1
|
Liu H, Wang M, Wang Q, Guo J, Chen W, Ming Y, Huang Y, Tang Z, Huang M, Jia B. Promoting scarless wound closure utilizing an injectable thermosensitive hydrogel with anti-inflammatory, antioxidant, and scar formation inhibiting properties. BIOMATERIALS ADVANCES 2025; 173:214295. [PMID: 40157113 DOI: 10.1016/j.bioadv.2025.214295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/09/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Skin trauma, surgery, or burns can result in non-functional scar tissue, causing significant physiological and psychological harm to patients. Therefore, there is an urgent need for a treatment strategy that promotes rapid wound healing and suppresses scar formation. In this study, we developed a facile and injectable composite hydrogel system (PF-127@ERD) loaded with eriodictyol, which exhibits efficient sustained release of the scar-inhibiting compound at different stages of wound healing to facilitate rapid and scarless closure. Our findings revealed that PF-127@ERD not only stops bleeding and reduces local oxidative stress damage in skin wounds but also regulates the inflammatory microenvironment by inhibiting the expression of relevant inflammatory factors while promoting fibroblast migration. Furthermore, PF-127@ERD inhibits excessive collagen deposition and regulates the expression of genes associated with scar formation, thereby promoting scar-free wound healing. In a rat model of full-layer skin defects, skin wound tissue treated with PF-127@ERD healed faster, exhibited more orderly collagen alignment, and showed reduced scar tissue formation compared to other groups. This process may be due to its inhibition of ferroptosis-related pathways. Therefore, this straightforward hydrogel system based on the skin repair stage (PF-127@ERD) holds great potential for scarless wound healing.
Collapse
Affiliation(s)
- Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qinjing Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiming Guo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Cai J, Zhou H, Liu M, Zhang D, Lv J, Xue H, Zhou H, Zhang W. Host immunity and intracellular bacteria evasion mechanisms: Enhancing host-directed therapies with drug delivery systems. Int J Antimicrob Agents 2025; 65:107492. [PMID: 40107461 DOI: 10.1016/j.ijantimicag.2025.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Host-directed therapies (HDTs) have been investigated as a potential solution to combat intracellular and drug-resistant bacteria. HDTs stem from extensive research on the intricate interactions between the host and intracellular bacteria, leading to a treatment approach that relies on immunoregulation. To improve the bioavailability and safety of HDTs, researchers have utilized diverse drug delivery systems (DDS) to encapsulate and transport therapeutic agents to target cells. In this review, we first introduce the three mechanisms of bactericidal action and intracellular bacterial evasion: autophagy, reactive oxygen species (ROS), and inflammatory cytokines, with a particular focus on autophagy. Special attention is given to the detailed mechanism of xenophagy in clearing intracellular bacteria, a crucial selective autophagy process that specifically targets and degrades intracellular pathogens. Following this, we present the application of DDS to modulate these regulatory methods for intracellular bacteria elimination. By integrating insights from immunology and nanomedicine, this review highlights the emerging role of DDS in advancing HDTs for intracellular bacterial infections and paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Han Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Mingwei Liu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Dingjian Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Jingxuan Lv
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Haokun Xue
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Houcheng Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China.
| |
Collapse
|
3
|
Xu J, Zhang H, Ye H. Research progress on the role of fascia in skin wound healing. BURNS & TRAUMA 2025; 13:tkaf002. [PMID: 40248160 PMCID: PMC12001785 DOI: 10.1093/burnst/tkaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 04/19/2025]
Abstract
The skin, the human body's largest organ, is perpetually exposed to environmental factors, rendering it vulnerable to potential injuries. Fascia, a vital connective tissue that is extensively distributed throughout the body, fulfils multiple functions, including support, compartmentalization, and force transmission. The role of fascia in skin wound healing has recently attracted considerable attention. In addition to providing mechanical support, fascia significantly contributes to intercellular signalling and tissue repair, establishing itself as a crucial participant in wound healing. This review synthesises the latest advancements in fascia research and its implications for skin wound healing.
Collapse
Affiliation(s)
- Jiamin Xu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haifeng Ye
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
4
|
Wu PS, Wong TH, Hou CW, Chu TP, Lee JW, Lou BS, Lin MH. Cold Atmospheric Plasma Jet Promotes Wound Healing through CK2-coordinated PI3K/AKT and MAPK Signaling Pathways. Mol Cell Proteomics 2025:100962. [PMID: 40187493 DOI: 10.1016/j.mcpro.2025.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 03/03/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
The promising role of cold atmospheric plasma jet (CAPJ) treatment in promoting wound healing has been widely documented in therapeutic implications. However, the fact that not all subjects respond equally to CAPJ necessitates the investigation of the underlying cellular mechanisms, which have been rarely understood so far. Given that wound healing is a complex and prolonged process, post-plasma-activated medium (PAM) treated keratinocytes were collected at two time points, 2 hours (receiving) and 24 hours (recovery), for (phospho)proteomic analysis to systematically dissect the molecular basis of CAPJ-promoted wound healing. The receiving (phospho)proteomics datasets, referred to the time point of 2 hours, revealed an apparent increase in the phosphorylation of CK2 and its-mediated PI3K/AKT and MAPK signaling pathways, accompanied by a prompted downstream physiological response of cell migration. Additionally, incorporating the network analysis of predicted kinases and their direct interactors, we reiterated that CAPJ influenced cell growth and migration, thereby paving the way for its role in subsequent wound healing processes. Further determining the proteome profiles at recovery phase, which is the time point of 24 hours, displayed a totally different view from the receiving proteome which had almost no change. The up-regulation of ROBOs/SLITs expression and vesicle trafficking and fusion-related proteins, along with the abundant presence of 14-3-3 family proteins, indicated that the persistent effect of PAM on the wound healing process could potentially promote keratinocyte-fibroblast crosstalk and stimulate extracellular matrix (ECM) synthesis upon epithelialization. Consistent with proteome patterns, CAPJ-treated wound tissues indeed showed a denser and well-organized ECM architecture, implying hastened epithelialization during wound healing. Collectively, we delineated the molecular basis of CAPJ-accelerated wound healing at early and late responses, providing valuable insights for treatment selection and the development of therapeutic strategies to achieve better outcomes.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Chemistry Division, Center for General Education, Chang Gung University; Taoyuan 33302, Taiwan; Department of Microbiology, National Taiwan University College of Medicine; Taipei 100233, Taiwan
| | - Tzu-Hsuan Wong
- Department of Microbiology, National Taiwan University College of Medicine; Taipei 100233, Taiwan
| | - Chun-Wei Hou
- Chemistry Division, Center for General Education, Chang Gung University; Taoyuan 33302, Taiwan
| | - Teng-Ping Chu
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology; New Taipei 243303, Taiwan; International Ph.D. Program in Plasma and Thin Film Technology, Ming Chi University of Technology; New Taipei 243303, Taiwan
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology; New Taipei 243303, Taiwan; International Ph.D. Program in Plasma and Thin Film Technology, Ming Chi University of Technology; New Taipei 243303, Taiwan; Department of Materials Engineering, Ming Chi University of Technology; New Taipei 243303, Taiwan; High Entropy Materials Center, National Tsing Hua University, Hsinchu 300044, Taiwan; College of Engineering, Chang Gung University; Taoyuan 33302, Taiwan
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University; Taoyuan 33302, Taiwan; Department of Orthopaedic Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital; Taoyuan 33302, Taiwan.
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine; Taipei 100233, Taiwan.
| |
Collapse
|
5
|
Dong Z, Li S, Huang Y, Chen T, Ding Y, Tan Q. RNA N 6-methyladenosine demethylase FTO promotes diabetic wound healing through TRIB3-mediated autophagy in an m 6A-YTHDF2-dependent manner. Cell Death Dis 2025; 16:222. [PMID: 40157922 PMCID: PMC11954964 DOI: 10.1038/s41419-025-07494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
N6-methyladenosine (m6A) RNA modification impaired autophagy results in delayed diabetic wound healing. In this study, it was found that fat mass and obesity-associated protein (FTO) was significantly downregulated in the epidermis of diabetic patients, STZ-induced mice and db/db mice (type I and II diabetic mice) with prolonged hyperglycemia, as well as in different types of keratinocyte cell lines treated with short-term high glucose medium. The knockout of FTO affected the biological functions of keratinocytes, including enhanced apoptosis, inhibited autophagy, and delayed wound healing, producing consistent results with high-glucose medium treatment. High-throughput analysis revealed that tribbles pseudokinase 3 (TRIB3) served as the downstream target gene of FTO. In addition, both in vitro and in vivo experiments, TRIB3 overexpression partially rescued biological functions caused by FTO-depletion, promoting keratinocyte migration and proliferation via autophagy. Epigenetically, FTO modulated m6A modification in the 3'UTR of TRIB3 mRNA and enhanced TRIB3 stability in a YTHDF2-dependent manner. Collectively, this study identifies FTO as an accelerator of diabetic wound healing and modulates autophagy via regulating TRIB3 in keratinocytes, thereby benefiting the development of a m6A-targeted therapy for refractory diabetic wounds.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Shiyan Li
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yumeng Huang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, 210008, China
| | - Tianzhe Chen
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, 210008, China
| | - Qian Tan
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
6
|
Wang H, Wei B, WuLan H, Qu B, Li H, Ren J, Han Y, Guo L. Conditioned medium of engineering macrophages combined with soluble microneedles promote diabetic wound healing. PLoS One 2025; 20:e0316398. [PMID: 40072964 PMCID: PMC11902060 DOI: 10.1371/journal.pone.0316398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025] Open
Abstract
Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound. Engineering macrophages may enable a further improvement in their tissue repair capacity. Fibroblast growth factor 2 (FGF2) is a crucial growth factor that plays an integral role in wound healing process. And in this study, a stable macrophage cell line (engineered macrophages) overexpressing FGF2 was successfully established by engineering modification of macrophages. Proteomic analysis indicated that conditioned medium derived from FGF2 overexpressed macrophages may promote wound healing by enhancing the level of vascularization. Additionally, cellular assays demonstrated that this conditioned medium promotes endothelial cell migration in vitro. For the convenience of drug delivery and wound application, we prepared soluble hyaluronic acid microneedles to load the conditioned medium. These soluble microneedles exhibited excellent mechanical properties and biocompatibility while effectively releasing their contents in vivo. The microneedles significantly accelerated wound healing, leading to a marked increase in vascular proliferation and improved collagen deposition within a full thickness skin defect diabetic mouse model. In summary, we developed a type of hyaluronic acid microneedle loaded with conditioned medium of engineered macrophages. These microneedles have been demonstrated to enhance tissue vascularization and facilitate diabetic wound healing. This might potentially serve as a highly promising therapeutic approach for diabetic wounds.
