1
|
Bahojb Mahdavi SZ, Pouladi N, Amini M, Baradaran B, Najafi S, Vaghef Mehrabani S, Yari A, Ghobadi Alamdari S, Mokhtarzadeh AA. Let-7a-3p overexpression increases chemosensitivity to carmustine and synergistically promotes autophagy and suppresses cell survival in U87MG glioblastoma cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6903-6918. [PMID: 38587542 DOI: 10.1007/s00210-024-03060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Vaghef Mehrabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | | |
Collapse
|
2
|
Gioacchini FM, Di Stadio A, De Luca P, Camaioni A, Pace A, Iannella G, Rubini C, Santarelli M, Tomassetti M, Scarpa A, Olivieri F, Re M. A pilot study to evaluate the expression of microRNA‑let‑7a in patients with intestinal‑type sinonasal adenocarcinoma. Oncol Lett 2024; 27:69. [PMID: 38192674 PMCID: PMC10773186 DOI: 10.3892/ol.2023.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024] Open
Abstract
Despite its histological resemblance to colorectal adenocarcinoma, there is little information about the molecular events involved in the pathogenesis of intestinal-type sinonasal adenocarcinoma (ITAC). The present study investigated the possible role and clinical value of microRNA (miR)-let-7a, a head and neck squamous cell carcinoma-related miR, in a well-characterized and homogeneous cohort of patients with ethmoidal ITAC associated with occupational exposure, treated by primary surgery. miR-let-7a expression levels were analyzed in 23 pairs of ethmoidal ITAC and adjacent normal formalin-fixed paraffin-embedded tissues by reverse transcription-quantitative PCR. The expression was evaluated in tumor and healthy tissues according to: Tumor grade (G) of differentiation and extension, and pTNM stage, and presence/absence of recurrence. Comparisons within and between groups were performed using two-tailed Student's paired t-test and one-way ANOVA with Tukey's post hoc test. P<0.05 was considered to indicate a statistically significant difference. miR-let-7a expression in ethmoidal ITAC tissues was significantly lower than that in adjacent normal tissues (P<0.05; mean expression level ± SD, 1.452707±1.4367189 vs. 4.094017±2.7465375). miR expression varied with pT stage. miR-let-7a was downregulated (P<0.05) in advanced stages (pT3-pT4) compared with earlier stages (pT1-pT2). Furthermore, downregulation of miR-let-7a in ITAC was associated with poorly-differentiated (G3) cancer (P<0.05). No other associations were observed between miR-let-7a expression and the other clinicopathological parameters, including disease-free survival. In conclusion, downregulation of miR-let-7a in ITAC was associated with advanced-stage (pT3 and pT4) and poorly-differentiated (G3) disease, suggesting that the mutation of this gene, combined with additional genetic events, could serve a role in ITAC pathogenesis.
Collapse
Affiliation(s)
- Federico Maria Gioacchini
- Ear, Nose and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona Joint Hospitals, I-60020 Ancona, Italy
| | - Arianna Di Stadio
- Gian Filippo Ingrassia Department, Otolaryngology Unit, University of Catania, I-95121 Catania, Italy
| | - Pietro De Luca
- Department of Otolaryngology, Fatebenefratelli Isola Tiberina-Gemelli Hospital, I-00100 Rome, Italy
| | - Angelo Camaioni
- Head and Neck Department, San Giovanni-Addolorata Hospital, I-00189 Rome, Italy
| | - Annalisa Pace
- Department of Sense Organs, University La Sapienza of Rome, I-00161 Rome, Italy
| | - Giannicola Iannella
- Department of Sense Organs, University La Sapienza of Rome, I-00161 Rome, Italy
| | - Corrado Rubini
- Pathology and Histopathology Division, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, I-60020 Ancona, Italy
| | - Marco Santarelli
- Pathology and Histopathology Division, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, I-60020 Ancona, Italy
| | - Marco Tomassetti
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, I-60020 Ancona, Italy
| | - Alfonso Scarpa
- Department of Medicine and Surgery, University of Salerno, I-84084 Fisciano, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, I-60121 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, I-60126 Ancona, Italy
| | - Massimo Re
- Ear, Nose and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona Joint Hospitals, I-60020 Ancona, Italy
| |
Collapse
|
3
|
Helal DS, Sabry N, Ali DA, AboElnasr SM, Abdel Ghafar MT, Sarhan ME, Sabry M, El-Guindy DM. MicroRNA Let-7a association with glycolysis-induced autophagy in locally advanced gastric cancer: Their role in prognosis and FLOT chemotherapy resistance. Pathol Res Pract 2024; 253:154968. [PMID: 38008003 DOI: 10.1016/j.prp.2023.154968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Locally advanced gastric cancer (LAGC) still poses a clinical challenge despite multimodality treatment due to multidrug resistance (MDR). Recently, research suggested that autophagy and metabolic regulation may be potential anticancer targets due to their crucial roles in MDR. Let-7a participates in glycolytic and autophagic regulations which are both essential for tumor progression and resistance to therapy. This study used IHC stains; GLUT4 and LC3B to evaluate glycolysis and autophagy respectively. Moreover, mRNA Let-7a was detected by quantitative reverse transcription PCR (q-PCR) in 53 cases of LAGC. Elevated glycolysis and autophagy in LAGC tissue specimens as indicated by high GLUT4 and LC3B expression were significantly associated with adverse prognostic factors such as high pathological grade, positive nodal metastasis, and advanced T stage. Lower Let-7a levels were significantly associated with high tumor grade and advanced T stage. A significant positive correlation between GLUT4 and LC3B expression was detected. Significant inverse correlations between let7a level and IHC expression of both GLUT4 and LC3B were found. Elevated glycolysis and autophagy were significantly associated with poor overall survival (OS). Furthermore, low levels of let-7a were significantly associated with poor OS compared to high levels. Glycolysis and autophagy in LAGC were significantly associated with poor FLOT chemotherapy response. Let7a mRNA relative expression was significantly decreased in cases showing post therapy partial response and sustained disease. Multivariate analysis showed that histologic tumor type, high GLUT4 and high LC3B expression were independent factors associated with poor OS. Poor survival and post FLOT chemotherapy resistance in LAGC cases were significantly related to elevated glycolysis, elevated autophagy, and reduced Let-7a expression. Accordingly, combined therapeutic targeting of these pathways could enhance chemosensitivity in LAGC.
Collapse
Affiliation(s)
- Duaa S Helal
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Nesreen Sabry
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Sahbaa M AboElnasr
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | | | - Mohab Sabry
- Cardiothoracic surgery Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Dina M El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
5
|
Gareev I, Ahmad A, Wang J, Beilerli A, Ilyasova T, Sufianov A, Beylerli O. Gastric juice non-coding RNAs as potential biomarkers for gastric cancer. Front Physiol 2023; 14:1179582. [PMID: 37179825 PMCID: PMC10169709 DOI: 10.3389/fphys.2023.1179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Gastric cancer (GC), being one of the most common malignant human tumors, occupies the second position in the structure of mortality in men and women. High rates of morbidity and mortality in this pathology determine its extremely high clinical and social significance. Diagnosis and timely treatment of precancerous pathology is the main way to reduce morbidity and mortality, and early detection of GC and its adequate treatment improve prognosis. The ability to accurately predict the development of GC and start treatment on time, as well as the ability to determine the stage of the disease if the diagnosis is confirmed - non-invasive biomarkers can become the key to solving these and many other problems of modern medicine. One of the promising biomarkers being studied are non-coding RNAs, namely, miсroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They are involved in a wide range of processes, including apoptosis, proliferation, differentiation, angiogenesis, which play a critical role in the development of GC oncogenesis. In addition, they are quite specific and stable due to their carriers (extracellular vesicles or Argonaute 2 protein) and can be detected in various human biological fluids, in particular gastric juice. Thus, miRNAs, lncRNAs, and circRNAs isolated from the gastric juice of GC patients are promising preventive, diagnostic and prognostic non-invasive biomarkers. This review article presents the characteristics of circulating or extracellular miRNAs, lncRNAs, and circRNAs in gastric juice, allowing their use in the GC preventive, diagnosis, prognosis and monitoring therapy.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian
| | - Aamir Ahmad
- Academic Health System, Hamad Medical Corporation, Interim Translational Research Institute, Doha, Qatar
| | - Jiaqi Wang
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian
| |
Collapse
|
6
|
Yuen JG, Fesler A, Hwang GR, Chen LB, Ju J. Development of 5-FU-modified tumor suppressor microRNAs as a platform for novel microRNA-based cancer therapeutics. Mol Ther 2022; 30:3450-3461. [PMID: 35933584 PMCID: PMC9637772 DOI: 10.1016/j.ymthe.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNA (miRNAs) are pleiotropic post-transcriptional modulators of gene expression. Their inherently pleiotropic nature makes miRNAs strong candidates for the development of cancer therapeutics, yet despite their potential, there remains a challenge to deliver nucleic acid-based therapies into cancer cells. We developed a novel approach to modify miRNAs by replacing the uracil bases with 5-fluorouracil (5-FU) in the guide strand of tumor suppressor miRNAs, thereby combining the therapeutic effect of 5-FU with tumor-suppressive effect of miRNAs to create a potent, multi-targeted therapeutic molecule without altering its native RNAi function. To demonstrate the general applicability of this approach to other tumor-suppressive miRNAs, we screened a panel of 12 novel miRNA mimetics in several cancer types, including leukemia, breast, gastric, lung, and pancreatic cancer. Our results show that 5-FU-modified miRNA mimetics have increased potency (low nanomolar range) in inhibiting cancer cell proliferation and that these mimetics can be delivered into cancer cells without delivery vehicle both in vitro and in vivo, thus representing significant advancements in the development of therapeutic miRNAs for cancer. This work demonstrates the potential of fluoropyrimidine modifications that can be broadly applicable and may serve as a platform technology for future miRNA and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- John G Yuen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Ga-Ram Hwang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lan-Bo Chen
- Curamir Therapeutics Inc., Woburn, MA 01801, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Curamir Therapeutics Inc., Woburn, MA 01801, USA.
