1
|
Budek M, Nuszkiewicz J, Czuczejko J, Maruszak-Parda M, Wróblewska J, Wojtasik J, Hołyńska-Iwan I, Pawłowska M, Woźniak A, Szewczyk-Golec K. Searching for New Biomarkers of Neuroendocrine Tumors: A Comparative Analysis of Chromogranin A and Inflammatory Cytokines in Patients with Neuroendocrine Tumors. Curr Oncol 2024; 31:6110-6132. [PMID: 39451760 PMCID: PMC11506232 DOI: 10.3390/curroncol31100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) present a diagnostic challenge due to their heterogeneous nature and non-specific clinical manifestations. This study aimed to explore novel biomarkers for NENs. Serum chromogranin A (CgA) levels and a panel of 48 inflammatory cytokines were analyzed in a cohort of 84 NEN patients and 40 healthy controls using enzyme-linked immunosorbent assay (ELISA) and multiplex ELISA. Significant alterations in cytokine levels were observed in the NEN patients compared to the controls, including elevated levels of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, and tumor necrosis factor alpha (TNF-α), and reduced levels of angiogenic factors like platelet-derived growth factor-BB (PDGF-BB) and tumor necrosis factor beta (TNF-β). Notably, cytokines such as growth-regulated alpha protein (GRO-α) and TNF-β demonstrated strong potential as diagnostic markers, with receiver operating characteristic (ROC) curve analyses showing high sensitivity and specificity. Additionally, a positive correlation was found between CgA levels and several inflammatory cytokines, suggesting their synergistic role in tumor progression. These findings highlight the limited reliability of CgA alone as a diagnostic marker and underscore the importance of a multi-marker approach in diagnosing and monitoring NENs. Further research on a larger cohort is necessary to validate these biomarkers and their potential clinical applications.
Collapse
Affiliation(s)
- Marlena Budek
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Jolanta Czuczejko
- Department of Psychiatry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Marta Maruszak-Parda
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Jakub Wojtasik
- Centre for Statistical Analysis, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.B.); (J.N.); (J.W.); (M.P.); (A.W.)
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
3
|
Wang Y, Wu Y, Li L, Gao J, Gao DS, Sun S. GDNF triggers proliferation of rat C6 glioma cells via the NF-κB/CXCL1 signaling pathway. PLoS One 2023; 18:e0289071. [PMID: 37594930 PMCID: PMC10437914 DOI: 10.1371/journal.pone.0289071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/10/2023] [Indexed: 08/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor that is characterized by its high proliferative and migratory potential, leading to a high invasiveness of this tumor type. However, the underlying mechanism of GBM proliferation and migration has not been fully elucidated. In this study, at first, we used RNA-seq together with bioinformatics technology to screen for C-X-C motif ligand 1 (CXCL1) as a proliferation-related gene. And exogenous glial cell line-derived neurotrophic factor (GDNF) induced proliferation and up-regulated the level of CXCL1 in rat C6 glioma cells determined by sqPCR and ELISA. Then, we manipulated the CXCL1 expression by using a lentiviral vector (CXCL1-RNAi) approach. By this, the proliferation of C6 cells was decreased, suggesting that CXCL1 plays a key role in proliferation in these cells. We hypothesized that exogenous GDNF promoted NF-κB nuclear translocation and therefore, analyzed the interaction of CXCL1 with NF-κB by Western Blot and immunofluorescence. Additionally, we used BAY 11-7082, a phosphorylation inhibitor of NF-κB, to elucidate NF-κB mediated the effect of GDNF on CXCL1. These results demonstrated that GDNF enhanced the proliferation of rat C6 glioma cells through activating the NF-κB/CXCL1 signaling pathway. In summary, these studies not only revealed the mechanism of action of exogenous GDNF in promoting the proliferation of C6 glioma cells but may also provide a new biological target for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yue Wang
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Wu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Li
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shen Sun
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Ye L, Wu Y, Zhou J, Xie M, Zhang Z, Su C. Influence of Exosomes on Astrocytes in the Pre-Metastatic Niche of Lung Cancer Brain Metastases. Biol Proced Online 2023; 25:5. [PMID: 36859173 PMCID: PMC9976367 DOI: 10.1186/s12575-023-00192-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related death globally. There are several reasons for this high mortality rate, including metastasis to multiple organs, especially the brain. Exosomes play a pivotal role in tumor metastasis by remodeling the microenvironment of remote target organs and promoting the pre-metastatic niche's formation. Since astrocytes are indispensable for maintaining the homeostasis of brain microenvironment, it's of great interest to explore the influence of lung cancer cell-derived exosomes on astrocytes to further understand the mechanism of lung cancer brain metastasis. RESULTS Twenty four h after co-culture of H1299 cell-derived exosomes and SVG P12 cells, the viability of astrocytes decreased and the apoptosis increased. The levels of cytokines in the supernatant including GROα/CXCL1, IFN-γ, IL-3, IL-5, IL-15, LIF, M-CSF, NGF, PDGF, and VEGF were significantly enhanced, while IL-7 secretion was significantly reduced. Meanwhile, apoptosis-related proteins MAP2K1, TUBA1C, RELA, and CASP6 were up-regulated. And the differentially expressed proteins were involved in regulating metabolic pathways. CONCLUSION Exosomes of H1299 could induce apoptosis of astrocytes as well as promote their secretion of cytokines that were conducive to the formation of the inflammatory microenvironment and immunosuppressive microenvironment, and affect their metabolic pathways, thus facilitating the formation of pre-metastatic niche in lung cancer brain metastases.
Collapse
Affiliation(s)
- Lingyun Ye
- grid.24516.340000000123704535Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433 China
| | - Yinfei Wu
- grid.414008.90000 0004 1799 4638Department of Respiratory Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008 China
| | - Juan Zhou
- grid.24516.340000000123704535Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433 China
| | - Mengqing Xie
- grid.24516.340000000123704535Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433 China
| | - Zhemin Zhang
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, China.
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Alafate W, Li X, Zuo J, Zhang H, Xiang J, Wu W, Xie W, Bai X, Wang M, Wang J. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther 2020; 26:475-485. [PMID: 32187449 PMCID: PMC7080429 DOI: 10.1111/cns.13297] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is identified as a lethal malignant tumor derived from the nervous system. Despite the standard clinical strategy including maximum surgical resection, temozolomide (TMZ) chemotherapy, and radiotherapy, the median survival of GBM patients remains <15 months. Accumulating evidence indicates that rapid-acquired radioresistance is one of the most common reasons for GBM recurrence. Therefore, developing novel therapeutic targets for radioresistant GBM could yield long-term cures. AIMS To investigate the functional role of CXCL1 in the acquired radioresistance and identify the molecular pathway correlated to CXCL1. RESULTS In this study, we identified that CXCL1 is highly expressed in GBM and the elevation of CXCL1 is involved in radioresistance and poor prognosis in GBM patients. Additionally, silencing CXCL1 attenuated the proliferation and radioresistance of GBM cells. Furthermore, we demonstrated that CXCL1-overexpression induced radioresistance through mesenchymal transition of GBM via the activation of nuclear factor-kappa B (NF-κB) signaling. CONCLUSION CXCL1 was highly enriched in GBM and positively correlated with poor prognosis in GBM patients. Additionally, elevated CXCL1 induced radioresistance in GBM through regulation of NF-κB signaling by promoting mesenchymal transition in GBM.