Collapse
Affiliation(s)
- HongYu Wang
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Burn and Plastic Surgery, PLA No.983 Hospital, Tianjin, China
| | - BaoHua Wei
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hasi WuLan
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bin Qu
- Department of Burn Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - HuiLong Li
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Ren
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Han
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - LingLi Guo
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Zhang Q, Choi K, Wang X, Xi L, Lu S. The Contribution of Human Antimicrobial Peptides to Fungi. Int J Mol Sci 2025; 26:2494. [PMID: 40141139 PMCID: PMC11941821 DOI: 10.3390/ijms26062494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Various species of fungi can be detected in the environment and within the human body, many of which may become pathogenic under specific conditions, leading to various forms of fungal infections. Antimicrobial peptides (AMPs) are evolutionarily ancient components of the immune response that are quickly induced in response to infections with many pathogens in almost all tissues. There is a wide range of AMP classes in humans, many of which exhibit broad-spectrum antimicrobial function. This review provides a comprehensive overview of the mechanisms of action of AMPs, their distribution in the human body, and their antifungal activity against a range of both common and rare clinical fungal pathogens. It also discusses the current research status of promising novel antifungal strategies, highlighting the challenges that must be overcome in the development of these therapies. The hope is that antimicrobial peptides, as a class of antimicrobial agents, will soon progress through large-scale clinical trials and be implemented in clinical practice, offering new treatment options for patients suffering from infections.
Collapse
Affiliation(s)
| | | | | | | | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, #107 Yanjiang West Rd., Guangzhou 510120, China; (Q.Z.); (K.C.); (X.W.); (L.X.)
| |
Collapse
|
8
|
Ge J, Cao M, Zhang Y, Wu T, Liu J, Pu J, He H, Guo Z, Ju S, Yu J. Inhibiting NLRP3 enhances cellular autophagy induced by outer membrane vesicles from Pseudomonas aeruginosa. Microbiol Spectr 2025; 13:e0181924. [PMID: 39873509 DOI: 10.1128/spectrum.01819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
The bacterium Pseudomonas aeruginosa is able to invade lung epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, it is currently unclear how OMVs from P. aeruginosa (PA-OMVs) affect lung epithelial cells and their impact on oxidative stress, autophagy, and other physiological activities of lung epithelial cells. In this study, we found that PA-OMVs activated oxidative stress and autophagy in cells. We demonstrated that the NLRP3 (NLR family, pyrin domain containing 3) inhibitor MCC950 can enhance autophagy induced by PA-OMVs. The main function of NLRP3 is related to the body's immune response and inflammation regulation. MCC950 is the most common inhibitor of NLRP3. Additionally, we showed that PA-OMVs not only enhanced the expression of AMP-activated protein kinase, a key regulator of cellular energy homeostasis, and reactive oxygen species, which play a crucial role in cellular signaling and oxidative stress, but also significantly enhanced the expression of NLRP3. Inhibiting the expression of NLRP3 further enhanced the process of PA-OMVs induced autophagy. These results demonstrate that PA-OMVs activate both autophagy and the NLRP3 inflammasome, with NLRP3 suppressing autophagy to a certain extent, hoping to provide broad ideas for the future applications of PA-OMVs.IMPORTANCEThe discovery that lung epithelial cells exposed to outer membrane vesicles from Pseudomonas aeruginosa (PA-OMVs) activate cellular autophagy and induce protective immunity is significant. Specifically, the addition of an NLRP3 inhibitor, MCC950, has been found to decrease NLRP3 targets while simultaneously enhancing the autophagy activity induced by PA-OMVs. This finding unveils a novel theoretical framework for the development of PA-OMVs vaccines, highlighting new targets for enhancing the body's anti-infective responses. By elucidating the mechanisms through which PA-OMVs trigger autophagy and bolster immune defenses, this research opens avenues for innovative vaccine design strategies aimed at combatting infections effectively.
Collapse
Affiliation(s)
- Jing Ge
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Min Cao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yuyao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tianqi Wu
- Krieger School of Arts and Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiayi Liu
- Institute of Public Health, Nantong University, Nantong, China
| | - Jiang Pu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongye He
- Institute of Public Health, Nantong University, Nantong, China
| | - Zhibin Guo
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Juan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Public Health, Nantong University, Nantong, China
| |
Collapse
|
9
|
Siri M, Maleki MH, Meybodi SM, Mazhari SA, Saviri FG, Dehghanian A, Naseh M, Esmaeili N, Dastghaib S, Aryanian Z. Enhancing wound healing via modulation of autophagy-induced apoptosis: the role of nicotinamide riboside and resveratrol in streptozotocin-treated diabetic rat. J Nutr Biochem 2025; 137:109811. [PMID: 39577710 DOI: 10.1016/j.jnutbio.2024.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Impaired wound healing from diabetes mellitus (DM) causes lower limb amputations, posing clinical, social, and economic issues. Hypoxia and advanced glycation end products cause autophagy and apoptosis dysregulation, which delays wound healing. The study will test systemic and topical Nicotinamide Riboside (NR) and Resveratrol (RSV) for the capacity to modulate autophagy and apoptosis via the SIRT-1-FOXO1 pathway and improve diabetic wound healing. About 54 male Sprague-Dawley rats were separated into control, diabetic (T1D), T1D-Gel-Base, T1D-NR, T1D-RSV, and T1D-NR+RSV groups. Rats were gavaged with 50 mg/kg/day RSV and 300 mg/kg/day NR for 5 weeks before having their wounds topically treated with 5% NR and RSV gel for 15 days after diabetes induction. Biochemical, histomorphometric, and stereological assays were conducted. The mRNA expressions of SIRT-1, FOXO1, VEGF, BAX, Cas3, Bcl-2, Beclin1, LC3IIβ, P62, and ATG5 were examined by qRT-PCR. NR and RSV improved diabetic rat wound closure. Diabetic rats treated with NR and RSV had significantly higher LC3IIβ, VEGEF, Bcl-2, and SIRT-1 mRNA levels. Bcl-2, p62, and ATG5 were regulated whereas BAX and Cas 3 were reduced. Stereological investigations showed epidermal, dermal, collagen bundle, vascular, and fibroblast density enhancements. This study highlights the potential of NR and RSV, acting as SIRT-1 activators, in improving diabetic wound healing by regulating SIRT-1-FOXO1-mediated autophagy and apoptosis. These findings offer valuable insights for developing targeted strategies to enhance diabetic wound healing. The combination of NR and RSV showed promising effects, suggesting a potential therapeutic approach for improving diabetic wound healing.
Collapse
Affiliation(s)
- Morvarid Siri
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Mohammadmahdi Meybodi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Fatemeh Ghaderi Saviri
- Department of cellular and molecular biology, Kish International Campus, University of Tehran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Molecular Pathology and Cytogenetics Division, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Esmaeili
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Razi Hospital, School of Medicine, Tehran University of Medical Sciences
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran; Autophagy Research center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zeinab Aryanian
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
10
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
11
|
Deng J, Gan W, Hu C, Liu Z, Chen N, Jia C, Ding M, Zou J, Cai T, Li J, Xu Y, Chen J, Ma C, Yin H, Zhang Z, Wang H, Cao Y. San Huang Xiao Yan recipe promoted wound healing in diabetic ulcer mice by inhibiting Th17 cell differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119243. [PMID: 39722327 DOI: 10.1016/j.jep.2024.119243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic ulcer is a serious diabetes complication and a primary reason for amputations. For many years, the San Huang Xiao Yan (SHXY) recipe has served as a conventional remedy for these ulcers, effectively reducing inflammatory factors and exhibiting considerable therapeutic efficacy. However, the precise mechanism remains incompletely understood. AIM OF THE STUDY To explore the efficacy and mechanisms of SHXY and its active ingredients in treating diabetic ulcer. MATERIALS AND METHODS A diabetic ulcer mouse model was established using C57BL/6J mice on a high-fat diet, followed by streptozotocin injection and skin damage. We investigated the bioactive compounds, key targets, and pharmacological mechanisms of SHXY in addressing diabetic ulcers through network pharmacology, molecular docking, both in vitro and in vivo validation experiments. RESULTS One week after intragastric administration, SHXY can reduce inflammation and edema, increase collagen synthesis, and reduce the expression of RORγT and IL-17A without affecting Treg cells. In vitro, SHXY-containing serum inhibited the differentiation of Th17 cells but did not affect Treg and Th1 cells. Network pharmacology found that SHXY acts through inflammatory pathways, including TNF, IL-17, Th17 cell differentiation, HIF-1, and PI3K-Akt. CONCLUSIONS SHXY and its candidate enhance healing in diabetic ulcers by modulating CD4+ T cells, particularly by inhibiting Th17 cell differentiation.
Collapse
Affiliation(s)
- Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Wanwan Gan
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Hu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhe Liu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Nan Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, 310006, China
| | - Chenglin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Minlu Ding
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jiaqi Zou
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tongkai Cai
- Shanghai Diacart Biomedical Science and Technology Limited Company, Shanghai, 201203, China
| | - Jiacheng Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yicheng Xu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jian Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Chao Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Hao Yin
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhihui Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| | - Haikun Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| |
Collapse
|
12
|
Lai L, Wu H, Peng L, Zhang Z, Wu X, Zheng S, Su Z, Chu H. GelMA@LNP/AST Promotes eNOS-Dependent Angiogenesis Through Autophagy Activation for the Treatment of Hind Limb Ischemia. Int J Nanomedicine 2025; 20:1821-1841. [PMID: 39958322 PMCID: PMC11829644 DOI: 10.2147/ijn.s499478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/28/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Limb ischemia is a refractory disease characterized by insufficient angiogenesis and tissue necrosis. Currently, the primary clinical treatment method is surgical intervention; however, the prognosis for patients with severe limb ischemia remains unsatisfactory. Although some studies have evaluated the effects of using bioactive factors to promote neovascularization and tissue repair, the clinical outcomes have not met expectations, possibly due to the difficulties in maintaining biological activity and avoiding potential side effects. Traditional Chinese medicine, specifically astilbin (AST), is a potential therapeutic agent in promoting tissue regeneration. However, there have been no reports on its efficacy in treating limb ischemia through promoting angiogenesis. Materials and Methods In this study, we prepared AST-loaded lignin nanoparticles (LNP/AST) with sustained-release functionality, which were mixed with GelMA hydrogel (GelMA@LNP/AST). The angiogenic effects were evaluated in a mouse model of hind limb ischemia. To further investigate the mechanism of angiogenesis, human endothelial cell line EA.hy926 was exposed to different concentrations of AST. The effects of AST on cell migration and angiogenesis were studied using wound healing assays and angiogenesis assays. The changes in angiogenesis markers, autophagy markers, and eNOS levels were detected using qPCR and Western blotting. 3-MA was used to assess the role of autophagy in the activation of eNOS mediated by AST and its subsequent angiogenic effects. Results GelMA@LNP/AST significantly promoted blood flow recovery in mice with hind limb ischemia. This effect was mainly attributed to the enhanced migration and angiogenic capabilities of endothelial cells mediated by AST. A potential underlying mechanism could be that the autophagy induced by AST increases eNOS activity. Conclusion GelMA@LNP/AST enables complete revascularization in female mice after hind limb ischemia, thereby achieving limb preservation and restoring motor function. Given the good therapeutic potential of the GelMA@LNP/AST in revascularization, it may become an effective strategy for successfully salvaging limbs in cases of limb ischemia.
