between UPS dysregulation and amyloid plaque, tau tangles formation, implicating the UPS as a potential therapeutic target in AD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alan Renton
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA: Departments of Neurology and Genetics and Ge
| | | | | | | | | | | | | | | | | | | | | | - Jasmeer Chhatwal
- Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School
| | | | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University
| | | | | | | | | | | | | | | | | | | | | | | | - Randall Bateman
- Department of Neurology, Washington University School of Medicine
| | | |
Collapse
|
22
|
Cody KA, Langhough RE, Zammit MD, Clark L, Chin N, Christian BT, Betthauser TJ, Johnson SC. Characterizing brain tau and cognitive decline along the amyloid timeline in Alzheimer's disease. Brain 2024; 147:2144-2157. [PMID: 38667631 PMCID: PMC11146417 DOI: 10.1093/brain/awae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 03/24/2024] [Indexed: 06/04/2024] Open
Abstract
Recent longitudinal PET imaging studies have established methods to estimate the age at which amyloid becomes abnormal at the level of the individual. Here we recontextualized amyloid levels into the temporal domain to better understand the downstream Alzheimer's disease processes of tau neurofibrillary tangle (NFT) accumulation and cognitive decline. This cohort study included a total of 601 individuals from the Wisconsin Registry for Alzheimer's Prevention and Wisconsin Alzheimer's Disease Research Center that underwent amyloid and tau PET, longitudinal neuropsychological assessments and met clinical criteria for three clinical diagnosis groups: cognitively unimpaired (n = 537); mild cognitive impairment (n = 48); or dementia (n = 16). Cortical 11C-Pittsburgh compound B (PiB) distribution volume ratio (DVR) and sampled iterative local approximation were used to estimate amyloid positive (A+; global PiB DVR > 1.16 equivalent to 17.1 centiloids) onset age and years of A+ duration at tau PET (i.e. amyloid chronicity). Tau PET burden was quantified using 18F-MK-6240 standardized uptake value ratios (70-90 min, inferior cerebellar grey matter reference region). Whole-brain and region-specific approaches were used to examine tau PET binding along the amyloid timeline and across the Alzheimer's disease clinical continuum. Voxel-wise 18F-MK-6240 analyses revealed that with each decade of A+, the spatial extent of measurable tau spread (i.e. progressed) from regions associated with early to late NFT tau stages. Regional analyses indicated that tau burden in the entorhinal cortex was detectable, on average, within 10 years of A+ onset. Additionally, the entorhinal cortex was the region most sensitive to early amyloid pathology and clinical impairment in this predominantly preclinical sample. Among initially cognitively unimpaired (n = 472) individuals with longitudinal cognitive follow-up, mixed effects models showed significant linear and non-linear interactions of A+ duration and entorhinal tau on cognitive decline, suggesting a synergistic effect whereby greater A+ duration, together with a higher entorhinal tau burden, increases the likelihood of cognitive decline beyond their separable effects. Overall, the amyloid time framework enabled a spatiotemporal characterization of tau deposition patterns across the Alzheimer's disease continuum. This approach, which examined cross-sectional tau PET data along the amyloid timeline to make longitudinal disease course inferences, demonstrated that A+ duration explains a considerable amount of variability in the magnitude and topography of tau spread, which largely recapitulated NFT staging observed in human neuropathological studies. By anchoring disease progression to the onset of amyloid, this study provides a temporal disease context, which may help inform disease prognosis and timing windows for anti-amyloid therapies.
Collapse
Affiliation(s)
- Karly A Cody
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Rebecca E Langhough
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Matthew D Zammit
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Lindsay Clark
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Nathaniel Chin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Bradley T Christian
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
23
|
Iaccarino L, Llibre-Guerra JJ, McDade E, Edwards L, Gordon B, Benzinger T, Hassenstab J, Kramer JH, Li Y, Miller BL, Miller Z, Morris JC, Mundada N, Perrin RJ, Rosen HJ, Soleimani-Meigooni D, Strom A, Tsoy E, Wang G, Xiong C, Allegri R, Chrem P, Vazquez S, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Salloway S, Fox NC, Day GS, Gorno-Tempini ML, Boxer AL, La Joie R, Bateman R, Rabinovici GD. Molecular neuroimaging in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2024; 6:fcae159. [PMID: 38784820 PMCID: PMC11114609 DOI: 10.1093/braincomms/fcae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-β accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-β plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge J Llibre-Guerra
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jason Hassenstab
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elena Tsoy
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Silvia Vazquez
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Department of Neuroscience, Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, Indiana, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Stephen Salloway
- Memory & Aging Program, Butler Hospital, Brown University in Providence, RI 02906, USA
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
24
|
Nordberg A. Insights into the progression of genetic Alzheimer's disease from tau PET. Lancet Neurol 2024; 23:453-454. [PMID: 38631755 DOI: 10.1016/s1474-4422(24)00124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Theme Inflammation and Aging, Karolinska University Hospital, Stockholm 14183, Sweden.
| |
Collapse
|
25
|
Wisch JK, McKay NS, Boerwinkle AH, Kennedy J, Flores S, Handen BL, Christian BT, Head E, Mapstone M, Rafii MS, O'Bryant SE, Price JC, Laymon CM, Krinsky-McHale SJ, Lai F, Rosas HD, Hartley SL, Zaman S, Lott IT, Tudorascu D, Zammit M, Brickman AM, Lee JH, Bird TD, Cohen A, Chrem P, Daniels A, Chhatwal JP, Cruchaga C, Ibanez L, Jucker M, Karch CM, Day GS, Lee JH, Levin J, Llibre-Guerra J, Li Y, Lopera F, Roh JH, Ringman JM, Supnet-Bell C, van Dyck CH, Xiong C, Wang G, Morris JC, McDade E, Bateman RJ, Benzinger TLS, Gordon BA, Ances BM. Comparison of tau spread in people with Down syndrome versus autosomal-dominant Alzheimer's disease: a cross-sectional study. Lancet Neurol 2024; 23:500-510. [PMID: 38631766 PMCID: PMC11209765 DOI: 10.1016/s1474-4422(24)00084-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING None.