Collapse
Affiliation(s)
- Wahafu Alafate
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaodong Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jie Zuo
- The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Hua Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jianyang Xiang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wei Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wanfu Xie
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaobin Bai
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Maode Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jia Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
6
|
Yuan D, Tao Y, Chen G, Shi T. Systematic expression analysis of ligand-receptor pairs reveals important cell-to-cell interactions inside glioma. Cell Commun Signal 2019; 17:48. [PMID: 31118022 PMCID: PMC6532229 DOI: 10.1186/s12964-019-0363-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Glioma is the most commonly diagnosed malignant and aggressive brain cancer in adults. Traditional researches mainly explored the expression profile of glioma at cell-population level, but ignored the heterogeneity and interactions of among glioma cells. Methods Here, we firstly analyzed the single-cell RNA-seq (scRNA-seq) data of 6341 glioma cells using manifold learning and identified neoplastic and healthy cells infiltrating in tumor microenvironment. We systematically revealed cell-to-cell interactions inside gliomas based on corresponding scRNA-seq and TCGA RNA-seq data. Results A total of 16 significantly correlated autocrine ligand-receptor signal pairs inside neoplastic cells were identified based on the scRNA-seq and TCGA data of glioma. Furthermore, we explored the intercellular communications between cancer stem-like cells (CSCs) and macrophages, and identified 66 ligand-receptor pairs, some of which could significantly affect prognostic outcomes. An efficient machine learning model was constructed to accurately predict the prognosis of glioma patients based on the ligand-receptor interactions. Conclusion Collectively, our study not only reveals functionally important cell-to-cell interactions inside glioma, but also detects potentially prognostic markers for predicting the survival of glioma patients. Electronic supplementary material The online version of this article (10.1186/s12964-019-0363-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongsheng Yuan
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiran Tao
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China. .,National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China.
| |
Collapse
|
7
|
Fortuna D, Hooper DC, Roberts AL, Harshyne LA, Nagurney M, Curtis MT. Potential role of CSF cytokine profiles in discriminating infectious from non-infectious CNS disorders. PLoS One 2018; 13:e0205501. [PMID: 30379898 PMCID: PMC6209186 DOI: 10.1371/journal.pone.0205501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Current laboratory testing of cerebrospinal fluid (CSF) does not consistently discriminate between different central nervous system (CNS) disease states. Rapidly distinguishing CNS infections from other brain and spinal cord disorders that share a similar clinical presentation is critical. New approaches focusing on aspects of disease biology, such as immune response profiles that can have stimulus-specific attributes, may be helpful. We undertook this preliminary proof-of-concept study using multiplex ELISA to measure CSF cytokine levels in various CNS disorders (infections, autoimmune/demyelinating diseases, lymphomas, and gliomas) to determine the potential utility of cytokine patterns in differentiating CNS infections from other CNS diseases. Both agglomerative hierarchical clustering and mixture discriminant analyses revealed grouping of CNS disease types based on cytokine expression. To further investigate the ability of CSF cytokine levels to distinguish various CNS disease states, non-parametric statistical analysis was performed. Mann-Whitney test analysis demonstrated that CNS infections are characterized by significantly higher CSF lP-10/CXCL10 levels than the pooled non-infectious CNS disorders (p = 0.0001). Within the infection group, elevated levels of MDC/CCL22 distinguished non-viral from viral infections (p = 0.0048). Each disease group of the non-infectious CNS disorders independently showed IP-10/CXCL10 levels that are significantly lower than the infection group [(autoimmune /demyelinating disorders (p = 0.0005), lymphomas (p = 0.0487), gliomas (p = 0.0294), and controls (p = 0.0001)]. Additionally, of the non-infectious diseases, gliomas can be distinguished from lymphomas by higher levels of GRO/CXCL1 (p = 0.0476), IL-7 (p = 0.0119), and IL-8 (p = 0.0460). Gliomas can also be distinguished from autoimmune/demyelinating disorders by higher levels of GRO/CXCL1 (p = 0.0044), IL-7 (p = 0.0035) and IL-8 (p = 0.0176). Elevated CSF levels of PDGF-AA distinguish lymphomas from autoimmune/demyelinating cases (p = 0.0130). Interrogation of the above comparisons using receiver operator characteristic analysis demonstrated area under the curve (AUC) values (ranging from 0.8636–1.0) that signify good to excellent utility as potential diagnostic discriminators. In conclusion, our work indicates that upon formal validation, measurement of CSF cytokine levels may have clinical utility in both identifying a CNS disorder as infectious in etiology and, furthermore, in distinguishing viral from non-viral CNS infections.
Collapse
Affiliation(s)
- Danielle Fortuna
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - D. Craig Hooper
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
- Department of Cancer Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Amity L. Roberts
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Larry A. Harshyne
- Department of Cancer Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Michelle Nagurney
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Mark T. Curtis
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wierzbicki M, Sawosz E, Strojny B, Jaworski S, Grodzik M, Chwalibog A. NF-κB-related decrease of glioma angiogenic potential by graphite nanoparticles and graphene oxide nanoplatelets. Sci Rep 2018; 8:14733. [PMID: 30283098 PMCID: PMC6170400 DOI: 10.1038/s41598-018-33179-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Gliomas develop an expanded vessel network and a microenvironment characterized by an altered redox environment, which produces high levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that fuel its growth and malignancy. ROS and RNS can influence tumor cell malignancy via the redox-regulated transcription factor NF-κB, whose activation is further regulated by the mutation status of p53. The objective of this study was to assess the influence of graphite nanoparticles (NG) and graphene oxide nanoplatelets (nGO) on the angiogenic potential of glioma cell lines with different p53 statuses. Nanoparticle treatment of glioma cells decreased the angiogenesis of human umbilical vein endothelial cells (HUVEC) cocultured with U87 (p53 wild type) and was not effective for U118 (p53 mutant) cells. Nanoparticle activity was related to the decreased level of intracellular ROS and RNS, which downregulated NF-κB signaling depending on the p53 status of the cell line. Activation of NF-κB signaling affected downstream protein levels of interleukin 6, interleukin 8, growth-regulated oncogene α, and monocyte chemotactic protein 1. These results indicate that the activity of NG and nGO can be regulated by the mutation status of glioma cells and therefore give new insights into the use of nanoparticles in personalized biomedical applications regarding glioma angiogenesis and its microenvironment.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870, Frederiksberg, Denmark
| |
Collapse
|
9
|
Bajetto A, Pattarozzi A, Corsaro A, Barbieri F, Daga A, Bosio A, Gatti M, Pisaturo V, Sirito R, Florio T. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors. Front Cell Neurosci 2017; 11:312. [PMID: 29081734 PMCID: PMC5645520 DOI: 10.3389/fncel.2017.00312] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/20/2017] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the reciprocal tropism between CSCs and UC-MSCs grown as spheroids. In conclusion, we show that direct (cell-to-cell contact) or indirect (via the release of soluble factors) interactions between GBM CSCs and UC-MSCs in co-culture produce divergent effects on cell growth, invasion and migration, with the former mainly causing an inhibitory response and the latter a stimulatory one, involving a paracrine activation of CXCR2.
