1
|
Vani V, Ojha P, Gadhvi MA, Dixit A. Impact of artificial colored lights on performance in working memory task. Acta Psychol (Amst) 2025; 256:105001. [PMID: 40233655 DOI: 10.1016/j.actpsy.2025.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
The contemporary lifestyle obligates exposure to artificially illuminated environments often with a variation in spectral composition of light. The wavelength of light, perceived as the color, differentially stimulates the short, medium, and long wavelength cones. Through the non-image-forming pathways, light possibly affects cognitive functions including working memory. Commensurately, this warrants an evaluation of the effects of exposure to colored lights of specific wavelength, on the performance in cognitive task. A within-subject approach was planned to ascertain the impact of light in white, red, green, and blue wavelengths (corresponding to the retinal cone cells) on performance in the Forward Digit Span Task (FDST) and Backward Digit Span Task (BDST) in four randomized sessions. Each light exposure session was preceded by 15 min of dark state and performances were assessed using percent accuracy. The mean age of participants (N = 50) was 28.8 years. A statistically significant difference was found in performance in FDST (P < 0.0005) and BDST (P < 0.0005) with exposure to different colored light (specific wavelengths) when compared to white light (broad-spectrum). Performance in FDST was better than the performance in BDST in all light conditions. The results suggest that working memory performance was affected by the color of light and performance in DST was better under red light than other lights. Therefore, the color of light plays an important role in cognitive performance and ambient light color needs to be adjusted while testing cognitive functions. Red lights may enhance memory recall compared to blue and green lights.
Collapse
Affiliation(s)
- Vakode Vani
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Pooja Ojha
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Mahesh Arjundan Gadhvi
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Abhinav Dixit
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Milligan Armstrong A, O'Brien E, Porter T, Dore V, Bourgeat P, Maruff P, Rowe CC, Villemagne VL, Rainey‐Smith SR, Laws SM, the AIBL Research Group. Exploring the relationship between melanopsin gene variants, sleep, and markers of brain health. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70056. [PMID: 39822292 PMCID: PMC11736627 DOI: 10.1002/dad2.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Melanopsin is a photopigment with roles in mediating sleep and circadian-related processes, which are often disrupted in Alzheimer's disease (AD). Melanopsin also impacts cognition and synaptogenesis. This study investigated the associations between melanopsin genetic variants, sleep, and markers of brain health. METHODS Linear regression analyses examined the relationship of single-nucleotide polymorphisms (SNPs) within the melanopsin gene (OPN4), with cortical amyloid beta (Aβ), cognition, brain volumes, and self-reported sleep traits in cognitively unimpaired older adults. Further analyses assessed whether sleep traits x OPN4 SNP interactions were associated with markers of brain health. RESULTS OPN4 SNPs rs2355009 and rs3740334 were associated with attention and processing speed and ventricular volume and language, respectively. Furthermore, rs3740334 and rs1079610 showed significant interactions with sleep traits in association with language. DISCUSSION This study shows associations of OPN4 genetic variants with markers of brain health, and suggests that these variants interact with sleep to exacerbate cognitive effects. Highlights The relationships between melanopsin gene (OPN4) variants and markers of brain health were examined cross-sectionally in cognitively unimpaired older individuals.Variation within OPN4is associated with differences in cognition and ventricular volume.rs2355009 and rs3740334 show small-moderate associations with differences in attention and processing speed. Further to this, rs2355009 and rs3740334 were associated with ventricular volumes and language performance, respectively.The interactions between rs3740334 and rs1079610 and sleep traits also showed small-moderate associations with differences in language performance.