Collapse
Affiliation(s)
- Lingzhi Lai
- Maoming People’s Hospital, Maoming, Guangdong, People’s Republic of China
| | - Hao Wu
- Maoming People’s Hospital, Maoming, Guangdong, People’s Republic of China
| | - Liang Peng
- The First People’s Hospital of Guiyang, Guiyang, Guizhou, People’s Republic of China
| | - Zhen Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinfan Wu
- Maoming People’s Hospital, Maoming, Guangdong, People’s Republic of China
| | - Shuo Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zekang Su
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Hongxing Chu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
13
|
Wu X, Gu R, Tang M, Mu X, He W, Nie X. Elucidating the dual roles of apoptosis and necroptosis in diabetic wound healing: implications for therapeutic intervention. BURNS & TRAUMA 2025; 13:tkae061. [PMID: 39845196 PMCID: PMC11752647 DOI: 10.1093/burnst/tkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025]
Abstract
Wound healing is a complex and multistep biological process that involves the cooperation of various cell types. Programmed cell death, including apoptosis and necrotizing apoptosis, plays a crucial role in this process. Apoptosis, a controlled and orderly programmed cell death regulated by genes, helps eliminate unnecessary or abnormal cells and maintain internal environmental stability. It also regulates various cell functions and contributes to the development of many diseases. In wound healing, programmed cell death is essential for removing inflammatory cells and forming scars. On the other hand, necroptosis, another form of programmed cell death, has not been thoroughly investigated regarding its role in wound healing. This review explores the changes and apoptosis of specific cell groups during wound healing after an injury and delves into the potential underlying mechanisms. Furthermore, it briefly discusses the possible mechanisms linking wound inflammation and fibrosis to apoptosis in wound healing. By understanding the relationship between apoptosis and wound healing and investigating the molecular mechanisms involved in apoptosis regulation, new strategies for the clinical treatment of wound healing may be discovered.
Collapse
Affiliation(s)
- Xingqian Wu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
14
|
Pan Y, Li Y, Zhou X, Luo J, Ding Q, Pan R, Tian X. Extracellular Matrix-Mimicking Hydrogel with Angiogenic and Immunomodulatory Properties Accelerates Healing of Diabetic Wounds by Promoting Autophagy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4608-4625. [PMID: 39800939 DOI: 10.1021/acsami.4c18945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The management of diabetic wounds faces significant challenges due to the excessive activation of reactive oxygen species (ROS), dysregulation of the inflammatory response, and impaired angiogenesis. A substantial body of evidence suggests that the aforementioned diverse factors contributing to the delayed healing of diabetic wounds may be associated with impaired autophagy. Impaired autophagy leads to endothelial and fibroblast dysfunction and impedes macrophage phenotypic transformation. This disruption hinders angiogenesis and extracellular matrix deposition, ultimately culminating in delayed wound healing. Therefore, biomaterials possessing autophagy regulatory functions hold significant potential for clinical applications in enhancing the healing of diabetic wounds. A hybrid multifunctional hydrogel (GelMa@SIS-Qu) has been developed, comprising methacrylamide gelatin (GelMa), a small intestine submucosal acellular matrix (SIS), and quercetin nanoparticles, which demonstrates the capability to promote autophagy. The promotion of autophagy not only reduces ROS levels in endothelial cells and enhances their antioxidant activity but also mitigates ROS-induced endothelial cell dysfunction and apoptosis, thereby promoting angiogenesis. Furthermore, the promotion of autophagy facilitates the phenotypic transformation of macrophages from the M1 phenotype to the M2 phenotype. This study investigates the distinctive mechanisms of the GelMa@SIS-Qu hydrogel and proposes a promising therapeutic strategy for treating diabetes-related wounds.
Collapse
Affiliation(s)
- Yujie Pan
- School of Clinical Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yangyang Li
- School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
- Beijing Jishuitan Hospital Guizhou Hospital, Guiyang 550014, Guizhou, China
| | - Xin Zhou
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jin Luo
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qiuyue Ding
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang 550000, Guizhou, China
| | - Runsang Pan
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang 550000, Guizhou, China
| | - Xiaobin Tian
- School of Clinical Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
15
|
Cai Z, Wang Y, Hu S, Yuan Q, Liu J, Luo C, Jiang L, Huang Y. The efficacy of platelet-derived extracellular vesicles in the treatment of diabetic wounds: a systematic review and meta-analysis of animal studies. Arch Dermatol Res 2025; 317:244. [PMID: 39812853 DOI: 10.1007/s00403-024-03781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Platelet-derived extracellular vesicles (PEVs) are rich in growth factors and have significant potential for facilitating tissue repair and regeneration. Therefore, we conducted this meta-analysis to assess the efficacy of PEVs in treating diabetic wounds. To assess the efficacy and safety of PEVs in treating diabetic wounds, we conducted a systematic review of several databases and performed a meta-analysis using a random effects model. Nine studies (n = 128 animals) meeting the inclusion criteria for this review were identified. The pooled analysis revealed that compared to the control group, wounds treated with PEVs had a higher healing rate (SMD = 4.43, 95% CI = 2.85-6.01, P < 0.00001). In subgroup analysis, PEVs combined with hydrogel showed better efficacy than PEVs alone (SMD = 7.96, 95% CI = 5.05-10.87, P < 0.00001). Additionally, the PEVs treatment group outperformed the control group in other outcomes, such as vessel density and number, re-epithelialization rate, and collagen deposition. PEVs have the potential to promote angiogenesis at diabetic wound sites and alleviate inflammatory responses, ultimately aiding in wound healing, especially when combined with hydrogels or other medications.
Collapse
Affiliation(s)
- Zhi Cai
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China
| | - Yuhan Wang
- Department of Clinical Laboratory, Longmatan District People's Hospital of Luzhou, Luzhou, People's Republic of China
| | - Shan Hu
- Department of Transfusion, Guanghan People's Hospital, Deyang, People's Republic of China
| | - Qiong Yuan
- Department of Transfusion, Zigong First People's Hospital, Zigong, People's Republic of China
| | - Jusong Liu
- Department of Transfusion, Zigong First People's Hospital, Zigong, People's Republic of China
| | - Chengcen Luo
- Department of Transfusion, Zigong Fourth People's Hospital, Zigong, People's Republic of China
| | - Ling Jiang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China.
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China.
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
16
|
Liu C, Liu Y, Yu Y, Huang S, Sun C, Zhang D, Yu A. High Glucose-Induced Senescent Fibroblasts-Derived Exosomal miR-497 Inhibits Wound Healing by Regulating Endothelial Cellular Autophagy via ATG13. Anal Cell Pathol (Amst) 2025; 2025:8890200. [PMID: 39831298 PMCID: PMC11742073 DOI: 10.1155/ancp/8890200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025] Open
Abstract
Background: Fibroblasts play a crucial role in diabetic wound healing, and their senescence is the cause of delayed wound repair. It was reported that fibroblasts can secrete exosomes that can mediate a vital role in diabetic complications. Our purpose is to examine the biological function of high glucose (HG)-induced senescent fibroblasts from the perspective of exosomes and reveal the mechanism at cellular and animal levels. Methods: HG-induced senescent fibroblasts were measured by senescence-associated β-galactosidase staining and immunofluorescence. Flow cytometry, 5-ethynyl-2'-deoxyuridine (edu), and cell counting kit 8 (CCK-8) assay were applied to detect apoptosis and cell viability. Fibroblasts and endothelial cells were cocultured, and the migration and angiogenesis abilities were detected by scratch, transwell, and tube formation assays. Exosomes were isolated and identified from fibroblasts that were treated differently. Then, the function of exosomes was investigated in cells and mice, including examining the cellular phenotype changes, detecting the autophagy levels, and evaluating the wound healing rate. Furthermore, the potential mechanism by which senescent fibroblast-derived exosomes inhibit wound healing was examined via bioinformatics, real-time quantitive polymerase chain reaction (qPCR), transfection, and dual-luciferase assays. Results: It illustrated that HG-induced senescent fibroblasts exhibited adverse impacts on cellular proliferation, migration, and angiogenesis of endothelial cells via secreting exosomes, and senescent fibroblast-derived exosomes (S-Exos) can delay skin wound defects in mice. Subsequent differential analysis of the GSE153214 and GSE48417 datasets elucidated that miR-497 was the biomarker in the senescent fibroblasts. Interestingly, the miR-497 levels were also elevated in S-Exos. Its overexpression can regulate human umbilical vein endothelial cell function by regulating autophagy via targeting ATG13. Furthermore, in vivo experiments also illustrated that miR-497 can delay wound healing and reduce autophagy. Conclusions: Our study demonstrated that exosomes from senescent fibroblasts can impair endothelial cell function and impede diabetic wound healing. The underlying mechanism was that fibroblast-derived exosomal miR-497 can target ATG13 to reduce autophagy, offering insight into new therapy for diabetic complications and other diseases.
Collapse
Affiliation(s)
- Changjiang Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Yuting Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Yifeng Yu
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Siyuan Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Chao Sun
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Dong Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| |
Collapse
|
17
|
Li R, Li J, Liu S, Guo X, Lu J, Wang T, Chen J, Zheng Y, Yuan Y, Du J, Zhu B, Wei X, Guo P, Liu L, Xu X, Dai X, Huang R, Liu X, Hu X, Wang S, Ji S. A scATAC-seq atlas of stasis zone in rat skin burn injury wound process. Front Cell Dev Biol 2025; 12:1519926. [PMID: 39845081 PMCID: PMC11752905 DOI: 10.3389/fcell.2024.1519926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Burn injuries often leave behind a "stasis zone", a region of tissue critically important for determining both the severity of the injury and the potential for recovery. To understand the intricate cellular and epigenetic changes occurring within this critical zone, we utilized single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to profile over 31,500 cells from both healthy rat skin and the stasis zone at nine different time points after a burn injury. This comprehensive approach revealed 26 distinct cell types and the dynamic shifts in the proportions of these cell types over time. We observed distinct gene activation patterns in different cell types at various stages post-burn, highlighting key players in immune activation, tissue regeneration, and blood vessel repair. Importantly, our analysis uncovered the regulatory networks governing these genes, offering valuable insights into the intricate mechanisms orchestrating burn wound healing. This comprehensive cellular and molecular atlas of the stasis zone provides a powerful resource for developing targeted therapies aimed at improving burn injury recovery and minimizing long-term consequences.
