1
|
Guneri-Sozeri PY, Adebali O. Transcription factors, nucleotide excision repair, and cancer: A review of molecular interplay. Int J Biochem Cell Biol 2025; 179:106724. [PMID: 39672502 DOI: 10.1016/j.biocel.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Bulky DNA adducts are mostly formed by external factors such as UV irradiation, smoking or treatment with DNA crosslinking agents. If such DNA adducts are not removed by nucleotide excision repair, they can lead to formation of driver mutations that contribute to cancer formation. Transcription factors (TFs) may critically affect both DNA adduct formation and repair efficiency at the binding site to DNA. For example, "hotspot" mutations in melanoma coincide with UV-induced accumulated cyclobutane pyrimidine dimer (CPD) adducts and/or inhibited repair at the binding sites of some TFs. Similarly, anticancer treatment with DNA cross-linkers may additionally generate DNA adducts leading to secondary mutations and the formation of malignant subclones. In addition, some TFs are overexpressed in response to UV irradiation or chemotherapeutic treatment, activating oncogenic and anti-oncogenic pathways independently of nucleotide excision repair itself. This review focuses on the interplay between TFs and nucleotide excision repair during cancer development and progression.
Collapse
Affiliation(s)
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Türkiye.
| |
Collapse
|
2
|
Sharma DK, Soni I, Rajpurohit YS. Surviving the storm: exploring the role of natural transformation in nutrition and DNA repair of stressed Deinococcus radiodurans. Appl Environ Microbiol 2025; 91:e0137124. [PMID: 39651863 PMCID: PMC11784314 DOI: 10.1128/aem.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Deinococcus radiodurans, a natural transformation (NT)-enabled bacterium renowned for its exceptional radiation resistance, employs unique DNA repair and oxidative stress mitigation mechanisms as a strategic response to DNA damage. This study excavates into the intricate roles of NT machinery in the stressed D. radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA, which are instrumental in the uptake and processing of extracellular DNA (eDNA). Our data reveal that NT not only supports the nutritional needs of D. radiodurans under stress but also has roles in DNA repair. The study findings establish that NT-specific proteins (ComEA, ComEC, and endonuclease A [EndA]) may contribute to support the nutritional requirements in unstressed and heavily DNA-damaged cells, while DprA contributes differently and in a context-dependent manner to navigating through the DNA damage storm. Thus, this dual functionality of NT-specific genes is proposed to be a contributing factor in the remarkable ability of D. radiodurans to survive and thrive in environments characterized by high levels of DNA-damaging agents.IMPORTANCEDeinococcus radiodurans is a bacterium known for its extraordinary radiation resistance. This study explores the roles of NT machinery in the radiation-resistant bacterium Deinococcus radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA. These genes are crucial for the uptake and processing of eDNA and contribute to the bacterium nutritional needs and DNA repair under stress. The findings suggest that the NT-specific proteins ComEA, ComEC, and EndA may help meet the nutritional needs of unstressed and heavily DNA-damaged cells, whereas DprA plays a distinct role that varies, depending on the context in aiding cells to cope with DNA damage. The functionality of NT genes is proposed to enhance D. radiodurans survival in environments with high levels of DNA-damaging agents.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| |
Collapse
|
3
|
Ratushnyy A, Ezdakova M, Matveeva D, Tyrina E, Buravkova L. Regulatory Effects of Senescent Mesenchymal Stem Cells: Endotheliocyte Reaction. Cells 2024; 13:1345. [PMID: 39195236 PMCID: PMC11352319 DOI: 10.3390/cells13161345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal stem cells (MSCs) on endothelial cells (ECs). In order to induce senescence in MSCs, we employed a method of stress-induced senescence utilizing mitomycin C (MmC). Subsequent experiments involved the interaction of ECs with MSCs in a coculture or the treatment of ECs with the secretome of senescent MSCs. After 48 h, we assessed the EC state. Our findings revealed that direct interaction led to a decrease in EC proliferation and migratory activity of the coculture. Furthermore, there was an increase in the activity of the lysosomal compartment, as well as an upregulation of the genes P21, IL6, IL8, ITGA1, and ITGB1. Treatment of ECs with the "senescent" secretome resulted in less pronounced effects, although a decrease in proliferation and an increase in ICAM-1 expression were observed. The maintenance of high levels of typical "senescent" cytokines and growth factors after 48 h suggests that the addition of the "senescent" secretome may have a prolonged effect on the cells. It is noteworthy that in samples treated with the "senescent" secretome, the level of PDGF-AA was higher, which may explain some of the pro-regenerative effects of senescent cells. Therefore, the detected changes may underlie both the negative and positive effects of senescence. The findings provide insight into the effects of cell senescence in vitro, where many of the organism's regulatory mechanisms are absent.
Collapse
Affiliation(s)
- Andrey Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; (M.E.); (D.M.); (E.T.); (L.B.)
| | | | | | | | | |
Collapse
|
4
|
Sinitsky MY, Sinitskaya AV, Shishkova DK, Khutornaya MV, Ponasenko AV. Anti-Inflammatory Effect of Atorvastatin on Primary Human Endothelial Cells Incubated under Genotoxic Load. Bull Exp Biol Med 2024; 177:177-180. [PMID: 39090468 DOI: 10.1007/s10517-024-06151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 08/04/2024]
Abstract
The level of cytokine expression was measured in human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells exposed to 500 ng/ml alkylating mutagen mitomycin C (MMC) and 5 μM atorvastatin. It was found that treatment of MMC-exposed HCAEC with atorvastatin decreased secretion of macrophage migration inhibitory factor (MIF), IL-8, and IL8 gene expression, but increased the expression of SERPINE1 gene encoding the PAI-1 protein. In atorvastatin-treated HITAEC, the concentration of MIF protein and the expression of the IL8 and SERPINE1 genes were reduced. We can conclude that atorvastatin prevents proinflammatory activation of endothelial cells cultured under conditions of genotoxic load. However, the molecular mechanisms of this effect require further research.
Collapse
Affiliation(s)
- M Yu Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia.
| | - A V Sinitskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - D K Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - M V Khutornaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A V Ponasenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
5
|
Sinitsky M, Repkin E, Sinitskaya A, Markova V, Shishkova D, Barbarash O. Proteomic Profiling of Endothelial Cells Exposed to Mitomycin C: Key Proteins and Pathways Underlying Genotoxic Stress-Induced Endothelial Dysfunction. Int J Mol Sci 2024; 25:4044. [PMID: 38612854 PMCID: PMC11011977 DOI: 10.3390/ijms25074044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Mitomycin C (MMC)-induced genotoxic stress can be considered to be a novel trigger of endothelial dysfunction and atherosclerosis-a leading cause of cardiovascular morbidity and mortality worldwide. Given the increasing genotoxic load on the human organism, the decryption of the molecular pathways underlying genotoxic stress-induced endothelial dysfunction could improve our understanding of the role of genotoxic stress in atherogenesis. Here, we performed a proteomic profiling of human coronary artery endothelial cells (HCAECs) and human internal thoracic endothelial cells (HITAECs) in vitro that were exposed to MMC to identify the biochemical pathways and proteins underlying genotoxic stress-induced endothelial dysfunction. We denoted 198 and 71 unique, differentially expressed proteins (DEPs) in the MMC-treated HCAECs and HITAECs, respectively; only 4 DEPs were identified in both the HCAECs and HITAECs. In the MMC-treated HCAECs, 44.5% of the DEPs were upregulated and 55.5% of the DEPs were downregulated, while in HITAECs, these percentages were 72% and 28%, respectively. The denoted DEPs are involved in the processes of nucleotides and RNA metabolism, vesicle-mediated transport, post-translation protein modification, cell cycle control, the transport of small molecules, transcription and signal transduction. The obtained results could improve our understanding of the fundamental basis of atherogenesis and help in the justification of genotoxic stress as a risk factor for atherosclerosis.
Collapse
Affiliation(s)
- Maxim Sinitsky
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician Barbarash Boulevard, 650002 Kemerovo, Russia
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, St. Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia
| | - Anna Sinitskaya
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician Barbarash Boulevard, 650002 Kemerovo, Russia
| | - Victoria Markova
- Laboratory for Molecular, Translation and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician Barbarash Boulevard, 650002 Kemerovo, Russia
| | - Daria Shishkova
- Laboratory for Molecular, Translation and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician Barbarash Boulevard, 650002 Kemerovo, Russia
| | - Olga Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician Barbarash Boulevard, 650002 Kemerovo, Russia
| |
Collapse
|
6
|
Prabhakar A, Kumar R, Wadhwa M, Ghatpande P, Zhang J, Zhao Z, Lizama CO, Kharbikar BN, Gräf S, Treacy CM, Morrell NW, Graham BB, Lagna G, Hata A. Reversal of pulmonary veno-occlusive disease phenotypes by inhibition of the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568924. [PMID: 38076809 PMCID: PMC10705277 DOI: 10.1101/2023.11.27.568924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving the vascular remodeling in PVOD. We show that the administration of MMC in rats mediates the activation of protein kinase R (PKR) and the integrated stress response (ISR), which lead to the release of the endothelial adhesion molecule VE-Cadherin in the complex with Rad51 to the circulation, disruption of endothelial barrier, and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates the depletion of VE-Cadherin, elevation of vascular permeability, and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of BMPR2, underscoring the role of deregulated BMP signal in the development of PVOD.