Collapse
Affiliation(s)
- Ayeisha Milligan Armstrong
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation Group, School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin University, Kent St.BentleyWestern AustraliaAustralia
| | - Eleanor O'Brien
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation Group, School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Tenielle Porter
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation Group, School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin University, Kent St.BentleyWestern AustraliaAustralia
| | - Vincent Dore
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Australian E‐Health Research CentreCSIROHerstonQueenslandAustralia
- Department of Molecular Imaging and Therapy and Centre for PETAustin HealthHeidelbergVictoriaAustralia
| | | | - Paul Maruff
- Australian E‐Health Research CentreCSIROParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Cogstate Ltd.MelbourneVictoriaAustralia
| | - Christopher C. Rowe
- Department of Molecular Imaging and Therapy and Centre for PETAustin HealthHeidelbergVictoriaAustralia
- Australian E‐Health Research CentreCSIROParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Victor. L. Villemagne
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Department of Molecular Imaging and Therapy and Centre for PETAustin HealthHeidelbergVictoriaAustralia
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Stephanie R. Rainey‐Smith
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- Alzheimer's Research AustraliaSarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- School of Psychological ScienceUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Simon M. Laws
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation Group, School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin University, Kent St.BentleyWestern AustraliaAustralia
| | | |
Collapse
|
3
|
Weeks DL, Crooks E, O'Brien KE, Sprint G, Carter GT, Honn KA. A parallel-group randomized controlled trial of blue light versus red light for improving sleep, fatigue, and cognition following stroke: Pilot results and recommendations for further study. Contemp Clin Trials 2024; 147:107736. [PMID: 39510247 DOI: 10.1016/j.cct.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Disordered sleep and fatigue are common in the acute phase of stroke and can impede recovery. OBJECTIVE A randomized parallel group placebo-controlled pilot study compared daily morning exposure to blue light or red light (placebo) for improving daytime sleepiness, fatigue, nocturnal sleep, and cognition in patients receiving inpatient rehabilitation for acute stroke. METHODS 43 patients with disordered sleep secondary to first episode stroke (n = 34 ischemic, n = 9 hemorrhagic; aged 66.2 ± 14.1 years) were randomized to receive 25 min of blue or red light for 5 or more days depending on inpatient rehabilitation length of stay (blue-light n = 21, red-light n = 22). At baseline and study discharge, daytime sleepiness was measured with the Karolinska Sleepiness Scale and Wits Pictorial Sleepiness Scale, fatigue with a visual analogue scale, and cognitive function with the Rey Auditory Verbal Learning Test and Trail Making Test (TMT). Wrist actigraphs measured nocturnal sleep parameters. Effect sizes were used to estimate sample sizes for larger studies. RESULTS Blue light exposure led to significant improvements in daytime sleepiness, fatigue, auditory verbal learning, and time to sleep onset (all p < .05) relative to red light exposure (effect size range 0.75 to 1.83). Change in TMT, minutes of nocturnal sleep, and number of awakenings after sleep onset were not statistically significant (effect sizes range 0.38 to 0.57). CONCLUSION Morning blue light exposure for 5 or more days after acute stroke led to greater improvements than red light exposure. Effect sizes suggest a larger study is warranted to confirm generalizability of pilot findings. TRIAL REGISTRATION ClinicalTrials.govNCT03125967 (Registered 01/01/2017).
Collapse
Affiliation(s)
- Douglas L Weeks
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA.
| | - Elena Crooks
- Department of Physical Therapy, Eastern Washington University, Spokane, WA, USA
| | | | - Gina Sprint
- School of Engineering and Applied Science, Gonzaga University, Spokane, WA, USA
| | - Gregory T Carter
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA; Providence St. Luke's Rehabilitation Medical Center, Spokane, WA, USA
| | - Kimberly A Honn
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA; Department of Translational Medicine & Physiology, Washington State University, Spokane, WA, USA
| |
Collapse
|
4
|
Campbell I, Sharifpour R, Balda Aizpurua JF, Beckers E, Paparella I, Berger A, Koshmanova E, Mortazavi N, Read J, Zubkov M, Talwar P, Collette F, Sherif S, Phillips C, Lamalle L, Vandewalle G. Regional response to light illuminance across the human hypothalamus. eLife 2024; 13:RP96576. [PMID: 39466317 PMCID: PMC11517251 DOI: 10.7554/elife.96576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.3±2.9 y) were completing two auditory cognitive tasks. We find that, during both the executive and emotional tasks, higher illuminance triggered an activity increase over the posterior part of the hypothalamus, which includes part of the tuberomamillary nucleus and the posterior part of the lateral hypothalamus. In contrast, increasing illuminance evoked a decrease in activity over the anterior and ventral parts of the hypothalamus, encompassing notably the suprachiasmatic nucleus and another part of the tuberomammillary nucleus. Critically, the performance of the executive task was improved under higher illuminance and was negatively correlated with the activity of the posterior hypothalamus area. These findings reveal the distinct local dynamics of different hypothalamus regions that underlie the impact of light on cognition.