Collapse
Affiliation(s)
- Adriana Bajetto
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Alessandra Pattarozzi
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Federica Barbieri
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Antonio Daga
- Gene Transfer Lab, IRCCS-AOU San Martino-IST, Genova, Italy
| | - Alessia Bosio
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Monica Gatti
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,International Evangelical Hospital, Genova, Italy
| | | | | | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| |
Collapse
|
10
|
Lu B, Zhou Y, Su Z, Yan A, Ding P. Effect of CCL2 siRNA on proliferation and apoptosis in the U251 human glioma cell line. Mol Med Rep 2017; 16:3387-3394. [PMID: 28714025 DOI: 10.3892/mmr.2017.6995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/21/2017] [Indexed: 11/06/2022] Open
Abstract
Glioma is one of the most common types of tumor of the central nervous system. Increased expression of C‑C motif chemokine 2 (CCL2) has previously been observed in various types of cancer. The effect of CCL2 small interfering (si)RNA on the proliferation, angiogenesis and apoptosis of the glioma cell line U251 was investigated in the present study. Data on CCL2 expression in glioma and normal tissues were obtained from The Cancer Genome Atlas. A total of 30 patients with glioma were enrolled in the present study. Cell proliferation was measured using a Cell Counting kit‑8 assay, while cellular apoptosis and cell cycle distribution were examined using flow cytometric analysis. The reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to measure the expression levels of biological pathway‑associated proteins caspase‑3, caspase‑7, tumor necrosis factor receptor superfamily member 10C (TNFRSF10C), growth regulated α protein (CXCL1), C‑X‑C motif chemokine 2 (CXCL2), C‑X‑C chemokine receptor type 2 (CXCR2), vascular endothelial growth factor (VEGF)A, VEGFB and VEGF. In addition, the mechanism of cellular apoptosis was analyzed by examining the phosphorylation of extracellular signal‑related kinase (ERK)1/2 and p38 mitogen‑activated protein kinase (p38) in cells treated with the C‑C chemokine receptor type 2 inhibitor RS‑102895. CCL2 was observed to be expressed in the glioma cell line U251 and was inhibited by CCL2 siRNA. Cells transfected with CCL2 siRNA exhibited inhibited cell proliferation, cell cycle arrest and increased cellular apoptosis. The expression levels of the apoptosis‑associated proteins caspase‑3, caspase‑7 and TNFRSF10C were observed to be downregulated, in addition to those of the angiogenesis‑associated proteins CXCL1, CXCL2, CXCR2, VEGFA, VEGFB and VEGF. The decrease in the rate of phosphorylation of ERK1/2 and p38 demonstrated the involvement of the mitogen‑activated protein kinase/ERK pathway in apoptosis. In conclusion, CCL2 siRNA exhibited effective inhibition of cell proliferation and angiogenesis in the glioma cell line U251, which may provide a theoretical basis for the use of CCL2 in in vivo research and clinical treatment as a novel anticancer agent.
Collapse
Affiliation(s)
- Bin Lu
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yue Zhou
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Ai Yan
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Peng Ding
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
11
|
Wang Z, Wang Z, Li G, Wu H, Sun K, Chen J, Feng Y, Chen C, Cai S, Xu J, He Y. CXCL1 from tumor-associated lymphatic endothelial cells drives gastric cancer cell into lymphatic system via activating integrin β1/FAK/AKT signaling. Cancer Lett 2016; 385:28-38. [PMID: 27832972 DOI: 10.1016/j.canlet.2016.10.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/16/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Crosstalk between lymphatic endothelial cells (LECs) and tumor cells in the tumor microenvironment plays a crucial role in tumor metastasis. Our previous study indicated chemokine (C-X-C motif) ligand 1 (CXCL1) from LECs stimulates the metastasis of gastric cancer. However, the mechanism is still unclear. Here, we successfully isolated tumor-associated LECs (T-LECs) and normal LECs (N-LECs) from clinical samples by magnetic-activated cell sorting system (MACS) and proved that CXCL1 expression was elevated in T-LECs compared with N-LECs in situ and vitro. Besides, we demonstrated that CXCL1 secreted by T-LECs promoted the migration, invasion, and adhesion of gastric cancer cells by upregulating integrin β1, MMP2, and MMP9. Furthermore, CXCL1 induced MMP2/9 expression by activating integrin β1-FAK-AKT signaling. In the animal model, CXCL1 overexpressed in LECs increased the lymph node metastasis of gastric cancer. In conclusion, CXCL1 expression in T-LECs was upregulated, and CXCL1 secreted by T-LECs promoted the lymph node metastasis of gastric cancer through integrin β1/FAK/AKT signaling, leading to MMP2 and MMP9 expression. Therefore, CXCL1 produced in T-LECs represents a potentially promising target for treating gastric cancer.
Collapse
Affiliation(s)
- Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Zhao Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Guanghua Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Hui Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Jianhui Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Yun Feng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Chuangqi Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Yulong He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Lee CH, Syu SH, Liu KJ, Chu PY, Yang WC, Lin P, Shieh WY. Interleukin-1 beta transactivates epidermal growth factor receptor via the CXCL1-CXCR2 axis in oral cancer. Oncotarget 2016; 6:38866-80. [PMID: 26462152 PMCID: PMC4770743 DOI: 10.18632/oncotarget.5640] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Hyperactivation of the epidermal growth factor receptor (EGFR) pathways and chronic inflammation are common characteristics of oral squamous cell carcinoma (OSCC). Previously, we reported that OSCC cells secrete interleukin-1 beta (IL-1β), which promotes the proliferation of the oral premalignant cell line, DOK, and stimulates DOK and OSCC cells to produce the chemokine CXCL1. CXCL1 functions through CXCR2, a G protein-coupled receptor that transactivates EGFR in ovarian and lung cancers. We hypothesized that IL-1β transactivates EGFR through the CXCL1–CXCR2 axis in OSCC. In this study, we demonstrated that tyrosine phosphorylation of EGFR is crucial for the IL-1β-mediated proliferation and subsequent bromodeoxyuridine (BrdU) incorporation of DOK cells because the EGFR inhibitors AG1478 and erlotinib inhibit these abilities in a dose-dependent manner. Addition of IL-1β instantly enhanced CXCL1 expression and secretion (within 15 min) in the DOK and OSCC cell lines. Furthermore, tyrosine phosphorylation of EGFR was significantly enhanced in DOK (1 h) and OSCC (20 min) cell lines after IL-1β treatment, and both cell lines were inhibited on the addition of an IL-1 receptor antagonist (IL-1Ra). CXCL1 treatment resulted in EGFR phosphorylation, whereas the knockdown of CXCL1 expression by lentivirus-mediated shRNA or the addition of the CXCR2 antagonist SB225002 dramatically reduced IL-1β-mediated EGFR phosphorylation and proliferation of DOK cells. Neutralizing antibodies against IL-1β or CXCL1 markedly inhibited the constitutive or IL-1β-induced tyrosine phosphorylation of EGFR in OSCC cells. IL-1β transactivates EGFR through the CXCL1-CXCR2 axis, revealing a novel molecular network in OSCC that is associated with autocrine IL-1β and EGFR signaling.