Collapse
Affiliation(s)
- Julie K Wisch
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA.
| | - Nicole S McKay
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Anna H Boerwinkle
- McGovern Medical School, University of Texas in Houston, Houston, TX, USA
| | - James Kennedy
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Shaney Flores
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley T Christian
- Department of Medical Physics and Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Head
- Department of Pathology, Gillespie Neuroscience Research Facility, University of California, Irvine, CA, USA
| | - Mark Mapstone
- Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Sid E O'Bryant
- Institute for Translational Research Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Julie C Price
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon J Krinsky-McHale
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - H Diana Rosas
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sigan L Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Cambridge, UK
| | - Ira T Lott
- Department of Pediatrics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Dana Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Zammit
- Department of Medical Physics and Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joseph H Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Annie Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricio Chrem
- Centro de Memoria y Envejecimiento, Buenos Aires, Argentina
| | - Alisha Daniels
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Celeste M Karch
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asian Medical Center, Seoul, South Korea
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases, site Munich, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Jorge Llibre-Guerra
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jee Hoon Roh
- Departments of Physiology and Neurology, Korea University College of Medicine, Seoul, South Korea
| | - John M Ringman
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | | | | | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Guoqiao Wang
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Brian A Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
26
|
Hu J, Wang L, Chen J, Liang Y. Construction of a cell-based aggregation and seeding model for the Tau protein. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1085-1088. [PMID: 38682159 PMCID: PMC11322869 DOI: 10.3724/abbs.2024057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Affiliation(s)
- Jiying Hu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072China
- Office of Core FacilityShenzhen Bay LaboratoryShenzhen518000China
| | - Liqiang Wang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072China
| | - Jie Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072China
| | - Yi Liang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072China
| |
Collapse
|
27
|
Joseph‐Mathurin N, Feldman RL, Lu R, Shirzadi Z, Toomer C, Saint Clair JR, Ma Y, McKay NS, Strain JF, Kilgore C, Friedrichsen KA, Chen CD, Gordon BA, Chen G, Hornbeck RC, Massoumzadeh P, McCullough AA, Wang Q, Li Y, Wang G, Keefe SJ, Schultz SA, Cruchaga C, Preboske GM, Jack CR, Llibre‐Guerra JJ, Allegri RF, Ances BM, Berman SB, Brooks WS, Cash DM, Day GS, Fox NC, Fulham M, Ghetti B, Johnson KA, Jucker M, Klunk WE, la Fougère C, Levin J, Niimi Y, Oh H, Perrin RJ, Reischl G, Ringman JM, Saykin AJ, Schofield PR, Su Y, Supnet‐Bell C, Vöglein J, Yakushev I, Brickman AM, Morris JC, McDade E, Xiong C, Bateman RJ, Chhatwal JP, Benzinger TLS, for the Dominantly Inherited Alzheimer Network. Presenilin-1 mutation position influences amyloidosis, small vessel disease, and dementia with disease stage. Alzheimers Dement 2024; 20:2680-2697. [PMID: 38380882 PMCID: PMC11032566 DOI: 10.1002/alz.13729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS Mutation position influences Aβ burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aβ burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.
Collapse
|
28
|
Therriault J, Schindler SE, Salvadó G, Pascoal TA, Benedet AL, Ashton NJ, Karikari TK, Apostolova L, Murray ME, Verberk I, Vogel JW, La Joie R, Gauthier S, Teunissen C, Rabinovici GD, Zetterberg H, Bateman RJ, Scheltens P, Blennow K, Sperling R, Hansson O, Jack CR, Rosa-Neto P. Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol 2024; 20:232-244. [PMID: 38429551 DOI: 10.1038/s41582-024-00942-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Liana Apostolova
- Department of Neurology, University of Indiana School of Medicine, Indianapolis, IN, USA
| | | | - Inge Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip Scheltens
- Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Hata Y, Nakase M, Ichimata S, Yoshida K, Nishida N. Neuropathology of patients with preclinical or early clinical Alzheimer's disease with pathogenic PSEN1_p. L392V: Comparison of advanced siblings. Alzheimers Dement 2024; 20:2291-2296. [PMID: 38215435 PMCID: PMC10984492 DOI: 10.1002/alz.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
INTRODUCTION Neuropathological investigation of presymptomatic or early symptomatic presenilin-1 (PSEN1) mutation carriers in familial Alzheimer's disease (AD) is extremely scarce. METHODS We report the autopsy findings of brothers with familial AD. Case 1 is a 45-year-old man without obvious cognitive impairment, who committed suicide. Case 2 is a 57-year-old older brother of Case 1 with advanced AD symptoms, who died of hypothermia during wondering. RESULTS In both cases, abundant amyloid plaques positive for amyloid β (Aβ) were found throughout the brain. Progression of neuronal loss and increasing amount and extension of neurofibrillary tangle pathology were evident in Case 2. Genetic investigation revealed a PSEN1_p. L392V mutation in both cases. DISCUSSION The present study shows a possible neuropathological boundary between symptomatic and preclinical AD with pathogenic PSEN1 mutation. Additional clinicopathological investigation for familial AD-related mutation carriers may be significant to explore the association between familial AD and suicide.
Collapse
Affiliation(s)
- Yukiko Hata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaToyamaJapan
| | - Mio Nakase
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaToyamaJapan
- Faculty of MedicineUniversity of ToyamaToyamaToyamaJapan
| | - Shojiro Ichimata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaToyamaJapan
| | - Koji Yoshida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaToyamaJapan
| | - Naoki Nishida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaToyamaJapan
| |
Collapse
|
30
|
Chen AP, Ismail Z, Mann FD, Bromet EJ, Clouston SAP, Luft BJ. Behavioral Impairments and Increased Risk of Cortical Atrophy Risk Scores Among World Trade Center Responders. J Geriatr Psychiatry Neurol 2024; 37:114-124. [PMID: 37542409 PMCID: PMC10839111 DOI: 10.1177/08919887231195234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Objective: World Trade Center (WTC) responders are susceptible to both cognitive and neuropsychiatric impairments, particularly chronic posttraumatic stress disorder. The present study examined self-reported behavioral impairments in a sample of 732 WTC responders, 199 of whom were determined to have high risk of WTC-related cortical atrophy by an artificial neural network. Results: We found that responders at increased risk of cortical atrophy showed behavioral impairment across five domains: motivation, mood, disinhibition, empathy, and psychosis (14.6% vs 3.9% in the low-risk group; P = 3.90 × 10-7). Factor analysis models revealed that responders at high risk of cortical atrophy tended to have deficits generalized across all aspects of behavioral impairment with focal dysfunction in sensory psychosis. We additionally describe how relationships are modulated by exposure severity and pharmacological treatments. Discussion: Our findings suggest a potential link between sensory deficits and the development of cortical atrophy in WTC responders and may indicate symptoms consistent with a clinical portrait of parietal dominant Alzheimer's disease or a related dementia (ADRD). Results underscore the importance of investigating neuropsychiatric symptomatology in clinical evaluations of possible ADRD.