Collapse
Affiliation(s)
- Ruikang Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | - Jiashan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Liu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Tao Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | - Yue Zheng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | | | - Jiaxin Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Bolin Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | | | - Longqi Liu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI Research, Hangzhou, China
| | - Xun Xu
- BGI Research, Shenzhen, China
| | - Xi Dai
- BGI Research, Hangzhou, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Xiaoyan Hu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Pan X, Zong Q, Liu C, Wu H, Fu B, Wang Y, Sun W, Zhai Y. Konjac glucomannan exerts regulatory effects on macrophages and its applications in biomedical engineering. Carbohydr Polym 2024; 345:122571. [PMID: 39227106 DOI: 10.1016/j.carbpol.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Konjac glucomannan (KGM) molecular chains contain a small amount of acetyl groups and a large number of hydroxyl groups, thereby exhibiting exceptional water retention and gel-forming properties. To meet diverse requirements, KGM undergoes modification processes such as oxidation, acetylation, grafting, and cationization, which reduce its viscosity, enhance its mechanical strength, and improve its water solubility. Researchers have found that KGM and its derivatives can regulate the polarization of macrophages, inducing their transformation into classically activated M1-type macrophages or alternatively activated M2-type macrophages, and even facilitating the interconversion between M1 and M2 phenotypes. Concurrently, the modulation of macrophage polarization states holds significant importance for chronic wound healing, inflammatory bowel disease (IBD), antitumor therapy, tissue engineering scaffolds, oral vaccines, pulmonary delivery, and probiotics. Therefore, KGM has the advantages of both immunomodulatory effects (biological activity) and gel-forming properties (physicochemical properties), giving it significant advantages in a variety of biomedical engineering applications.
Collapse
Affiliation(s)
- Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou 570311, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
19
|
Shi S, Ou X, Long J, Lu X, Xu S, Zhang L. Nanoparticle-Based Therapeutics for Enhanced Burn Wound Healing: A Comprehensive Review. Int J Nanomedicine 2024; 19:11213-11233. [PMID: 39513089 PMCID: PMC11542498 DOI: 10.2147/ijn.s490027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Burn wounds pose intricate clinical challenges due to their severity and high risk of complications, demanding advanced therapeutic strategies beyond conventional treatments. This review discusses the application of nanoparticle-based therapies for optimizing burn wound healing. We explore the critical phases of burn wound healing, including inflammation, proliferation, and remodeling, while summarizing key nanoparticle-based strategies that influence these processes to optimize healing. Various nanoparticles, such as metal-based, polymer-based, and extracellular vesicles, are evaluated for their distinctive properties and mechanisms of action, including antimicrobial, anti-inflammatory, and regenerative effects. Future directions are highlighted, focusing on personalized therapies and the integration of sophisticated drug delivery systems, emphasizing the transformative potential of nanoparticles in enhancing burn wound treatment.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Jiafeng Long
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xiqin Lu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Siqi Xu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
20
|
Guo L, Zhang P, Zhang M, Liang P, Zhou S. LncRNA AGAP2-AS1 stabilizes ATG9A to promote autophagy in endothelial cells - Implications for burn wound healing. Exp Cell Res 2024; 443:114310. [PMID: 39481796 DOI: 10.1016/j.yexcr.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Deep second- or mixed-degree burn lesions are difficult to heal due to the impaired dermis supporting of epidermis renewal and nutrition delivery. Early dermis debridement and preservation speed healing and enhance results, emphasizing the need of knowing processes that promote burn-denatured dermis recovery, notably endothelial cell angiogenesis and autophagy. Integrative bioinformatics investigations identified AGAP2-AS1 as a highly elevated lncRNA in burn tissues. Pearson's correlation study connected AGAP2-AS1 to 112 differently co-expressed protein-coding genes involved in burn healing processes such cell cycle and TGF-beta receptor signaling. Experimental validation showed that heat damage elevated AGAP2-AS1 in HUVECs and HDMECs. Functionally, AGAP2-AS1 overexpression in heat-denatured HUVECs and HDMECs increased cell survival, migration, invasion, and angiogenesis. In addition, AGAP2-AS1 overexpression increased endothelial cell autophagy. Additional investigation showed AGAP2-AS1's association with ATG9A, stabilizing it. Post-heat damage, ATG9A knockdown drastically reduced HUVEC and HDMEC survival, migration, invasion, angiogenesis, and autophagy. More notably, ATG9A knockdown drastically reduced the benefits of AGAP2-AS1 overexpression on endothelial cell functions and autophagy. The positive association between AGAP2-AS1 and ATG9A expression in burn tissue samples highlights their crucial roles in endothelial cell response to heat injury, indicating that targeting this axis may aid burn wound healing. The research found that lncRNA AGAP2-AS1 stabilizes ATG9A and promotes autophagy in endothelial cells. These results imply that targeting the AGAP2-AS1/ATG9A axis may improve angiogenesis and tissue regeneration in burn injuries, revealing burn wound healing molecular pathways.
Collapse
Affiliation(s)
- Le Guo
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pihong Zhang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minghua Zhang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pengfei Liang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Situo Zhou
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
21
|
Pei J, Wei Y, Lv L, Tao H, Zhang H, Ma Y, Han L. Preliminary evidence for the presence of programmed cell death in pressure injuries. J Tissue Viability 2024; 33:720-725. [PMID: 39095251 DOI: 10.1016/j.jtv.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Pressure injuries (PIs) are a common healthcare problem worldwide and are considered to be the most expensive chronic wounds after arterial ulcers. Although the gross factors including ischemia-reperfusion (I/R) have been identified in the etiology of PIs, the precise cellular and molecular mechanisms contributing to PIs development remain unclear. Various forms of programmed cell death including apoptosis, autophagy, pyroptosis, necroptosis and ferroptosis have been identified in PIs. In this paper, we present a detailed overview on various forms of cell death; discuss the recent advances in the roles of cell death in the occurrence and development of PIs and found much of the evidence is novel and based on animal experiments. Herein, we also state critical evaluation of the existing data and future perspective in the field. A better understanding of the programmed cell death mechanism in PIs may have important implications in driving the development of new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Juhong Pei
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yuting Wei
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxia Tao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - HongYan Zhang
- Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - YuXia Ma
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; School of Nursing, Lanzhou University, Lanzhou, Gansu, China; Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
22
|
Liu Y, Zhang Z, Ma C, Song J, Hu J, Liu Y. Transplanted MSCs promote alveolar bone repair via hypoxia-induced extracellular vesicle secretion. Oral Dis 2024; 30:5221-5231. [PMID: 38716779 PMCID: PMC11610711 DOI: 10.1111/odi.14982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 12/05/2024]
Abstract
OBJECT Mesenchymal stem cell (MSC) therapy is a potential strategy for promoting alveolar bone regeneration. This study evaluated the effects and mechanisms of transplanted MSCs on alveolar bone repair. METHODS Mouse alveolar bone defect model was treated using mouse bone marrow mesenchymal stem cell (BMSC) transplantation. The bone repair was evaluated by micro-CT and Masson staining. The conditioned medium of hypoxia-treated BMSCs was co-cultured with normal BMSCs in vitro to detect the regulatory effect of transplanted MSCs on the chemotactic and migratory functions of host cells. The mechanisms were investigated using Becn siRNA transfection and western blotting. RESULTS BMSC transplantation promoted bone defect regeneration. The hypoxic microenvironment induces BMSCs to release multiple extracellular vesicle (EV)-mediated regulatory proteins that promote the migration of host stem cells. Protein array analysis, western blotting, GFP-LC3 detection, and Becn siRNA transfection confirmed that autophagy activation in BMSCs plays a key role during this process. CONCLUSION The local hypoxic microenvironment induces transplanted MSCs to secrete a large number of EV-mediated regulatory proteins, thereby upregulating the migration function of the host stem cells and promoting alveolar bone defect regeneration. This process depends on the autophagy-related mechanism of the transplanted MSCs.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of StomatologyCapital Medical UniversityBeijingChina
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Zhiqing Zhang
- Department of PeriodonticsQinghai Provincial People's HospitalQinghaiChina
| | - Chenlin Ma
- Department of PeriodonticsQinghai Provincial People's HospitalQinghaiChina
| | - Juan Song
- Department of PeriodonticsQinghai Provincial People's HospitalQinghaiChina
| | - Jia Hu
- Department of PeriodonticsQinghai Provincial People's HospitalQinghaiChina
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of StomatologyCapital Medical UniversityBeijingChina
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
23
|
Soltani S, Zahedi A, Vergara AJS, Noli M, Soltysik FM, Pociot F, Yarani R. Preclinical Therapeutic Efficacy of Extracellular Vesicles Derived from Adipose-Derived Mesenchymal Stromal/Stem Cells in Diabetic Wounds: a Systematic Review and Meta-Analysis. Stem Cell Rev Rep 2024; 20:2016-2031. [PMID: 38970763 DOI: 10.1007/s12015-024-10753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Extracellular vesicles isolated from adipose tissue-derived mesenchymal stromal/stem cells (ADSC-EVs) have demonstrated promising potential in wound healing treatment. To determine the therapeutic efficacy of ADSC-EVs for diabetic wounds in preclinical models, we performed a meta-analysis of available studies. PubMed and Embase were searched (to April 23, 2023). All full-text articles describing the therapeutic application of ADSC-EVs in diabetic wounds were included. Study outcomes were pooled using a random effects meta-analysis, including wound closure, angiogenesis, and collagen deposition. Other outcomes were only discussed descriptively. Seventy unique records were identified from our search; 20 full-text articles were included for qualitative analysis. Twelve studies were eligible for quantitative meta-analysis. The results showed that ADSC-EVs accelerated diabetic wound healing compared to controls with a large effect (standardized mean difference (SMD) 4.22, 95% confidence interval (CI) 3.07 to 5.36). The administration of ADSC-EVs also improved neovascularization (SMD 9.27, 95% CI 4.70 to 13.83) and collagen deposition (SMD 2.19, 95% CI 0.94 to 3.44), with a large effect. The risk of bias was unclear in all included studies. Conclusively, ADSC-EV is an effective treatment for diabetic wounds in preclinical trials, and it appears justified for transfer into the clinical field.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahora Zahedi
- Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - April Joy S Vergara
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Marta Noli
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
24
|
Kang S, Park J, Cheng Z, Ye S, Jun SH, Kang NG. Novel Approach to Skin Anti-Aging: Boosting Pharmacological Effects of Exogenous Nicotinamide Adenine Dinucleotide (NAD +) by Synergistic Inhibition of CD38 Expression. Cells 2024; 13:1799. [PMID: 39513906 PMCID: PMC11544843 DOI: 10.3390/cells13211799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for the regulation of biological metabolism. Previous studies have revealed its role in aging and degenerative diseases, while crucially showing that supplementation with NAD+ or its precursors could ameliorate or reverse the progression of aging. Despite extensive evidence for the role and action of NAD+ in aging, its pharmacological activity on the skin, or even its mechanism, has not been elucidated. In this study, we established a novel approach to effectively utilize NAD+ for skin anti-aging by enhancing the pharmacological efficacy of exogenous NAD+ using a phytochemical complex consisting of quercetin, and enoxolone through inhibition of CD38. Through the comprehensive in vitro experiments based on human fibroblasts, we observed that exogenous NAD+ could exert protective effects against both extrinsic aging induced by ultraviolet light exposure and intrinsic aging. Additionally, we found that its effects were significantly boosted by quercetin and enoxolone. In this in-depth study, we demonstrated that these beneficial effects are mediated by improved sirtuin activation, autophagy, and mitochondrial functionality. Our approach is expected to verify the applicability of the topical application of NAD+ and offer more effective solutions for the unmet needs of patients and consumers who demand more effective anti-aging effects.