| |
Collapse
|
7
|
Wu H, Dong X, Liao L, Huang L. An Integrative Analysis Identifying RAB40C as an Oncogenic Immune Protein and Prognostic Marker of Lung Squamous Cell Carcinoma. Pharmgenomics Pers Med 2022; 15:525-537. [PMID: 35645578 PMCID: PMC9135582 DOI: 10.2147/pgpm.s357166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background RAB40C, a member of the Ras oncogene family, is a protein with GTPase and GTP-binding activity and is also predicted to be important in immunomodulation. However, the link between RAB40C and lung squamous cell carcinoma (LUSC) has not yet been elucidated. Exploring the relationship between RAB40C and LUSC could help expand the repertoire of immunotherapeutic targets for LUSC and provide more effective therapeutic options for LUSC patients, which behalf of our aim for our study. Methods We analyzed the RAB40C expression in different tumor types and stages based on the TCGA database. Subsequently, we explored the differences in RAB40C expression in LUSC versus paracancerous tissues through immunohistochemical analysis. The prognostic value of RAB40C was assessed by Cox regression and Kaplan-Meier analysis. Gene set enrichment analysis-based RAB40C impact pathways and the correlation between RAB40C expression and immune infiltration were obtained using the TIMER2.0 and the CIBERSORT analytical tools. Tumor mutational load and microsatellite instability (MSI) were assessed by the Spearman correlation analysis. Finally, the close association of RAB40C with LUSC was explored by correlating immune cell infiltration with immunomodulator expression, assessing risk scores in combination with other factors, and analyzing prognostic nomogram. Results The expression of RAB40C was significantly elevated in LUSC. RAB40C expression was significantly associated with immune factors, immune-related pathways, and MSI. Moreover, RAB40C significantly negatively correlated with LUSC-associated immune infiltrating cells, CD4 memory-activated cells, γδ T cells, M1-like macrophages, and the immune regulator CD28, while it positively associated with the activation of Tregs and natural killer cells. Further, a risk model constructed from RAB40C and its associated immune genes showed that RAB40C might be an independent prognostic factor for LUSC. Conclusion RAB40C can be used as an effective prognostic biomarker and a potential immunotherapeutic target for the treatment of LUSC.
Collapse
Affiliation(s)
- Hong Wu
- Department of Pneumology, Yiwu Central Hospital, Yiwu, Zhejiang, People’s Republic of China
- Correspondence: Hong Wu, Department of Pneumology, Yiwu Central Hospital, Yiwu, Zhejiang, People’s Republic of China, Email
| | - Xuhui Dong
- Department of Pneumology, Yiwu Central Hospital, Yiwu, Zhejiang, People’s Republic of China
| | - Lixian Liao
- Department of Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Lihaoyun Huang
- Department of Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
8
|
Zheng X, Peng B, Wu X, Ye J, Zhao H, Li Y, Chen R, Gong X, Zhang H, Guo X. Male-specific long non-coding RNA testis-specific transcript, Y-linked 15 promotes gastric cancer cell growth by regulating Wnt family member 1/β-catenin signaling by sponging microRNA let-7a-5p. Bioengineered 2022; 13:8605-8616. [PMID: 35287556 PMCID: PMC9161946 DOI: 10.1080/21655979.2022.2053814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present study is aimed to investigate the regulatory effects and related mechanism of long non-coding RNA testis-specific transcript, Y-linked 15 (TTTY15) in gastric carcinoma (GC) cell proliferation, migration, invasion, apoptosis and epithelial–mesenchymal transition (EMT). TTTY15 expression in GC tissue samples and cells was detected by quantitative real-time PCR (qRT-PCR), and the correlation between TTTY15 expression and GC clinicopathological indicators was analyzed. Cell counting kit-8 (CCK-8), BrdU, flow cytometry and Transwell assays were performed for detecting GC cell proliferation, migration, invasion and apoptosis. Western blot was performed for detecting the expressions of EMT-associated proteins (N-cadherin and E-cadherin), Wnt family member 1 (Wnt1) protein and β-catenin protein. Bioinformatics analysis was conducted to predict, and RNA immunoprecipitation (RIP) assay and dual-luciferase reporter gene assay were performed to verify the targeted relationships of microRNA let-7a-5p (let-7a-5p) with TTTY15 and Wnt1 mRNA 3'UTR. It was found that TTTY15 expression was significantly up-regulated in GC tissues and cells, and was associated with advanced TNM stage and poor tumor differentiation. TTTY15 overexpression promoted GC cell proliferation, migration and invasion, the expressions of N-cadherin, Wnt1 and β-catenin protein, and inhibited the apoptosis and E-cadherin expression, while knocking down TTTY15 had the opposite effects. TTTY15 directly targeted let-7a-5p and negatively regulated its expression. Wnt1 was the target gene of let-7a-5p, and TTTY15 could indirectly and positively regulate Wnt1 expression. In conclusion, TTTY15 promotes GC progression, by regulating the let-7a-5p/Wnt1 axis to activate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- XiaoYing Zheng
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - BingJun Peng
- Department of Medical Imaging Center, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - XinChun Wu
- Fourth Department of Internal Medicine, Qianxi County People's Hospital, Tangshan 063000, Hebei, China
| | - JunLing Ye
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - HaiYun Zhao
- Department of Pathology, Menyuan Hui Autonomous County traditional Chinese Medicine Hospital, Qinghai, China
| | - YanJun Li
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - RuiHui Chen
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - Xue Gong
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - HaiYan Zhang
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - XinJian Guo
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| |
Collapse
|
9
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
10
|
Liu C, Liu X, Li X. RAB40C Gene Polymorphisms Were Associated with Alcohol-Induced Osteonecrosis of the Femoral Head. Int J Gen Med 2021; 14:3583-3591. [PMID: 34305407 PMCID: PMC8296705 DOI: 10.2147/ijgm.s316481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Alcohol-induced osteonecrosis of the femoral head (ONFH), a progressive disease, is caused by excessive drinking and genetic factors. Currently, it remains to represent a significant challenge. The association between alcohol-induced ONFH and RAB40C gene polymorphisms may provide a direction for the mechanism of alcoholic ONFH. Methods A total of 201 alcohol-induced ONFH patients and 201 healthy controls were recruited in this case–control study. The polymorphisms of RAB40C gene were genotyped in blood samples by Agena MassARRAY RS1000. Pearson chi-square test was used to calculate difference in allele frequencies of gene polymorphisms between the cases and controls. Alcohol-induced ONFH risk was estimated using odds ratios (ORs) and 95% confidence intervals (CIs). Results In the overall analysis, the allele “G” of rs62030917 was significantly increased alcohol-induced ONFH risk (OR = 1.47, 95% CI = 1.07–2.02, p = 0.017) in the allele model. In the genetic analysis, rs62030917 also increased the risk of alcohol-induced ONFH in the dominant model (adjusted OR = 1.52, 95% CI=1.02–2.26, p = 0.039) and the log-additive model (adjusted OR = 1.42, 95% CI=1.05–1.93, p = 0.025). Age stratification analysis suggested that rs62030917 increased the risk of alcohol-induced ONFH among the individuals younger than 42 years old. Moreover, carriers of AA, GA and GG genotypes in rs2269556 had LDL-C levels that were significantly different (p = 0.047). Among them, carriers of GG genotype had the highest LDL-C levels. Conclusion This study revealed rs62030917 in RAB40C gene might increase the risk of alcohol-induced ONFH, providing a theoretical basis for the mechanism of RAB40C in alcohol-induced ONFH.