Collapse
Affiliation(s)
- Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Han Syu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Wen-Chan Yang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Pinpin Lin
- National Environmental Health Research Center, National Health Research Institutes, Zhunan, Taiwan.,Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wan-Yu Shieh
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
13
|
Wang CY, Hsieh YT, Fang KM, Yang CS, Tzeng SF. Reduction of CD200 expression in glioma cells enhances microglia activation and tumor growth. J Neurosci Res 2016; 94:1460-1471. [PMID: 27629530 DOI: 10.1002/jnr.23922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023]
Abstract
CD200, a type I transmembrane glycoprotein, can interact with its receptor CD200R, which plays an inhibitory role in the activation of microglia-the resident macrophages of the central nervous system. In this study, the rat C6 glioma cell line (C6-1) that was previously characterized with high in vivo tumorigenicity was found to generate CD200 mRNA abundantly. However, CD200 expression was barely detected in another C6 glioma cell clone (C6-2) that was previously found to display low tumorigenic behavior. The results from CD200 immunohistochemistry on human glioma tissue array also showed that tumor cells in Grade I-II astrocytoma expressed a lower level of CD200 immunoreactivity than those detected in Grade III-IV glioblastoma multiforme. C6-1 transfectants with stable downregulation of CD200 gene expression using lentivirus knockdown approach were generated (C6-KD). Microglia and iNOS+ cells were increased when microglia were co-cultured with C6-KD cells. The colony formation of C6-KD was also augmented when those cells were co-cultured with microglia. Yet, increased colony formation of C6-KD transfectants in the co-culture with microglia was effectively suppressed by interleukin (IL)-4 and IL-10. The in vivo results indicated that the tumor formation of C6-1 cells in rat brain was promoted after CD200 gene knockdown. Moreover, CD11b+ activated microglia and iNOS+ microglia were highly accumulated in the tumor site formed by C6-KD. In conclusion, our findings demonstrate that the downregulation of CD200 expression in CD200-rich glioma cells could foster the formation of an activated microglia-associated tumor microenvironment, leading to glioma progression. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ti Hsieh
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Min Fang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
14
|
Guo L, Song N, He T, Qi F, Zheng S, Xu XG, Fu Y, Chen HD, Luo Y. Endostatin inhibits the tumorigenesis of hemangioendothelioma via downregulation of CXCL1. Mol Carcinog 2015; 54:1340-53. [PMID: 25175281 DOI: 10.1002/mc.22210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/10/2014] [Accepted: 07/03/2014] [Indexed: 12/16/2023]
Abstract
Hemangioendotheliomas could be repressed by various anti-angiogenic agents in animal models. It was unclear whether the agents target hemangioendothelioma cells directly. This study elucidated the mechanism by which endostatin inhibited hemangioendothelioma progression. Expression of the endostatin receptors nucleolin and integrin α5β1 in hemangioendothelioma was assessed by immunohistochemistry. The effects of endostatin on the hemangioendothelioma-derived cells (EOMA) were evaluated by proliferation and apoptosis assays and by angiogenesis array screening. This revealed the contribution of the Chemokine (C-X-C motif) ligand 1 (CXCL1) to hemangioendothelioma progression, which was explored in vitro and in vivo. The clinical relevance of CXCL1 expression in hemangioendothelioma was also evaluated using tissue array. EOMA cells expressed nucleolin and integrin α5β1 and bound to endostatin. Endostatin did not alter proliferation or hypoxia-induced apoptosis in EOMA cells but it did impair the pro-angiogenic capacity of the cells. Endothelial cell migration was induced by CXCL1 produced by EOMA cells and endostatin downregulated CXCL1 production by inactivating its transcriptional factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In vivo, the knockdown of CXCL1 significantly impaired EOMA cell growth in nude mice; endostatin had no effect when CXCL1 was overexpressed. A strong correlation was observed between CXCL1 levels and hemangioendothelioma occurrence in patients. CXCL1, which was responsible for hemangioendothelioma progression by stimulating angiogenesis, was impaired by endostatin via inactivation of NF-κB in an animal model. In vascular lesions in patients, CXCL1 expression was a negative prognostic factor. CXCL1-inhibting agents such as endostatin may constitute a useful approach to treat the malignant or intermediate vascular lesions.
Collapse
Affiliation(s)
- Lifang Guo
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Nan Song
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ting He
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Feifei Qi
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Song Zheng
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| | - Xue-Gang Xu
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| | - Yan Fu
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hong-Duo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, China
| | - Yongzhang Luo
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
BRENNENSTUHL HEIKO, ARMENTO ANGELA, BRACZYSNKI ANNEKRISTIN, MITTELBRONN MICHEL, NAUMANN ULRIKE. IκBζ, an atypical member of the inhibitor of nuclear factor kappa B family, is induced by γ-irradiation in glioma cells, regulating cytokine secretion and associated with poor prognosis. Int J Oncol 2015; 47:1971-80. [DOI: 10.3892/ijo.2015.3159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 11/06/2022] Open
|
16
|
Chen L, Huang Z, Yao G, Lyu X, Li J, Hu X, Cai Y, Li W, Li X, Ye C. The expression of CXCL13 and its relation to unfavorable clinical characteristics in young breast cancer. J Transl Med 2015; 13:168. [PMID: 25990390 PMCID: PMC4471911 DOI: 10.1186/s12967-015-0521-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 05/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background Young breast cancer occupies a higher and higher proportion of breast cancer, especially in Asia, and is associated with a more unfavorable prognosis compared with the disease arising in older women. However, the poor prognosis of young breast cancer cannot be fully explained by the clinical and molecular factors. Methods This study investigated 1125 Chinese breast cancer patients diagnosed from 2009 to 2013. A data mining of gene expression profiles was performed for the young and older breast cancer patients, identifying significantly differentially expressed genes. Quantitative RT-PCR, Western blotting and immunohistochemistry assay were carried out for the clinical sample validations. Results The investigation firstly displayed that young patients (≤45 years) accounted for 47.6 % (535/1125) of breast cancer, and clinically associated with some unfavorable factors related to poor prognosis, such as invasive pathological type, high tumor grade, lymph node positive, ER negative and triple-negative subtype. Subsequently, 553 significantly differentially expressed genes were identified by the data mining. Of them, a set of genes related to immune function were observed to be up-regulated in young patients with breast cancer. Impressively, the CXCL13 (C-X-C motif chemokine 13) expression level showed the most significant difference (FC = 2.64, P = 8.2 × 10−4). Furthermore, the validations with clinical samples and correlation analysis demonstrated that CXCL13 was indeed highly expressed in young breast cancer and closely associated with some prognostic factors including lymph node positive and ER negative. Conclusion This is the first to indicate the clinical relevance of CXCL13 to young breast cancer and represents a potential therapeutic target for young breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0521-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lujia Chen
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Zhongxi Huang
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Guangyu Yao
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Xiaoming Lyu
- Department of Laboratory Medicine, the Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Jinbang Li
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Xiaolei Hu
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Yahong Cai
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Wenji Li
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Xin Li
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Changsheng Ye
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
17
|
Yeudall WA, Miyazaki H. Chemokines and squamous cancer of the head and neck: targets for therapeutic intervention? Expert Rev Anticancer Ther 2014; 7:351-60. [PMID: 17338654 DOI: 10.1586/14737140.7.3.351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biological properties of squamous carcinoma cells are intimately regulated by a multitude of cytokines and growth factors; the most well studied of these include epidermal growth factor receptor agonists and members of the transforming growth factor-beta family. The recent explosion of research in the field of chemokine function as a mediator of tumor progression has led to the possibility that these small, immunomodulatory proteins also play key roles in squamous carcinogenesis and may, therefore, be potential targets for novel therapeutic approaches.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/physiopathology
- Cell Survival
- Cell Transformation, Neoplastic
- Chemokines/antagonists & inhibitors
- Chemokines/physiology
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/physiology
- Disease Progression
- Drug Design
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/physiology
- Head and Neck Neoplasms/blood supply
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/physiopathology
- Humans
- Molecular Sequence Data
- Neoplasm Invasiveness
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/physiopathology
- Receptors, Chemokine/drug effects
- Receptors, Chemokine/physiology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- W Andrew Yeudall
- Virginia Commonwealth University School of Dentistry, Philips Institute for Oral & Craniofacial Molecular Biology, Department of Biochemistry and Massey Cancer Center, Richmond, VA 23298, USA.