Collapse
|
7
|
Sinitsky M, Asanov M, Sinitskaya A, Shishkova D, Khutornaya M, Minina V, Ponasenko A. Atorvastatin Can Modulate DNA Damage Repair in Endothelial Cells Exposed to Mitomycin C. Int J Mol Sci 2023; 24:ijms24076783. [PMID: 37047754 PMCID: PMC10094919 DOI: 10.3390/ijms24076783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
HMG-CoA reductase inhibitors (statins) are widely used in the therapy of atherosclerosis and have a number of pleiotropic effects, including DNA repair regulation. We studied the cytogenetic damage and the expression of DNA repair genes (DDB1, ERCC4, and ERCC5) in human coronary artery (HCAEC) and internal thoracic artery endothelial cells (HITAEC) in vitro exposed to mitomycin C (MMC) (positive control), MMC and atorvastatin (MMC+Atv), MMC followed by atorvastatin treatment (MMC/Atv) and 0.9% NaCl (negative control). MMC/Atv treated HCAEC were characterized by significantly decreased micronuclei (MN) frequency compared to the MMC+Atv group and increased nucleoplasmic bridges (NPBs) frequency compared to both MMC+Atv treated cells and positive control; DDB1, ERCC4, and ERCC5 genes were upregulated in MMC+Atv and MMC/Atv treated HCAEC in comparison with the positive control. MMC+Atv treated HITAEC were characterized by reduced MN frequency compared to positive control and decreased NPBs frequency in comparison with both the positive control and MMC/Atv group. Nuclear buds (NBUDs) frequency was significantly lower in MMC/Atv treated cells than in the positive control. The DDB1 gene was downregulated in the MMC+Atv group compared to the positive control, and the ERCC5 gene was upregulated in MMC/Atv group compared to both the positive control and MMC+Atv group. We propose that atorvastatin can modulate the DNA damage repair response in primary human endothelial cells exposed to MMC in a cell line- and incubation scheme-dependent manner that can be extremely important for understanding the fundamental aspects of pleoitropic action of atorvastatin and can also be used to correct the therapy of patients with atherosclerosis characterized by a high genotoxic load.
Collapse
Affiliation(s)
- Maxim Sinitsky
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Maxim Asanov
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Anna Sinitskaya
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Daria Shishkova
- Laboratory for Molecular, Translation and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Maria Khutornaya
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia
| |
Collapse
|
8
|
Dormousoglou M, Boti V, Hela D, Vlastos D, Antonopoulou M, Chondrogiannis C, Petropoulou Y, Dailianis S. Beneficial properties of Drimia numidica leaf methanolic extract against the cytogenotoxic effects of mitomycin C on human lymphocytes. Food Chem Toxicol 2023; 173:113626. [PMID: 36682415 DOI: 10.1016/j.fct.2023.113626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
This study investigated the phytochemical profile of Drimia numidica leaf methanolic extract, as well as its cyto-genotoxic and cyto/genoprotective potential against mitomycin C (MMC) mediated effects on healthy human lymphocytes. Photosynthetic pigments, trace elements, and secondary metabolites were estimated and/or identified in methanolic extract of mature leaves, and the latter was further used for assessing its in vitro biological effects on MMC-free and/or MMC-treated human lymphocytes (at low, non-toxic concentrations of 0.001 and 0.01% v/v). The results showed that D. numidica leaf methanolic extract, being rich in carotenoids, phenolics, flavonoids, organic acids and bufadienolides, could be protective against MMC mediated cyto/genotoxic potential in healthy human lymphocytes. Biomolecules possessing antioxidant and antitumor potential, such as beta-carotene and lutein among others, chlorogenic acid, caffeic acid and their derivatives, minerals such as Si, as well as apigenin- and luteolin-derived glycosides, either individual or in a mixture, could be beneficial rather than harmful, at least at the extract concentrations tested. Although further in vitro and in vivo studies are still needed for elucidating the beneficial (individual and/or additive/synergistic) role of those compounds, the results of the present study are quite promising, thus encouraging new challenges for the appropriate utilization of D. numidica leaf extract.
Collapse
Affiliation(s)
- Margarita Dormousoglou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece; Department of Sustainable Agriculture, University of Patras, GR-30100, Agrinio, Greece
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, GR-45110, Greece; Unit of Environmental, Organic and Biochemical High-resolution Analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina, GR-45110, Greece
| | - Dimitra Hela
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, GR-45110, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100, Agrinio, Greece
| | - Christos Chondrogiannis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Yiola Petropoulou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece.
| |
Collapse
|
9
|
Mousa WK. The microbiome-product colibactin hits unique cellular targets mediating host–microbe interaction. Front Pharmacol 2022; 13:958012. [PMID: 36172175 PMCID: PMC9510844 DOI: 10.3389/fphar.2022.958012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiota produces molecules that are evolved to interact with the diverse cellular machinery of both the host and microbes, mediating health and diseases. One of the most puzzling microbiome molecules is colibactin, a genotoxin encoded in some commensal and extraintestinal microbes and is implicated in initiating colorectal cancer. The colibactin cluster was discovered more than 15 years ago, and most of the research studies have been focused on revealing the biosynthesis and precise structure of the cryptic encoded molecule(s) and the mechanism of carcinogenesis. In 2022, the Balskus group revealed that colibactin not only hits targets in the eukaryotic cell machinery but also in the prokaryotic cell. To that end, colibactin crosslinks the DNA resulting in activation of the SOS signaling pathway, leading to prophage induction from bacterial lysogens and modulation of virulence genes in pathogenic species. These unique activities of colibactin highlight its ecological role in shaping gut microbial communities and further consequences that impact human health. This review dives in-depth into the molecular mechanisms underpinning colibactin cellular targets in eukaryotic and prokaryotic cells, aiming to understand the fine details of the role of secreted microbiome chemistry in mediating host–microbe and microbe–microbe interactions. This understanding translates into a better realization of microbiome potential and how this could be advanced to future microbiome-based therapeutics or diagnostic biomarkers.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
- *Correspondence: Walaa K. Mousa,
| |
Collapse
|
10
|
Das A, Roy S, Upadhyaya G, Agarwal T, Ray S. NBS1 protein from Physcomitrium patens confers protection against oxidative damage by limiting the accumulation of cellular reactive oxygen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:81-90. [PMID: 35398654 DOI: 10.1016/j.plaphy.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Nijmegen breakage syndrome 1 (NBS1) protein is a core member of the MRE11-RAD50-NBS1 (MRN) complex that plays a crucial role in DNA damage sensing and repair in plants. Here we report that NBS1 from moss Physcomitrium patens reduces oxidative damage by lowering the cellular ROS in addition to its known role in oxidative DNA damage recovery. Real-time transcript analysis showed up-regulation of the PpNBS1 transcript under different stress conditions. Bacterial cells showed better cell survivability upon over-expressing PpNBS1 protein as compared to untransformed cells. Likewise, overexpression of PpNBS1 in tobacco plants provides improved protection against oxidative damage and exhibited a lesser amount of ROS upon exposure to oxidative stress. Moreover, PpNBS1 contributes to the antioxidant defense mechanism by positively regulating the expression of the antioxidant genes under stress conditions in transgenic tobacco plants. PpNBS1 expressing transgenic tobacco plants resulted in lesser membrane damage, lower lipid peroxidation level, and higher chlorophyll content under stress conditions. Taken together, we conclude in addition to its known role as DNA damage sensor, PpNBS1 also plays a definite role in oxidative stress mitigation by minimizing ROS accumulation in the cell.
Collapse
Affiliation(s)
- Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
11
|
CHAMP1-POGZ counteracts the inhibitory effect of 53BP1 on homologous recombination and affects PARP inhibitor resistance. Oncogene 2022; 41:2706-2718. [PMID: 35393543 DOI: 10.1038/s41388-022-02299-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
DNA double-strand break (DSB) repair-pathway choice regulated by 53BP1 and BRCA1 contributes to genome stability. 53BP1 cooperates with the REV7-Shieldin complex and inhibits DNA end resection to block homologous recombination (HR) and affects the sensitivity to inhibitors for poly (ADP-ribose) polymerases (PARPs) in BRCA1-deficient cells. Here, we show that a REV7 binding protein, CHAMP1 (chromosome alignment-maintaining phosphoprotein 1), has an opposite function of REV7 in DSB repair and promotes HR through DNA end resection together with POGZ (POGO transposable element with ZNF domain). CHAMP1 was recruited to laser-micro-irradiation-induced DSB sites and promotes HR, but not NHEJ. CHAMP1 depletion suppressed the recruitment of BRCA1, but not the recruitment of 53BP1, suggesting that CHAMP1 regulates DSB repair pathway in favor of HR. Depletion of either CHAMP1 or POGZ impaired the recruitment of phosphorylated RPA2 and CtIP (CtBP-interacting protein) at DSB sites, implying that CHAMP1, in complex with POGZ, promotes DNA end resection for HR. Furthermore, loss of CHAMP1 and POGZ restored the sensitivity to a PARP inhibitor in cells depleted of 53BP1 together with BRCA1. These data suggest that CHAMP1and POGZ counteract the inhibitory effect of 53BP1 on HR by promoting DNA end resection and affect the resistance to PARP inhibitors.