Collapse
Affiliation(s)
- Chang Liu
- Department of Emergency, The Second Hospital of Tangshan, Tangshan, Hebei Province, 063000, People's Republic of China
| | - Xuan Liu
- Department of Orthopedics, The Hospital of Yutian County, Tangshan, Hebei Province, 063000, People's Republic of China
| | - Xiaowei Li
- Department of Orthopedics, The Hospital of Yutian County, Tangshan, Hebei Province, 063000, People's Republic of China
| |
Collapse
|
11
|
Liu X, Pu K, Wang Y, Chen Y, Zhou Y. Gastric cancer-associated microRNA expression signatures: integrated bioinformatics analysis, validation, and clinical significance. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:797. [PMID: 34268410 PMCID: PMC8246217 DOI: 10.21037/atm-21-1631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022]
Abstract
Background Gastric cancer (GC) is one of the common gastrointestinal malignancy worldwide and exhibits a poor prognosis. Increasing studies have indicated that microRNAs play critical roles in the cancer progression and have shown great potential as useful biomarkers. The search for potential diagnostic and prognostic biomarkers of gastric cancer (GC) with integrated bioinformatics analyses has been undertaken in previous studies. Methods In this study, the robust rank aggregation (RRA) method was used to perform an integrated analysis of differentially expressed miRNAs (DEMs) from five microarray datasets in the Gene Expression Omnibus (GEO) database to find robust biomarkers for GC. Ultimately, seven miRNAs were filtered from fourteen primary miRNAs using the validation set of The Cancer Genome Atlas (TCGA) database. Based on these results, diagnostic and survival analyses were performed, and logistic regression and Cox regression were used to determine the clinicopathological characteristics of the DEM expression and overall survival. Results Nine eligible miRNA datasets related to GC were selected from the GEO database for integrated analysis in this study. Diagnostic analysis implied that these miRNAs could be regarded as promising candidate diagnostic biomarkers in GC tissues, but whether the results of the tissue analysis are consistent with those of peripheral blood analysis requires further validation. The logistic regression indicated that the ectopic expression of these DEMs was relevant to the histological type, anatomical region, and pathological grade of GC. However, the survival and Cox regression analyses suggested that the poor prognosis of GC patients was not strongly dependent on the ectopic expression of the seven miRNAs, but rather, a poor prognosis was associated with age, metastasis, and histological grade. Conclusions Based on the results presented in this study it can be concluded that these miRNAs (miR-455-3p, miR-135b-5p, let-7a-3p, miR-195-5p, miR-204-5p, miR-149-5p, and miR-143-3p) might be potential biomarkers for the early diagnosis of GC patients, but this finding should be regarded with caution. A large-scale, prospective, and multicenter cohort study should be performed.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China.,Department of Rheumatology and Immunology, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yanfei Chen
- Department of Rheumatology and Immunology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Liu K, Huo H, Jia W, Li M, Xiong Z, Sun Y, Wu J, Li H, Liu J, Liu Y, Jin T, Li B, Zuo Y, Zhao Y. RAB40C gene polymorphisms rs62030917 and rs2269556 are associated with an increased risk of lumbar disc herniation development in the Chinese Han population. J Gene Med 2020; 23:e3252. [PMID: 32656896 DOI: 10.1002/jgm.3252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lumbar disc herniation (LDH) places a serious burden on the daily lives and socioeconomics of people. Although the pathogenesis of LDH is complex, genetic factors such as single nucleotide polymorphisms (SNPs) may affect the risk of developing LDH. In the present study, we aimed to elucidate the effect of RAB40C SNPs on the risk of LDH in the Chinese Han population. METHODS We investigated 508 LDH cases and 508 healthy controls for this case-control study. Three tag SNPs in RAB40C were selected and genotyped using the Agena MassARRAY platform (Agena Bioscience, San Diego, CA, USA). After adjusting for age and gender, odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression. RESULTS In the allele model, we found rs62030917 and rs2269556 in RAB40C with a minor G allele significantly increased the risk of LDH (rs62030917: OR = 1.23, 95% CI = 1.00-1.50, p = 0.046; rs2269556: OR = 1.21, 95% CI = 1.02-1.45, p = 0.033). In genetic model analysis, rs2269556 was associated with an increased risk of LDH under both codominant (OR = 1.49, 95% CI = 1.03-2.15, p = 0.035) and log-additive models (OR = 1.21, 95% CI = 1.01-1.45, p = 0.035). rs62030917 of RAB40C was associated with an increased risk of LDH under codominant, recessive and log-additive models (p < 0.05) only among individuals younger than 49 years after stratification by age. CONCLUSIONS For the first time, our results suggest that rs62030917 and rs2269556 in the RAB40C gene influence genetic susceptibility to LDH.
Collapse
Affiliation(s)
- Kexun Liu
- Department of Spine Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hongjun Huo
- Department of Spine Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wenchao Jia
- Department of Trauma Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Manglai Li
- Department of Spine Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Haiyue Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Jianfeng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Yuanwei Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Yuan Zuo
- Department of Laboratory Medicine, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan Zhao
- Department of Spine Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
14
|
Lopez-Rincon A, Mendoza-Maldonado L, Martinez-Archundia M, Schönhuth A, Kraneveld AD, Garssen J, Tonda A. Machine Learning-Based Ensemble Recursive Feature Selection of Circulating miRNAs for Cancer Tumor Classification. Cancers (Basel) 2020; 12:cancers12071785. [PMID: 32635415 PMCID: PMC7407482 DOI: 10.3390/cancers12071785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Circulating microRNAs (miRNA) are small noncoding RNA molecules that can be detected in bodily fluids without the need for major invasive procedures on patients. miRNAs have shown great promise as biomarkers for tumors to both assess their presence and to predict their type and subtype. Recently, thanks to the availability of miRNAs datasets, machine learning techniques have been successfully applied to tumor classification. The results, however, are difficult to assess and interpret by medical experts because the algorithms exploit information from thousands of miRNAs. In this work, we propose a novel technique that aims at reducing the necessary information to the smallest possible set of circulating miRNAs. The dimensionality reduction achieved reflects a very important first step in a potential, clinically actionable, circulating miRNA-based precision medicine pipeline. While it is currently under discussion whether this first step can be taken, we demonstrate here that it is possible to perform classification tasks by exploiting a recursive feature elimination procedure that integrates a heterogeneous ensemble of high-quality, state-of-the-art classifiers on circulating miRNAs. Heterogeneous ensembles can compensate inherent biases of classifiers by using different classification algorithms. Selecting features then further eliminates biases emerging from using data from different studies or batches, yielding more robust and reliable outcomes. The proposed approach is first tested on a tumor classification problem in order to separate 10 different types of cancer, with samples collected over 10 different clinical trials, and later is assessed on a cancer subtype classification task, with the aim to distinguish triple negative breast cancer from other subtypes of breast cancer. Overall, the presented methodology proves to be effective and compares favorably to other state-of-the-art feature selection methods.
Collapse
Affiliation(s)
- Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
- Correspondence:
| | - Lucero Mendoza-Maldonado
- Nuevo Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Salvador Quevedo y Zubieta 750, Independencia Oriente, Guadalajara C.P. 44340, Jalisco, Mexico;
| | - Marlet Martinez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y Diseno de farmacos, Seccion de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Alexander Schönhuth
- Life Sciences and Health, Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands;
- Genome Data Science, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (A.D.K.); (J.G.)