| | | |
Collapse
|
18
|
Biswas S, Sengupta S, Roy Chowdhury S, Jana S, Mandal G, Mandal PK, Saha N, Malhotra V, Gupta A, Kuprash DV, Bhattacharyya A. CXCL13-CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis. Breast Cancer Res Treat 2014; 143:265-276. [PMID: 24337540 DOI: 10.1007/s10549-013-2811-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/04/2013] [Indexed: 01/01/2023]
Abstract
We investigated the expression of -CXC chemokine ligand 13 (CXCL13) and its receptor -CXC chemokine receptor 5 (CXCR5) in 98 breast cancer (BC) patients with infiltrating duct carcinoma, out of which 56 were found lymph node metastasis (LNM) positive. Interestingly, co-expression of CXCL13 and CXCR5 showed a significant correlation with LNM. Since, epithelial to mesenchymal transition (EMT) is highly associated with metastasis we investigated EMT-inducing potential of CXCL13 in BC cell lines. In CXCL13-stimulated BC cells, expression of various mesenchymal markers (Vimentin, N-cadherin), EMT regulators (Snail, Slug), and matrix metalloproteinase-9 (MMP9) was increased, whereas the expression of epithelial marker E-cadherin was found to be decreased. In addition, expression of receptor activator of nuclear factor kappa-B ligand (RANKL), which is known to regulate MMP9 expression via Src activation, was also significantly increased after CXCL13 stimulation. Using specific protein kinase inhibitors, we confirmed that CXCL13 stimulated EMT and MMP9 expression via RANKL-Src axis in BC cell lines. To further validate this observation, we examined gene expression patterns in primary breast tumors and detected significantly higher expression of various mesenchymal markers and regulators in CXCL13-CXCR5 co-expressing patients. Therefore, this study showed the EMT-inducing potential of CXCL13 as well as demonstrated the prognostic value of CXCL13-CXCR5 co-expression in primary BC. Moreover, CXCL13-CXCR5-RANKL-Src axis may present a therapeutic target in LNM positive BC patients.
Collapse
Affiliation(s)
- Subir Biswas
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fang KM, Yang CS, Lin TC, Chan TC, Tzeng SF. Induced interleukin-33 expression enhances the tumorigenic activity of rat glioma cells. Neuro Oncol 2013; 16:552-66. [PMID: 24327583 DOI: 10.1093/neuonc/not234] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Glioma development is a multistep process associated with progressive genetic alterations but also regulated by cellular and noncellular components in a tumor-associated niche. METHODS Using 2 rat C6 glioma cell clones with different tumorigenesis, named C6-1 and C6-2, this study characterized genes associated with enhanced tumorigenic features of glioma cells by comparative cDNA microarray analysis combined with Q-PCR. Neurospehere formation and clonogenicity were examined to determine the growth of tumorigenic C6 glioma cells. The lentivirus-mediated gene knockdown approach was conducted to determine the role of interleukin-33 (IL-33) in glioma cell proliferation and migration. Transwell cell invasion assay was used to examine microglia migration induced by tumorigenic C6 cells. RESULTS The functional analysis of gene ontology (GO) biological processes shows that the upregulated genes found in tumorigenic C6 (C6-1) cells are closely related to cell proliferation. Tumorigenic C6 cells expressed cytokines and chemokines abundantly. Among these genes, IL-33 was profoundly induced in tumorigenic C6 cells with the expression of IL-33 receptor ST2. Furthermore, the growth rate and colony formation of tumorigenic C6 cells were attenuated by the inhibition of IL-33 and ST2 gene expression. Moreover, IL-33 was involved in tumorigenic glioma cell migration and regulation of the expression of several glioma-associated growth factors and chemokines in tumorigenic C6 cells. CONCLUSION Accordingly, we concluded that glioma cells with abundant production of IL-33 grow rapidly; moreover, the interactions of multiple cytokines/chemokines induced by glioma cells may develop a microenvironment that facilitates microglia/macrophage infiltration and fosters glioma growth in the brain.
Collapse
Affiliation(s)
- Kuan-Min Fang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, Taiwan (K.M.F., T.C.L., T.C.C., S.F.T.); Center for Nanomedicine Research, National Health Research Institutes, Zhunan, Taiwan (C.S.Y.)
| | | | | | | | | |
Collapse
|
20
|
Sarkar S, Döring A, Zemp FJ, Silva C, Lun X, Wang X, Kelly J, Hader W, Hamilton M, Mercier P, Dunn JF, Kinniburgh D, van Rooijen N, Robbins S, Forsyth P, Cairncross G, Weiss S, Yong VW. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 2013; 17:46-55. [PMID: 24316889 DOI: 10.1038/nn.3597] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022]
Abstract
Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.
Collapse
Affiliation(s)
- Susobhan Sarkar
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Axinia Döring
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada. [3]
| | - Franz J Zemp
- 1] The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada. [2]
| | - Claudia Silva
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xueqing Lun
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xiuling Wang
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - John Kelly
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Walter Hader
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mark Hamilton
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Philippe Mercier
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dave Kinniburgh
- Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Stephen Robbins
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter Forsyth
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gregory Cairncross
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Hong S, Zhang X, Chen J, Zhou J, Zheng Y, Xu C. Targeted gene silencing using a follicle-stimulating hormone peptide-conjugated nanoparticle system improves its specificity and efficacy in ovarian clear cell carcinoma in vitro. J Ovarian Res 2013; 6:80. [PMID: 24252539 PMCID: PMC3843555 DOI: 10.1186/1757-2215-6-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND RNA interference technology has shown high therapeutic potential for cancer treatment. However, serum instability, poor tissue permeability and non-specific uptake of short interfering RNA (siRNA) limit its administration in vivo. To overcome these limitations and improve the specificity for ovarian cancer, we developed a targeted nanoparticle delivery system for siRNA. This system included follicle-stimulating hormone (FSH) β 33-53 peptide as a targeting moiety that specifically recognized FSH receptor (FSHR) expressed on ovarian cancer cells. Growth regulated oncogene α (gro-α) has been reported to be involved in ovarian cancer development and progression. Thus, siRNA targeted to gro-α was used as an antitumor drug in this delivery system. METHODS FSH β 33-53 peptide-conjugated gro-α siRNA-loaded polyethylene glycol (PEG)-polyethylenimine (PEI) nanoparticles (FSH33-G-NP) were prepared and characterized by gel retardation assay and transmission electron microscopy. Particle size and zeta potential were determined. Expression of gro-α mRNA and protein was detected by real-time quantitative RT-PCR, immunocytochemistry and enzyme-linked immunosorbent assay. The proliferation, migration and invasion of the ovarian clear cell carcinoma cell line ES-2 were evaluated by cell counting kit-8 assay, cell scratch assay and transwell migration assay. RESULTS A siRNA sequence that is effective in silencing gro-α expression was obtained and loaded into the targeted delivery system. Compared with gro-α siRNA-loaded nanoparticles without FSH peptide modification (G-NP), FSH33-G-NP significantly down-regulated gro-α expression in ES-2 cells at mRNA and protein levels. Consequently, the aggressive biological behaviors of ES-2 cells, including proliferation, migration and invasion, were suppressed after silencing gro-α expression, and the addition of the FSH β 33-53 peptide enhanced the suppressive effects. CONCLUSIONS This study indicated that a FSHR-mediated delivery system could mediate the highly selective delivery of siRNA into ovarian cancer cells and that silencing gro-α expression could be a potential choice for ovarian cancer treatment.