Collapse
Affiliation(s)
| | | | | | - Elise Beckers
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht UniversityMaastrichtNetherlands
| | | | - Alexandre Berger
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Synergia Medical SAMont-Saint-GuibertBelgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain (UCLouvain)Woluwe-Saint-LambertBelgium
| | | | | | - John Read
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Puneet Talwar
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Siya Sherif
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | | | | |
Collapse
|
5
|
Mekschrat L, Straßer T, Ghassabei S, Schmalbach B, Niedling M, Petrowski K. Light Exposure on Alertness after Wake-Up in Healthy Men: Comparing Dim, Bright, Red, and Blue Light. Neuropsychobiology 2024; 83:183-192. [PMID: 39396496 DOI: 10.1159/000541230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/16/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Light is a key factor in moderating human alertness, both subjective and objective. However, the methodology applies in research on the effects of exposure to light of different wavelengths and intensities on objective and subjective alertness varies greatly and evidence on objective alertness in particular is still inconclusive. Thus, the present, highly standardized within-subject laboratory study on N = 44 healthy males explored how LED light of different intensities (dim vs. bright light) and wavelengths (red vs. blue) affected objective (reaction time/RT) as well as subjective (sleepiness) alertness in the morning after wake-up. METHODS Participants spent two separate nights in the laboratory and were exposed to either one of the two light intensities or colors for 60 min after wake-up. Additionally, they indicated their sleepiness on the Karolinska Sleepiness Scale and participated in an auditory RT task before and after light intervention. It was hypothesized that both bright and blue light would lead to greater subjective and objective alertness when compared to dim and red light, respectively. RESULTS Results indicated that average RTs were longer for participants in the bright light condition (p = 0.004, f2 = 0.07) and that RTs decreased post-light exposure irrespective of light being dim or bright (p = 0.026, f2 = 0.07). However, dim versus bright light and RT did not interact (p = 0.758, f2 = 0.07). Chronotype was a significant covariate in the interaction of dim versus bright light and subjective sleepiness (p = 0.008, f2 = 0.22). There was no difference in RTs when comparing exposure to red or blue light (p = 0.488, f2 = 0.01). Findings on subjective sleepiness and light of different wavelengths revealed that sleepiness was reduced after light exposure (p = 0.007, f2 = 0.06), although the wavelength of light did not appear to play a role in this effect (p = 0.817, f2 = 0.06). CONCLUSION Hence, neither of the hypotheses could be confirmed. However, they indicated that evening types might benefit from exposure to bright light regarding sleepiness, but not morning types.