- Global Centre of Excellence Immunology Danone Nutricia Research, Uppsalaan 12, 3584 CT Utrecht, The Netherlands
| | - Alberto Tonda
- UMR 518 MIA-Paris, INRAE, Université Paris-Saclay, 75013 Paris, France;
| |
Collapse
|
15
|
Sallas ML, Zapparoli D, Dos Santos MP, Pereira JN, Orcini WA, Peruquetti RL, Chen ES, de Arruda Cardoso Smith M, Payão SLM, Rasmussen LT. Dysregulated Expression of Apoptosis-Associated Genes and MicroRNAs and Their Involvement in Gastric Carcinogenesis. J Gastrointest Cancer 2020; 52:625-633. [PMID: 32583363 DOI: 10.1007/s12029-019-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Analyze the expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b in patients with normal gastric tissue, chronic gastritis, and gastric adenocarcinoma. METHODS The expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b by qRT-PCR was analyzed in 158 samples from 53 patients with normal gastric mucosa, 86 with chronic gastritis, and 19 with gastric cancer. RESULTS The comparison between the gastric cancer and the control group revealed a decreased expression of caspase-9 in gastric cancer tissues; considering the Helicobacter pylor presence, comparable results were revealed. Smac/DIABLO was increased in gastric cancer cells, while XIAP demonstrated no significant difference in the gene expression. The microRNA analysis revealed a decreased expression of let-7a and let-7b in samples positive to H. pylori infection and in gastric cancer group, regardless of the presence of the bacterium. CONCLUSION Our study provided some evidence of low activity of the intrinsic apoptosis pathway, as well as the influence of H. pylori on let-7a and let-7b expression.
Collapse
Affiliation(s)
| | - Diana Zapparoli
- Universidade do Sagrado Coração (USC), Bauru, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xun J, Wang C, Yao J, Gao B, Zhang L. Retracted Article: CircBANP acts as a sponge of let-7a to promote gastric cancer progression via the FZD5/Wnt/β-catenin pathway. RSC Adv 2020; 10:7221-7231. [PMID: 35493872 PMCID: PMC9049837 DOI: 10.1039/c9ra09887a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths in our country. Circular RNAs (circRNAs) are being found to have relevance to human cancers, including GC. The purpose of this study was to investigate the functional role of circRNA BTG3 associated nuclear protein (circBANP) in GC and underlying mechanisms governing it. CircBANP was identified using RNase R assay and polymerase chain reaction (PCR) with specific primers. The levels of circBANP, let-7a and Frizzled-5 (FZD5) mRNA were assessed by quantitative real-time PCR (qRT-PCR). Cell proliferation, colony formation ability, apoptosis, and migration and invasion were determined by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, flow cytometry, transwell assay, respectively. The targeted interaction between let-7a and circBANP or FZD5 was confirmed by dual-luciferase reporter assay or RNA pull-down assay. Western blot analysis was performed to detect the indicated protein expression. A xenograft model assay was established to observe the role of circBANP in vivo. We found that circBANP was up-regulated in GC tissues and cell lines, and associated with clinicopathologic features of GC patients. CircBANP knockdown repressed the proliferation, migration, invasion, and promoted the apoptosis in GC cells. CircBANP sequestered let-7a by acting as a molecular sponge of let-7a. Moreover, the regulatory effect of circBANP on GC cell progression in vitro was mediated by let-7a. CircBANP protected against FZD5 repression by sponging let-7a in GC cells. Wnt/β-catenin signaling was involved in the regulatory network of the circBANP/let-7a axis in GC cell progression. Additionally, circBANP depletion retarded tumor growth in vivo. In conclusion, our study suggested that the knockdown of circBANP suppressed GC cell progression in vitro and in vivo at least partially through sponging let-7a and regulating FZD5/Wnt/β-catenin signaling, providing a novel mechanism for understanding the pathogenesis of GC. CircBANP was up-regulated in GC. CircBANP depletion repressed GC cell malignant behaviors. CircBANP modulated FZD5 via sponging let-7a. CircBANP regulated GC progression via the let-7a/FZD5/Wnt/β-catenin pathway.![]()
Collapse
Affiliation(s)
- Jin Xun
- Department of Gastroenterology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Chunfeng Wang
- Department of Gastroenterology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Jianning Yao
- Department of Gastroenterology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Bing Gao
- Department of Gastroenterology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Lianfeng Zhang
- Department of Gastroenterology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| |
Collapse
|
17
|
Bhat SA, Majid S, Rehman MU. Scenario and future prospects of microRNAs in gastric cancer: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:345-352. [PMID: 31168337 PMCID: PMC6535194 DOI: 10.22038/ijbms.2019.32399.7765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Carcinoma of the stomach is one of the major prevalent and principal causes of cancer-related deaths worldwide. Current advancement in technology has improved the understanding of the pathogenesis and pathology of gastric cancers (GC). But, high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate novel early diagnostic/prognostic markers and therapeutic targets for GC, which are sufficiently sensitive to GC. Current biomedical investigations have explored several budding GC biomarker by utilizing serum proteins, natural oncogenic genes during improvement in molecular technologies as microarray, and RNA/DNA-Seq. Recently, small non-coding microRNAs (miRNAs) are becoming vital regulators in oncogenesis pathways and can act as handy clinical biomarkers. The newly introduced class of biomarkers is rising as new molecules for cancer diagnosis and prognosis. For better understanding of the gastric carcinogenesis, miRNAs may help to elucidate the mechanisms of tumor growth and can help to discover novel untimely potent markers for early detection of GC. Here in this review, we summarize the recent research studies supporting the utility of miRNAs as novel early diagnostic/prognostic tools and therapeutic targets. Thus, here we introduce potential future treatment strategies for gastrointestinal (GI) cancers, which indicate the practicality and clinical applications of miRNAs in GC.
Collapse
Affiliation(s)
- Showkat Ahmad Bhat
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| | - Sabhiya Majid
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| | - Muneeb U Rehman
- Department of Biochemistry, Govt. Medical College, Srinagar Jammu & Kashmir, India
| |
Collapse
|
18
|
Chen J, Hu B, Wang W, Qian XJ, Shan BJ, He YF. A six-microRNA signature to predict outcomes of patients with gastric cancer. FEBS Open Bio 2019; 9:538-547. [PMID: 30868062 PMCID: PMC6396146 DOI: 10.1002/2211-5463.12593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal tumor with poor prognosis. However, conventional prognostic factors cannot accurately predict the outcomes of GC patients. Therefore, there remains a need to identify novel predictive markers to improve prognosis. In this study, we obtained microRNA expression profiles of 385 GC patients from The Cancer Genome Atlas. We performed Cox regression analysis to identify overall survival‐related microRNA and then constructed a microRNA signature‐based prognostic model. The accuracy of the model was evaluated and validated through Kaplan–Meier survival analysis and time‐dependent receiver operating characteristic (ROC) curve analysis. The independent prognostic value of the model was assessed by multivariate Cox regression analysis. Enrichment analysis was performed to explore potential functions of the prognostic microRNA. Finally, a prognostic model based on a six‐microRNA (miRNA‐100, miRNA‐374a, miRNA‐509‐3, miRNA‐668, miRNA‐549, and miRNA‐653) signature was developed. Further analysis in the training, test, and complete The Cancer Genome Atlas set showed the model can distinguish between high‐risk and low‐risk patients and predict 3‐year and 5‐year survival. The six‐microRNA signature was also an independent prognostic marker, and enrichment analysis suggested that the microRNA may be involved in cell cycle and mitosis. These results demonstrated that the model based on the six‐microRNA signature can be used to accurately predict the prognosis of GC patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Bing Hu
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Wei Wang
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Xiao-Jun Qian
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Ben-Jie Shan
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Yi-Fu He
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| |
Collapse
|
19
|
Shahabi A, Naghili B, Ansarin K, Zarghami N. The relationship between microRNAs and Rab family GTPases in human cancers. J Cell Physiol 2019; 234:12341-12352. [PMID: 30609026 DOI: 10.1002/jcp.28038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs), as a group of noncoding RNAs, posttranscriptionally control gene expression by binding to 3'-untranslated region (3'-UTR). Ras-associated binding (Rab) proteins function as molecular switches for regulating vesicular transport, which mainly have oncogenic roles in cancer development and preventing the efficacy of chemotherapies. Increased evidence supported that miRNAs/Rabs interaction have been determined as potential therapeutics for cancer therapy. Nevertheless, instability and cross-targeting of miRNAs are main limitations of using miRNA-based therapeutic. The mutual interplay between Rabs and miRNAs has been poorly understood. In the present review, we focused on the essence and activity of these molecules in cancer pathogenesis. Also, numerous hindrances and potential methods in the expansion of miRNA as an anticancer therapeutics are mentioned.