Collapse
Affiliation(s)
- Allen P.F. Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Zahinoor Ismail
- Hotchkiss Brain Institute and O’Brien Institute for Public Health, University of Calgary
| | - Frank D. Mann
- Program in Public Health, Renaissance School of Medicine, Stony Brook, NY, USA
- Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Evelyn J. Bromet
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Sean A. P. Clouston
- Program in Public Health, Renaissance School of Medicine, Stony Brook, NY, USA
- Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Benjamin J. Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
31
|
Nie X, Ruan J, Otaduy MCG, Grinberg LT, Ringman J, Shi Y. Surface-Based Probabilistic Fiber Tracking in Superficial White Matter. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1113-1124. [PMID: 37917515 PMCID: PMC10917128 DOI: 10.1109/tmi.2023.3329451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The short association fibers or U-fibers travel in the superficial white matter (SWM) beneath the cortical layer. While the U-fibers play a crucial role in various brain disorders, there is a lack of effective tools to reconstruct their highly curved trajectory from diffusion MRI (dMRI). In this work, we propose a novel surface-based framework for the probabilistic tracking of fibers on the triangular mesh representation of the SWM. By deriving a closed-form solution to transform the spherical harmonics (SPHARM) coefficients of 3D fiber orientation distributions (FODs) to local coordinate systems on each triangle, we develop a novel approach to project the FODs onto the tangent space of the SWM. After that, we utilize parallel transport to realize the intrinsic propagation of streamlines on SWM following probabilistically sampled fiber directions. Our intrinsic and surface-based method eliminates the need to perform the necessary but challenging sharp turns in 3D compared with conventional volume-based tractography methods. Using data from the Human Connectome Project (HCP), we performed quantitative comparisons to demonstrate the proposed algorithm can more effectively reconstruct the U-fibers connecting the precentral and postcentral gyrus than previous methods. Quantitative validations were then performed on post-mortem MRIs to show the reconstructed U-fibers from our method more faithfully follow the SWM than volume-based tractography. Finally, we applied our algorithm to study the parietal U-fiber connectivity changes in autosomal dominant Alzheimer's disease (ADAD) patients and successfully detected significant associations between U-fiber connectivity and disease severity.
Collapse
|
32
|
Hartley SL, Handen B, Tudorascu D, Lee L, Cohen A, Schworer EK, Peven JC, Zammit M, Klunk W, Laymon C, Minhas D, Luo W, Zaman S, Ances B, Preboske G, Christian BT, the Alzheimer Biomarker Consortium – Down Syndrome. AT(N) biomarker profiles and Alzheimer's disease symptomology in Down syndrome. Alzheimers Dement 2024; 20:366-375. [PMID: 37641428 PMCID: PMC10840615 DOI: 10.1002/alz.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Down syndrome (DS) is a genetic cause of early-onset Alzheimer's disease (AD). The National Institute on Aging-Alzheimer's Association AT(N) Research Framework is a staging model for AD biomarkers but has not been assessed in DS. METHOD Data are from the Alzheimer's Biomarker Consortium-Down Syndrome. Positron emission tomography (PET) amyloid beta (Aβ; 15 mCi of [11 C]Pittsburgh compound B) and tau (10 mCi of [18 F]AV-1451) were used to classify amyloid (A) -/+ and tau (T) +/-. Hippocampal volume classified neurodegeneration (N) -/+. The modified Cued Recall Test assessed episodic memory. RESULTS Analyses included 162 adults with DS (aged M = 38.84 years, standard deviation = 8.41). Overall, 69.8% of participants were classified as A-/T-/(N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. Participants deemed cognitively stable were most likely to be A-T-(N)- and A+T-(N)-. Tau PET (T+) most closely aligning with memory impairment and AD clinical status. DISCUSSION Findings add to understanding of AT(N) biomarker profiles in DS. HIGHLIGHTS Overall, 69.8% of adults with Down syndrome (DS) aged 25 to 61 years were classified as amyloid (A)-/tau (T)-/neurodegeneration (N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. The AT(N) profiles were associated with clinical Alzheimer's disease (AD) status and with memory performance, with the presence of T+ aligned with AD clinical symptomology. Findings inform models for predicting the transition to the prodromal stage of AD in DS.
Collapse
Affiliation(s)
- Sigan L. Hartley
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- School of Human EcologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Benjamin Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dana Tudorascu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Laisze Lee
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Annie Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Jamie C. Peven
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Matthew Zammit
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Charles Laymon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Davneet Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Weiquan Luo
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shahid Zaman
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Beau Ances
- Department of NeurologyWashington University at St. LouisSt. Louis, MissouriUSA
| | | | - Bradley T. Christian
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | | |
Collapse
|
33
|
Rahmani F, Brier MR, Gordon BA, McKay N, Flores S, Keefe S, Hornbeck R, Ances B, Joseph‐Mathurin N, Xiong C, Wang G, Raji CA, Libre‐Guerra JJ, Perrin RJ, McDade E, Daniels A, Karch C, Day GS, Brickman AM, Fulham M, Jack CR, la La Fougère C, Reischl G, Schofield PR, Oh H, Levin J, Vöglein J, Cash DM, Yakushev I, Ikeuchi T, Klunk WE, Morris JC, Bateman RJ, Benzinger TLS, For the Dominantly Inherited Alzheimer Network (DIAN). T1 and FLAIR signal intensities are related to tau pathology in dominantly inherited Alzheimer disease. Hum Brain Mapp 2023; 44:6375-6387. [PMID: 37867465 PMCID: PMC10681640 DOI: 10.1002/hbm.26514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (μ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-μ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-μ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients.