Collapse
Affiliation(s)
- Liza Mekschrat
- Medical Psychology and Medical Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Torsten Straßer
- Institute for Ophthalmic Research, Center for Ophthalmic Research, Eberhart Karls University Tuebingen, Tuebingen, Germany
- University Eye Hospital, Center for Ophthalmic Research, Eberhart Karls University Tuebingen, Tuebingen, Germany
| | - Shiwa Ghassabei
- Medical Psychology and Medical Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bjarne Schmalbach
- Medical Psychology and Medical Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Katja Petrowski
- Medical Psychology and Medical Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Zhang L, Zhou Y, Xie Y, Ying Y, Li Y, Ye S, Wang Z. Adjunctive clozapine with bright light mitigates cognitive deficits by synaptic plasticity and neurogenesis in sub-chronic MK-801 treated mice. Pharmacol Biochem Behav 2024; 243:173821. [PMID: 39002805 DOI: 10.1016/j.pbb.2024.173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia impacts about 1 % of the global population, with clozapine (CLZ) being a critical treatment for refractory cases despite its limitations in effectiveness and adverse effects. Therefore, the search for more effective treatments remains urgent. Light treatment (LT) recognized for enhancing cognition and mood, presents a promising complementary approach. This study investigated the effects of CLZ and LT on cognitive impairments in a sub-chronic MK-801 induced schizophrenia mouse model. Results showed that both CLZ and CLZ + LT treatment elevate cognitive performance of sub-chronic MK-801 treated mice in serial behavioral tests over two months. Histological analysis revealed increased dendritic spine density and branching, and synaptic repair in the hippocampus with CLZ and CLZ + LT interventions. Furthermore, both treatments increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, likely contributing to cognitive amelioration in MK-801 treated mice. Additionally, BrdU labeling revealed that CLZ + LT further enhances neurogenesis in the dentate gyrus (DG) and lateral ventricle (LV) of sub-chronic MK-801 treated mice. These findings may have implications for the development of noninvasive and adjunctive treatment strategies aimed at alleviating cognitive impairments and improving functional outcomes in individuals with schizophrenia.
Collapse
Affiliation(s)
- Lizhi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yiying Zhou
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yanhong Xie
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yudong Ying
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yan Li
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Sen Ye
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Zhengchun Wang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; The Affiliated People's Hospital of Ningbo University, Ningbo 315100, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China.
| |
Collapse
|
7
|
Chen Q, Pan Z, Wu J, Xue C. An Investigation into the Effects of Correlated Color Temperature and Illuminance of Urban Motor Vehicle Road Lighting on Driver Alertness. SENSORS (BASEL, SWITZERLAND) 2024; 24:4927. [PMID: 39123974 PMCID: PMC11314837 DOI: 10.3390/s24154927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Current international optical science research focuses on the non-visual effects of lighting on human cognition, mood, and biological rhythms to enhance overall well-being. Nocturnal roadway lighting, in particular, has a substantial impact on drivers' physiological and psychological states, influencing behavior and safety. This study investigates the non-visual effects of correlated color temperature (CCT: 3000K vs. 4000K vs. 5000K) and illuminance levels (20 lx vs. 30 lx) of urban motor vehicle road lighting on driver alertness during various driving tasks. Conducted between 19:00 and 20:30, the experiments utilized a human-vehicle-light simulation platform. EEG (β waves), reaction time, and subjective evaluations using the Karolinska Sleepiness Scale (KSS) were measured. The results indicated that the interaction between CCT and illuminance, as well as between CCT and task type, significantly influenced driver alertness. However, no significant effect of CCT and illuminance on reaction time was observed. The findings suggest that higher illuminance (30 lx) combined with medium CCT (4000K) effectively reduces reaction time. This investigation enriches related research, provides valuable reference for future studies, and enhances understanding of the mechanisms of lighting's influence on driver alertness. Moreover, the findings have significant implications for optimizing the design of urban road lighting.
Collapse
Affiliation(s)
| | | | | | - Chengqi Xue
- School of Mechanical Engineering, Southeast University, Suyuan Avenue 79, Nanjing 211189, China; (Q.C.); (Z.P.); (J.W.)
| |
Collapse
|
8
|
Waalkes MR, Leathery M, Peck M, Barr A, Cunill A, Hageter J, Horstick EJ. Light wavelength modulates search behavior performance in zebrafish. Sci Rep 2024; 14:16533. [PMID: 39019915 PMCID: PMC11255219 DOI: 10.1038/s41598-024-67262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.