Collapse
Affiliation(s)
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.
| | | | | | | | | |
Collapse
|
22
|
FOX SIMONA, LOH SUZANNES, MAHENDRAN SATHISHK, GARLEPP MICHAELJ. Regulated chemokine gene expression in mouse mesothelioma and mesothelial cells: TNF-α upregulates both CC and CXC chemokine genes. Oncol Rep 2012; 28:707-13. [DOI: 10.3892/or.2012.1809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/23/2012] [Indexed: 11/06/2022] Open
|
23
|
Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW. A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 2011; 33:312-9. [PMID: 22159219 DOI: 10.1093/carcin/bgr289] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glioma cells in situ are surrounded by microglia, suggesting the potential of glioma-microglia interactions to produce various outcomes. As chemokines are important mediators of cell-cell communication, we sought first to identify commonly expressed chemokines in 16 human glioma lines. We found CCL2 (macrophage chemoattractant protein-1) messenger RNA to be expressed by the majority of glioma lines. However, these lines did not express the CCL2 receptor, CCR2, which was found on microglia. Next, we overexpressed CCL2 in the U87 glioma line, which has low basal level of CCL2, to investigate the hypothesis that glioma-secreted CCL2 interacts with microglia to affect glioma growth. Stable clones with 10- to 12-fold elevation of CCL2 have similar growth rate and invasive capacity as vector controls when cultured in isolation. However, in coculture with microglia in a three-dimensional collagen gel matrix, the invasiveness of CCL2-overexpressing clones was increased. Gene array analyses were then undertaken and they revealed that interleukin (IL)-6 was consistently increased in the coculture. Recombinant IL-6 enhanced the invasiveness of glioma cells when these were cultured alone, whereas a neutralizing antibody to IL-6 attenuated the microglia-stimulated glioma invasiveness. Finally, we found that human glioma specimens in situ contained IL-6 immunoreactivity that was expressed on CD68+ cells. This study has uncovered a mechanism by which glioma cells exploit microglia for increased invasiveness. Specifically, glioma-derived CCL2 acts upon CCR2-bearing microglia, which then produces IL-6 to stimulate gliomas. The CCL2/CCR2/IL-6 loop is a potential therapeutic target for the currently incurable malignant gliomas.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Ribot EJ, Miraux S, Konsman JP, Bouchaud V, Pourtau L, Delville MH, Franconi JM, Thiaudière E, Voisin PJ. In vivo MR tracking of therapeutic microglia to a human glioma model. NMR IN BIOMEDICINE 2011; 24:1361-1368. [PMID: 21387452 DOI: 10.1002/nbm.1699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
A knowledge of the spatial localization of cell vehicles used in gene therapy against glioma is necessary before launching therapy. For this purpose, MRI cell tracking is performed by labeling the cell vehicles with contrast agents. In this context, the goal of this study was to follow noninvasively the chemoattraction of therapeutic microglial cells to a human glioma model before triggering therapy. Silica nanoparticles grafted with gadolinium were used to label microglia. These vehicles, expressing constitutively the thymidine kinase suicide gene fused to the green fluorescent protein gene, were injected intravenously into human glioma-bearing nude mice. MRI was performed at 4.7 T to track noninvasively microglial accumulation in the tumor. This was followed by microscopy on brain slices to assess the presence in the glioma of the contrast agents, microglia and fusion gene through the detection of silica nanoparticles grafted with tetramethyl rhodamine iso-thiocyanate, 3,3'-dioctadecyloxacarbocyanine perchlorate and green fluorescent protein fluorescence, respectively. Finally, gancyclovir was administered systemically to mice. Human microglia were detectable in living mice, with strong negative contrast on T(2) *-weighted MR images, at the periphery of the glioma only 24 h after systemic injection. The location of the dark dots was identical in MR microscopy images of the extracted brains at 9.4 T. Fluorescence microscopy confirmed the presence of the contrast agents, exogenous microglia and suicide gene in the intracranial tumor. In addition, gancyclovir treatment allowed an increase in mice survival time. This study validates the MR tracking of microglia to a glioma after systemic injection and their use in a therapeutic strategy against glioma.
Collapse
Affiliation(s)
- Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS/Université V. Ségalen Bordeaux, 146 rue Léo Saignat, Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bandapalli OR, Ehrmann F, Ehemann V, Gaida M, Macher-Goeppinger S, Wente M, Schirmacher P, Brand K. Down-regulation of CXCL1 inhibits tumor growth in colorectal liver metastasis. Cytokine 2011; 57:46-53. [PMID: 22129625 DOI: 10.1016/j.cyto.2011.10.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 10/07/2011] [Accepted: 10/22/2011] [Indexed: 12/24/2022]
Abstract
As part of ongoing studies to obtain a global picture of invasion related events in colorectal liver metastases, here, we report our findings on gene expression of the pro-angiogenic subgroup of chemokines, the CXCL-ELR+ chemokines. Apart from their pro-angiogenic and chemoattractant function, these chemokines appear to also contribute to tumor cell transformation, growth and invasion. In our nude mouse model of colorectal liver metastases, we found CXCL1,2,3,5 and 8 (IL-8) to be up-regulated in the tumor cells of the invasion front as compared to the tumor cells in the inner parts of the tumor. ShRNA mediated down-regulation of the most prominently up-regulated group member, CXCL1/gro-alpha resulted in inhibition of cell viability, invasion and proliferation. In vivo, down-regulation of CXCL1 resulted in a nearly complete prevention of tumor growth in nude mice. Mechanistically, auto-regulatory mechanisms involving NF-kappaB and Akt appear to be involved in pro-tumorigenic functions of CXCL1.
Collapse
Affiliation(s)
- Obul R Bandapalli
- Department of General Pathology, University of Heidelberg, Im Neuenheimer Feld 220/221, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Microarray analysis in a cell death resistant glioma cell line to identify signaling pathways and novel genes controlling resistance and malignancy. Cancers (Basel) 2011; 3:2827-43. [PMID: 24212935 PMCID: PMC3759173 DOI: 10.3390/cancers3032827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/09/2011] [Accepted: 06/17/2011] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies.