Collapse
Affiliation(s)
| | | | - Brian A. Gordon
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Nicole McKay
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Shaney Flores
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Sarah Keefe
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Russ Hornbeck
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Beau Ances
- Washington University School of MedicineSt. LouisMissouriUSA
| | | | - Chengjie Xiong
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Guoqiao Wang
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Cyrus A. Raji
- Washington University School of MedicineSt. LouisMissouriUSA
| | | | | | - Eric McDade
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Alisha Daniels
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Celeste Karch
- Washington University School of MedicineSt. LouisMissouriUSA
| | - Gregory S. Day
- Mayo Clinic, Department of NeurologyJacksonvilleFloridaUSA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer's Disease & the Aging Brain, and Department of Neurology College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | | | | | - Christian la La Fougère
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE) TuebingenTübingenGermany
- Department of Preclinical Imaging and RadiopharmacyEberhard Karls University TübingenTübingenGermany
| | - Gerald Reischl
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE) TuebingenTübingenGermany
- Department of Preclinical Imaging and RadiopharmacyEberhard Karls University TübingenTübingenGermany
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Hwamee Oh
- Brown UniversityProvidenceRhode IslandUSA
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE), site MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Jonathan Vöglein
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE), site MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - David M. Cash
- UK Dementia Research Institute at University College LondonLondonUK
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Igor Yakushev
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE), site MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | | | | | - John C. Morris
- Washington University School of MedicineSt. LouisMissouriUSA
| | | | | | | |
Collapse
|
34
|
Blazhenets G, Soleimani-Meigooni DN, Thomas W, Mundada N, Brendel M, Vento S, VandeVrede L, Heuer HW, Ljubenkov P, Rojas JC, Chen MK, Amuiri AN, Miller Z, Gorno-Tempini ML, Miller BL, Rosen HJ, Litvan I, Grossman M, Boeve B, Pantelyat A, Tartaglia MC, Irwin DJ, Dickerson BC, Baker SL, Boxer AL, Rabinovici GD, La Joie R. [ 18F]PI-2620 Binding Patterns in Patients with Suspected Alzheimer Disease and Frontotemporal Lobar Degeneration. J Nucl Med 2023; 64:1980-1989. [PMID: 37918868 PMCID: PMC10690126 DOI: 10.2967/jnumed.123.265856] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Tau PET has enabled the visualization of paired helical filaments of 3 or 4 C-terminal repeat tau in Alzheimer disease (AD), but its ability to detect aggregated tau in frontotemporal lobar degeneration (FTLD) spectrum disorders is uncertain. We investigated 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5c']dipyridine ([18F]PI-2620), a newer tracer with ex vivo evidence for binding to FTLD tau, in a convenience sample of patients with suspected FTLD and AD using a static acquisition protocol and parametric SUV ratio (SUVr) images. Methods: We analyzed [18F]PI-2620 PET data from 65 patients with clinical diagnoses associated with AD or FTLD neuropathology; most (60/65) also had amyloid-β (Aβ) PET. Scans were acquired 30-60 min after injection; SUVr maps (reference, inferior cerebellar cortex) were created for the full acquisition and for 10-min truncated sliding windows (30-40, 35-45,…50-60 min). Age- and sex-adjusted z score maps were computed for each patient, relative to 23 Aβ-negative cognitively healthy controls (HC). Mean SUVr in the globus pallidus, substantia nigra, subthalamic nuclei, dentate nuclei, white matter, and temporal gray matter was extracted for the full and truncated windows. Results: Patients with suspected AD neuropathology (Aβ-positive patients with mild cognitive impairment or AD dementia) showed high-intensity temporoparietal cortex-predominant [18F]PI-2620 binding. At the group level, patients with clinical diagnoses associated with FTLD (progressive supranuclear palsy with Richardson syndrome [PSP Richardson syndrome], corticobasal syndrome, and nonfluent-variant primary progressive aphasia) exhibited higher globus pallidus SUVr than did HCs; pallidal retention was highest in the PSP Richardson syndrome group, in whom SUVr was correlated with symptom severity (ρ = 0.53, P = 0.05). At the individual level, only half of PSP Richardson syndrome, corticobasal syndrome, and nonfluent-variant primary progressive aphasia patients had a pallidal SUVr above that of HCs. Temporal SUVr discriminated AD patients from HCs with high accuracy (area under the receiver operating characteristic curve, 0.94 [95% CI, 0.83-1.00]) for all time windows, whereas discrimination between patients with PSP Richardson syndrome and HCs using pallidal SUVr was fair regardless of time window (area under the receiver operating characteristic curve, 0.77 [95% CI, 0.61-0.92] at 30-40 min vs. 0.81 [95% CI, 0.66-0.96] at 50-60 min; P = 0.67). Conclusion: [18F]PI-2620 SUVr shows an intense and consistent signal in AD but lower-intensity, heterogeneous, and rapidly decreasing binding in patients with suspected FTLD. Further work is needed to delineate the substrate of [18F]PI-2620 binding and the usefulness of [18F]PI2620 SUVr quantification outside the AD continuum.
Collapse
Affiliation(s)
- Ganna Blazhenets
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Wesley Thomas
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stephanie Vento
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Hilary W Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Peter Ljubenkov
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Miranda K Chen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Alinda N Amuiri
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Howie J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Irene Litvan
- University of California, San Diego, San Diego, California
| | - Murray Grossman
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - David J Irwin
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California;
| |
Collapse
|
35
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
36
|
Boxer AL, Sperling R. Accelerating Alzheimer's therapeutic development: The past and future of clinical trials. Cell 2023; 186:4757-4772. [PMID: 37848035 PMCID: PMC10625460 DOI: 10.1016/j.cell.2023.09.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/03/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Alzheimer's disease (AD) research has entered a new era with the recent positive phase 3 clinical trials of the anti-Aβ antibodies lecanemab and donanemab. Why did it take 30 years to achieve these successes? Developing potent therapies for reducing fibrillar amyloid was key, as was selection of patients at relatively early stages of disease. Biomarkers of the target pathologies, including amyloid and tau PET, and insights from past trials were also critical to the recent successes. Moving forward, the challenge will be to develop more efficacious therapies with greater efficiency. Novel trial designs, including combination therapies and umbrella and basket protocols, will accelerate clinical development. Better diversity and inclusivity of trial participants are needed, and blood-based biomarkers may help to improve access for medically underserved groups. Incentivizing innovation in both academia and industry through public-private partnerships, collaborative mechanisms, and the creation of new career paths will be critical to build momentum in these exciting times.
Collapse
Affiliation(s)
- Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute of Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, MassGeneral Brigham, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Llibre-Guerra JJ, Iaccarino L, Coble D, Edwards L, Li Y, McDade E, Strom A, Gordon B, Mundada N, Schindler SE, Tsoy E, Ma Y, Lu R, Fagan AM, Benzinger TLS, Soleimani-Meigooni D, Aschenbrenner AJ, Miller Z, Wang G, Kramer JH, Hassenstab J, Rosen HJ, Morris JC, Miller BL, Xiong C, Perrin RJ, Allegri R, Chrem P, Surace E, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Fox NC, Day G, Gorno-Tempini ML, Boxer AL, La Joie R, Rabinovici GD, Bateman R. Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2023; 5:fcad280. [PMID: 37942088 PMCID: PMC10629466 DOI: 10.1093/braincomms/fcad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.
Collapse
Affiliation(s)
| | - Leonardo Iaccarino
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dean Coble
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Amelia Strom
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Malinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Elena Tsoy
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinjiao Ma
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Ruijin Lu
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Tammie L S Benzinger
- Malinckrodt Institute of Radiology, Washington University in St Louis, St Louis, MO 63108, USA
| | - David Soleimani-Meigooni
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Zachary Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Howard J Rosen
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63108, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
- Department of Pathology and Immunology, Washington University in St Louis, St. Louis, MO 63108, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Ezequiel Surace
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| |
Collapse
|
38
|
Stojanovic M, Babulal GM, Head D. Determinants of physical activity engagement in older adults. J Behav Med 2023; 46:757-769. [PMID: 36920727 PMCID: PMC10502182 DOI: 10.1007/s10865-023-00404-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
In order to increase engagement in physical activity, it is important to determine which factors contribute to physical activity engagement in older adults. The current study examined the relative predictive ability of several potential determinants, in terms of both the concurrent level as well as longitudinal trajectories. Clinically normal adults aged 61-92 completed the Physical Activity Scale for the Elderly (n = 189 for cross-sectional models; n = 214 for longitudinal models). Potential determinants included age, gender, education, physical health, sensory health, mood, cardiovascular health, cognitive status, and biomarkers of Alzheimer disease (AD). We observed a novel finding that both concurrent physical health (p < 0.001) and change in physical health (p < 0.001) were significant predictors above and beyond other determinants. Concurrent mood predicted levels of physical activity (p = 0.035), particularly in females. These findings suggest that poor physical health and low mood might be important to consider as potential barriers to physical activity engagement in older adults.