Collapse
Affiliation(s)
- Seongsu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Jiwon Park
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Zhihong Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Sanghyun Ye
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| |
Collapse
|
25
|
Li Y, Wang X, Li Y, Li D, Li S, Shen C. Efficacy and safety of allogeneic platelet-rich plasma in chronic wound treatment: a meta-analysis of randomized controlled trials. Sci Rep 2024; 14:25209. [PMID: 39448627 PMCID: PMC11502684 DOI: 10.1038/s41598-024-75090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Allogeneic platelet-rich plasma (al-PRP) is gaining attention in clinical practice for treating chronic refractory wounds, though research results remain controversial. To assess the clinical efficacy of al-PRP for chronic refractory wounds. Databases including PubMed, Cochrane Library, Embase, CNKI, SinoMed, VIP, and WFPD were searched for randomized controlled trials comparing al-PRP with conventional treatments up to October 2023. Two researchers independently screened studies, extracted data, and assessed quality. Statistical analysis was conducted using RevMan 5.4, and potential publication bias was assessed and corrected using funnel plots and Egger's test. Twelve studies with 717 cases were included. Meta-analysis showed al-PRP significantly improved outcomes compared to non-al-PRP treatments: increased healing rate (RR 2.72, 95% CI 1.77-4.19, p < 0.00001), shortened healing time (SMD - 1.03, 95% CI -1.31 to -0.75, p < 0.00001), improved efficacy rate (RR 1.19, 95% CI 1.10-1.28, p < 0.00001), increased wound shrinkage (MD 35.65%, 95% CI 21.65-49.64, p < 0.00001), and reduced hospital stays (MD -2.62, 95% CI -4.35 to -0.90, p = 0.003). Al-PRP is a feasible, effective, and safe biological therapy for chronic refractory wounds.Trial registration: PROSPERO Identifier CRD42022374920.
Collapse
Affiliation(s)
- Yalong Li
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Xingtong Wang
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Yucong Li
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Dawei Li
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Shijie Li
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Chuanan Shen
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China.
| |
Collapse
|
26
|
Cheng XC, Tong WZ, Rui W, Feng Z, Shuai H, Zhe W. Single-cell sequencing technology in skin wound healing. BURNS & TRAUMA 2024; 12:tkae043. [PMID: 39445224 PMCID: PMC11497848 DOI: 10.1093/burnst/tkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 10/25/2024]
Abstract
Skin wound healing is a complicated biological process that mainly occurs in response to injury, burns, or diabetic ulcers. It can also be triggered by other conditions such as dermatitis and melanoma-induced skin cancer. Delayed healing or non-healing after skin injury presents an important clinical issue; therefore, further explorations into the occurrence and development of wound healing at the cellular and molecular levels are necessary. Single-cell sequencing (SCS) is used to sequence and analyze the genetic messages of a single cell. Furthermore, SCS can accurately detect cell expression and gene sequences. The use of SCS technology has resulted in the emergence of new concepts pertaining to wound healing, making it an important tool for studying the relevant mechanisms and developing treatment strategies. This article discusses the application value of SCS technology, the effects of the latest research on skin wound healing, and the value of SCS technology in clinical applications. Using SCS to determine potential biomarkers for wound repair will serve to accelerate wound healing, reduce scar formation, optimize drug delivery, and facilitate personalized treatments.
Collapse
Affiliation(s)
- Xu Cheng Cheng
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zi Tong
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Rui
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Zhao Feng
- Department of Stem Cells and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang 110013, China
| | - Hou Shuai
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| | - Wang Zhe
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang 110004, China
| |
Collapse
|
27
|
Sharifi M, Bahrami SH. Review on application of herbal extracts in biomacromolecules-based nanofibers as wound dressings and skin tissue engineering. Int J Biol Macromol 2024; 277:133666. [PMID: 38971295 DOI: 10.1016/j.ijbiomac.2024.133666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
28
|
Liu D, Chen J, Gao L, Chen X, Lin L, Wei X, Liu Y, Cheng H. Injectable Photothermal PDA/Chitosan/β-Glycerophosphate Thermosensitive Hydrogels for Antibacterial and Wound Healing Promotion. Macromol Biosci 2024; 24:e2400080. [PMID: 38752628 DOI: 10.1002/mabi.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Controlling infections while reducing the use of antibiotics is what doctors as well as researchers are looking for. As innovative smart materials, photothermal materials can achieve localized heating under light excitation for broad-spectrum bacterial inhibition. A polydopamine/chitosan/β-glycerophosphate temperature-sensitive hydrogel with excellent antibacterial ability is synthesized here. Initially, the hydrogel has good biocompatibility. In vitro experiments reveal its noncytotoxic property when cocultured with gingival fibroblasts and nonhemolytic capability. Concurrently, the in vivo biocompatibility is confirmed through liver and kidney blood markers and staining of key organs. Crucially, the hydrogel has excellent photothermal conversion performance, which can realize the photothermal conversion of hydrogel up to 3 mm thickness. When excited by near-infrared light, localized heating is attainable, resulting in clear inhibition impacts on both Staphylococcus aureus and Escherichia coli, with the inhibition rates of 91.22% and 96.69%, respectively. During studies on mice's infected wounds, it is observed that the hydrogel can decrease S. aureus' presence in the affected area when exposed to near-infrared light, and also lessen initial inflammation and apoptosis, hastening tissue healing. These findings provide valuable insights into the design of antibiotic-free novel biomaterials with good potential for clinical applications.
Collapse
Affiliation(s)
- Dingkun Liu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jinbing Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Linjuan Gao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xing Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Liujun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xia Wei
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Yuan Liu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Hui Cheng
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, China
| |
Collapse
|
29
|
Tombulturk FK, Soydas T, Kanigur-Sultuybek G. Metformin as a Modulator of Autophagy and Hypoxia Responses in the Enhancement of Wound Healing in Diabetic Rats. Inflammation 2024:10.1007/s10753-024-02129-9. [PMID: 39186177 DOI: 10.1007/s10753-024-02129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying delayed wound repair in diabetes involve dysregulation of key cellular processes, including autophagy and hypoxia response pathways. Herein, we investigated the role of topical metformin, an established anti-diabetic drug with potential autophagy-inducing properties, in improving wound healing outcomes under hypoxic conditions. Full-thickness skin wounds were created in streptozotocin-induced diabetic rats, and tissue samples were collected at regular intervals for molecular and histological analysis. The expression levels of autophagy markers LC3B and Beclin-1 were evaluated via immunohistochemistry and qRT-PCR, while the amount of AMP-activated protein kinase (AMPK) and hypoxia-inducible factor-1α (HIF-1α) were determined via ELISA. Our results demonstrated that metformin administration resulted in the upregulation of LC3B and Beclin-1 in the wound bed, suggesting induction of autophagy in response to the treatment. Mechanistically, metformin treatment also led to the increased amount of AMPK, a critical regulator of cellular energy homeostasis, and a subsequent reduction in HIF-1α amount under hypoxic conditions. In conclusion, our findings demonstrate that metformin promotes wound healing in diabetes mellitus by enhancing autophagy through AMPK activation and modulating HIF-1α amount in a hypoxic microenvironment. This study offers a new therapeutic approach by shedding light on the potential benefits of metformin as adjunctive therapy in diabetic wound management.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Türkiye.
| | - Tugba Soydas
- Department of Medical Biology and Genetics, Medical Faculty, Istanbul Aydin University, Istanbul, Türkiye
| | - Gönül Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
30
|
Burke S. Hypoxia, NSAIDs, and autism: A biocultural analysis of stressors in gametogenesis. Am J Hum Biol 2024; 36:e24042. [PMID: 38282542 DOI: 10.1002/ajhb.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Cultural and generational trends have increasingly favored "anti-inflammatory" action, innovating a new class of analgesic, non-steroidal anti-inflammatory drugs (NSAIDs) in the 20th century. The modern human body has been molded over evolutionary time and while acknowledging inflammation can be pathologically entwined, it also serves an important role in healthy folliculogenesis and ovulation, shaping cues that drive needed vascular change. This review argues that because of anti-inflammatory action, the cultural invention of NSAIDs represents a particular stressor on female reproductive-age bodies, interacting with natural, underlying variation and placing limits on healthy growth and development in the follicles, creating potential autism risk through hypoxia and mutagenic or epigenetic effects. Since testes are analogs to ovaries, the biological grounding extends naturally to spermatogenesis. This review suggests the introduction of over-the-counter NSAIDs in the 1980s failed to recognize the unique functioning of reproductive-age bodies, challenging the cyclical inflammation needed for healthy gamete development. NSAIDs are framed as one (notable) stressor in an anti-inflammatory era focused on taming the risks of inflammation in modern human life.