Collapse
Affiliation(s)
- Matthew R Waalkes
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Maegan Leathery
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Madeline Peck
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Allison Barr
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Alexander Cunill
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - John Hageter
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Eric J Horstick
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience Morgantown, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
9
|
Zhang R, Tomasi D, Shokri-Kojori E, Manza P, Demiral SB, Wang GJ, Volkow ND. Seasonality in regional brain glucose metabolism. Psychol Med 2024; 54:2264-2272. [PMID: 38634486 DOI: 10.1017/s0033291724000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sukru Baris Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Zangen E, Hadar S, Lawrence C, Obeid M, Rasras H, Hanzin E, Aslan O, Zur E, Schulcz N, Cohen-Hatab D, Samama Y, Nir S, Li Y, Dobrotvorskia I, Sabbah S. Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers. Nat Commun 2024; 15:5501. [PMID: 38951486 PMCID: PMC11217280 DOI: 10.1038/s41467-024-49794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions' contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.
Collapse
Affiliation(s)
- Elyashiv Zangen
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shira Hadar
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Christopher Lawrence
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Mustafa Obeid
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Hala Rasras
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ella Hanzin
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ori Aslan
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Eyal Zur
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Nadav Schulcz
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Daniel Cohen-Hatab
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yona Samama
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Sarah Nir
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yi Li
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Irina Dobrotvorskia
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
11
|
Wang K, Chen K, Wei Z, Wang T, Wei A, Gao X, Qin Y, Zhu Y, Ge Y, Cui B, Zhu M. Visual light flicker stimulation: enhancing alertness in sleep-deprived rats. Front Neurosci 2024; 18:1415614. [PMID: 38903600 PMCID: PMC11188382 DOI: 10.3389/fnins.2024.1415614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction In the evolving field of neurophysiological research, visual light flicker stimulation is recognized as a promising non-invasive intervention for cognitive enhancement, particularly in sleep-deprived conditions. Methods This study explored the effects of specific flicker frequencies (40 Hz and 20-30 Hz random flicker) on alertness recovery in sleep-deprived rats. We employed a multidisciplinary approach that included behavioral assessments with the Y-maze, in vivo electrophysiological recordings, and molecular analyses such as c-FOS immunohistochemistry and hormone level measurements. Results Both 40 Hz and 20-30 Hz flicker significantly enhanced behavioral performance in the Y-maze test, suggesting an improvement in alertness. Neurophysiological data indicated activation of neural circuits in key brain areas like the thalamus and hippocampus. Additionally, flicker exposure normalized cortisol and serotonin levels, essential for stress response and mood regulation. Notably, increased c-FOS expression in brain regions related to alertness and cognitive functions suggested heightened neural activity. Discussion These findings underscore the potential of light flicker stimulation not only to mitigate the effects of sleep deprivation but also to enhance cognitive functions. The results pave the way for future translational research into light-based therapies in human subjects, with possible implications for occupational health and cognitive ergonomics.
Collapse
Affiliation(s)
- Kun Wang
- Military Medical Sciences Academy, Tianjin, China
- Medical Support Technology Research Department, Systems Engineering Institute, Tianjin, China
| | - Kang Chen
- Military Medical Sciences Academy, Tianjin, China
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Zilin Wei
- Military Medical Sciences Academy, Tianjin, China
| | - Tianhui Wang
- Military Medical Sciences Academy, Tianjin, China
| | - Aili Wei
- Military Medical Sciences Academy, Tianjin, China
| | - Xiujie Gao
- Military Medical Sciences Academy, Tianjin, China
| | - Yingkai Qin
- Military Medical Sciences Academy, Tianjin, China
| | - Yingwen Zhu
- Military Medical Sciences Academy, Tianjin, China
| | - Yi Ge
- Logistic Support Department of Central Military Commission, Beijing, China
| | - Bo Cui
- Military Medical Sciences Academy, Tianjin, China
| | - Mengfu Zhu
- Medical Support Technology Research Department, Systems Engineering Institute, Tianjin, China
| |
Collapse
|
12
|
Haghani M, Abbasi S, Abdoli L, Shams SF, Baha'addini Baigy Zarandi BF, Shokrpour N, Jahromizadeh A, Mortazavi SA, Mortazavi SMJ. Blue Light and Digital Screens Revisited: A New Look at Blue Light from the Vision Quality, Circadian Rhythm and Cognitive Functions Perspective. J Biomed Phys Eng 2024; 14:213-228. [PMID: 39027713 PMCID: PMC11252550 DOI: 10.31661/jbpe.v0i0.2106-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/29/2021] [Indexed: 07/20/2024]
Abstract