Collapse
Affiliation(s)
- Marta Stojanovic
- Department of Psychological & Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, Box 1125, USA.
| | - Ganesh M Babulal
- Department of Psychology, Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa
- Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Institute of Public Health, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Denise Head
- Department of Psychological & Brain Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, Box 1125, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
39
|
Lepinay E, Cicchetti F. Tau: a biomarker of Huntington's disease. Mol Psychiatry 2023; 28:4070-4083. [PMID: 37749233 DOI: 10.1038/s41380-023-02230-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.
Collapse
Affiliation(s)
- Eva Lepinay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
40
|
Coomans EM, Tomassen J, Ossenkoppele R, Tijms BM, Lorenzini L, ten Kate M, Collij LE, Heeman F, Rikken RM, van der Landen SM, den Hollander ME, Golla SSV, Yaqub M, Windhorst AD, Barkhof F, Scheltens P, de Geus EJC, Visser PJ, van Berckel BNM, den Braber A. Genetically identical twin-pair difference models support the amyloid cascade hypothesis. Brain 2023; 146:3735-3746. [PMID: 36892415 PMCID: PMC10473566 DOI: 10.1093/brain/awad077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023] Open
Abstract
The amyloid cascade hypothesis has strongly impacted the Alzheimer's disease research agenda and clinical trial designs over the past decades, but precisely how amyloid-β pathology initiates the aggregation of neocortical tau remains unclear. We cannot exclude the possibility of a shared upstream process driving both amyloid-β and tau in an independent manner instead of there being a causal relationship between amyloid-β and tau. Here, we tested the premise that if a causal relationship exists, then exposure should be associated with outcome both at the individual level as well as within identical twin-pairs, who are strongly matched on genetic, demographic and shared environmental background. Specifically, we tested associations between longitudinal amyloid-β PET and cross-sectional tau PET, neurodegeneration and cognitive decline using genetically identical twin-pair difference models, which provide the unique opportunity of ruling out genetic and shared environmental effects as potential confounders in an association. We included 78 cognitively unimpaired identical twins with [18F]flutemetamol (amyloid-β)-PET, [18F]flortaucipir (tau)-PET, MRI (hippocampal volume) and cognitive data (composite memory). Associations between each modality were tested at the individual level using generalized estimating equation models, and within identical twin-pairs using within-pair difference models. Mediation analyses were performed to test for directionality in the associations as suggested by the amyloid cascade hypothesis. At the individual level, we observed moderate-to-strong associations between amyloid-β, tau, neurodegeneration and cognition. The within-pair difference models replicated results observed at the individual level with comparably strong effect sizes. Within-pair differences in amyloid-β were strongly associated with within-pair differences in tau (β = 0.68, P < 0.001), and moderately associated with within-pair differences in hippocampal volume (β = -0.37, P = 0.03) and memory functioning (β = -0.57, P < 0.001). Within-pair differences in tau were moderately associated with within-pair differences in hippocampal volume (β = -0.53, P < 0.001) and strongly associated with within-pair differences in memory functioning (β = -0.68, P < 0.001). Mediation analyses showed that of the total twin-difference effect of amyloid-β on memory functioning, the proportion mediated through pathways including tau and hippocampal volume was 69.9%, which was largely attributable to the pathway leading from amyloid-β to tau to memory functioning (proportion mediated, 51.6%). Our results indicate that associations between amyloid-β, tau, neurodegeneration and cognition are unbiased by (genetic) confounding. Furthermore, effects of amyloid-β on neurodegeneration and cognitive decline were fully mediated by tau. These novel findings in this unique sample of identical twins are compatible with the amyloid cascade hypothesis and thereby provide important new knowledge for clinical trial designs.
Collapse
Affiliation(s)
- Emma M Coomans
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, 205 02 Lund, Sweden
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Mara ten Kate
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Roos M Rikken
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Sophie M van der Landen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Marijke E den Hollander
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
41
|
Jagust WJ, Teunissen CE, DeCarli C. The complex pathway between amyloid β and cognition: implications for therapy. Lancet Neurol 2023; 22:847-857. [PMID: 37454670 DOI: 10.1016/s1474-4422(23)00128-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
For decades, the hypothesis that brain deposition of the amyloid β protein initiates Alzheimer's disease has dominated research and clinical trials. Targeting amyloid β is starting to produce therapeutic benefit, although whether amyloid-lowering drugs will be widely and meaningfully effective is still unclear. Despite extensive in-vivo biomarker evidence in humans showing the importance of an amyloid cascade that drives cognitive decline, the amyloid hypothesis does not fully account for the complexity of late-life cognitive impairment. Multiple brain pathological changes, inflammation, and host factors of resilience might also be involved in contributing to the development of dementia. This variability suggests that the benefits of lowering amyloid β might depend on how strongly an amyloid pathway is manifest in an individual in relation to other coexisting pathophysiological processes. A new approach to research and treatment, which fully considers the multiple factors that drive cognitive decline, is necessary.
Collapse
Affiliation(s)
- William J Jagust
- School of Public Health, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, CA, USA
| |
Collapse
|
42
|
McKay NS, Gordon BA, Hornbeck RC, Dincer A, Flores S, Keefe SJ, Joseph-Mathurin N, Jack CR, Koeppe R, Millar PR, Ances BM, Chen CD, Daniels A, Hobbs DA, Jackson K, Koudelis D, Massoumzadeh P, McCullough A, Nickels ML, Rahmani F, Swisher L, Wang Q, Allegri RF, Berman SB, Brickman AM, Brooks WS, Cash DM, Chhatwal JP, Day GS, Farlow MR, la Fougère C, Fox NC, Fulham M, Ghetti B, Graff-Radford N, Ikeuchi T, Klunk W, Lee JH, Levin J, Martins R, Masters CL, McConathy J, Mori H, Noble JM, Reischl G, Rowe C, Salloway S, Sanchez-Valle R, Schofield PR, Shimada H, Shoji M, Su Y, Suzuki K, Vöglein J, Yakushev I, Cruchaga C, Hassenstab J, Karch C, McDade E, Perrin RJ, Xiong C, Morris JC, Bateman RJ, Benzinger TLS. Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN). Nat Neurosci 2023; 26:1449-1460. [PMID: 37429916 PMCID: PMC10400428 DOI: 10.1038/s41593-023-01359-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.