Collapse
Affiliation(s)
- Stacie Burke
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Farhangniya M, Samadikuchaksaraei A, Mohamadi Farsani F. Exploring Co-expression Modules-Traits Correlation through Weighted Gene Co-expression Network Analysis: A Promising Approach in Wound Healing Research. Med J Islam Repub Iran 2024; 38:82. [PMID: 39678778 PMCID: PMC11644100 DOI: 10.47176/mjiri.38.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 12/17/2024] Open
Abstract
Background The skin is the biggest organ in the body and has several important functions in protection and regulation. However, wound development can disrupt the natural healing process, leading to challenges such as chronic wounds, persistent infections, and impaired angiogenesis. These issues not only affect individuals' well-being but also pose significant economic burdens on healthcare systems. Despite advancements in wound care research, managing chronic wounds remains a pressing concern, with obstacles such as persistent infection and impaired angiogenesis hindering the healing process. Understanding the complex genetic pathways involved in wound healing is crucial for developing effective therapeutic strategies and reducing the socio-economic impact of chronic wounds. Weighted Gene Co-Expression Network Analysis (WGCNA) offers a promising approach to uncovering key genes and modules associated with different stages of wound healing, providing valuable insights for targeted interventions to enhance tissue repair and promote efficient wound healing. Methods Data collection involved retrieving microarray gene expression datasets from the Gene Expression Omnibus website, with 65 series selected according to inclusion and exclusion criteria. Preprocessing of raw data was performed using the Robust MultiArray Averaging approach for background correction, normalization, and gene expression calculation. Weighted Gene Co-Expression Network Analysis was employed to identify co-expression patterns among genes associated with wound healing processes. This involved steps such as network construction, topological analysis, module identification, and association with clinical traits. Functional analysis included enrichment analysis and identification of hub genes through gene-gene functional interaction network analysis using the GeneMANIA database. Results The analysis using WGCNA indicated significant correlations between wound healing and the black, brown, and light green modules. These modules were further examined for their relevance to wound healing traits and subjected to functional enrichment analysis. A total of 16 genes were singled out as potential hub genes critical for wound healing. These hub genes were then scrutinized, revealing a gene-gene functional interaction network within the module network based on the KEGG enrichment database. Noteworthy pathways such as MAPK, EGFR, and ErbB signaling pathways, as well as essential cellular processes including autophagy and mitophagy, emerged as the most notable significant pathways. Conclusion We identified consensus modules relating to wound healing across nine microarray datasets. Among these, 16 hub genes were uncovered within the brown and black modules. KEGG enrichment analysis identified co-expression genes within these modules and highlighted pathways most closely associated with the development of wound healing traits, including autophagy and mitophagy. The hub genes identified in this study represent potential candidates for future research endeavors. These findings serve as a stepping stone toward further exploration of the implications of these co-expressed modules on wound healing traits.
Collapse
Affiliation(s)
- Mansoureh Farhangniya
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Health Metrics Research Center, Iranian Institute for Health Sciences Research, ACECR, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
32
|
Wu X, Song J, Zhang Y, Kuai L, Liu C, Ma X, Li B, Zhang Z, Luo Y. Exploring the role of autophagy in psoriasis pathogenesis: Insights into sustained inflammation and dysfunctional keratinocyte differentiation. Int Immunopharmacol 2024; 135:112244. [PMID: 38776847 DOI: 10.1016/j.intimp.2024.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Psoriasis is a common and prevalent chronic papulosquamous cutaneous disorder characterized by sustained inflammation, uncontrolled keratinocyte proliferation, dysfunctional differentiation, and angiogenesis. Autophagy, an intracellular catabolic process, can be induced in response to nutrient stress. It entails the degradation of cellular constituents through the lysosomal machinery, and its association with psoriasis has been well-documented. Nevertheless, there remains a notable dearth of research concerning the involvement of autophagy in the pathogenesis of psoriasis within human skin. This review provides a comprehensive overview of autophagy in psoriasis pathogenesis, focusing on its involvement in two key pathological manifestations: sustained inflammation and uncontrolled keratinocyte proliferation and differentiation. Additionally, it discusses potential avenues for disease management.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
33
|
Jin L, Zhou S, Zhao S, Long J, Huang Z, Zhou J, Zhang Y. Early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and epithelial-mesenchymal transition during wound healing. BURNS & TRAUMA 2024; 12:tkae017. [PMID: 38887221 PMCID: PMC11182653 DOI: 10.1093/burnst/tkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/05/2024] [Indexed: 06/20/2024]
Abstract
Background Due to vasculature injury and increased oxygen consumption, the early wound microenvironment is typically in a hypoxic state. We observed enhanced cell migration ability under early short-term hypoxia. CCL2 belongs to the CC chemokine family and was found to be increased in early hypoxic wounds and enriched in the extracellular signal-regulated kinase (ERK)1/2 pathway in our previous study. However, the underlying mechanism through which the CCL2-ERK1/2 pathway regulates wound healing under early short-term hypoxia remains unclear. Activation of epithelial-mesenchymal transition (EMT) is a key process in cancer cell metastasis, during which epithelial cells acquire the characteristics of mesenchymal cells and enhance cell motility and migration ability. However, the relationship between epithelial cell migration and EMT under early short-term hypoxia has yet to be explored. Methods HaCaT cells were cultured to verify the effect of early short-term hypoxia on migration through cell scratch assays. Lentiviruses with silenced or overexpressed CCL2 were used to explore the relationship between CCL2 and migration under short-term hypoxia. An acute full-thickness cutaneous wound rat model was established with the application of an ERK inhibitor to reveal the hidden role of the ERK1/2 pathway in the early stage of wound healing. The EMT process was verified in all the above experiments through western blotting. Results In our study, we found that short-term hypoxia promoted cell migration. Mechanistically, hypoxia promoted cell migration through mediating CCL2. Overexpression of CCL2 via lentivirus promoted cell migration, while silencing CCL2 via lentivirus inhibited cell migration and the production of related downstream proteins. In addition, we found that CCL2 was enriched in the ERK1/2 pathway, and the application of an ERK inhibitor in vivo and in vitro verified the upstream and downstream relationships between the CCL2 pathway and ERK1/2. Western blot results both in vivo and in vitro demonstrated that early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and EMT during wound healing. Conclusions Our work demonstrated that hypoxia in the early stage serves as a stimulus for triggering wound healing through activating the CCL2-ERK1/2 pathway and EMT, which promote epidermal cell migration and accelerate wound closure. These findings provide additional detailed insights into the mechanism of wound healing and new targets for clinical treatment.
Collapse
Affiliation(s)
- Linbo Jin
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shiqi Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shihan Zhao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junhui Long
- Department of Dermatology, Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Zhidan Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| |
Collapse
|
34
|
Tan L, Qu J, Wang J. Development of novel lysosome-related signatures and their potential target drugs based on bulk RNA-seq and scRNA-seq for diabetic foot ulcers. Hum Genomics 2024; 18:62. [PMID: 38862997 PMCID: PMC11165785 DOI: 10.1186/s40246-024-00629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) is the most serious complication of diabetes mellitus, which has become a global health problem due to its high morbidity and disability rates and the poor efficacy of conventional treatments. Thus, it is urgent to identify novel molecular targets to improve the prognosis and reduce disability rate in DFU patients. RESULTS In the present study, bulk RNA-seq and scRNA-seq associated with DFU were downloaded from the GEO database. We identified 1393 DFU-related DEGs by differential analysis and WGCNA analysis together, and GO/KEGG analysis showed that these genes were associated with lysosomal and immune/inflammatory responses. Immediately thereafter, we identified CLU, RABGEF1 and ENPEP as DLGs for DFU using three machine learning algorithms (Randomforest, SVM-RFE and LASSO) and validated their diagnostic performance in a validation cohort independent of this study. Subsequently, we constructed a novel artificial neural network model for molecular diagnosis of DFU based on DLGs, and the diagnostic performance in the training and validation cohorts was sound. In single-cell sequencing, the heterogeneous expression of DLGs also provided favorable evidence for them to be potential diagnostic targets. In addition, the results of immune infiltration analysis showed that the abundance of mainstream immune cells, including B/T cells, was down-regulated in DFUs and significantly correlated with the expression of DLGs. Finally, we found latamoxef, parthenolide, meclofenoxate, and lomustine to be promising anti-DFU drugs by targeting DLGs. CONCLUSIONS CLU, RABGEF1 and ENPEP can be used as novel lysosomal molecular signatures of DFU, and by targeting them, latamoxef, parthenolide, meclofenoxate and lomustine were identified as promising anti-DFU drugs. The present study provides new perspectives for the diagnosis and treatment of DFU and for improving the prognosis of DFU patients.
Collapse
Affiliation(s)
- Longhai Tan
- Department of Dermatology, Tianjin Beichen Hospital, Tianjin, 300400, China.
| | - Junjun Qu
- Zhu Xianyi Memorial Hospital of Tianjin Medical University, Tianjin, 300134, China
| | - Junxia Wang
- Department of Dermatology, Tianjin Beichen Hospital, Tianjin, 300400, China
| |
Collapse
|
35
|
Qiao W, Niu L, Jiang W, Lu L, Liu J. Berberine ameliorates endothelial progenitor cell function and wound healing in vitro and in vivo via the miR-21-3p/RRAGB axis for venous leg ulcers. Regen Ther 2024; 26:458-468. [PMID: 39100534 PMCID: PMC11296065 DOI: 10.1016/j.reth.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Venous leg ulcers (VLUs) are prevalent chronic wounds with limited treatment options. This study aimed to investigate the potential of berberine to enhance endothelial progenitor cell (EPC) function in VLU healing. Methods Histopathological changes and inflammatory cytokine levels in a deep venous thrombosis (DVT) mouse model were assessed using HE staining and ELISA assays. A luciferase reporter assay was employed to identify the miR-21-3p and RRAGB targeting relationship. EPC proliferation, migration, and tube formation were evaluated through CCK-8, Transwell, and tubule formation assays, while the mTOR pathway and autophagy-related proteins were analyzed by immunofluorescence staining and western blotting. Results Berberine significantly improved EPC functions, such as proliferation, migration, and tube formation in vitro, and enhanced in vivo EPC-mediated wound healing in a DVT mouse model. Furthermore, miR-21-3p was downregulated in EPCs from VLU patients, and its overexpression improved model EPC functions. Mechanistically, RRAGB, which regulates the mTOR pathway, was identified as a potential miR-21-3p target in EPCs. Overexpression of RRAGB inhibited autophagic activity and impaired EPC function. Conclusion Berberine shows promise in ameliorating EPC function and promoting wound healing in VLUs. The regulation of the miR-21-3p/RRAGB axis by berberine could offer a promising therapeutic approach for managing VLUs.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lingying Niu
- Department of Immunology, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Weihua Jiang
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Lu
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiali Liu
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Ross R, Guo Y, Walker RN, Bergamaschi D, Shaw TJ, Connelly JT. Biomechanical Activation of Keloid Fibroblasts Promotes Lysosomal Remodeling and Exocytosis. J Invest Dermatol 2024:S0022-202X(24)00374-9. [PMID: 38763173 DOI: 10.1016/j.jid.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Keloids are a severe form of scarring for which the underlying mechanisms are poorly understood, and treatment options are limited or inconsistent. Although biomechanical forces are potential drivers of keloid scarring, the direct cellular responses to mechanical cues have yet to be defined. The aim of this study was to examine the distinct responses of normal dermal fibroblasts and keloid-derived fibroblasts (KDFs) to changes in extracellular matrix stiffness. When cultured on hydrogels mimicking the elasticity of normal or scarred skin, KDFs displayed greater stiffness-dependent increases in cell spreading, F-actin stress fiber formation, and focal adhesion assembly. Elevated actomyosin contractility in KDFs disrupted the normal mechanical regulation of extracellular matrix deposition and conferred resistance on myosin inhibitors. Transcriptional profiling identified mechanically regulated pathways in normal dermal fibroblasts and KDFs, including the actin cytoskeleton, Hippo signaling, and autophagy. Further analysis of the autophagy pathway revealed that autophagic flux was intact in both fibroblast populations and depended on actomyosin contractility. However, KDFs displayed marked changes in lysosome organization and an increase in lysosomal exocytosis, which was mediated by actomyosin contractility. Together, these findings demonstrate that KDFs possess an intrinsic increase in cytoskeletal tension, which heightens the response to extracellular matrix mechanics and promotes lysosomal exocytosis.