Collapse
Affiliation(s)
- Arman Shahabi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Wang S, Zhou H, Wu D, Ni H, Chen Z, Chen C, Xiang Y, Dai K, Chen X, Li X. MicroRNA let-7a regulates angiogenesis by targeting TGFBR3 mRNA. J Cell Mol Med 2018; 23:556-567. [PMID: 30467960 PMCID: PMC6307798 DOI: 10.1111/jcmm.13960] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/16/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis has a great impact on human health, owing to its participation in development, wound healing and the pathogenesis of several diseases. It has been reported that let-7a is a tumour suppressor, but whether it plays a role in angiogenesis is unclear. Here we showed that let-7a, a microRNA conserved in vertebrates, regulated angiogenesis by concomitantly down-regulating TGFBR3. Overexpression of let-7a or knockdown of TGFBR3 in cell culture inhibited the tube formation and reduced migration rate. Moreover, xenograft experiments showed that overexpression of let-7a or knockdown of TGFBR3 had smaller tumour size. Downstream genes, such as VEGFC and MMP9, were also down-regulated in let-7a overexpression or TGFBR3 knockdown groups. Therefore, our results revealed a novel mechanism that let-7a regulate angiogenesis through post-transcriptional regulation of TGFBR3.
Collapse
Affiliation(s)
- Shao Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huandong Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dazhou Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huajing Ni
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongliang Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youqun Xiang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Dai
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Liu JK, Liu HF, Ding Y, Gao GD. Predictive value of microRNA let-7a expression for efficacy and prognosis of radiotherapy in patients with lung cancer brain metastasis: A case-control study. Medicine (Baltimore) 2018; 97:e12847. [PMID: 30383637 PMCID: PMC6221706 DOI: 10.1097/md.0000000000012847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As a well-known cancer with high mortality, lung cancer has been implied to be closely associated with brain metastasis. Despite notable advances, effective treatment methods are still in urgent need. This study aims to investigate the value of serum microRNA-let-7a (miR-let-7a) expression in predicting efficacy and prognosis of radiotherapy in patients with lung cancer brain metastasis. METHODS To begin with, reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed for better understand of the correlation between miR-let-7a and lung cancer. Afterwards, the relationship between serum miR-let-7a expression and radiotherapy efficacy was analyzed by receiver operating characteristic curve analysis. Following successful transfection, RT-qPCR and Western blot assay were utilized for evaluating the involvement of miR-let-7a in regulation of DICER1 expression in lung cancer cell line. Then, whether miR-let-7a was implicated in proliferation and cell cycle distribution of lung cancer cells were confirmed by cell counting kit-8 assay and flow cytometry respectively. RESULTS Initially, it was revealed that serum miR-let-7a expression was decreased in lung cancer. Later, we found that decreased miR-let-7a displayed an unfavorable role in radiotherapy efficacy and overall survival rate of patients with lung cancer brain metastasis. After the successful transfection, the inverse relationship between miR-let-7a and DICER1 expression was uncovered. Meanwhile, biological behaviors of lung cancer cells were presented to be limited after transfection of overexpressed miR-let-7a. CONCLUSION Our findings demonstrated that the lower expression of miR-let-7a in patients with lung cancer brain metastasis was closely related to unfavorable efficacy and prognosis of radiotherapy, and it may be an important predictive biomarker by regulation of DICER1.
Collapse
Affiliation(s)
- Ji-Kuan Liu
- Department of Thoracic Surgery, Jining No.1 People's Hospital, Jining
| | - Hong-Feng Liu
- Department of Thoracic Surgery, Jining No.1 People's Hospital, Jining
| | - Yong Ding
- Department of Surgery, Weishan People's Hospital, Weishan, Shandong Province, P.R. China
| | - Guo-Dong Gao
- Department of Thoracic Surgery, Jining No.1 People's Hospital, Jining
| |
Collapse
|
22
|
Guo W, Chen Z, Chen Z, Yu J, Liu H, Li T, Lin T, Chen H, Zhao M, Li G, Hu Y. Promotion of Cell Proliferation through Inhibition of Cell Autophagy Signalling Pathway by Rab3IP is Restrained by MicroRNA-532-3p in Gastric Cancer. J Cancer 2018; 9:4363-4373. [PMID: 30519341 PMCID: PMC6277663 DOI: 10.7150/jca.27533] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
Background: RAB3A-interacting protein (Rab3IP) is known to be involved in cancer; however, its function during the proliferation of gastric cancer (GC) cells remains unknown. Therefore, this study aimed to explore the potential function of Rab3IP in GC. Methods: The expression of Rab3IP and its clinical pathology value were determined by quantitative real-time PCR and immunohistochemistry. Rab3IP (knockdown and overexpression) and light chain 3 (LC3) lentiviruses were transfected into GC cells, and cell proliferation was measured using cell counting kit-8, plate clone formation, flow cytometry, and tumorigenesis assays. Cell autophagy was measured using a confocal laser scanning microscope and by western blotting. Luciferase reporter assay was performed to analyse the regulation of Rab3IP by microRNA-532-3p (miR-532-3p). Results: Overexpression of Rab3IP in GC samples enhanced the cell proliferation ability, but decreased the number of autophagosomes and expression of LC3-II and sequestosome-1 (SQSTM1 or p62) markers. Furthermore, we found that miR-532-3p can bind to the 3'UTR region of RAB3IP and inhibit the proliferation ability of GC cells. Further, the expression of miR-532-3p negatively correlated with that of Rab3IP. Conclusions: Our study elucidates the central role of Rab3IP in inducing proliferation of GC cells through its involvement in autophagy. miR-532-3p directly targets Rab3IP and represses its function, thereby demonstrating a novel regulatory link in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou 510515, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou 510515, China
| |
Collapse
|
23
|
Hong M, Sun H, Xu L, Yue Q, Shen G, Li M, Tang B, Li CZ. In situ monitoring of cytoplasmic precursor and mature microRNA using gold nanoparticle and graphene oxide composite probes. Anal Chim Acta 2018; 1021:129-139. [DOI: 10.1016/j.aca.2018.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 01/12/2023]
|
24
|
Day JP, Whiteley E, Freeley M, Long A, Malacrida B, Kiely P, Baillie GS. RAB40C regulates RACK1 stability via the ubiquitin-proteasome system. Future Sci OA 2018; 4:FSO317. [PMID: 30112187 PMCID: PMC6088270 DOI: 10.4155/fsoa-2018-0022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
AIM RACK1 is a multifunctional scaffolding protein that is expressed in many cellular compartments, orchestrating a number of signaling processes. RACK1 acts as a signaling hub to localize active enzymes to discrete locations; therefore tight control of RACK1 is vital to cellular homeostasis. Our aim was to identify the mechanisms responsible for RACK1 turnover and show that degradation is directed by the ubiquitin proteasome system. RESULTS Using siRNA screening, we identified RAB40C as the ubiquitin E3 ligase responsible for ubiquitination of RACK1, and that the action of RAB40C in controlling RACK1 levels is crucial to both cancer cell growth and migration of T cells. CONCLUSION Our data suggest that manipulation of RACK1 levels in this way may provide a novel strategy to explore RACK1 function.
Collapse
Affiliation(s)
- Jon P Day
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ellanor Whiteley
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, D08 W9RT, Ireland
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, D08 W9RT, Ireland
| | - Beatrice Malacrida
- Materials & Surface Science Institute & Health Research Institute, University of Limerick, Limerick, Ireland
| | - Patrick Kiely
- Materials & Surface Science Institute & Health Research Institute, University of Limerick, Limerick, Ireland
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
25
|
Villagomez FR, Medina-Contreras O, Cerna-Cortes JF, Patino-Lopez G. The role of the oncogenic Rab35 in cancer invasion, metastasis, and immune evasion, especially in leukemia. Small GTPases 2018; 11:334-345. [PMID: 29781368 PMCID: PMC7549652 DOI: 10.1080/21541248.2018.1463895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The study of cancer has allowed researchers to describe some biological characteristics that tumor cells acquire during their development, known as the “hallmarks of cancer” but more research is needed to expand our knowledge about cancer biology and to generate new strategies of treatment. The role that RabGTPases might play in some hallmarks of cancer represents interesting areas of study since these proteins are frequently altered in cancer. However, their participation is not well known. Recently, Rab35was recognized as an oncogenic RabGTPase and and because of its association with different cellular functions, distinctly important in immune cells, a possible role of Rab35 in leukemia can be suggested. Nevertheless, the involvement of Rab35 in cancer remains poorly understood and its possible specific role in leukemia remains unknown. In this review, we analyze general aspects of the participation of RabGTPases in cancer, and especially, the plausible role of Rab35 in leukemia.