Collapse
Affiliation(s)
| | | | | | - Aylin Dincer
- Washington University in St. Louis, St. Louis, MO, USA
| | - Shaney Flores
- Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah J Keefe
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Beau M Ances
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Diana A Hobbs
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | | | | - Laura Swisher
- Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Adam M Brickman
- Columbia University Irving Medical Center, New York, NY, USA
| | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - David M Cash
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Jasmeer P Chhatwal
- Massachusetts General and Brigham & Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | | | | | - Christian la Fougère
- Department of Radiology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nick C Fox
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Michael Fulham
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ralph Martins
- Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | | | | - James M Noble
- Columbia University Irving Medical Center, New York, NY, USA
| | - Gerald Reischl
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | | | | | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Igor Yakushev
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Celeste Karch
- Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
43
|
Li B, Li J, Hao Y, Xie P, Yue S, Wang S, Zhang J, Zhang Y. Yuanzhi Powder inhibits tau pathology in SAMP8 mice: Mechanism research of a traditional Chinese formula against Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116393. [PMID: 37001766 DOI: 10.1016/j.jep.2023.116393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yuanzhi Powder (YZP), a classical Chinese medicine formula, is good at tonifying heart-Qi and improving cognitive ability. YZP has been reported to show therapeutic effect on alleviating the symptoms of Alzheimer's disease (AD). AIM OF THE STUDY This study was conducted to observe the effects of YZP on improving the cognitive abilities of SAMP8 mice, and explore the involved mechanisms on inhibiting the excessive accumulation of phosphorylated tau. MATERIAL AND METHODS Thirty SAMP8 mice were randomly divided into five groups: AD group, AD + DO group, AD + YZP group, AD + LAC group and AD + LAC + YZP group. Age-matched SAMR1 mice were served as CTL group. AD + LAC group and AD + LAC + YZP group received 1 μg Lactacystin solution via intra-cerebroventricular injection. All mice (except the CTL group and AD + LAC group) were intragastrically administrated for 8 consecutive weeks. Then, the Morris Water Maze (MWM) test was conducted for evaluation of learning and memory abilities. The pathological changes of hippocampal CA1 were observed by Hematoxylin & eosin (H&E) staining. The expression of 26S proteasome in the hippocampus was measured by Western Blot (WB) and immunohistochemistry (IHC). The expressions of total tau (Tau5) and hyperphosphorylated tau (pS199, pT231 and pS396) were detected by WB. The aggregation of hyperphosphorylated tau and the binding ability of tau protein to microtubules were evaluated respectively by immunostaining and Thioflavin-S staining and double-label immunofluorescence. RESULTS SAMP8 mice showed serious cognitive impairment in behavioral tests. However, treatment of YZP significantly ameliorated the cognitive deficits of SAMP8 mice. The H&E staining suggested that YZP could protect against neuronal loss in SAMP8 mice. The IHC and WB results showed that YZP increases 26S proteasome expression in SAMP8 mice and 26S proteasome expression was effectively inhibited by Lactacystin. Meanwhile, The WB results demonstrated that YZP can inhibit the expression of hyperphosphorylated tau (pT231, pS396 and pS199). Furthermore, the immunostaining and Thioflavin-S staining and double-label immunofluorescence results indicated that YZP attenuates the excessive aggregation of hyperphosphorylated tau and enhances the binding ability of tau to stabilize microtubules in SAMP8 mice. CONCLUSIONS YZP could enhance cognitive performance and learning of AD, ameliorate tau pathology and significantly improve the binding ability of tau to microtubules, based potentially on inhibiting the excessive aggregation of hyperphosphorylated tau via the 26Sproteasome pathway but not necessarily the only one.
Collapse
Affiliation(s)
- Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Peijun Xie
- Department of Geriatrics, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Shengnan Yue
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Shaofeng Wang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Zhang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yi Zhang
- Department of Chinese Internal Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
44
|
Wheelock MD, Strain JF, Mansfield P, Tu JC, Tanenbaum A, Preische O, Chhatwal JP, Cash DM, Cruchaga C, Fagan AM, Fox NC, Graff-Radford NR, Hassenstab J, Jack CR, Karch CM, Levin J, McDade EM, Perrin RJ, Schofield PR, Xiong C, Morris JC, Bateman RJ, Jucker M, Benzinger TLS, Ances BM, Eggebrecht AT, Gordon BA, Allegri R, Araki A, Barthelemy N, Bateman R, Bechara J, Benzinger T, Berman S, Bodge C, Brandon S, Brooks W, Brosch J, Buck J, Buckles V, Carter K, Cash D, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Fagan A, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gordon B, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Haass C, Häsler L, Hassenstab J, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, et alWheelock MD, Strain JF, Mansfield P, Tu JC, Tanenbaum A, Preische O, Chhatwal JP, Cash DM, Cruchaga C, Fagan AM, Fox NC, Graff-Radford NR, Hassenstab J, Jack CR, Karch CM, Levin J, McDade EM, Perrin RJ, Schofield PR, Xiong C, Morris JC, Bateman RJ, Jucker M, Benzinger TLS, Ances BM, Eggebrecht AT, Gordon BA, Allegri R, Araki A, Barthelemy N, Bateman R, Bechara J, Benzinger T, Berman S, Bodge C, Brandon S, Brooks W, Brosch J, Buck J, Buckles V, Carter K, Cash D, Cash L, Chen C, Chhatwal J, Chrem P, Chua J, Chui H, Cruchaga C, Day GS, De La Cruz C, Denner D, Diffenbacher A, Dincer A, Donahue T, Douglas J, Duong D, Egido N, Esposito B, Fagan A, Farlow M, Feldman B, Fitzpatrick C, Flores S, Fox N, Franklin E, Friedrichsen N, Fujii H, Gardener S, Ghetti B, Goate A, Goldberg S, Goldman J, Gonzalez A, Gordon B, Gräber-Sultan S, Graff-Radford N, Graham M, Gray J, Gremminger E, Grilo M, Groves A, Haass C, Häsler L, Hassenstab J, Hellm C, Herries E, Hoechst-Swisher L, Hofmann A, Holtzman D, Hornbeck R, Igor Y, Ihara R, Ikeuchi T, Ikonomovic S, Ishii K, Jack C, Jerome G, Johnson E, Jucker M, Karch C, Käser S, Kasuga K, Keefe S, Klunk W, Koeppe R, Koudelis D, Kuder-Buletta E, Laske C, Lee JH, Levey A, Levin J, Li Y, Lopez O, Marsh J, Martinez R, Martins R, Mason NS, Masters C, Mawuenyega K, McCullough A, McDade E, Mejia A, Morenas-Rodriguez E, Mori H, Morris J, Mountz J, Mummery C, Nadkami N, Nagamatsu A, Neimeyer K, Niimi Y, Noble J, Norton J, Nuscher B, O'Connor A, Obermüller U, Patira R, Perrin R, Ping L, Preische O, Renton A, Ringman J, Salloway S, Sanchez-Valle R, Schofield P, Senda M, Seyfried N, Shady K, Shimada H, Sigurdson W, Smith J, Smith L, Snitz B, Sohrabi H, Stephens S, Taddei K, Thompson S, Vöglein J, Wang P, Wang Q, Weamer E, Xiong C, Xu J, Xu X, the Dominantly Inherited Alzheimer Network. Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer's disease. Brain 2023; 146:2928-2943. [PMID: 36625756 PMCID: PMC10316768 DOI: 10.1093/brain/awac498] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and CSF and is predictive of cognitive function in individuals with Alzheimer's disease. There has been limited prior work linking neurofilament light and functional connectivity, and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer's disease. Here, we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer's disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks, including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer's disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heightened total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer's disease.