Research conducted over the years has established that artificial light at night (ALAN), particularly short wavelengths in the blue region (~400-500 nm), can disrupt the circadian rhythm, cause sleep disturbances, and lead to metabolic dysregulation. With the increasing number of people spending considerable amounts of time at home or work staring at digital screens such as smartphones, tablets, and laptops, the negative impacts of blue light are becoming more apparent. While blue wavelengths during the day can enhance attention and reaction times, they are disruptive at night and are associated with a wide range of health problems such as poor sleep quality, mental health problems, and increased risk of some cancers. The growing global concern over the detrimental effects of ALAN on human health is supported by epidemiological and experimental studies, which suggest that exposure to ALAN is associated with disorders like type 2 diabetes, obesity, and increased risk of breast and prostate cancer. Moreover, several studies have reported a connection between ALAN, night-shift work, reduced cognitive performance, and a higher likelihood of human errors. The purpose of this paper is to review the biological impacts of blue light exposure on human cognitive functions and vision quality. Additionally, studies indicating a potential link between exposure to blue light from digital screens and increased risk of breast cancer are also reviewed. However, more research is needed to fully comprehend the relationship between blue light exposure and adverse health effects, such as the risk of breast cancer.
Collapse
Affiliation(s)
- Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Abbasi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Abdoli
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Fatemeh Shams
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nasrin Shokrpour
- School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Jahromizadeh
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Zohdi H, Märki J, Scholkmann F, Wolf U. Cerebral, systemic physiological and behavioral responses to colored light exposure during a cognitive task: A SPA-fNIRS study. Behav Brain Res 2024; 462:114884. [PMID: 38296201 DOI: 10.1016/j.bbr.2024.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Colored light has important implications for human health and well-being, as well as for the aesthetics and function of various environments. In addition to its effects on visual function, colored light has significant effects on cognitive performance, behavior and systemic physiology. The aim of the current study was to comprehensively investigate how colored light exposure (CLE) combined with a cognitive task (2-back) affects performance, cerebral hemodynamics, oxygenation, and systemic physiology as assessed by systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). 36 healthy subjects (22 female, 14 male, age 26.3 ± 5.7 years) were measured twice on two different days. They were exposed to the sequence of blue and red light or vice versa in a randomized crossover design. During the CLE, the subjects were asked to perform a 2-back task. The 2-back task performance was correlated with changes in the concentration of oxygenated hemoglobin in the prefrontal cortex (red: r = -0.37, p = 0.001; blue: r = -0.33, p = 0.004) and the high-frequency component of the heart rate variability (red: r = 0.35, p = 0.003; blue: r = 0.25, p = 0.04). These changes were independent of the CLE. Sequence-dependent effects were observed for fNIRS signals at the visual cortex (VC) and for electrodermal activity (EDA). While both colors caused relatively similar changes in the VC and EDA at the position of the first exposure, blue and red light caused greater changes in the VC and EDA, respectively, in the second exposure. There was no significant difference in the subjects' 2-back task performance between the CLE (p = 0.46). The results of this study provide new insights into how human physiology and behavior respond to colored light exposure. Our findings are important for understanding the impact of colored light in our daily lives and its potential applications in a variety of settings, including education, the workplace and healthcare.
Collapse
Affiliation(s)
- Hamoon Zohdi
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Josefa Märki
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland; Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
14
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
15
|
Huang X, Tao Q, Ren C. A Comprehensive Overview of the Neural Mechanisms of Light Therapy. Neurosci Bull 2024; 40:350-362. [PMID: 37555919 PMCID: PMC10912407 DOI: 10.1007/s12264-023-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 08/10/2023] Open
Abstract
Light is a powerful environmental factor influencing diverse brain functions. Clinical evidence supports the beneficial effect of light therapy on several diseases, including depression, cognitive dysfunction, chronic pain, and sleep disorders. However, the precise mechanisms underlying the effects of light therapy are still not well understood. In this review, we critically evaluate current clinical evidence showing the beneficial effects of light therapy on diseases. In addition, we introduce the research progress regarding the neural circuit mechanisms underlying the modulatory effects of light on brain functions, including mood, memory, pain perception, sleep, circadian rhythm, brain development, and metabolism.