Collapse
Affiliation(s)
- Fabian R Villagomez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México.,Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas , Ciudad de México, México
| | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas , Ciudad de México, México
| | - Genaro Patino-Lopez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México
| |
Collapse
|
26
|
Ranjbar R, Hesari A, Ghasemi F, Sahebkar A. Expression of microRNAs and IRAK1 pathway genes are altered in gastric cancer patients with Helicobacter pylori infection. J Cell Biochem 2018; 119:7570-7576. [PMID: 29797599 DOI: 10.1002/jcb.27067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is among the most common cancer types in the world and one of the most lethal gastrointestinal cancers. MicroRNAs (miRNAs) can be of great importance in the early detection of GC. This study aimed to investigate some miRNAs and the genes involved in IRAK1 pathways in the serum of GC patients with Helicobacter pylori (H. pylori) infections compared to the control group. Total RNA was extracted from the serum of GC patients with H. pylori infection and healthy volunteers. The expression levels of miRNAs and the genes were assessed using Real time RT-PCR with specific primers. Our data showed that miR-146, miR-375, and Let-7 were down-regulated and miR-19 and miR-21 were up-regulated in GC patients with H. pylori infection. Other genes involved in the pathways such as RAS, MYC, NFKB, JUN, TRAF6, and IRAK4 were overexpressed; while the expression of PTEN gene was decreased compared to the control group. Expression of miRNAs and IRAK1 pathway genes are altered in patients with GC and H. pylori infection. This suggests a potential role for the above-mentioned miRNAs and genes in the diagnosis of GC.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - AmirReza Hesari
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Zohora F, Bidad K, Pourpak Z, Moin M. Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutr Cancer 2018; 70:546-556. [PMID: 29697284 DOI: 10.1080/01635581.2018.1460685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron Deficiency Anemia (IDA) is a universal health problem and a risk factor for the development of cancer. IDA changes the microenvironment of the human body by affecting both the biological and immunological systems. It increases DNA damage and genomic instability by different mechanisms. IDA is one of the leading causes of the imbalance between different antioxidant enzymes as well as enzymes involved in DNA damage and DNA repair systems of the body. It can affect the biogenesis/expression of microRNAs. IDA interrupts the oxidative phosphorylation energy metabolism and intestinal Cytochrome-P450 systems. It also disturbs multicellular signaling pathways involved in cell survival and helps in tumor angiogenesis. Moreover, IDA is also responsible for the functional deterioration of innate and adaptive immune systems that lead to immunological dysfunctions against invading pathogens. Genomic instability and immunological dysfunctions are the hallmarks of cancer development. In this review, we will review the evidence linking IDA to increased cancer risk.
Collapse
Affiliation(s)
- Fatema Zohora
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Katayoon Bidad
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Zahra Pourpak
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mostafa Moin
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
28
|
Takahashi Y, Uno K, Iijima K, Abe Y, Koike T, Asano N, Asanuma K, Shimosegawa T. Acidic bile salts induces mucosal barrier dysfunction through let-7a reduction during gastric carcinogenesis after Helicobacter pylori eradication. Oncotarget 2018; 9:18069-18083. [PMID: 29719591 PMCID: PMC5915058 DOI: 10.18632/oncotarget.24725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/24/2018] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) after eradication for Helicobacter pylori (H.pylori) increases, but its carcinogenesis is not elucidated. It is mainly found in acid non-secretion areas (ANA), as mucosal regeneration in acid secretory areas (AA) after eradication changes the acidity and bile toxicity of gastric juice. We aimed to clarify the role of barrier dysfunction of ANA by the stimulation of pH3 bile acid cocktail (ABC) during carcinogenesis. We collected 18 patients after curative endoscopic resection for GC, identified later than 24 months after eradication, and took biopsies by Congo-red chromoendoscopy to distinguish AA and ANA (UMIN00018967). The mucosal barrier function was investigated using a mini-Ussing chamber system and molecular biological methods. The reduction in mucosal impedance in ANA after stimulation was significantly larger than that in AA, 79.6% vs. 87.9%, respectively. The decrease of zonula occludens-1 (ZO-1) and let-7a and the increase of snail in ANA were significant compared to those in AA. In an in vitro study, the restoration of ZO-1 and let-7a as well as the induction of snail were observed after stimulation. High mobility group A2 (HMGA2)-snail activation, MTT proliferation, and cellular infiltration capacity were significantly increased in AGS transfected with let-7a inhibitor, and vice versa. Accordingly, using a mini-Ussing chamber system for human biopsy specimens followed by an in vitro study, we demonstrated for the first time that the exposure of acidic bile salts to ANA might cause serious barrier dysfunction through the let-7a reduction, promoting epithelial-mesenchymal transition during inflammation-associated carcinogenesis even after eradication.
Collapse
Affiliation(s)
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | | | - Yasuhiko Abe
- Department of The Second Internal Medicine, Yamagata University, Miyagi, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University, Miyagi, Japan
| | | | | |
Collapse
|
29
|
Wang F, Liu J, Zou Y, Jiao Y, Huang Y, Fan L, Li X, Yu H, He C, Wei W, Wang H, Sun G. MicroRNA-143-3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2. Oncotarget 2018; 8:28711-28724. [PMID: 28404925 PMCID: PMC5438685 DOI: 10.18632/oncotarget.15646] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
Our previous studies have suggested a protective role for H. pylori infection in the prognosis of gastric cancer. Based on those findings, we hypothesized that H. pylori-positive and -negative gastric cancers may exhibit different growth patterns and pathobiological behaviors, indicating different mechanisms of cancer progression. By microarray analysis, we studied miRNAs expression profiles in 42 gastric cancer patients, comparing 21 H. pylori-positive and 21 H. pylori-negative groups. Luciferase reporter assay and western blot were used to examine the potential target genes of the interested miRNA. In the present study, 53 miRNAs were significantly differentially expressed in H. pylori-positive and -negative gastric cancer tissues. We investigated the expression and function of one candidate, miR-143-3p, which was the most significantly increased miRNA in H. pylori-positive gastric cancer tissues. We observed that miR-143-3p expression was significantly decreased in gastric cancer tissues and cells, which correlated with late stage and lymph node metastasis. Using gain- and loss-of-function experiments in vitro, we demonstrate that miR-143-3p negatively regulated cell growth, apoptosis, migration and invasion. We further characterized AKT2 as a novel direct target of miR-143-3p. Knockdown of AKT2 expression mimicked the effects of miR-143-3p restoration. In conclusion, our data suggest that miR-143-3p acts as a novel tumor suppressive miRNA by regulating tumor growth, migration and invasion through directly targeting AKT2 gene. Further investigation is warranted to characterize the mechanisms underlying gastric cancer progression and may eventually contribute to its therapy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.,Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Yawei Huang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaoqiu Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Chengqun He
- Department of Gynaecology and Obstetrics, Anhui Provincial Hospital, Hefei 230001, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, Anhui, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
30
|
Li YY, Shao JP, Zhang SP, Xing GQ, Liu HJ. miR-519d-3p Inhibits Cell Proliferation and Invasion of Gastric Cancer by Downregulating B-Cell Lymphoma 6. Cytogenet Genome Res 2018; 154:12-19. [PMID: 29510377 DOI: 10.1159/000487372] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
miR-519d inhibits cell growth, migration, and invasion, but its role in gastric cancer (GC) cells is obscure. We showed that miR-519d-3p was lowly expressed in GC tissues and was associated with the clinical stage and lymph node metastasis of GC tissues. We found that miR-519d-3p repressed cell proliferation and invasion of MGC803 cells and delayed the G1/S phase transition, resulting in decreased cyclin B1 and MMP2 and increased E-cadherin levels. Furthermore, miR-519d-3p targeted and downregulated B-cell lymphoma 6 (BCL6) expression. BCL6 overexpression partially abrogated the suppressive function of miR-519d in MGC803 cells. In conclusion, our study demonstrated that miR-519d-3p functions as a tumor suppressor by targeting and downregulating the expression of BCL6 in GC cells.
Collapse
Affiliation(s)
- Yong-Yuan Li
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, PR China
| | | | | | | | | |
Collapse
|
31
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
32
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
33
|
Deng HX, Yu YY, Zhou AQ, Zhu JL, Luo LN, Chen WQ, Hu L, Chen GX. Yangzheng Sanjie decoction regulates proliferation and apoptosis of gastric cancer cells by enhancing let-7a expression. World J Gastroenterol 2017; 23:5538-5548. [PMID: 28852313 PMCID: PMC5558117 DOI: 10.3748/wjg.v23.i30.5538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the let-7a-mediated anti-cancer effect of Yangzheng Sanjie decoction (YZSJD) in gastric cancer (GC) cells.