Collapse
Affiliation(s)
- Rosie Ross
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Yiyang Guo
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rebecca N Walker
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Daniele Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tanya J Shaw
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
38
|
Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics (Basel) 2024; 9:278. [PMID: 38786488 PMCID: PMC11117890 DOI: 10.3390/biomimetics9050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Biomimetic materials have become a promising alternative in the field of tissue engineering and regenerative medicine to address critical challenges in wound healing and skin regeneration. Skin-mimetic materials have enormous potential to improve wound healing outcomes and enable innovative diagnostic and sensor applications. Human skin, with its complex structure and diverse functions, serves as an excellent model for designing biomaterials. Creating effective wound coverings requires mimicking the unique extracellular matrix composition, mechanical properties, and biochemical cues. Additionally, integrating electronic functionality into these materials presents exciting possibilities for real-time monitoring, diagnostics, and personalized healthcare. This review examines biomimetic skin materials and their role in regenerative wound healing, as well as their integration with electronic skin technologies. It discusses recent advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung-Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| |
Collapse
|
39
|
Xi L, Du J, Xue W, Shao K, Jiang X, Peng W, Li W, Huang S. Cathelicidin LL-37 promotes wound healing in diabetic mice by regulating TFEB-dependent autophagy. Peptides 2024; 175:171183. [PMID: 38423213 DOI: 10.1016/j.peptides.2024.171183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Diabetic patients often experience impaired wound healing. Human cathelicidin LL-37 possesses various biological functions, such as anti-microbial, anti-inflammatory, and pro-wound healing activities. Autophagy has important effects on skin wound healing. However, little is known about whether LL-37 accelerates diabetic wound healing by regulating autophagy. In the study, we aimed to investigate the role of autophagy in LL-37-induced wound healing and uncover the underlying mechanisms involved. A full-thickness wound closure model was established in diabetic mice to evaluate the effects of LL-37 and an autophagy inhibitor (3-MA) on wound healing. The roles of LL-37 and 3-MA in regulating keratinocyte migration were assessed using transwell migration and wound healing assays. The activation of transcription factor EB (TFEB) was measured using western blotting and immunofluorescence (IF) assays of its nuclear translocation. The results showed that LL-37 treatment improved wound healing in diabetic mice, whereas these effects were reversed by 3-MA. In vitro, 3-MA decreased the effects of LL-37 on promoting HaCat keratinocyte migration in the presence of high glucose (HG). Mechanistically, LL-37 promoted TFEB activation and resulted in subsequent activation of autophagy, as evidenced by increased nuclear translocation of TFEB and increased expression of ATG5, ATG7, and beclin 1 (BECN1), whereas these changes were blocked by TFEB knockdown. As expected, TFEB knockdown damaged the effects of LL-37 on promoting keratinocyte migration. Collectively, these results suggest that LL-37 accelerates wound healing in diabetic mice by activating TFEB-dependent autophagy, providing new insights into the mechanism by which LL-37 promotes diabetic wound healing.
Collapse
Affiliation(s)
- Liuqing Xi
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Xue
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Kan Shao
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Jiang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyi Li
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
41
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
42
|
Zhang Q, Su P, Zhao F, Ren H, He C, Wu Q, Wang Z, Ma J, Huang X, Wang Z. Enhancing Skin Injury Repair: Combined Application of PF-127 Hydrogel and hADSC-Exos Containing miR-148a-3p. ACS Biomater Sci Eng 2024; 10:2235-2250. [PMID: 38445959 DOI: 10.1021/acsbiomaterials.3c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The use of exosomes to relieve skin injuries has received considerable attention. The PluronicF-127 hydrogel (PF-127 hydrogel) is a novel biomaterial that can be used to carry biomolecules. This study sought to investigate the impact of exosomes originating from human mesenchymal stem cells (MSCs) developed from adipose tissue (hADSC-Exos) combined with a PF-127 hydrogel on tissue repair and explore the underlying mechanism using in vitro and in vivo experiments. miR-148a-3p is the most expressed microRNA (miRNA) in hADSC-Exos. We found that exosomes combined with the PF-127 hydrogel had a better efficacy than exosomes alone; moreover, miR-148a-3p knockdown lowered its efficacy. In vitro, we observed a significant increase in the tumor-like ability of HUVECs after exosome treatment, which was attenuated after miR-148a-3p knockdown. Furthermore, the effects of miR-148a-3p on hADSC-Exos were achieved through the prevention of PTEN and the triggering of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In conclusion, our results demonstrated that hADSC-Exos can promote angiogenesis and skin wound healing by delivering miR-148a-3p and have a better effect when combined with the PF-127 hydrogel, which may be an alternative strategy to promote wound healing.
Collapse
Affiliation(s)
- Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- Department of Pathology, Chengdu Third People's Hospital, Chengdu 610000, Sichuan, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Quan Wu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
43
|
Ding Q, Liu X, Liu X, Chai G, Wang N, Ma S, Zhang L, Zhang S, Yang J, Wang Y, Shen L, Ding C, Liu W. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy. Int J Biol Macromol 2024; 263:130226. [PMID: 38368971 DOI: 10.1016/j.ijbiomac.2024.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
With the improvement of modern living standards, the challenge of diabetic wound healing has significantly impacted the public health system. In this study, our objective was to enhance the bioactivity of taxifolin (TAX) by encapsulating it in liposomes using a thin film dispersion method. Additionally, polyvinyl alcohol/carboxymethyl chitosan-based hydrogels were prepared through repeated freeze-thawing. In vitro and in vivo experiments were conducted to investigate the properties of the hydrogel and its effectiveness in promoting wound healing in diabetic mice. The results of the experiments revealed that the encapsulation efficiency of taxifolin liposomes (TL) was 89.80 ± 4.10 %, with a drug loading capacity of 17.58 ± 2.04 %. Scanning electron microscopy analysis demonstrated that the prepared hydrogels possessed a porous structure, facilitating gas exchange and the absorption of wound exudates. Furthermore, the wound repair experiments in diabetic mice showed that the TL-loaded hydrogels (TL-Gels) could expedite wound healing by suppressing the inflammatory response and promoting the expression of autophagy-related proteins. Overall, this study highlights that TL-Gels effectively reduce wound healing time by modulating the inflammatory response and autophagy-related protein expression, thus offering promising prospects for the treatment of hard-to-heal wounds induced by diabetes.
Collapse
Affiliation(s)
- Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xuexia Liu
- Traditional Chinese Medicine Hospital of Wuzhou, Guangzhou 543099, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun 130118, China
| | - Yanjun Wang
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Chuanbo Ding
- Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
44
|
Lin Z, Li LY, Chen L, Jin C, Li Y, Yang L, Li CZ, Qi CY, Gan YY, Zhang JR, Wang P, Ni LB, Wang GF. Lonicerin promotes wound healing in diabetic rats by enhancing blood vessel regeneration through Sirt1-mediated autophagy. Acta Pharmacol Sin 2024; 45:815-830. [PMID: 38066346 PMCID: PMC10943091 DOI: 10.1038/s41401-023-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/08/2023] [Indexed: 03/17/2024]
Abstract
Among the numerous complications of diabetes mellitus, diabetic wounds seriously affect patients' quality of life and result in considerable psychological distress. Promoting blood vessel regeneration in wounds is a crucial step in wound healing. Lonicerin (LCR), a bioactive compound found in plants of the Lonicera japonica species and other honeysuckle plants, exhibits anti-inflammatory and antioxidant activities, and it recently has been found to alleviate ulcerative colitis by enhancing autophagy. In this study we investigated the efficacy of LCR in treatment of diabetic wounds and the underlying mechanisms. By comparing the single-cell transcriptomic data from healing and non-healing states in diabetic foot ulcers (DFU) of 5 patients, we found that autophagy and SIRT signaling activation played a crucial role in mitigating inflammation and oxidative stress, and promoting cell survival in wound healing processes. In TBHP-treated human umbilical vein endothelial cells (HUVECs), we showed that LCR alleviated cell apoptosis, and enhanced the cell viability, migration and angiogenesis. Furthermore, we demonstrated that LCR treatment dose-dependently promoted autophagy in TBHP-treated HUVECs by upregulating Sirt1 expression, and exerted its anti-apoptotic effect through the Sirt1-autophagy axis. Knockdown of Sirt1 significantly decreased the level of autophagy, and mitigated the anti-apoptotic effect of LCR. In a STZ-induced diabetic rat model, administration of LCR significantly promoted wound healing, which was significantly attenuated by Sirt1 knockdown. This study highlights the potential of LCR as a therapeutic agent for the treatment of diabetic wounds and provides insights into the molecular mechanisms underlying its effects.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA
| | - Lu-Yao Li
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chen Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325702, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Lan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chang-Zhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Cai-Yu Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yu-Yang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jia-Rui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Li-Bin Ni
- Department of Orthopaedic Surgery, Zhejiang Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, 310014, China.
| | - Gao-Feng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA.
| |
Collapse
|
45
|
Zhang Q, Guo F, Liu H, Hong L. Enhancing wound healing and overcoming cisplatin resistance in ovarian cancer. Int Wound J 2024; 21:e14569. [PMID: 38158767 PMCID: PMC10961880 DOI: 10.1111/iwj.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) poses significant oncological challenges, notably impaired wound healing in the context of cisplatin (DDP) resistance. This study investigates the role of miR-200b in OC, emphasizing its impact on wound healing processes through DNMT3A/TGF-β1 pathway. The primary aim was to explore how miR-200b regulates autophagy and its consequential effects on wound healing in OC, alongside its influence on cisplatin resistance. Utilizing DDP-sensitive (A2780) and resistant (A2780/DDP) OC cell lines, along with human fibroblast cultures, the study employed an array of in vitro techniques. These included cell transfection with miR-200b mimic or inhibitor, chromatin immunoprecipitation (ChIP), dual-luciferase reporter (DLR) assays, quantitative PCR, Western blotting, MTT and particularly, wound healing assays. The research highlighted the role of miR-200b in wound healing within OC. Inhibition of miR-200b in A2780 cells and its mimic in A2780/DDP cells affected cell viability, indicating the link with DDP resistance. Crucially, miR-200b mimic significantly delayed fibroblast-mediated wound closure in assays, underscoring its impact on wound healing. Bioinformatics analysis and subsequent DLR assays confirmed miR-200b's interaction with DNMT3A, affecting TGF-β1 expression, the key factor in wound repair. Further, ChIP, quantitative PCR and Western blot analyses validated the interaction and expression changes in DNMT3A and TGF-β1. The study demonstrated that miR-200b played a pivotal role in OC by modulating autophagy, which in turn significantly affected wound healing through the DNMT3A/TGF-β1 pathway.