Collapse
Affiliation(s)
- Xiaodan Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Munnilari M, Bommasamudram T, Easow J, Tod D, Varamenti E, Edwards BJ, Ravindrakumar A, Gallagher C, Pullinger SA. Diurnal variation in variables related to cognitive performance: a systematic review. Sleep Breath 2024; 28:495-510. [PMID: 37589927 PMCID: PMC10955027 DOI: 10.1007/s11325-023-02895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE The aim of this review was to assess current evidence regarding changes in cognitive function according to time-of-day (TOD) and assess the key components of research design related to manuscripts of chronobiological nature. METHODS An English-language literature search revealed 523 articles through primary database searches, and 1868 via organization searches/citation searching. The inclusion criteria were met by eleven articles which were included in the review. The inclusion criteria set were healthy adult males, a minimum of two timepoints including morning and evening, cognitive measures of performance, and peer-reviewed academic paper. RESULTS It was established that cognitive performance varies with TOD and the degree of difference is highly dependent on the type of cognitive task with differences ranging from 9.0 to 34.2% for reaction time, 7.3% for alertness, and 7.8 to 40.3% for attention. The type of cognitive function was a determining factor as to whether the performance was better in the morning, evening, or afternoon. CONCLUSION Although some studies did not establish TOD differences, reaction time and levels of accuracy were highest in the evening. This implies that cognitive processes are complex, and existing research is contradictory. Some studies or cognitive variables did not show any measurable TOD effects, which may be due to differences in methodology, subjects involved, testing protocols, and confounding factors. No studies met all requirements related to chronobiological research, highlighting the issues around methodology. Therefore, future research must use a rigorous, approach, minimizing confounding factors that are specific to examinations of TOD.
Collapse
Affiliation(s)
- Madhavi Munnilari
- Department of Exercise and Sports Science, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tulasiram Bommasamudram
- Department of Exercise and Sports Science, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Judy Easow
- Department of Exercise and Sports Science, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - David Tod
- Faculty of Health & Medicine, Lancaster University, Lancaster, UK
| | | | - Ben J Edwards
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Aishwarya Ravindrakumar
- Department of Exercise and Sports Science, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chloe Gallagher
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Samuel A Pullinger
- Sport Science Department, Inspire Institute of Sport, Vidyanagar, Dist, Bellary, 583275, India.
| |
Collapse
|
17
|
Desmettre T, Baillif S, Mathis T, Gatinel D, Mainster M. [Blue light and intraocular lenses (IOLs): Beliefs and realities]. J Fr Ophtalmol 2024; 47:104043. [PMID: 38241770 DOI: 10.1016/j.jfo.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 01/21/2024]
Abstract
The first intraocular lenses (IOLs) used for cataract surgery transmitted both ultraviolet (UV) radiation and visible light to the retina. Colorless UV-blocking IOLs were introduced and rapidly adopted in the 1980s. Yellow-tinted blue-blocking (also known as blue-filtering) IOLs were marketed in the early 1990s. Blue-blocking IOLs were intended to simulate age-related crystalline lens yellowing to reduce the cyanopsia that some patients experienced after cataract surgery. When blue-filtering IOLs were introduced in North America, however, blue-blocking chromophores were advocated as a way to protect patients from age-related macular degeneration (AMD) despite the lack of evidence that normal environmental light exposure causes AMD. The "blue light hazard" is a term that describes the experimental finding that acute, abnormally intense light exposures are potentially more phototoxic to the retina when short rather than long wavelengths are used. Thus, in brief exposures to intense light sources such as welding arcs, ultraviolet radiation is more hazardous than blue light, which is more hazardous