METHODS YZSJD-containing serum (YCS) was prepared using traditional Chinese medicine serum pharmacology methods. After YCS treatment, cell proliferation and apoptosis were assessed by cell counting kit-8 assay and flow cytometry, respectively, and miRNA expression profiles were determined using qPCR arrays. Let-7a expression was examined by in situ hybridization in GC tissues and by qPCR in GC cells. c-Myc protein expression was detected by immunohistochemistry in GC tissues, and by Western blot in cell lines.
RESULTS YZSJD significantly inhibited proliferation and induced apoptosis in AGS and HS-746T GC cells. After treatment with YCS, the miRNA expression profiles were altered and the reduced let-7a levels in both cell lines were up-regulated, accompanied by a decrease in c-Myc expression. Moreover, decreased let-7a expression and increased c-Myc expression were observed during the progression of gastric mucosa cancerization.
CONCLUSION YZSJD inhibits proliferation and induces apoptosis of GC cells by restoring the aberrant expression of let-7a and c-Myc.
Collapse
|
34
|
Li Y, Liu H, Shao J, Xing G. miR-320a serves as a negative regulator in the progression of gastric cancer by targeting RAB14. Mol Med Rep 2017; 16:2652-2658. [PMID: 28713899 PMCID: PMC5547933 DOI: 10.3892/mmr.2017.6937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 05/02/2017] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of malignancy worldwide, with high morbidity and mortality rates. The dysregulation of microRNAs (miRs) has been found to be involved in the carcinogenesis of GC. The present study aimed to investigate the underlying association between GC and miR-320a. Analysis using reverse transcription quantitative polymerase chain reaction indicated that the expression of miR-320a was downregulated and the expression of RAB14 was upregulated in GC tissues and cells, compared with the corresponding controls. MTT, colony formation assays, and flow cytometric analyses were used to evaluate the effect of miR-320a on cell proliferation and the cell cycle. The ectopic expression of miR-320a using miR-320a mimics suppressed cell viability, inhibited G1/S transition, and induced apoptosis in AGS and MKN45 cells. In addition, RAB14 was identified as a direct target gene of miR-320a, according to the results of bioinformatics analysis and a luciferase reporter assay. Downregulation of RAB14 by RAB14-small interfering RNA inhibited the viability of GC cells, which was similar to the phenotype of miR-320a mimics. Furthermore, the reintroduction of RAB14 partially abrogated the miR-320a-mediated downregulation of RAB14 and rescued the miR-320a-induced effects on GC cell growth. These findings suggest a potential novel therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Yongyuan Li
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Hongjie Liu
- Department of Radiology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Jianping Shao
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Guoqiang Xing
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| |
Collapse
|
35
|
Anauate AC, Leal MF, Wisnieski F, Santos LC, Gigek CO, Chen ES, Geraldis JC, Calcagno DQ, Assumpção PP, Demachki S, Arasaki CH, Lourenço LG, Artigiani R, Burbano RR, Smith MAC. Identification of suitable reference genes for miRNA expression normalization in gastric cancer. Gene 2017; 621:59-68. [PMID: 28411081 DOI: 10.1016/j.gene.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, Brazil; Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil; Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jaqueline Cruz Geraldis
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Samia Demachki
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Carlos Haruo Arasaki
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Laércio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil; Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil; Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
36
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
37
|
Singh S, Jha HC. Status of Epstein-Barr Virus Coinfection with Helicobacter pylori in Gastric Cancer. JOURNAL OF ONCOLOGY 2017; 2017:3456264. [PMID: 28421114 PMCID: PMC5379099 DOI: 10.1155/2017/3456264] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus is a ubiquitous human herpesvirus whose primary infection causes mononucleosis, Burkett's lymphoma, nasopharyngeal carcinoma, autoimmune diseases, and gastric cancer (GC). The persistent infection causes malignancies in lymph and epithelial cells. Helicobacter pylori causes gastritis in human with chronic inflammation. This chronic inflammation is thought to be the cause of genomic instability. About 45%-word population have a probability of having both pathogens, namely, H. pylori and EBV. Approximately 180 per hundred thousand population is developing GC along with many gastric abnormalities. This makes GC the third leading cause of cancer-related death worldwide. Although lots of research are carried out individually for EBV and H. pylori, still there are very few reports available on coinfection of both pathogens. Recent studies suggested that EBV and H. pylori coinfection increases the occurrence of GC as well as the early age of GC detection comparing to individual infection. The aim of this review is to present status on coinfection of both pathogens and their association with GC.
Collapse
Affiliation(s)
- Shyam Singh
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
38
|
da Silva Oliveira KC, Thomaz Araújo TM, Albuquerque CI, Barata GA, Gigek CO, Leal MF, Wisnieski F, Rodrigues Mello Junior FA, Khayat AS, de Assumpção PP, Rodriguez Burbano RM, Smith MC, Calcagno DQ. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol 2016; 22:7951-7962. [PMID: 27672290 PMCID: PMC5028809 DOI: 10.3748/wjg.v22.i35.7951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/14/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.
Collapse
|
39
|
Mohammadian F, Pilehvar-Soltanahmadi Y, Zarghami F, Akbarzadeh A, Zarghami N. Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-6. [DOI: 10.1080/21691401.2016.1216854] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Farideh Mohammadian
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faraz Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Li B, Chen P, Chang Y, Qi J, Fu H, Guo H. Let-7a inhibits tumor cell growth and metastasis by directly targeting RTKN in human colon cancer. Biochem Biophys Res Commun 2016; 478:739-45. [PMID: 27498032 DOI: 10.1016/j.bbrc.2016.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with high morbidity. MicroRNAs (miRNAs) are endogenous small RNAs that play important roles in regulating multiple biological and pathologic processes. The differential expression of miRNAs in CRC was first reported in 2003. Accumulated evidence indicates that lethal-7a (let-7a, miRNA) generally functions as a tumor suppressor in several human cancers. However, the role of let-7a in human colon cancer remains unclear. The aim of this study was to investigate the biological functions of let-7a and its potential role in colon cancer. We first discovered that let-7a level was significantly decreased in colon cancer tissues and cell lines (HT-29, HCT-116, LoVo, SW480, and SW620). To explore the effects of let-7a on colon cancer, let-7a over-expressed HCT-116 and SW620 cells were constructed. Further studies demonstrated that over-expressed let-7a could remarkably inhibit HCT-116 and SW620 cell growth and metastasis by directly down-regulating Rhotekin (RTKN). When RTKN was reintroduced into let-7a mimic transfected HCT-116 or SW620 cells, the inhibition effects of let-7a on colon cancer cell growth and metastasis were markedly reversed. In conclusion, our research shows that let-7a can inhibit tumor cell growth and metastasis by directly targeting RTKN in human colon cancer.
Collapse
Affiliation(s)
- Bin Li
- Department of Oncology, The First Affiliated Hospital of Xi'an Medical University, Shaanxi, Xi'an 710077, China.
| | - Peng Chen
- Institution of Basic Medical Science, Xi'an Medical University, Shaanxi, Xi'an 710021, China; School of Life Sciences, Northwest University, Shaanxi, Xi'an 710069, China
| | - Yanxiang Chang
- Department of Oncology, The First Affiliated Hospital of Xi'an Medical University, Shaanxi, Xi'an 710077, China
| | - Jingpeng Qi
- Department of Oncology, The First Affiliated Hospital of Xi'an Medical University, Shaanxi, Xi'an 710077, China
| | - Hui Fu
- Institution of Basic Medical Science, Xi'an Medical University, Shaanxi, Xi'an 710021, China
| | - Huifang Guo
- Institution of Basic Medical Science, Xi'an Medical University, Shaanxi, Xi'an 710021, China
| |
Collapse
|
41
|
Wan QS, Zhang KH. Noninvasive detection of gastric cancer. Tumour Biol 2016; 37:11633-11643. [PMID: 27381515 DOI: 10.1007/s13277-016-5129-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and the third common cause of cancer death worldwide. Endoscopy is the most effective method for GC screening, but its application is limited by the invasion. Therefore, continuous efforts have been made to develop noninvasive methods for GC detection and promising results have been reported. Here, we review the advances in GC detection by protein and nucleic acid tumor markers, circulating tumor cells, and tumor-associated autoantibodies in peripheral blood. Some potential new noninvasive methods for GC detection are also reviewed, including exhaled breath analysis, blood spectroscopy analysis and molecular imaging.