Collapse
Affiliation(s)
- Qifan Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fengqin Guo
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Liu
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Hong
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
46
|
Wu Z, Liu C, Yin S, Ma J, Sun R, Cao G, Lu Y, Liu J, Su L, Song R, Wang Y. P75NTR regulates autophagy through the YAP-mTOR pathway to increase the proliferation of interfollicular epidermal cells and promote wound healing in diabetic mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167012. [PMID: 38176461 DOI: 10.1016/j.bbadis.2023.167012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Wound healing is delayed in diabetic patients. Increased autophagy and dysfunction of interfollicular epidermal (IFE) cells are closely associated with delayed healing of diabetic wounds. Autophagy plays an important role in all stages of wound healing, but its role in diabetic wound healing and the underlying molecular mechanisms are not clear. Here, we found that diabetic mice had delayed wound healing and increased autophagy in wounds compared with normal mice and that chloroquine, an inhibitor of autophagy, decreased the level of autophagy, improved the function of IFE cells, and accelerated wound healing in diabetic mice. Treatment of IFE cells with advanced glycosylation end products (AGEs) resulted in increased microtubule-associated protein chain (LC3) expression and decreased prostacyclin-62 (P62) expression, indicating increased autophagy in AGE-treated IFE cells. Moreover, P75NTR reduced autophagy in IFE cells in the presence of AGEs and significantly increased the proliferation of IFE cells. In addition, P75NTR participated in regulating autophagy in IFE cells and in wounds in diabetic mice through the YAP-mTOR signalling pathway, which increased the functional activity of the cells and the healing rate of wounds in diabetic mice. Thus, our study suggests that P75NTR protects IFE cells against AGEs by affecting autophagy and accelerating wound healing in diabetic mice, providing a basis for understanding the role of autophagy in diabetic wound healing.
Collapse
Affiliation(s)
- Zhenjie Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Siyuan Yin
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Jiaxu Ma
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Rui Sun
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoqi Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yongpan Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Linqi Su
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Ru Song
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China.
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
47
|
Minoretti P, Gómez Serrano M, Santiago Sáez A, Liaño Riera M, García Martín Á. Successful Management of Chronic Wounds by an Autophagy-Activating Magnetized Water-Based Gel in Elderly Patients: A Case Series. Cureus 2024; 16:e55937. [PMID: 38601405 PMCID: PMC11005079 DOI: 10.7759/cureus.55937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic wounds pose a significant threat to human health, particularly for the elderly, and require extensive healthcare resources globally. Autophagy, a key molecular player in wound healing, not only offers a defense against infections but also contributes to the deposition of the extracellular matrix during the proliferative phase. Additionally, it promotes the proliferation and differentiation of endothelial cells, fibroblasts, and keratinocytes. We have recently shown that applying magnetized saline water topically can trigger autophagy in intact skin. In this case series, we document the successful management of five non-infected, difficult-to-heal wounds in elderly patients using a topical autophagy-stimulating gel containing 95% magnetized saline water. The treated wounds included pressure ulcers, venous ulcers, and trauma-related injuries that had shown minimal or no improvement with standard wound therapies over a prolonged period. Application of the autophagy-stimulating gel promoted wound healing, as indicated by reduced fibrous and necrotic tissue, granulation tissue formation, re-epithelialization, and partial or complete wound closure. These preliminary case studies suggest that a topical gel containing magnetized saline water, which promotes autophagy, may aid healing of chronic wounds in elderly patients. Further investigation is warranted to explore the potential of this novel approach, as it may offer a valuable addition to the existing arsenal of wound care treatments for the aging population, particularly in addressing difficult-to-heal wounds.
Collapse
Affiliation(s)
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Andrés Santiago Sáez
- Legal Medicine, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Ángel García Martín
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| |
Collapse
|
48
|
Oravecz-Wilson K, Lauder E, Taylor A, Maneix L, Van Nostrand JL, Sun Y, Li L, Zhao D, Liu C, Reddy P. Autophagy differentially regulates tissue tolerance of distinct target organs in graft-versus-host disease models. J Clin Invest 2024; 134:e167369. [PMID: 38426503 PMCID: PMC10904048 DOI: 10.1172/jci167369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-intrinsic mechanisms that regulate severity of systemic pathogenic immune-mediated diseases, such as acute graft-versus-host disease (GVHD), remain poorly understood. Following allogeneic hematopoietic stem cell transplantation, autophagy, a cellular stress protective response, is induced in host nonhematopoietic cells. To systematically address the role of autophagy in various host nonhematopoietic tissues, both specific classical target organs of acute GVHD (intestines, liver, and skin) and organs conventionally not known to be targets of GVHD (kidneys and heart), we generated mice with organ-specific knockout of autophagy related 5 (ATG5) to specifically and exclusively inhibit autophagy in the specific organs. When compared with wild-type recipients, animals that lacked ATG5 in the gastrointestinal tract or liver showed significantly greater tissue injury and mortality, while autophagy deficiency in the skin, kidneys, or heart did not affect mortality. Treatment with the systemic autophagy inducer sirolimus only partially mitigated GVHD mortality in intestine-specific autophagy-deficient hosts. Deficiency of autophagy increased MHC class I on the target intestinal epithelial cells, resulting in greater susceptibility to damage by alloreactive T cells. Thus, autophagy is a critical cell-intrinsic protective response that promotes tissue tolerance and regulates GVHD severity.
Collapse
Affiliation(s)
- Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Emma Lauder
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | | | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yaping Sun
- Dan L. Duncan Comprehensive Cancer Center and
| | - Lu Li
- Dan L. Duncan Comprehensive Cancer Center and
| | | | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| |
Collapse
|
49
|
Ren H, Su P, Zhao F, Zhang Q, Huang X, He C, Wu Q, Wang Z, Ma J, Wang Z. Adipose mesenchymal stem cell-derived exosomes promote skin wound healing in diabetic mice by regulating epidermal autophagy. BURNS & TRAUMA 2024; 12:tkae001. [PMID: 38434722 PMCID: PMC10905655 DOI: 10.1093/burnst/tkae001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Adipose mesenchymal stem cell-derived exosomes (ADSC-Exos) have great potential in the field of tissue repair and regenerative medicine, particularly in cases of refractory diabetic wounds. Interestingly, autophagy plays a role in wound healing, and recent research has demonstrated that exosomes are closely associated with intracellular autophagy in biogenesis and molecular signaling mechanisms. Therefore, this study aimed to investigate whether ADSC-Exos promote the repair of diabetic wounds by regulating autophagy to provide a new method and theoretical basis for the treatment of diabetic wounds. METHODS Western blot analysis and autophagy double-labelled adenovirus were used to monitor changes in autophagy flow in human immortalized keratinocyte cell line (HaCaT) cells. ADSC-Exos were generated from ADSC supernatants via ultracentrifugation. The effectiveness of ADSC-Exos on HaCaT cells was assessed using a live-cell imaging system, cell counting kit-8 and cell scratch assays. The cells were treated with the autophagy inhibitor bafilomycin A1 to evaluate the effects of autophagy on cell function. The recovery of diabetic wounds after ADSC-Exo treatment was determined by calculating the healing rates and performing histological analysis. High-throughput transcriptome sequencing was used to analyze changes in mRNA expression after the treatment of HaCaT cells with ADSC-Exos. RESULTS ADSC-Exos activated autophagy in HaCaT cells, which was inhibited by high glucose levels, and potentiated their cellular functions. Moreover, ADSC-Exos in combination with the autophagy inhibitor bafilomycin A1 showed that autophagy defects further impaired the biological function of epidermal cells under high-glucose conditions and partially weakened the healing effect of ADSC-Exos. Using a diabetes wound model, we found that ADSC-Exos promoted skin wound healing in diabetic mice, as evidenced by increased epidermal autophagy and rapid re-epithelialization. Finally, sequencing results showed that increased expression of autophagy-related genes nicotinamide phosphoribosyltransferase (NAMPT), CD46, vesicle-associated membrane protein 7 (VAMP7), VAMP3 and eukaryotic translation initiation factor 2 subunit alpha (EIF2S1) may contribute to the underlying mechanism of ADSC-Exo action. CONCLUSIONS This study elucidated the molecular mechanism through which ADCS-Exos regulate autophagy in skin epithelial cells, thereby providing a new theoretical basis for the treatment and repair of skin epithelial damage by ADSC-Exos.
Collapse
Affiliation(s)
- Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Quan Wu
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| |
Collapse
|
50
|
Wu Y, Li L, Ning Z, Li C, Yin Y, Chen K, Li L, Xu F, Gao J. Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration. Cell Commun Signal 2024; 22:124. [PMID: 38360732 PMCID: PMC10868121 DOI: 10.1186/s12964-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 02/17/2024] Open
Abstract
Autophagy is a self-renewal mechanism that maintains homeostasis and can promote tissue regeneration by regulating inflammation, reducing oxidative stress and promoting cell differentiation. The interaction between biomaterials and tissue cells significantly affects biomaterial-tissue integration and tissue regeneration. In recent years, it has been found that biomaterials can affect various processes related to tissue regeneration by regulating autophagy. The utilization of biomaterials in a controlled environment has become a prominent approach for enhancing the tissue regeneration capabilities. This involves the regulation of autophagy in diverse cell types implicated in tissue regeneration, encompassing the modulation of inflammatory responses, oxidative stress, cell differentiation, proliferation, migration, apoptosis, and extracellular matrix formation. In addition, biomaterials possess the potential to serve as carriers for drug delivery, enabling the regulation of autophagy by either activating or inhibiting its processes. This review summarizes the relationship between autophagy and tissue regeneration and discusses the role of biomaterial-based autophagy in tissue regeneration. In addition, recent advanced technologies used to design autophagy-modulating biomaterials are summarized, and rational design of biomaterials for providing controlled autophagy regulation via modification of the chemistry and surface of biomaterials and incorporation of cells and molecules is discussed. A better understanding of biomaterial-based autophagy and tissue regeneration, as well as the underlying molecular mechanisms, may lead to new possibilities for promoting tissue regeneration. Video Abstract.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zuojun Ning
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changrong Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Kaiyuan Chen
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Lu Li
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Fei Xu
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|