Collapse
|
27
|
Sciumè G, Santoni A, Bernardini G. Chemokines and glioma: Invasion and more. J Neuroimmunol 2010; 224:8-12. [DOI: 10.1016/j.jneuroim.2010.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 12/13/2022]
|
28
|
Yang G, Rosen DG, Liu G, Yang F, Guo X, Xiao X, Xue F, Mercado-Uribe I, Huang J, Lin SH, Mills GB, Liu J. CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res 2010; 16:3875-86. [PMID: 20505188 DOI: 10.1158/1078-0432.ccr-10-0483] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Chemokine receptor CXCR2 is associated with malignancy in several cancer models; however, the mechanisms involved in CXCR2-mediated tumor growth remain elusive. Here, we investigated the role of CXCR2 in human ovarian cancer. EXPERIMENTAL DESIGN CXCR2 expression was silenced by stable small hairpin RNA in ovarian cancer cell lines T29Gro-1, T29H, and SKOV3. Western blotting, immunofluorescence, enzyme-linked immunosorbent assay, flow cytometry, electrophoretic mobility shift assay, and mouse assay were used to detect CXCR2, interleukin-8, Gro-1, cell cycle, apoptosis, DNA binding of NF-kappaB, and tumor growth. Immunohistochemical staining of CXCR2 was done in 240 high-grade serous ovarian carcinoma samples. RESULTS Knockdown of CXCR2 expression by small hairpin RNA reduced tumorigenesis of ovarian cancer cells in nude mice. CXCR2 promoted cell cycle progression by modulating cell cycle regulatory proteins, including p21 (waf1/cip1), cyclin D1, CDK6, CDK4, cyclin A, and cyclin B1. CXCR2 inhibited cellular apoptosis by suppressing phosphorylated p53, Puma, and Bcl-xS; suppressing poly(ADP-ribose) polymerase cleavage; and activating Bcl-xL and Bcl-2. CXCR2 stimulated angiogenesis by increasing levels of vascular endothelial growth factor and decreasing levels of thrombospondin-1, a process likely involving mitogen-activated protein kinase, and NF-kappaB. Overexpression of CXCR2 in high-grade serous ovarian carcinomas was an independent prognostic factor of poor overall survival (P < 0.001) and of early relapse (P = 0.003) in the univariate analysis. CONCLUSIONS Our data provide strong evidence that CXCR2 regulates the cell cycle, apoptosis, and angiogenesis through multiple signaling pathways, including mitogen-activated protein kinase and NF-kappaB, in ovarian cancer. CXCR2 thus has potential as a therapeutic target and for use in ovarian cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Gong Yang
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu J, Futakuchi M, Iigo M, Fukamachi K, Alexander DB, Shimizu H, Sakai Y, Tamano S, Furukawa F, Uchino T, Tokunaga H, Nishimura T, Hirose A, Kanno J, Tsuda H. Involvement of macrophage inflammatory protein 1α (MIP1α) in promotion of rat lung and mammary carcinogenic activity of nanoscale titanium dioxide particles administered by intra-pulmonary spraying. Carcinogenesis 2010; 31:927-35. [DOI: 10.1093/carcin/bgq029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Sciumè G, Soriani A, Piccoli M, Frati L, Santoni A, Bernardini G. CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-β1. Neuro Oncol 2010; 12:701-10. [PMID: 20511186 DOI: 10.1093/neuonc/nop076] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The chemokine CX3CL1 is constitutively expressed in the central nervous system by neurons and astrocytes controlling neuronal survival and neurotransmission. In this work, we analyzed the expression and function of the chemokine CX3CL1 and its receptor, CX3CR1, by human glioma cells. We show that both molecules are expressed on the tumor cell plasma membrane and that soluble CX3CL1 accumulates in the culture supernatants, indicating that the chemokine is constitutively released. We found that CX3CR1 is functional, as all the cell lines adhered to immobilized recombinant CX3CL1 and migrated in response to the soluble form of this chemokine. In addition, the blockade of endogenous CX3CL1 function by means of a neutralizing monoclonal antibody markedly delayed tumor cell aggregation and increased their invasiveness. We also show that CX3CL1 expression is potently modulated by the transforming growth factor-beta1 (TGF-beta1), a key regulator of glioma cell invasiveness. Indeed, both the treatment of glioma cells with recombinant TGF-beta1 and the inhibition of its endogenous expression by siRNA showed that TGF-beta1 decreases CX3CL1 mRNA and protein expression. Overall, our results indicate that endogenously expressed CX3CL1 negatively regulates glioma invasion likely by promoting tumor cell aggregation, and that TGF-beta1 inhibition of CX3CL1 expression might contribute to glioma cell invasive properties.
Collapse
Affiliation(s)
- Giuseppe Sciumè
- Department of Experimental Medicine, La Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Junnila S, Kokkola A, Mizuguchi T, Hirata K, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O. Gene expression analysis identifies over-expression of CXCL1, SPARC, SPP1, and SULF1 in gastric cancer. Genes Chromosomes Cancer 2010; 49:28-39. [PMID: 19780053 DOI: 10.1002/gcc.20715] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To elucidate gene expression signatures associated with gastric carcinogenesis, we performed a genome-wide expression analysis of 46 Finnish and 20 Japanese gastric tissues. Comparative analysis between Finnish and Japanese datasets identified 58 common genes that were differentially expressed between cancerous and non-neoplastic gastric tissues. Twenty-six of these genes were up-regulated in cancer and 32 down-regulated. Of these genes, 64% were also differentially expressed in another unrelated publicly available dataset. The expression levels of four of the up-regulated genes, CXCL1, SPARC, SPP1 and SULF, were further analyzed in 82 gastric tissues using quantitative real-time RT-PCR. This analysis validated the results from the microarray analysis as the expression of these four genes was significantly higher in the cancerous tissue compared with the normal tissue (fold change 3.4-8.9). Over-expression of CXCL1 also positively correlated with improved survival. To conclude, irrespective of the microarray platform or patient population, a common gastric cancer gene expression signature of 58 genes, including CXCL1, SPARC, SPP1, and SULF, was identified. These genes represent potential biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Siina Junnila
- Institute of Biomedicine/Medical Biochemistry and Developmental Biology, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
32
|
Staflin K, Zuchner T, Honeth G, Darabi A, Lundberg C. Identification of proteins involved in neural progenitor cell targeting of gliomas. BMC Cancer 2009; 9:206. [PMID: 19558675 PMCID: PMC2713262 DOI: 10.1186/1471-2407-9-206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 06/26/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC) have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model. METHODS Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed in vitro assays to mimic the antitumor effect seen in vivo. RESULTS We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. In vitro co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines in vitro. CONCLUSION These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.
Collapse
Affiliation(s)
- Karin Staflin
- CNS Gene Therapy Unit, Dept Experimental Medical Science, Lund University, Lund, Sweden
- Dept Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Thole Zuchner
- Ultrasensitive Protein Detection Unit, Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
| | | | - Anna Darabi
- Glioma Immunotherapy Unit, The Rausing Laboratory, Lund University, Lund, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy Unit, Dept Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Yan W, Chen X. Identification of GRO1 as a critical determinant for mutant p53 gain of function. J Biol Chem 2009; 284:12178-87. [PMID: 19258312 DOI: 10.1074/jbc.m900994200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutant p53 gain of function contributes to cancer progression, increased invasion and metastasis potentials, and resistance to anticancer therapy. The ability of mutant p53 to acquire its gain of function is shown to correlate with increased expression of progrowth genes, such as c-MYC, MDR1, and NF-kappaB2. However, most of the published studies to identify mutant p53 target genes were performed in a cell system that artificially overexpresses mutant p53. Thus, it remains unclear whether such mutant p53 targets can be regulated by endogenous physiological levels of mutant p53. Here, we utilized SW480 and MIA-PaCa-2 cells, in which endogenous mutant p53 can be inducibly knocked down, to identify mutant p53 target genes that potentially mediate mutant p53 gain of function. We found that knockdown of mutant p53 inhibits GRO1 expression, whereas ectopic expression of mutant R175H in p53-null HCT116 cells increases GRO1 expression. In addition, we found that endogenous mutant p53 is capable of binding to and activating the GRO1 promoter. Interestingly, ectopic expression of GRO1 can rescue the proliferative defect in SW480 and MIA-PaCa-2 cells induced by knockdown of mutant p53. Conversely, knockdown of endogenous GRO1 inhibits cell proliferation and thus abrogates mutant p53 gain of function in SW480 cells. Taken together, our findings define a novel mechanism by which mutant p53 acquires its gain of function via transactivating the GRO1 gene in cancer cells. Thus, targeting GRO1 for cancer therapy would be applicable to a large portion of human tumors with mutant p53, but the exploration of GRO1 as a potential target should take the mutation status of p53 into consideration.