Collapse
Affiliation(s)
- Qin-Si Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
42
|
Tsai MM, Wang CS, Tsai CY, Huang HW, Chi HC, Lin YH, Lu PH, Lin KH. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. Int J Mol Sci 2016; 17:945. [PMID: 27322246 PMCID: PMC4926478 DOI: 10.3390/ijms17060945] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients' survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.
Collapse
Affiliation(s)
- Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan.
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan.
| | - Chung-Ying Tsai
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| | - Hsiang-Wei Huang
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| | - Hsiang-Cheng Chi
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| | - Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| | - Pei-Hsuan Lu
- Department of Dermatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| |
Collapse
|
43
|
Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P, Yang L. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget 2016; 7:5972-84. [PMID: 26745603 PMCID: PMC4868734 DOI: 10.18632/oncotarget.6821] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
In contrast to normal differentiated cells that depend on aerobicoxidation for energy production, cancer cells use aerobic glycolysis as the main source (Warburg's effect). The M2 splice isoform of pyruvate kinase (PKM2) is the key regulator for the aerobic glycolysis, high expression of PKM2 contributes to the aerobic glycolysis, promotes the growth of tumors. In the present study, we found that PKM2 was highly expressed in gastric cancer (GC) tissues and had a strongly inverse correlation with the expression of microRNA-let-7a (miR-let-7a). Furthermore, we found that the overexpression of miR-let-7a markedly suppressed the proliferation, migration, and invasion of GC cells by down-regulating the expression of PKM2. MicroRNAs (miRNAs) are important regulators play key roles in tumorigenesis and tumor progression. Although previous reports showed that let-7 family members act as tumor suppressors in many cancers. The specific regulatory mechanism of miR-let-7a to PKM2 in gastric cancer is still unclear. In this study, we revealed that miR-let-7a function as the antitumor and gene regulatory effects of PKM2 in GC cells.
Collapse
Affiliation(s)
- Ran Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Yang
- Liver Transplantation Center of the First Affiliated Hospital and Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Xiang Ma
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Younan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dakui Luo
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Xie SS, Jin J, Xu X, Zhuo W, Zhou TH. Emerging roles of non-coding RNAs in gastric cancer: Pathogenesis and clinical implications. World J Gastroenterol 2016; 22:1213-1223. [PMID: 26811659 PMCID: PMC4716032 DOI: 10.3748/wjg.v22.i3.1213] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/17/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a leading cause of cancer-related deaths. However, the mechanisms underlying gastric carcinogenesis remain largely unclear. The association of non-coding RNAs (ncRNAs) with cancer has been widely studied during the past decade. In general, ncRNAs have been classified as small ncRNAs, including microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). Emerging evidence shows that miRNAs and lncRNAs play key roles in the formation and progression of many cancers. In this review, we focus on the regulation of miRNAs and lncRNAs in gastric cancer. miRNAs and lncRNAs appear to be involved in gastric tumor growth, invasion, and metastasis and in establishment of the gastric tumor microenvironment through various mechanisms. Furthermore, we also discuss the possibilities of establishing miRNAs and lncRNAs as potential biomarkers and therapeutic targets for gastric cancer. Taken together, we summarize the emerging roles of ncRNAs in gastric cancer development and their possible clinical significance.
Collapse
|
45
|
Geybels MS, Alumkal JJ, Luedeke M, Rinckleb A, Zhao S, Shui IM, Bibikova M, Klotzle B, van den Brandt PA, Ostrander EA, Fan JB, Feng Z, Maier C, Stanford JL. Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors. Clin Epigenetics 2015; 7:128. [PMID: 26692910 PMCID: PMC4676897 DOI: 10.1186/s13148-015-0161-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
Background About half of all prostate cancers harbor the TMPRSS2:ERG (T2E) gene fusion. While T2E-positive and T2E-negative tumors represent specific molecular subtypes of prostate cancer (PCa), previous studies have not yet comprehensively investigated how these tumor subtypes differ at the epigenetic level. We therefore investigated epigenome-wide DNA methylation profiles of PCa stratified by T2E status. Results The study included 496 patients with clinically localized PCa who had a radical prostatectomy as primary treatment for PCa. Fluorescence in situ hybridization (FISH) “break-apart” assays were used to determine tumor T2E-fusion status, which showed that 266 patients (53.6 %) had T2E-positive PCa. The study showed global DNA methylation differences between tumor subtypes. A large number of differentially methylated CpG sites were identified (false-discovery rate [FDR] Q-value <0.00001; n = 27,876) and DNA methylation profiles accurately distinguished between tumor T2E subgroups. A number of top-ranked differentially methylated CpGs in genes (FDR Q-values ≤1.53E−29) were identified: C3orf14, CACNA1D, GREM1, KLK10, NT5C, PDE4D, RAB40C, SEPT9, and TRIB2, several of which had a corresponding alteration in mRNA expression. These genes may have various roles in the pathogenesis of PCa, and the calcium-channel gene CACNA1D is a known ERG-target. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. Conclusions This study identified substantial differences in DNA methylation profiles of T2E-positive and T2E-negative tumors, thereby providing further evidence that different underlying oncogenic pathways characterize these molecular subtypes. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0161-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milan S Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Joshi J Alumkal
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR USA
| | - Manuel Luedeke
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Antje Rinckleb
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Shanshan Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NC Research Triangle Park, USA
| | - Irene M Shui
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | | | | | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD USA
| | - Jian-Bing Fan
- Illumina, Inc., San Diego, CA USA ; Present Address: AnchorDx Corp., Guangzhou, 510300 People's Republic of China
| | | | - Christiane Maier
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA USA
| |
Collapse
|
46
|
Xu X, Zhang Y, Liu Z, Zhang X, Jia J. miRNA-532-5p functions as an oncogenic microRNA in human gastric cancer by directly targeting RUNX3. J Cell Mol Med 2015; 20:95-103. [PMID: 26515139 PMCID: PMC4717862 DOI: 10.1111/jcmm.12706] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
Accumulating data reveal that microRNAs are involved in gastric carcinogenesis. To date, no information was reported about the function and regulatory mechanism of miR‐532‐5p in human gastric cancer (GC). Thus, our study aims to determine the role and regulation of miR‐532‐5p in GC. Here, we found that transient and stable overexpression of miR‐532‐5p dramatically increased the potential of colony formation and migration of GC cells, decreased the percentage of cells in G1 phase and cell apoptosis in vitro, and increased the weight of mice lungs and number of lung xenografts in vivo. Gain‐of‐function, loss‐of‐function and luciferase activity assays demonstrated that miR‐532‐5p negatively regulated the expression of RUNX3 and its targets directly. We also found that miR‐532‐5p level was negatively correlated with RUNX3 gene expression in various GC cell lines. Our results indicate that miR‐532‐5p functions as an oncogenic miRNA by promoting cell growth, migration and invasion in human GC cells.
Collapse
Affiliation(s)
- Xia Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Xinchao Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
47
|
Yang Q, Zhang RW, Sui PC, He HT, Ding L. Dysregulation of non-coding RNAs in gastric cancer. World J Gastroenterol 2015; 21:10956-10981. [PMID: 26494954 PMCID: PMC4607897 DOI: 10.3748/wjg.v21.i39.10956] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC.
Collapse
|
48
|
Jefferson A, Cadet VE, Hielscher A. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95:407-16. [PMID: 25900073 DOI: 10.1016/j.critrevonc.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.
Collapse
Affiliation(s)
- Artrish Jefferson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Valerie E Cadet
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States.
| |
Collapse
|
49
|
Ishimoto T, Baba H, Izumi D, Sugihara H, Kurashige J, Iwatsuki M, Tan P. Current perspectives toward the identification of key players in gastric cancer microRNA dysregulation. Int J Cancer 2015; 138:1337-49. [DOI: 10.1002/ijc.29627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Takatsugu Ishimoto
- Cancer and Stem Cell Biology; Duke-NUS Graduate Medical School Singapore; Singapore Singapore
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Hidetaka Sugihara
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Science; Kumamoto University; Kumamoto Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology; Duke-NUS Graduate Medical School Singapore; Singapore Singapore
| |
Collapse
|
50
|
Jiang C, Chen X, Alattar M, Wei J, Liu H. MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis of gastric cancer. Cancer Gene Ther 2015; 22:291-301. [DOI: 10.1038/cgt.2015.19] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
|