Collapse
|
12
|
Vazquez JM, Pena MT, Muhammad B, Kraft M, Adams LB, Lynch VJ. Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra. eLife 2022; 11:82558. [PMID: 36480266 PMCID: PMC9810328 DOI: 10.7554/elife.82558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species, but there is no correlation between cancer and either body size or lifespan between species indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Previously we showed that several large bodied Afrotherian lineages evolved reduced intrinsic cancer risk, particularly elephants and their extinct relatives (Proboscideans), coincident with pervasive duplication of tumor suppressor genes (Vazquez and Lynch, 2021). Unexpectedly, we also found that Xenarthrans (sloths, armadillos, and anteaters) evolved very low intrinsic cancer risk. Here, we show that: (1) several Xenarthran lineages independently evolved large bodies, long lifespans, and reduced intrinsic cancer risk; (2) the reduced cancer risk in the stem lineages of Xenarthra and Pilosa coincided with bursts of tumor suppressor gene duplications; (3) cells from sloths proliferate extremely slowly while Xenarthran cells induce apoptosis at very low doses of DNA damaging agents; and (4) the prevalence of cancer is extremely low Xenarthrans, and cancer is nearly absent from armadillos. These data implicate the duplication of tumor suppressor genes in the evolution of remarkably large body sizes and decreased cancer risk in Xenarthrans and suggest they are a remarkably cancer-resistant group of mammals.
Collapse
Affiliation(s)
- Juan Manuel Vazquez
- Department of Integrative Biology, Valley Life Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Maria T Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease ProgramBaton RougeUnited States
| | - Baaqeyah Muhammad
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| | - Morgan Kraft
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| | - Linda B Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease ProgramBaton RougeUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| |
Collapse
|
13
|
Hamouda RA, Salman AS, Alharbi AA, Alhasani RH, Elshamy MM. Assessment of the Antigenotoxic Effects of Alginate and ZnO/Alginate-Nanocomposites Extracted from Brown Alga Fucus vesiculosus in Mice. Polymers (Basel) 2021; 13:polym13213839. [PMID: 34771394 PMCID: PMC8587912 DOI: 10.3390/polym13213839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Mitomycin C (MMC) is an alkylating chemotherapy drug that could induce DNA damage and genetic alteration. It has been used as a model mutagen for in vivo and in vitro studies. The current study aimed to evaluate the protective role of Zinc oxide alginate–nanocomposites (ZnO-Alg/NCMs) against MMC–induced genotoxicity in mice. Animals were treated as follows: the control group, the groups treated with Algin (400 mg/kg b.w), the groups treated with ZnO-Alg/NCMs (400 mg/kg b.w), the group treated with MMC, and the groups treated with MMC plus Algin or ZnO-Alg/NCMs. Pre-treatment with Algin and ZnO-Alg/NCMs was repeated for one or seven days. Zinc oxide alginate-nanocomposites (ZnO-Alg/NCMs) were synthesized with the aim of incorporating the intrinsic properties of their constituents as an antigenotoxic substance. In this study, alginate was extracted from the brown marine alga Fucus vesiculosus, Zinc oxide nanoparticles were synthesized by using water extract of the same alga, and loaded in alginate to synthesize ZnO-Alg/NCMs. ZnO-NPs and ZnO-Alg/NCMs were characterized by TEM, SEM, EDX, and Zeta potential. The obtained results confirmed that by TEM and SEM, ZnO-NPs are rod shaped which modified, when loaded in alginate matrix, into spherical shape. The physical stability of ZnO-Alg/NCMs was reported to be higher than ZnO-NPs due to the presence of more negative charges on ZnO-Alg/NCMs. The EDX analysis indicated that the amount of zinc was higher in ZnO-NPs than ZnO-Alg/NCMs. The in vivo results showed that treatment with MMC induced genotoxic disturbances. The combined treatment with Algin and ZnO-Alg/NCMs succeeded in inducing significant protection against MMC. It could be concluded that ZnO-Algin/NCMs is a promising candidate to protect against MMC–induced genotoxicity.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
- Correspondence:
| | - Asmaa S. Salman
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
- Genetic and Cytology Department, National Research Center, Cairo 12622, Egypt
| | - Asrar A. Alharbi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21961, Saudi Arabia;
| | - Maha M. Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
14
|
Ilić K, Hartl S, Galić E, Tetyczka C, Pem B, Barbir R, Milić M, Vinković Vrček I, Roblegg E, Pavičić I. Interaction of Differently Coated Silver Nanoparticles With Skin and Oral Mucosal Cells. J Pharm Sci 2021; 110:2250-2261. [PMID: 33539871 DOI: 10.1016/j.xphs.2021.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles (AgNP) can be found in different consumer products and various medical devices due to their excellent biocidal properties. Despite extensive scientific literature reporting biological effects of AgNP, there is still a lack of scientific evidence on how different surface functionalization affects AgNP interaction with the human skin and the oral epithelium. This study aimed to investigate biological consequences following the treatment of HaCaT and TR146 cells with AgNP stabilized with negatively charged sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), neutral polyvinylpyrrolidone (PVP), and positively charged poly-l-lysine (PLL). All AgNP were characterized by means of size, shape and surface charge. Interactions with biological barriers were investigated in vitro by determining cell viability, particle uptake, oxidative stress response and DNA damages following AgNP treatment. Results showed a significant difference in cytotoxicity depending on the surface coating used for AgNP stabilization. All three types of AgNP induced apoptosis, oxidative stress response and DNA damages in cells, but AOT- and PVP-coated AgNP exhibited lower toxicity than positively charged PLL-AgNP. Considering the number of data gaps related to the safe use of nanomaterials in biomedicine, this study highlights the importance of particle surface functionalization that should be considered during design and development of future AgNP-based medical products.
Collapse
Affiliation(s)
- Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sonja Hartl
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Emerik Galić
- Faculty of Agrobiotechnical Sciences, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Carolin Tetyczka
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
15
|
Motifs of the C-terminal domain of MCM9 direct localization to sites of mitomycin-C damage for RAD51 recruitment. J Biol Chem 2021; 296:100355. [PMID: 33539926 PMCID: PMC7949153 DOI: 10.1016/j.jbc.2021.100355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
The MCM8/9 complex is implicated in aiding fork progression and facilitating homologous recombination (HR) in response to several DNA damage agents. MCM9 itself is an outlier within the MCM family containing a long C-terminal extension (CTE) comprising 42% of the total length, but with no known functional components and high predicted disorder. In this report, we identify and characterize two unique motifs within the primarily unstructured CTE that are required for localization of MCM8/9 to sites of mitomycin C (MMC)-induced DNA damage. First, an unconventional “bipartite-like” nuclear localization (NLS) motif consisting of two positively charged amino acid stretches separated by a long intervening sequence is required for the nuclear import of both MCM8 and MCM9. Second, a variant of the BRC motif (BRCv) similar to that found in other HR helicases is necessary for localization to sites of MMC damage. The MCM9-BRCv directly interacts with and recruits RAD51 downstream to MMC-induced damage to aid in DNA repair. Patient lymphocytes devoid of functional MCM9 and discrete MCM9 knockout cells have a significantly impaired ability to form RAD51 foci after MMC treatment. Therefore, the disordered CTE in MCM9 is functionally important in promoting MCM8/9 activity and in recruiting downstream interactors; thus, requiring full-length MCM9 for proper DNA repair.