Collapse
Affiliation(s)
- Wensheng Yan
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
34
|
Kawanishi H, Matsui Y, Ito M, Watanabe J, Takahashi T, Nishizawa K, Nishiyama H, Kamoto T, Mikami Y, Tanaka Y, Jung G, Akiyama H, Nobumasa H, Guilford P, Reeve A, Okuno Y, Tsujimoto G, Nakamura E, Ogawa O. Secreted CXCL1 is a potential mediator and marker of the tumor invasion of bladder cancer. Clin Cancer Res 2008; 14:2579-87. [PMID: 18451219 DOI: 10.1158/1078-0432.ccr-07-1922] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to identify proteins that are potentially involved in the tumor invasion of bladder cancer. EXPERIMENTAL DESIGN We searched for the candidate proteins by comparing the profiles of secreted proteins among the poorly invasive human bladder carcinoma cell line RT112 and the highly invasive cell line T24. The proteins isolated from cell culture supernatants were identified by shotgun proteomics. We found that CXCL1 is related to the tumor invasion of bladder cancer cells. We also evaluated whether the amount of the chemokine CXCL1 in the urine would be a potential marker for predicting the existence of invasive bladder tumors. RESULTS Higher amount of CXCL1 was secreted from highly invasive bladder carcinoma cell lines and this chemokine modulated the invasive ability of those cells in vitro. It was revealed that CXCL1 regulated the expression of matrix metalloproteinase-13 in vitro and higher expression of CXCL1 was associated with higher pathologic stages in bladder cancer in vivo. We also showed that urinary CXCL1 levels were significantly higher in patients with invasive bladder cancer (pT1-4) than those with noninvasive pTa tumors (P = 0.0028) and normal control (P < 0.0001). Finally, it was shown that CXCL1 was an independent factor for predicting the bladder cancer with invasive phenotype. CONCLUSIONS Our results suggest that CXCL1 modulates the invasive abilities of bladder cancer cells and this chemokine may be a potential candidate of urinary biomarker for invasive bladder cancer and a possible therapeutic target for preventing tumor invasion.
Collapse
Affiliation(s)
- Hiroaki Kawanishi
- Department of Urology, Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mitchell DA, Karikari I, Cui X, Xie W, Schmittling R, Sampson JH. Selective modification of antigen-specific T cells by RNA electroporation. Hum Gene Ther 2008; 19:511-21. [PMID: 18471037 DOI: 10.1089/hum.2007.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been observed that the efficient transfection of T cells by RNA electroporation requires prior activation of T cells with mitogens or by anti-CD3 antibody stimulation. We hypothesized that this requirement for T cell activation could be leveraged to express marker genes within activated T cells responding to antigen-pulsed dendritic cells and allow for the selective enrichment and modification of antigen-specific T cells. Using electroporation of mRNA encoding green fluorescent protein as a marker gene, we demonstrate that RNA electroporation can efficiently allow for the separation of cytomegalovirus-specific CD8+ and CD4+ T cells from bulk culture responding to cytomegalovirus pp65 antigen-pulsed dendritic cells. Furthermore, we demonstrate that cytomegalovirus-specific T cells can be functionally modified by RNA transfection of the C-X-C chemokine receptor, CXCR2, to migrate efficiently toward a variety of CXCR2-specific chemokines in vitro and in vivo. These studies demonstrate the utility of RNA transfection as a simple method by which to purify and selectively modify the function of antigen-specific T cells for use in adoptive immunotherapy, and importantly provide evidence that transient expression of proteins by RNA transfection is an efficient means of modulating the in vivo function of activated T cells.
Collapse
Affiliation(s)
- Duane A Mitchell
- Division of Neurosurgery, Department of Surgery, Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Gao JQ, Okada N, Mayumi T, Nakagawa S. Immune cell recruitment and cell-based system for cancer therapy. Pharm Res 2007; 25:752-68. [PMID: 17891483 PMCID: PMC2279154 DOI: 10.1007/s11095-007-9443-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Accepted: 08/23/2007] [Indexed: 12/18/2022]
Abstract
Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells, have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of immune cells, however, is important for the development of more efficacious cancer immunotherapies. It is well established that the basis and premise of immunotherapy is the accumulation of effective immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine receptors in the immune system has increased our knowledge of the regulatory mechanisms of the immune response and tolerance based on immune cell localization. Here, we review the immune cell recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors, and their use in cancer immunotherapy.
Collapse
Affiliation(s)
- Jian-Qing Gao
- College of Pharmaceutical Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Naoki Okada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Tadanori Mayumi
- Graduate School of Pharmaceutical Sciences, Kobe-gakuin University, 518 Arise, Igawadani, Nishiku, Kobe, 651-2180 Japan
| | - Shinsaku Nakagawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
37
|
Barbieri F, Bajetto A, Porcile C, Pattarozzi A, Massa A, Lunardi G, Zona G, Dorcaratto A, Ravetti JL, Spaziante R, Schettini G, Florio T. CXC receptor and chemokine expression in human meningioma: SDF1/CXCR4 signaling activates ERK1/2 and stimulates meningioma cell proliferation. Ann N Y Acad Sci 2007; 1090:332-43. [PMID: 17384278 DOI: 10.1196/annals.1378.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent evidence indicates that cancer cells express chemokine (CK) receptors and that their signaling is crucial for tumor proliferation, migration, and angiogenesis. The profiles of expression of CXC CK receptors (CXCR1-5) and their main ligands (growth-related oncogene, GRO1-2-3/CXCL1-2-3; interleukin 8, IL-8/CXCL8; monokine-induced gamma-interferon MIG/CXCL9; gamma-interferon-inducible-protein-10, IP-10/CXCL10; stromal cell-derived factor-1, SDF1/CXCL12; B-cell activating CK-1, BCA-1/CXCL13) were analyzed by reverse transcription polymerase chain reaction (RT-PCR) in surgical samples of human meningiomas. All the five receptors displayed high percentages of positive cases: 92% CXCR1, 89% CXCR2, 83% CXCR3, 78% CXCR4, and 94% CXCR5. Conversely, their ligands showed a lower pattern of expression: 40% IL-8, 42% GRO1-3, 42% IP-10, 28% MIG, 53% SDF1, and 3% BCA-1. SDF1/CXCR4 interaction plays a pivotal role in cancer proliferation. Thus, the signaling mechanisms activated by the exclusive binding between SDF1 and CXCR4 was investigated in 12 primary cultures from meningioma tissues. CXCR4 was functionally coupled as demonstrated by the significant increase of DNA synthesis in meningioma cells in response to SDF1, measured by [3H]-thymidine uptake. In three primary cultures, the SDF1-dependent mitogenic activity was associated with a marked phosphorylation of extracellular signal-regulated kinase (ERK1/2) as evaluated by Western blots. PD98059 (a MEK inhibitor) significantly reduced ERK1/2 activation, thus linking the SDF1/CXCR4 pathway to meningioma cell proliferation via ERK1/2 signal transduction. We demonstrate, for the first time in human meningiomas, the simultaneous expression of CXCR1-5 and their CKs and the mitogenic activity of SDF1/CXCR4, suggesting a pivotal role of these receptor-ligand pairs in meningeal tumors.
Collapse
Affiliation(s)
- Federica Barbieri
- Section of Pharmacology, Department of Biology, Oncology and Genetics, University of Genova, and Division of Pathology, San Martino Hospital, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int 2006; 49:423-32. [PMID: 16621164 DOI: 10.1016/j.neuint.2006.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/02/2006] [Indexed: 01/01/2023]
Abstract
Chemokines have been involved in cellular processes associated to malignant transformation such as proliferation, migration and angiogenesis. The expression of five CXC chemokine receptors and their main ligands was analysed by RT-PCR in 31 human astrocytic neoplasms. The mRNAs for all the receptors analysed were identified in a high percentage of tumours, while their ligands showed lower expression. CXCR4 and SDF1 were the most frequently mRNA identified (29/31 and 13/31 of the gliomas studied, respectively). Thus, we further analysed the cell localization of CXCR4 and SDF1 in immunohistochemistry experiments. We show a marked co-localization of CXCR4 and SDF1 in tumour cells, mainly evident in psudolpalisade and microcystic degeneration areas and in the vascular endothelium. In addition, hSDF1alpha induced a significant increase of DNA synthesis in primary human glioblastoma cell cultures and chemotaxis in a glioblastoma cell line. These results provide evidence of the expression of multiple CXC chemokines and their receptors in brain tumours and that in particular CXCR4 and SDF1 sustain proliferation and migration of glioma cells to promote malignant progression.
Collapse
|