Collapse
Affiliation(s)
- Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Jeremy F Strain
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Jiaxin Cindy Tu
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Aaron Tanenbaum
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David M Cash
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Nick C Fox
- Dementia Research Center, UCL Queen Square, London, UK.,UK Dementia Research Institute, College London, London, UK
| | | | - Jason Hassenstab
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Eric M McDade
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University in St. Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Randal J Bateman
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tammie L S Benzinger
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lucey BP, Liu H, Toedebusch CD, Freund D, Redrick T, Chahin SL, Mawuenyega KG, Bollinger JG, Ovod V, Barthélemy NR, Bateman RJ. Suvorexant Acutely Decreases Tau Phosphorylation and Aβ in the Human CNS. Ann Neurol 2023; 94:27-40. [PMID: 36897120 PMCID: PMC10330114 DOI: 10.1002/ana.26641] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE In Alzheimer's disease, hyperphosphorylated tau is associated with formation of insoluble paired helical filaments that aggregate as neurofibrillary tau tangles and are associated with neuronal loss and cognitive symptoms. Dual orexin receptor antagonists decrease soluble amyloid-β levels and amyloid plaques in mouse models overexpressing amyloid-β, but have not been reported to affect tau phosphorylation. In this randomized controlled trial, we tested the acute effect of suvorexant, a dual orexin receptor antagonist, on amyloid-β, tau, and phospho-tau. METHODS Thirty-eight cognitively unimpaired participants aged 45 to 65 years were randomized to placebo (N = 13), suvorexant 10 mg (N = 13), and suvorexant 20 mg (N = 12). Six milliliters of cerebrospinal fluid were collected via an indwelling lumbar catheter every 2 hours for 36 hours starting at 20:00. Participants received placebo or suvorexant at 21:00. All samples were processed and measured for multiple forms of amyloid-β, tau, and phospho-tau via immunoprecipitation and liquid chromatography-mass spectrometry. RESULTS The ratio of phosphorylated-tau-threonine-181 to unphosphorylated-tau-threonine-181, a measure of phosphorylation at this tau phosphosite, decreased ~10% to 15% in participants treated with suvorexant 20 mg compared to placebo. However, phosphorylation at tau-serine-202 and tau-threonine-217 were not decreased by suvorexant. Suvorexant decreased amyloid-β ~10% to 20% compared to placebo starting 5 hours after drug administration. INTERPRETATION In this study, suvorexant acutely decreased tau phosphorylation and amyloid-β concentrations in the central nervous system. Suvorexant is approved by the US Food and Drug Administration to treatment insomnia and may have potential as a repurposed drug for the prevention of Alzheimer's disease, however, future studies with chronic treatment are needed. ANN NEUROL 2023;94:27-40.
Collapse
Affiliation(s)
- Brendan P. Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
- Center on Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, MO
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | | | - David Freund
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Tiara Redrick
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Samir L. Chahin
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Kwasi G. Mawuenyega
- Biomolecular Analytical Research and Development, MilliporeSigma, St Louis, MO
| | - James G. Bollinger
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Vitaliy Ovod
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Nicolas R. Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
46
|
Horie K, Li Y, Barthélemy NR, Gordon BA, Hassenstab J, Benzinger TL, Fagan AM, Morris JC, Karch CM, Xiong C, Allegri R, Mendez PC, Ikeuchi T, Kasuga K, Noble J, Farlow M, Chhatwal J, Day GS, Schofield PR, Masters CL, Levin J, Jucker M, Lee JH, Hoon Roh J, Sato C, Sachdev P, Koyama A, Reyderman L, Bateman RJ, McDade E, Dominantly Inherited Alzheimer Network. Change in Cerebrospinal Fluid Tau Microtubule Binding Region Detects Symptom Onset, Cognitive Decline, Tangles, and Atrophy in Dominantly Inherited Alzheimer's Disease. Ann Neurol 2023; 93:1158-1172. [PMID: 36843330 PMCID: PMC10238659 DOI: 10.1002/ana.26620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms. METHODS Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy. RESULTS CSF MTBR-tau species located within the putative "border" region and one species corresponding to the "core" region of aggregates in neurofibrillary tangles (NFTs) increased during the presymptomatic stage and decreased during the symptomatic stage. The "border" MTBR-tau species were associated with amyloid pathology and CSF p-tau; whereas the "core" MTBR-tau species were associated stronger with tau PET and CSF measures of neurodegeneration. The ratio of the border to the core species provided a continuous measure of increasing amounts that tracked clinical progression and NFTs. INTERPRETATION Changes in CSF soluble MTBR-tau species preceded the onset of dementia, tau tangle increase, and atrophy in DIAD. The ratio of 4R-specific MTBR-tau (border) to the NFT (core) MTBR-tau species corresponds to the pathology of NFTs in DIAD and change with disease progression. The dynamics between different MTBR-tau species in the CSF may serve as a marker of tau-related disease progression and target engagement of anti-tau therapeutics. ANN NEUROL 2023;93:1158-1172.
Collapse
Affiliation(s)
- Kanta Horie
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Eisai Inc., Nutley, NJ, 07110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nicolas R. Barthélemy
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tammie. L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ricardo Allegri
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina
| | - Patricio Chrem Mendez
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina
| | | | | | - James Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Martin Farlow
- Department of Neurology, Indiana University, Indianapolis, IN 46202, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School Boston, MA 02114, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL 32224, USA
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, 2031 NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Colin L. Masters
- The Florey Institute and the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Marchioninistr 15, D-83177 Munchen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, Ludwig-Maximilians Universität München, Marchioninistr 15, 83177 Munich, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE) Tübingen; and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, Seoul 05505, Korea
| | - Jee Hoon Roh
- Departments of Biomedical Sciences, Physiology, and Neurology, Korea University College of Medicine, Seoul 02841, Korea
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | | | | | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | |
Collapse
|
47
|
O'Connor A, Cash DM, Poole T, Markiewicz PJ, Fraser MR, Malone IB, Jiao J, Weston PSJ, Flores S, Hornbeck R, McDade E, Schöll M, Gordon BA, Bateman RJ, Benzinger TLS, Fox NC. Tau accumulation in autosomal dominant Alzheimer's disease: a longitudinal [ 18F]flortaucipir study. Alzheimers Res Ther 2023; 15:99. [PMID: 37231491 PMCID: PMC10210376 DOI: 10.1186/s13195-023-01234-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Cortical tau accumulation is a key pathological event that partly defines Alzheimer's disease (AD) onset and is associated with cognitive decline and future disease progression. However, an improved understanding of the timing and pattern of early tau deposition in AD and how this may be tracked in vivo is needed. Data from 59 participants involved in two longitudinal cohort studies of autosomal dominant AD (ADAD) were used to investigate whether tau PET can detect and track presymptomatic change; seven participants were symptomatic, and 52 were asymptomatic but at a 50% risk of carrying a pathogenic mutation. All had baseline flortaucipir (FTP) PET, MRI and clinical assessments; 26 individuals had more than one FTP PET scan. Standardised uptake value ratios (SUVRs) in prespecified regions of interest (ROIs) were obtained using inferior cerebellar grey matter as the reference region. We compared the changes in FTP SUVRs between presymptomatic carriers, symptomatic carriers and non-carriers, adjusting for age, sex and study site. We also investigated the relationship between regional FTP SUVRs and estimated years to/from symptom onset (EYO). Compared to both non-carriers and presymptomatic carriers, FTP SUVRs were significantly higher in symptomatic carriers in all ROIs tested (p < 0.001). There were no significant regional differences between presymptomatic carriers and non-carriers in FTP SUVRs, or their rates of change (p > 0.05), although increased FTP signal uptake was seen posteriorly in some individuals around the time of expected symptom onset. When we examined the relationship of FTP SUVR with respect to EYO, the earliest significant regional difference between mutation carriers and non-carriers was detected within the precuneus prior to estimated symptom onset in some cases. This study supports preliminary studies suggesting that presymptomatic tau tracer uptake is rare in ADAD. In cases where early uptake was seen, there was often a predilection for posterior regions (the precuneus and post-cingulate) as opposed to the medial temporal lobe, highlighting the importance of examining in vivo tau uptake beyond the confines of traditional Braak staging.