Collapse
|
16
|
Sudzinová P, Kambová M, Ramaniuk O, Benda M, Šanderová H, Krásný L. Effects of DNA Topology on Transcription from rRNA Promoters in Bacillus subtilis. Microorganisms 2021; 9:microorganisms9010087. [PMID: 33401387 PMCID: PMC7824091 DOI: 10.3390/microorganisms9010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/24/2023] Open
Abstract
The expression of rRNA is one of the most energetically demanding cellular processes and, as such, it must be stringently controlled. Here, we report that DNA topology, i.e., the level of DNA supercoiling, plays a role in the regulation of Bacillus subtilis σA-dependent rRNA promoters in a growth phase-dependent manner. The more negative DNA supercoiling in exponential phase stimulates transcription from rRNA promoters, and DNA relaxation in stationary phase contributes to cessation of their activity. Novobiocin treatment of B. subtilis cells relaxes DNA and decreases rRNA promoter activity despite an increase in the GTP level, a known positive regulator of B. subtilis rRNA promoters. Comparative analyses of steps during transcription initiation then reveal differences between rRNA promoters and a control promoter, Pveg, whose activity is less affected by changes in supercoiling. Additional data then show that DNA relaxation decreases transcription also from promoters dependent on alternative sigma factors σB, σD, σE, σF, and σH with the exception of σN where the trend is the opposite. To summarize, this study identifies DNA topology as a factor important (i) for the expression of rRNA in B. subtilis in response to nutrient availability in the environment, and (ii) for transcription activities of B. subtilis RNAP holoenzymes containing alternative sigma factors.
Collapse
|
17
|
Ha KP, Clarke RS, Kim GL, Brittan JL, Rowley JE, Mavridou DAI, Parker D, Clarke TB, Nobbs AH, Edwards AM. Staphylococcal DNA Repair Is Required for Infection. mBio 2020; 11:e02288-20. [PMID: 33203752 PMCID: PMC7683395 DOI: 10.1128/mbio.02288-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
To cause infection, Staphylococcus aureus must withstand damage caused by host immune defenses. However, the mechanisms by which staphylococcal DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as being important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double-strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double-strand breaks through reactive oxygen species (ROS) generated by the respiratory burst, which are repaired by RexAB, leading to the induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted the survival of these pathogens in human blood, suggesting that DNA double-strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that the repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection.IMPORTANCE To cause infection, bacteria must survive attack by the host immune system. For many bacteria, including the major human pathogen Staphylococcus aureus, the greatest threat is posed by neutrophils. These immune cells ingest the invading organisms and try to kill them with a cocktail of chemicals that includes reactive oxygen species (ROS). The ability of S. aureus to survive this attack is crucial for the progression of infection. However, it was not clear how the ROS damaged S. aureus and how the bacterium repaired this damage. In this work, we show that ROS cause breaks in the staphylococcal DNA, which must be repaired by a two-protein complex known as RexAB; otherwise, the bacterium is killed, and it cannot sustain infection. This provides information on the type of damage that neutrophils cause S. aureus and the mechanism by which this damage is repaired, enabling infection.
Collapse
Affiliation(s)
- Kam Pou Ha
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rebecca S Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jane L Brittan
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Jessica E Rowley
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Sinitsky MY, Kutikhin AG, Tsepokina AV, Shishkova DK, Asanov MA, Yuzhalin AE, Minina VI, Ponasenko AV. Mitomycin C induced genotoxic stress in endothelial cells is associated with differential expression of proinflammatory cytokines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503252. [DOI: 10.1016/j.mrgentox.2020.503252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
|
19
|
Dan X, Babbar M, Moore A, Wechter N, Tian J, Mohanty J, Croteau DL, Bohr VA. DNA damage invokes mitophagy through a pathway involving Spata18. Nucleic Acids Res 2020; 48:6611-6623. [PMID: 32453416 PMCID: PMC7337932 DOI: 10.1093/nar/gkaa393] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are vital for cellular energy supply and intracellular signaling after stress. Here, we aimed to investigate how mitochondria respond to acute DNA damage with respect to mitophagy, which is an important mitochondrial quality control process. Our results show that mitophagy increases after DNA damage in primary fibroblasts, murine neurons and Caenorhabditis elegans neurons. Our results indicate that modulation of mitophagy after DNA damage is independent of the type of DNA damage stimuli used and that the protein Spata18 is an important player in this process. Knockdown of Spata18 suppresses mitophagy, disturbs mitochondrial Ca2+ homeostasis, affects ATP production, and attenuates DNA repair. Importantly, mitophagy after DNA damage is a vital cellular response to maintain mitochondrial functions and DNA repair.
Collapse
Affiliation(s)
- Xiuli Dan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Anthony Moore
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noah Wechter
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jingyan Tian
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joy G Mohanty
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Sharma RB, Darko C, Zheng X, Gablaski B, Alonso LC. DNA Damage Does Not Cause BrdU Labeling of Mouse or Human β-Cells. Diabetes 2019; 68:975-987. [PMID: 30833468 PMCID: PMC6477907 DOI: 10.2337/db18-0761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/23/2019] [Indexed: 12/26/2022]
Abstract
Pancreatic β-cell regeneration, the therapeutic expansion of β-cell number to reverse diabetes, is an important goal. Replication of differentiated insulin-producing cells is the major source of new β-cells in adult mice and juvenile humans. Nucleoside analogs such as BrdU, which are incorporated into DNA during S-phase, have been widely used to quantify β-cell proliferation. However, reports of β-cell nuclei labeling with both BrdU and γ-phosphorylated H2A histone family member X (γH2AX), a DNA damage marker, have raised questions about the fidelity of BrdU to label S-phase, especially during conditions when DNA damage is present. We performed experiments to clarify the causes of BrdU-γH2AX double labeling in mouse and human β-cells. BrdU-γH2AX colabeling is neither an age-related phenomenon nor limited to human β-cells. DNA damage suppressed BrdU labeling and BrdU-γH2AX colabeling. In dispersed islet cells, but not in intact islets or in vivo, pro-proliferative conditions promoted both BrdU and γH2AX labeling, which could indicate DNA damage, DNA replication stress, or cell cycle-related intrinsic H2AX phosphorylation. Strategies to increase β-cell number must not only tackle the difficult challenge of enticing a quiescent cell to enter the cell cycle, but also achieve safe completion of the cell division process.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Christine Darko
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Xiaoying Zheng
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Brian Gablaski
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Laura C Alonso
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
21
|
A Critical Overview of the Biological Effects of Mitomycin C Application on the Cornea Following Refractive Surgery. Adv Ther 2019; 36:786-797. [PMID: 30859502 PMCID: PMC6824355 DOI: 10.1007/s12325-019-00905-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 01/14/2023]
Abstract
During the last 2 decades, modifying the shape of the cornea by means of laser photoablation has emerged as a successful and popular treatment option for refractive errors. Corneal surface ablation techniques such as photorefractive keratectomy (PRK) and laser-assisted subepithelial keratomileusis (LASEK) offer good refractive results while having a minimal impact on corneal biomechanical stability. Past limitations of these techniques included the long-term regression of refractive outcome and a vigorous healing response that reduced corneal clarity in some patients (giving rise to what is clinically described as “haze”). Mitomycin C (MMC) was introduced as a healing modulator and applied on the corneal surface after refractive surgery to address these drawbacks. This article critically reviews the available evidence on the biological effects, safety, and clinical benefits of the off-label use of MMC in corneal refractive surgery.
Collapse
|
22
|
Mouche A, Archambeau J, Ricordel C, Chaillot L, Bigot N, Guillaudeux T, Grenon M, Pedeux R. ING3 is required for ATM signaling and DNA repair in response to DNA double strand breaks. Cell Death Differ 2019; 26:2344-2357. [PMID: 30804473 DOI: 10.1038/s41418-019-0305-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/16/2023] Open
Abstract
Inhibitor of Growth 3 (ING3) is a candidate tumor suppressor gene whose expression is lost in tumors such as hepatocellular carcinoma, head and neck squamous cell carcinoma and melanoma. In the present study, we show that ING3-depleted human cells and yeast cells deleted for its ortholog YNG2 are sensitive to DNA damage suggesting a conserved role in response to such stress. In human cells, ING3 is recruited to DNA double strand breaks and is required for ATM activation. Remarkably, in response to doxorubicin, ATM activation is dependent on ING3 but not on TIP60, whose recruitment to DNA breaks also depends on ING3. These events lead to ATM-mediated phosphorylation of NBS1 and the subsequent recruitment of RNF8, RNF168, 53BP1, and BRCA1, which are major mediators of the DNA damage response. Accordingly, upon genotoxic stress, DNA repair by non-homologous end joining (NHEJ) or homologous recombination (HR) were impaired in absence of ING3. Finally, immunoglobulin class switch recombination (CSR), a physiological mechanism requiring NHEJ repair, was impaired in the absence of ING3. Since deregulation of DNA double strand break repair is associated with genomic instability, we propose a novel function of ING3 as a caretaker tumor suppressor involved in the DNA damage signaling and repair.
Collapse
Affiliation(s)
- Audrey Mouche
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,INSERM U1236, MICMAC, Rennes, France
| | - Jérôme Archambeau
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Charles Ricordel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Laura Chaillot
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,UMS Biosit, SFR Biologie-Santé, Rennes, France
| | - Nicolas Bigot
- Université de Rennes 1, Rennes, France.,INSERM U1236, MICMAC, Rennes, France.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Thierry Guillaudeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,UMS Biosit, SFR Biologie-Santé, Rennes, France
| | - Muriel Grenon
- Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rémy Pedeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France. .,Université de Rennes 1, Rennes, France.
| |
Collapse
|
23
|
Unoki M, Funabiki H, Velasco G, Francastel C, Sasaki H. CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome. J Clin Invest 2018; 129:78-92. [PMID: 30307408 DOI: 10.1172/jci99751] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Mutations in CDCA7 and HELLS that respectively encode a CXXC-type zinc finger protein and an SNF2 family chromatin remodeler cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome types 3 and 4. Here, we demonstrate that the classical nonhomologous end joining (C-NHEJ) proteins Ku80 and Ku70, as well as HELLS, coimmunoprecipitated with CDCA7. The coimmunoprecipitation of the repair proteins was sensitive to nuclease treatment and an ICF3 mutation in CDCA7 that impairs its chromatin binding. The functional importance of these interactions was strongly suggested by the compromised C-NHEJ activity and significant delay in Ku80 accumulation at DNA damage sites in CDCA7- and HELLS-deficient HEK293 cells. Consistent with the repair defect, these cells displayed increased apoptosis, abnormal chromosome segregation, aneuploidy, centrosome amplification, and significant accumulation of γH2AX signals. Although less prominent, cells with mutations in the other ICF genes DNMT3B and ZBTB24 (responsible for ICF types 1 and 2, respectively) showed similar defects. Importantly, lymphoblastoid cells from ICF patients shared the same changes detected in the mutant HEK293 cells to varying degrees. Although the C-NHEJ defect alone did not cause CG hypomethylation, CDCA7 and HELLS are involved in maintaining CG methylation at centromeric and pericentromeric repeats. The defect in C-NHEJ may account for some common features of ICF cells, including centromeric instability, abnormal chromosome segregation, and apoptosis.
Collapse
Affiliation(s)
- Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, New York, USA
| | - Guillaume Velasco
- CNRS UMR7216, Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Claire Francastel
- CNRS UMR7216, Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Validation of the 3D Skin Comet assay using full thickness skin models: Transferability and reproducibility. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:27-41. [DOI: 10.1016/j.mrgentox.2018.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
|
25
|
|
26
|
Herrero D, Tomé M, Cañón S, Cruz FM, Carmona RM, Fuster E, Roche E, Bernad A. Redox-dependent BMI1 activity drives in vivo adult cardiac progenitor cell differentiation. Cell Death Differ 2018; 25:809-822. [PMID: 29323265 DOI: 10.1038/s41418-017-0022-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023] Open
Abstract
Accumulation of reactive oxygen species (ROS) is associated with several cardiovascular pathologies and with cell cycle exit by neonanatal cardiomyocytes, a key limiting factor in the regenerative capacity of the adult mammalian heart. The polycomb complex component BMI1 is linked to adult progenitors and is an important partner in DNA repair and redox regulation. We found that high BMI1 expression is associated with an adult Sca1+ cardiac progenitor sub-population with low ROS levels. In homeostasis, BMI1 repressed cell fate genes, including a cardiogenic differentiation program. Oxidative damage nonetheless modified BMI1 activity in vivo by derepressing canonical target genes in favor of their antioxidant and anticlastogenic functions. This redox-mediated mechanism is not restricted to damage situations, however, and we report ROS-associated differentiation of cardiac progenitors in steady state. These findings demonstrate how redox status influences the cardiac progenitor response, and identify redox-mediated BMI1 regulation with implications in maintenance of cellular identity in vivo.
Collapse
Affiliation(s)
- Diego Herrero
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - María Tomé
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain
| | - Susana Cañón
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain.,Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain
| | - Francisco M Cruz
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain
| | - Rosa María Carmona
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Encarna Fuster
- Department of Applied Biology-Nutrition and Institute of Bioengineering, University Miguel Hernández, Institute for Health and Biomedical Research (ISABIAL-FISABIO Fundation), Alicante, Spain
| | - Enrique Roche
- CIBERobn (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Research Institute (ISCIII), Madrid, Spain.,Department of Applied Biology-Nutrition and Institute of Bioengineering, University Miguel Hernández, Institute for Health and Biomedical Research (ISABIAL-FISABIO Fundation), Alicante, Spain
| | - Antonio Bernad
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain. .,Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain.
| |
Collapse
|
27
|
Kumari S, Nayak G, Lukose ST, Kalthur SG, Bhat N, Hegde AR, Mutalik S, Kalthur G, Adiga SK. Indian propolis ameliorates the mitomycin C-induced testicular toxicity by reducing DNA damage and elevating the antioxidant activity. Biomed Pharmacother 2017; 95:252-263. [PMID: 28846983 DOI: 10.1016/j.biopha.2017.08.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/06/2023] Open
Abstract
Development of excellent curative therapy for most of the malignancies has resulted in a growing population of cancer survivors who are at increased risk for a variety of health problems including infertility. Therefore, fertility preservation has become an important issue during cancer treatment in recent years. Combination therapy with natural agents such as vitamins, antioxidants, dietary supplements, and plant products are considered as an attractive option to mitigate normal tissue toxicity imparted by chemotherapy. The aim of the present study was to explore the beneficial effect of hydroethanolic extract of Indian propolis (HEIP) on mitigating mitomycin C (MMC)-induced testicular damage and its mechanism of action. Healthy adult male mice were injected intraperitoneally with saline, MMC, HEIP and HEIP followed by MMC after 1h. The animals were dissected at 35days after various treatments to analyze testicular function. MMC administration resulted in significant reduction in testicular function in a dose-dependent manner at 35days after treatment which significantly improved by HEIP pre-treatment. At 24h after treatment, MMC induced significant increase in oxidative stress, γ-H2AX foci and expression of RAD51 and KU80 in testicular cells. Prior treatment with HEIP decreased the oxidative stress, reduced DNA damage and restored the testicular testosterone and inhibin B level. In conclusion, co-administration of Indian propolis extract may play a promising beneficial role in fertility preservation of males undergoing chemotherapy.
Collapse
Affiliation(s)
- Sandhya Kumari
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal University, Manipal, 576 104, Karnataka, India
| | - Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal University, Manipal, 576 104, Karnataka, India
| | - Sonu T Lukose
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal University, Manipal, 576 104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal University, Manipal, 576 104, Karnataka, India
| | - Nandini Bhat
- Department of Anatomy, Kasturba Medical College, Manipal University, Manipal, 576 104, Karnataka, India
| | - Aswathi R Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576 104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576 104, Karnataka, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal University, Manipal, 576 104, Karnataka, India.
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal University, Manipal, 576 104, Karnataka, India
| |
Collapse
|
28
|
Rodrigues CRF, Plentz LC, Flores MDA, Dihl RR, Lehmann M. Assessment of genotoxic and antigenotoxic activities of artepillin C in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2017; 101:48-54. [DOI: 10.1016/j.fct.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
29
|
Bernabé-García Á, Armero-Barranco D, Liarte S, Ruzafa-Martínez M, Ramos-Morcillo AJ, Nicolás FJ. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation. PLoS One 2017; 12:e0172574. [PMID: 28231262 PMCID: PMC5323077 DOI: 10.1371/journal.pone.0172574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/07/2017] [Indexed: 11/26/2022] Open
Abstract
During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed.
Collapse
Affiliation(s)
- Ángel Bernabé-García
- Laboratorio de Oncología Molecular y TGF-ß, Instituto Murciano de Investigaciones Biosanitarias-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - David Armero-Barranco
- Departamento de Enfermería, Facultad Enfermería, Universidad de Murcia, Murcia, Spain
| | - Sergio Liarte
- Laboratorio de Oncología Molecular y TGF-ß, Instituto Murciano de Investigaciones Biosanitarias-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - María Ruzafa-Martínez
- Departamento de Enfermería, Facultad Enfermería, Universidad de Murcia, Murcia, Spain
| | | | - Francisco José Nicolás
- Laboratorio de Oncología Molecular y TGF-ß, Instituto Murciano de Investigaciones Biosanitarias-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
- * E-mail:
| |
Collapse
|
30
|
Kuo CY, Chou WC, Wu CC, Wong TS, Kakadiya R, Lee TC, Su TL, Wang HC. Repairing of N-mustard derivative BO-1055 induced DNA damage requires NER, HR, and MGMT-dependent DNA repair mechanisms. Oncotarget 2016. [PMID: 26208482 PMCID: PMC4694865 DOI: 10.18632/oncotarget.4514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alkylating agents are frequently used as first-line chemotherapeutics for various newly diagnosed cancers. Disruption of genome integrity by such agents can lead to cell lethality if DNA lesions are not removed. Several DNA repair mechanisms participate in the recovery of mono- or bi-functional DNA alkylation. Thus, DNA repair capacity is correlated with the therapeutic response. Here, we assessed the function of novel water-soluble N-mustard BO-1055 (ureidomustin) in DNA damage response and repair mechanisms. As expected, BO-1055 induces ATM and ATR-mediated DNA damage response cascades, including downstream Chk1/Chk2 phosphorylation, S/G2 cell-cycle arrest, and cell death. Further investigation revealed that cell survival sensitivity to BO-1055 is comparable to that of mitomycin C. Both compounds require nucleotide excision repair and homologous recombination, but not non-homologous end-joining, to repair conventional cross-linking DNA damage. Interestingly and unlike mitomycin C and melphalan, MGMT activity was also observed in BO-1055 damage repair systems, which reflects the occurrence of O-alkyl DNA lesions. Combined treatment with ATM/ATR kinase inhibitors significantly increases BO-1055 sensitivity. Our study pinpoints that BO-1055 can be used for treating tumors that with deficient NER, HR, and MGMT DNA repair genes, or for synergistic therapy in tumors that DNA damage response have been suppressed.