Collapse
Affiliation(s)
- Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK. Antoinette.o'
- UK Dementia Research Institute at UCL, London, UK. Antoinette.o'
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Pawel J Markiewicz
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Maggie R Fraser
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Jieqing Jiao
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Shaney Flores
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Schöll
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
48
|
Conte M, De Feo MS, Sidrak MMA, Corica F, Gorica J, Granese GM, Filippi L, De Vincentis G, Frantellizzi V. Imaging of Tauopathies with PET Ligands: State of the Art and Future Outlook. Diagnostics (Basel) 2023; 13:diagnostics13101682. [PMID: 37238166 DOI: 10.3390/diagnostics13101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Tauopathies are a group of diseases characterized by the deposition of abnormal tau protein. They are distinguished into 3R, 4R, and 3R/4R tauopathies and also include Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Positron emission tomography (PET) imaging represents a pivotal instrument to guide clinicians. This systematic review aims to summarize the current and novel PET tracers. (2) Methods: Literature research was conducted on Pubmed, Scopus, Medline, Central, and the Web of Science using the query "pet ligands" and "tauopathies". Articles published from January 2018 to 9 February, 2023, were searched. Only studies on the development of novel PET radiotracers for imaging in tauopathies or comparative studies between existing PET tracers were included. (3) Results: A total of 126 articles were found, as follows: 96 were identified from PubMed, 27 from Scopus, one on Central, two on Medline, and zero on the Web of Science. Twenty-four duplicated works were excluded, and 63 articles did not satisfy the inclusion criteria. The remaining 40 articles were included for quality assessment. (4) Conclusions: PET imaging represents a valid instrument capable of helping clinicians in diagnosis, but it is not always perfect in differential diagnosis, even if further investigations on humans for novel promising ligands are needed.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Marko Magdi Abdou Sidrak
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ferdinando Corica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giorgia Maria Granese
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, 00410 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
49
|
Novotny BC, Fernandez MV, Wang C, Budde JP, Bergmann K, Eteleeb AM, Bradley J, Webster C, Ebl C, Norton J, Gentsch J, Dube U, Wang F, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Chhatwal J, Dominantly Inherited Alzheimer Network (DIAN) Study Group, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s Disease Metabolomics Consortium (ADMC), Goate A, Farlow M, Schofield P, Chui H, Karch CM, Cruchaga C, Benitez BA, Harari O. Metabolomic and lipidomic signatures in autosomal dominant and late-onset Alzheimer's disease brains. Alzheimers Dement 2023; 19:1785-1799. [PMID: 36251323 PMCID: PMC10106526 DOI: 10.1002/alz.12800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The identification of multiple genetic risk factors for Alzheimer's disease (AD) suggests that many pathways contribute to AD onset and progression. However, the metabolomic and lipidomic profiles in carriers of distinct genetic risk factors are not fully understood. The metabolome can provide a direct image of dysregulated pathways in the brain. METHODS We interrogated metabolomic signatures in the AD brain, including carriers of pathogenic variants in APP, PSEN1, and PSEN2 (autosomal dominant AD; ADAD), APOE ɛ4, and TREM2 risk variant carriers, and sporadic AD (sAD). RESULTS We identified 133 unique and shared metabolites associated with ADAD, TREM2, and sAD. We identified a signature of 16 metabolites significantly altered between groups and associated with AD duration. DISCUSSION AD genetic variants show distinct metabolic perturbations. Investigation of these metabolites may provide greater insight into the etiology of AD and its impact on clinical presentation. HIGHLIGHTS APP/PSEN1/PSEN2 and TREM2 variant carriers show distinct metabolic changes. A total of 133 metabolites were differentially abundant in AD genetic groups. β-citrylglutamate is differentially abundant in autosomal dominant, TREM2, and sporadic AD. A 16-metabolite profile shows differences between Alzheimer's disease (AD) genetic groups. The identified metabolic profile is associated with duration of disease.
Collapse
Affiliation(s)
- Brenna C. Novotny
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - John P. Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abdallah M. Eteleeb
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Bradley
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Carol Webster
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Curtis Ebl
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fengxian Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randall J. Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chengjie Xiong
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alzheimer’s Disease Neuroimaging Initiative
- Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | - Alzheimer’s Disease Metabolomics Consortium (ADMC)
- Data used in the preparation of this article were generated by the Alzheimer’s Disease Metabolomics Consortium (ADMC). As such, the investigators within the ADMC provided data but did not participate in the analysis or writing of this report. A complete listing of ADMC investigators can be found at: https://sites.duke.edu/adnimetab/team/
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peter Schofield
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia
| | - Helena Chui
- Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruno A. Benitez
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
50
|
Brase L, You SF, D'Oliveira Albanus R, Del-Aguila JL, Dai Y, Novotny BC, Soriano-Tarraga C, Dykstra T, Fernandez MV, Budde JP, Bergmann K, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Goate AM, Farlow M, Sutherland GT, Kipnis J, Karch CM, Benitez BA, Harari O. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat Commun 2023; 14:2314. [PMID: 37085492 PMCID: PMC10121712 DOI: 10.1038/s41467-023-37437-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).
Collapse
Affiliation(s)
- Logan Brase
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ricardo D'Oliveira Albanus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Yaoyi Dai
- Baylor College of Medicine, Houston, TX, USA
| | - Brenna C Novotny
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Taitea Dykstra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|