Collapse
Affiliation(s)
- Ching-Ying Kuo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Teng-Song Wong
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Rajesh Kakadiya
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,PhD Program in Translational Medicine, College of Medicine/PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Translational Research Center and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
31
|
Ko JC, Chen JC, Wang TJ, Zheng HY, Chen WC, Chang PY, Lin YW. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells. Biochem Pharmacol 2016; 105:91-100. [PMID: 26921637 DOI: 10.1016/j.bcp.2016.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/23/2016] [Indexed: 01/10/2023]
Abstract
Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan; Institute of Technology Law, National Chiao Tung University, Hsinchu, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Tai-Jing Wang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Hao-Yu Zheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Wen-Ching Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Po-Yuan Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
32
|
LC-based targeted metabolomics analysis of nucleotides and identification of biomarkers associated with chemotherapeutic drugs in cultured cell models. Anticancer Drugs 2015; 25:690-703. [PMID: 24667660 DOI: 10.1097/cad.0000000000000096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment of mammalian cells with chemotherapeutic drugs can result in perturbations of nucleotide pools. Monitoring these perturbations in cultured tumor cells from human sources is useful for assessment of the effect of drug therapy and a better understanding of the mechanism of action of these drugs. In this study, three classes of chemotherapeutic drugs with different mechanisms of action were used in the development of drug-treated cell models. The LC-based targeted metabolomics analysis of nucleotides in cells of the control group and the drug-treated group was carried out. Several data processing methods were combined for the identification of potential biomarkers associated with the action of drugs, including one-way analysis of variance, principal component analysis, and receiver operating characteristic curves. Intriguingly, tumor cells of both the control group and the drug-treated groups can be distinguished from each other, and several variables were recognized as potential biomarkers, such as ATP, GMP, and UDP for antimetabolite agents, ATP, GMP, and CTP for DNA-damaging agents, as well as GMP, ATP, UDP, and GDP for the mitotic spindle agents. Further validation of the potential biomarkers was performed using the receiver operating characteristic curve. Considering their corresponding area under the curve, which was larger than 0.9, it can be concluded that GMP and ATP are the best potential biomarkers for DNA-damaging drugs, as well as GMP, ATP, and UDP for the other two classes of drugs. This limited nucleotide approach cannot completely distinguish the mechanisms of the nine drugs, but it provides preliminary evidence for the role of pharmacometabolomics in the preclinical development of drugs at least.
Collapse
|
33
|
Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genet 2014; 10:e1004686. [PMID: 25299392 PMCID: PMC4191938 DOI: 10.1371/journal.pgen.1004686] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023] Open
Abstract
As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg−/− mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging. Accumulation of DNA damage has been implicated in aging. Many premature aging syndromes are due to defective DNA repair systems. The endonuclease XPG is involved in repair of helix-distorting DNA lesions, and XPG defects cause the cancer-prone condition xeroderma pigmentosum (XP) alone or combined with the severe neurodevelopmental progeroid disorder Cockayne syndrome (CS). Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid background- displays many progressive progeroid features, including early cessation of growth, cachexia, kyphosis, osteoporosis, neurodegeneration, liver aging, retinal degeneration, and reduced lifespan. In a constitutive mutant with a complex phenotype it is difficult to dissect cause and consequence. We have therefore generated liver- and forebrain-specific Xpg mutants and demonstrate that they exhibit progressive anisokaryosis and neurodegeneration, respectively, indicating that a cell-intrinsic repair defect in neurons can account for neuronal degeneration. These findings strengthen the link between DNA damage and the complex process of aging.
Collapse
|
34
|
Yu HY, Kim SO, Jin CY, Kim GY, Kim WJ, Yoo YH, Choi YH. β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway. Biomol Ther (Seoul) 2014; 22:184-92. [PMID: 25009698 PMCID: PMC4060078 DOI: 10.4062/biomolther.2014.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022] Open
Abstract
β-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of β-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. β-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in β-lapachone-treated AGS cells. Treatment with β-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished β-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by β-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased β-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of β-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to β-lapachone-mediated AGS cell growth inhibition and apoptosis induction.
Collapse
Affiliation(s)
- Hai Yang Yu
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714
| | - Sung Ok Kim
- Team for Scientification of Korean Medical Intervention (BK21 Plus) & Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University, Daegu 706-828
| | - Cheng-Yun Jin
- School of Pharmaceutical Science, Zhengzhou University, Henan 450001, China
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 361-804
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan 602-714
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052 ; Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea
| |
Collapse
|
35
|
Gomes-Pereira M, Hilley JD, Morales F, Adam B, James HE, Monckton DG. Disease-associated CAG·CTG triplet repeats expand rapidly in non-dividing mouse cells, but cell cycle arrest is insufficient to drive expansion. Nucleic Acids Res 2014; 42:7047-56. [PMID: 24860168 PMCID: PMC4066746 DOI: 10.1093/nar/gku285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genetically unstable expanded CAG·CTG trinucleotide repeats are causal in a number of human disorders, including Huntington disease and myotonic dystrophy type 1. It is still widely assumed that DNA polymerase slippage during replication plays an important role in the accumulation of expansions. Nevertheless, somatic mosaicism correlates poorly with the proliferative capacity of the tissue and rates of cell turnover, suggesting that expansions can occur in the absence of replication. We monitored CAG·CTG repeat instability in transgenic mouse cells arrested by chemical or genetic manipulation of the cell cycle and generated unequivocal evidence for the continuous accumulation of repeat expansions in non-dividing cells. Importantly, the rates of expansion in non-dividing cells were at least as high as those of proliferating cells. These data are consistent with a major role for cell division-independent expansion in generating somatic mosaicism in vivo. Although expansions can accrue in non-dividing cells, we also show that cell cycle arrest is not sufficient to drive instability, implicating other factors as the key regulators of tissue-specific instability. Our data reveal that de novo expansion events are not limited to S-phase and further support a cell division-independent mutational pathway.
Collapse
Affiliation(s)
- Mário Gomes-Pereira
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK Inserm UMR 1163, Laboratory of CTG Repeat Instability and Myotonic Dystrophy Type 1, 75015 Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - James D Hilley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernando Morales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK Instituto de Investigaciones en Salud y Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Berit Adam
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Helen E James
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
36
|
Carvalho RS, Fernandes VC, Nepomuceno TC, Rodrigues DC, Woods NT, Suarez-Kurtz G, Chammas R, Monteiro AN, Carvalho MA. Characterization of LGALS3 (galectin-3) as a player in DNA damage response. Cancer Biol Ther 2014; 15:840-50. [PMID: 24755837 DOI: 10.4161/cbt.28873] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA damage repair (DDR) is an orchestrated process encompassing the injury detection to its complete resolution. DNA double-strand break lesions are repaired mainly by two distinct mechanisms: the error-free homologous recombination (HR) and the error-prone non-homologous end-joining. Galectin-3 (GAL3) is the unique member of the chimeric galectins subfamily and is reported to be involved in several cancer development and progression related events. Recently our group described a putative protein interaction between GAL3 and BARD1, the main partner of breast and ovarian cancer susceptibility gene product BRCA1, both involved in HR pathway. In this report we characterized GAL3/BARD1 protein interaction and evaluated the role of GAL3 in DDR pathways using GAL3 silenced human cells exposed to different DNA damage agents. In the absence of GAL3 we observed a delayed DDR response activation, as well as a decrease in the G 2/M cell cycle checkpoint arrest associated with HR pathway. Moreover, using a TAP-MS approach we also determined the protein interaction network of GAL3.
Collapse
Affiliation(s)
- Renato S Carvalho
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro, Brazil; Cancer Epidemiology Program; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | | | | | - Deivid C Rodrigues
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro, Brazil
| | - Nicholas T Woods
- Cancer Epidemiology Program; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | | | - Roger Chammas
- Faculdade de Medicina; Universidade de São Paulo; São Paulo, Brazil
| | - Alvaro N Monteiro
- Cancer Epidemiology Program; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Marcelo A Carvalho
- Instituto Federal do Rio de Janeiro (IFRJ); Rio de Janeiro, Brazil; Programa de Farmacologia; Instituto Nacional de Câncer; Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Zabka A, Trzaskoma P, Maszewski J. Dissimilar effects of β-lapachone- and hydroxyurea-induced DNA replication stress in root meristem cells of Allium cepa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:282-293. [PMID: 24184448 DOI: 10.1016/j.plaphy.2013.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Two anticancer drugs, β-lapachone (β-lap, a naphthoquinone) and hydroxyurea (HU, an inhibitor of ribonucleotide reductase), differently affect nuclear morphology and cell cycle control mechanisms in root meristem cells of Allium cepa. The 18 h treatment with 100 μM β-lap results in a lowered number of M-phase cells, increased occurrence of mitotic abnormalities, including over-condensation of chromosomes, their enhanced stickiness, formation of anaphase bridges, micronucleation and reduced mitotic spindles. Following prolonged incubations using high doses of β-lap, cell nuclei reveal dark-red fluorescence evenly distributed in chromatin surrounding the unstained regions of nucleoli. Both drugs generate H2O2 and induce DNA double strand breaks, which is correlated with γ-phoshorylation of H2AX histones. However, the extent of H2AX phosphorylation (including the frequency of γ-H2AX foci and the relative number cells creating phospho-H2AX domains) is considerably reduced in root meristem cells treated jointly with the β-lap/HU mixture. Furthermore, various effects of caffeine (an inhibitor of ATM/ATR cell cycle checkpoint kinases) on β-lap- and HU-induced γ-phoshorylation of H2AX histones and the protective activity of HU against β-lap suggest that their genotoxic activities are largely dissimilar. β-Lap treatment results in the induction of apoptosis-like programmed cell death, while HU treatment leads to cell adaptation to replication stress and promotion of abnormal nuclear divisions with biphasic interphase/mitotic states of chromatin condensation.
Collapse
Affiliation(s)
- Aneta Zabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | | | | |
Collapse
|
38
|
Wemhoff S, Meinhardt F. Generation of biologically contained, readily transformable, and genetically manageable mutants of the biotechnologically important Bacillus pumilus. Appl Microbiol Biotechnol 2013; 97:7805-19. [PMID: 23644770 DOI: 10.1007/s00253-013-4935-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/25/2022]
Abstract
Bacillus pumilus mutants were generated by targeted deletion of a set of genes eventually facilitating genetic handling and assuring biological containment. The well-defined and stable mutants do not form functional endospores due to the deletion of yqfD, an essential sporulation gene; they are affected in DNA repair, as ΔuvrBA rendered them UV hypersensitive and, thus, biologically contained; they are deficient for the uracil phosphoribosyl-transferase (Δupp), allowing for 5-fluorouracil-based counterselection facilitating rapid allelic exchanges; and they are readily transformable due to the deletion of the restrictase encoding locus (ΔhsdR) of a type I restriction modification system. Vegetative growth as well as extracellular enzyme production and secretion are in no case affected. The combination of such gene deletions allows for development of B. pumilus strains suited for industrial use and further improvements.
Collapse
Affiliation(s)
- Stephanie Wemhoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149, Münster, Germany
| | | |
Collapse
|
39
|
Sulaiman GM. Role of caffeic acid phenethyl ester on mitomycin C induced clastogenesis: analysis of chromosome aberrations, micronucleus, mitotic index and adenosine deaminase activity in vivo. J Appl Genet 2012; 53:213-9. [DOI: 10.1007/s13353-012-0089-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/29/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
40
|
Hromas R, Williamson EA, Fnu S, Lee YJ, Park SJ, Beck BD, You JS, Leitao A, Laitao A, Nickoloff JA, Lee SH. Chk1 phosphorylation of Metnase enhances DNA repair but inhibits replication fork restart. Oncogene 2012; 31:4245-54. [PMID: 22231448 DOI: 10.1038/onc.2011.586] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart.
Collapse
Affiliation(s)
- R Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bueren-Calabuig JA, Negri A, Morreale A, Gago F. Rationale for the opposite stereochemistry of the major monoadducts and interstrand crosslinks formed by mitomycin C and its decarbamoylated analogue at CpG steps in DNA and the effect of cytosine modification on reactivity. Org Biomol Chem 2012; 10:1543-52. [PMID: 22222915 DOI: 10.1039/c1ob06675g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitomycin C (MMC) is a potent antitumour agent that forms a covalent bond with the 2-amino group of selected guanines in the minor groove of double-stranded DNA following intracellular reduction of its quinone ring and opening of its aziridine moiety. At some 5'-CG-3' (CpG) steps the resulting monofunctional adduct can evolve towards a more deleterious bifunctional lesion, which is known as an interstrand crosslink (ICL). MMC reactivity is enhanced when the cytosine bases are methylated (5 MC) and decreased when they are replaced with 5-F-cytosine (5FC) whereas the stereochemical preference of alkylation changes upon decarbamoylation. We have studied three duplex oligonucleotides of general formula d(CGATAAXGCTAACG) in which X stands for C, 5MC or 5FC. Using a combination of molecular dynamics simulations in aqueous solution, quantum mechanics and continuum electrostatics, we have been able to (i) obtain a large series of snapshots that facilitate an understanding in atomic detail of the distinct stereochemistry of monoadduct and ICL formation by MMC and its decarbamoylated analogue, (ii) provide an explanation for the altered reactivity of MMC towards DNA molecules containing 5MC or 5FC, and (iii) show the distinct accommodation in the DNA minor groove of the different covalent modifications, particularly the most cytotoxic C1α and C1β ICLs.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Departamento de Farmacología, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Patro BS, Frøhlich R, Bohr VA, Stevnsner T. WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes. J Cell Sci 2011; 124:3967-79. [PMID: 22159421 DOI: 10.1242/jcs.081372] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Checkpoints are cellular surveillance and signaling pathways that coordinate the response to DNA damage and replicative stress. Consequently, failure of cellular checkpoints increases susceptibility to DNA damage and can lead to profound genome instability. This study examines the role of a human RECQ helicase, WRN, in checkpoint activation in response to DNA damage. Mutations in WRN lead to genomic instability and the premature aging condition Werner syndrome. Here, the role of WRN in a DNA-damage-induced checkpoint was analyzed in U-2 OS (WRN wild type) and isogenic cells stably expressing WRN-targeted shRNA (WRN knockdown). The results of our studies suggest that WRN has a crucial role in inducing an S-phase checkpoint in cells exposed to the topoisomerase I inhibitor campthothecin (CPT), but not in cells exposed to hydroxyurea. Intriguingly, WRN decreases the rate of replication fork elongation, increases the accumulation of ssDNA and stimulates phosphorylation of CHK1, which releases CHK1 from chromatin in CPT-treated cells. Importantly, knockdown of WRN expression abolished or delayed all these processes in response to CPT. Together, our results strongly suggest an essential regulatory role for WRN in controlling the ATR-CHK1-mediated S-phase checkpoint in CPT-treated cells.
Collapse
Affiliation(s)
- Birija Sankar Patro
- Department of Molecular Biology, University of Aarhus, C. F. Mollers Alle 3, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
43
|
Glasper ER, Kozorovitskiy Y, Pavlic A, Gould E. Paternal experience suppresses adult neurogenesis without altering hippocampal function in Peromyscus californicus. J Comp Neurol 2011; 519:2271-81. [PMID: 21456007 DOI: 10.1002/cne.22628] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Paternal care is rare among mammals, occurring in ≈6% of species. California mice (Peromyscus californicus) are unusual; fathers participate extensively in raising their young and display the same components of parental care as mothers, with the exception of nursing. Parenting is a complex experience, having stressful and enriching aspects. The hippocampus is sensitive to experience and responds to both stress and environmental enrichment with changes in structure and function. In rats, where females care exclusively for offspring, parenting is associated with suppressed hippocampal adult neurogenesis. Since this effect has been causally linked to lactation, it is unlikely that fathers would show a similar change. To investigate this issue, we examined adult neurogenesis in the hippocampus of California mouse fathers compared to males without pups and observed reduced adult neurogenesis. Similar effects were found in California mouse mothers. Next, we investigated whether behaviors linked to the hippocampus, namely, object recognition and novelty-suppressed feeding, were altered in fathers, and observed no substantial changes. During caregiving, suppressed adult neurogenesis does not appear to be related to changes in behaviors associated with the hippocampus, although it is possible that there are other effects on hippocampal function.
Collapse
Affiliation(s)
- Erica R Glasper
- Department of Psychology and Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
44
|
Ionizing radiation or mitomycin-induced micronuclei in lymphocytes of BRCA1 or BRCA2 mutation carriers. Breast Cancer Res Treat 2010; 127:611-22. [PMID: 20625817 DOI: 10.1007/s10549-010-1017-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/23/2010] [Indexed: 01/18/2023]
Abstract
BRCA1 and BRCA2 genes are essential in preserving the integrity of genome, and it is not unambiguously clear whether the heterozygosity status may affect BRCA1 or BRCA2 functions. This may have implications for the clinical management of BRCA1 and BRCA2 mutation carriers both in breast cancer (BC) screening modality and in cancer treatment based on DNA-damaging or DNA-repair-inhibiting drugs. We investigated whether lymphocytes carrying BRCA1 or BRCA2 mutations displayed an increased sensitivity to radiation or mitomycin C (MMC) in vitro treatments. Peripheral blood from 21 BRCA1 mutation carriers (12 with BC and 9 healthy), 24 BRCA2 carriers (13 with BC and 11 healthy), 15 familial BC patients without detected mutation in BRCA1 or BRCA2 and 16 controls without familial history of cancer (5 with BC and 11 healthy) were irradiated or treated with MMC. Chromosomal damage was measured using the cytokinesis-block micronucleus assay. We evaluated micronuclei (MN) and nucleoplasmic bridges (NPBs). The BRCA2 mutation carriers and familial BC patients without detected mutation in BRCA1 or BRCA2 showed less basal NPB than BRCA1 carriers and controls. The BRCA1 (+/-) or BRCA2 (+/-) lymphocytes did not have increased frequencies of MN or NPB after irradiation. In contrast, BRCA2 (+/-) lymphocytes presented higher levels of MN after MMC exposure than BRCA1 carriers and controls. The monoallelic BRCA1 or BRCA2 pathogenic mutations seem not to be associated with an enhanced radiosensitivity. The mutation of one BRCA2 allele conferred an increased sensitivity to MMC, presumably because of the role of this gene in the repair of MMC-induced DNA damage. This finding indicates that the MMC-induced MN analysis could be useful in identifying functional deficiencies of BRCA2 or genes related to BRCA2. Since MMC can be used as an anti-cancer drug, these data may be relevant for the management and follow-up of BRCA2 mutation carriers.
Collapse
|
45
|
Mitomycin C modulates DNA-double strand break repair genes in cervical carcinoma cells. Amino Acids 2010; 39:1291-8. [PMID: 20352460 DOI: 10.1007/s00726-010-0568-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
Abstract
In a previous study, we elucidated the apoptotic mechanism mediated via Fas/FasL-dependent pathway in mitomycin C-treated cervical carcinoma cells. In this study, 2-D and MALDI-TOF analyses were performed in order to search mitomycin C-induced modulators in cervical carcinoma cells. Some protein spots down- or up-regulated by mitomycin C were separately selected from the 2-D gels. Twenty protein spots were identified from the 2-D gels. Among the 20 spots, 11 spots were down-regulated, whereas 9 spots were up-regulated in SiHa/pRSV-luc cells by mitomycin C. Three spots have not been identified in the database. Ku70-binding protein (KUB3), MHC class I antigen, MHC class I chain-related protein A or multi-PDZ domain protein 1, MAGUK P55 subfamily member 3 or lamda/iota protein kinase C-interacting protein, and GL014 or Sad1/unc-84 protein-like 1 were suppressed by mitomycin C treatment. Heat shock 60 kDa protein 1 (chaperonin), similar to heat shock protein 90 kDa protein alpha or nine in centrosomal protein isoform C, NADP-dependent malic enzyme, mitochondrial precursor, GRB10 adaptor protein, glycogenin-interacting protein 1, cystathionine gamma-lyase, G2/mitotic-specific cyclin B2 or heat shock 90 kDa protein 1 alpha, peptidyl-prolyl cis-trans isomerase B, and PARP-2 (fragment) were induced by mitomycin C. KUB3, Brca1, and E6 gene expressions were down-regulated by mitomycin C in HPV-positive cervical cancer cells, SiHa/pRSV-luc and SiHa. In these studies, we suggest that MMC down-regulated the expression levels of the upstream molecules of DNA-double strand break repair system, non-homologous end joining or homologous recombination, resulting in the suppression of cervical cancer cell growth.
Collapse
|
46
|
Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. DNA interstrand crosslink repair in mammalian cells: step by step. Crit Rev Biochem Mol Biol 2010; 45:23-49. [PMID: 20039786 PMCID: PMC2824768 DOI: 10.3109/10409230903501819] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by nucleotide excision repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G(1) phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.
Collapse
Affiliation(s)
- Parameswary A Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
47
|
Toxicity against gastric cancer cells by combined treatment with 5-fluorouracil and mitomycin c: implication in oxidative stress. Cancer Chemother Pharmacol 2009; 66:517-26. [DOI: 10.1007/s00280-009-1192-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 11/19/2009] [Indexed: 11/26/2022]
|
48
|
Protective effect of melatonin against mitomycin C-induced genotoxic damage in peripheral blood of rats. J Biomed Biotechnol 2009; 2009:791432. [PMID: 19859567 PMCID: PMC2764378 DOI: 10.1155/2009/791432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/05/2009] [Indexed: 11/17/2022] Open
Abstract
Mitomycin C (MMC) generates free radicals when metabolized. We investigated the effect of melatonin against MMC-induced genotoxicity in polychromatic erythrocytes and MMC-induced lipid peroxidation in brain and liver homogenates. Rats (N = 36) were classified into 4 groups: control, melatonin, MMC, and MMC + melatonin. Melatonin and MMC doses of
10 mg/kg and 2 mg/kg, respectively, were injected intraperitoneally. Peripheral blood samples were collected at 0, 24, 48, 72, and 96 hours posttreatment and homogenates were obtained at 96 hours posttreatment. The number of micronucleated polychromatic erythrocytes (MN-PCE) per 1000 PCE was used as a genotoxic marker. Malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA) levels were used as an index of lipid peroxidation. The MMC group showed a significant increase in MN-PCE at 24, 48, 72, and 96 hours that was significantly reduced with melatonin begin coadministrated. No significant differences were found in lipid peroxidation. Our results indicate that MMC-induced genotoxicity can be reduced by melatonin.
Collapse
|
49
|
Abstract
Mitomycin C has played a deciding role in the current revival of excimer laser surface ablation techniques. We review the literature regarding mechanism of action of mitomycin C, histological effects on the cornea, and indications, dose, exposure time, and toxicity of mitomycin C in corneal refractive surgery. Mitomycin C is an alkylating agent with cytotoxic and antiproliferative effects that reduces the myofibroblast repopulation after laser surface ablation and, therefore, reduces the risk of postoperative corneal haze. It is used prophylactically to avoid haze after primary surface ablation and therapeutically to treat pre-existing haze. There is no definite evidence that establishes an exact diopter limit or ablation depth at which to apply prophylactic mitomycin C. It is usually applied at a concentration of 0.2mg/ml (0.02%) for 12 to 120 seconds over the ablated stroma, although some studies suggest that lower concentrations (0.01%, 0.002%) could also be effective in preventing haze when treating low to moderate myopia. This dose of mitomycin C has not been associated with any clinically relevant epithelial corneal toxicity. Its effect on the endothelium is more controversial: two studies report a decrease in endothelial cell density, but the majority of reports suggest that the endothelium is not altered. Regarding mitomycin C's effect on keratocyte population, although animal studies report keratocyte depletion after its use, longer follow-up suggested that the initial keratocyte depletion does not persist over time.
Collapse
|
50
|
Toyooka T, Ibuki Y. Histone deacetylase inhibitor sodium butyrate enhances the cell killing effect of psoralen plus UVA by attenuating nucleotide excision repair. Cancer Res 2009; 69:3492-500. [PMID: 19351858 DOI: 10.1158/0008-5472.can-08-2546] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of histone deacetylase inhibitors (HDACI), a promising new class of antineoplastic agents, in combination with cytotoxic agents, such as ionizing radiation and anticancer drugs, has been attracting attention. In this study, we found that sodium butyrate (SB), a widely studied HDACI, remarkably enhanced the cell killing effect of psoralen plus UVA (PUVA) in several cancer cell lines, including skin melanoma. Although a single treatment with PUVA or SB did not greatly affect cell survival, combined treatment with SB and PUVA induced marked apoptosis within 24 hours. The SB-induced augmentation of the cell killing effect was more dramatic in combination with PUVA than with anticancer drugs. The number of double-strand breaks that formed during the repair of PUVA-induced interstrand cross-links (ICL) in chromosomal DNA was significantly reduced in SB-pretreated cells, suggesting that the ability to repair ICL was attenuated by SB. In addition, the incorporation of bromodeoxyuridine and the formation of repair foci of proliferating cell nuclear antigen after PUVA treatment, associated with nucleotide excision repair (NER) in the removal of ICL, were not observed in SB-pretreated cells. Furthermore, the repair kinetics of UV-induced cyclobutane pyrimidine dimers (well-known photolesions repaired by NER) were much slower in SB-pretreated cells than in untreated cells. These results indicated that the enhanced cell killing effect of PUVA by SB was attributable to an attenuated ability to repair DNA and, especially, dysfunctional NER.
Collapse
Affiliation(s)
- Tatsushi Toyooka
- Laboratory of Radiation Biology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|