than longer wavelength green or red light. International commissions have cautioned that the blue light hazard does not apply to normal indoor or outdoor light exposures. Nonetheless, the hazard is used for commercial purposes to suggest misleadingly that ambient environmental light can cause acute retinal phototoxicity and increase the risk of AMD. Very large epidemiological studies show that blue-blocking IOLs do not reduce the risk or progression of AMD. Additionally, blue-filtering IOLs or spectacles cannot decrease glare disability, because they decrease image and glare illuminance in the same proportion. Blue light is essential for older adults' scotopic photoreception needed to reduce the risk of nighttime falling and related injuries. It is also critical for circadian photoreception that is essential for good health, sleep and cognitive performance. Unfortunately, age-related pupillary miosis, retinal rod and ganglion cell photoreceptor degeneration and decreased outdoor activity all reduce the amount of healthful blue light available to older adults. Blue-restricting IOLs further reduce the available blue light at a time when older adults need it most. Patients and ophthalmologists are exposed to hypothesis-based advertisements for blue-filtering optical devices that suppress short wavelength light critical for vision in dim lighting and for good physical and mental health. Spectacle and intraocular lens selections should be based on scientific fact, not conjecture. Ideal IOLs should improve photoreception rather than limit it permanently. Practice efficiency, surgical convenience and physician-manufacturer relationships may eliminate a patient's opportunity to choose between colorless blue-transmitting IOLs and yellow-tinted, blue-restricting IOLs. Cataract surgeons ultimately determine whether their patients have the opportunity to make an informed choice about their future photoreception.
Collapse
Affiliation(s)
- T Desmettre
- Centre de rétine médicale, 187, rue de Menin, 59520 Marquette-Lez-Lille, France.
| | - S Baillif
- Département d'ophtalmologie, hôpital Pasteur, 30, voie Romaine, 06000 Nice cedex 1, France
| | - T Mathis
- Service d'ophtalmologie, hôpital de la Croix-Rousse, hospices civils de Lyon, 69004 Lyon, France
| | - D Gatinel
- Service d'ophtalmologie, fondation A.-de-Rothschild, 25, rue Manin, 75940 Paris cedex 19, France
| | - M Mainster
- Department of Ophthalmology, University of Kansas School of Medicine, Prairie Village, Kansas, États-Unis
| |
Collapse
|
18
|
Hilditch CJ, Pradhan S, Costedoat G, Bathurst NG, Glaros Z, Gregory KB, Shattuck NL, Flynn-Evans EE. An at-home evaluation of a light intervention to mitigate sleep inertia symptoms. Sleep Health 2024; 10:S121-S129. [PMID: 37679265 DOI: 10.1016/j.sleh.2023.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES Under laboratory settings, light exposure upon waking at night improves sleep inertia symptoms. We investigated whether a field-deployable light source would mitigate sleep inertia in a real-world setting. METHODS Thirty-six participants (18 female; 26.6 years ± 6.1) completed an at-home, within-subject, randomized crossover study. Participants were awoken 45 minutes after bedtime and wore light-emitting glasses with the light either on (light condition) or off (control). A visual 5-minute psychomotor vigilance task, Karolinska sleepiness scale, alertness and mood scales, and a 3-minute auditory/verbal descending subtraction task were performed at 2, 12, 22, and 32 minutes after awakening. Participants then went back to sleep and were awoken after 45 minutes for the opposite condition. A series of mixed-effect models were performed with fixed effects of test bout, condition, test bout × condition, a random effect of the participant, and relevant covariates. RESULTS Participants rated themselves as more alert (p = .01) and energetic (p = .001) in the light condition compared to the control condition. There was no effect of condition for descending subtraction task outcomes when including all participants, but there was a significant improvement in descending subtraction task total responses in the light condition in the subset of participants waking from N3 (p = .03). There was a significant effect of condition for psychomotor vigilance task outcomes, with faster responses (p < .001) and fewer lapses (p < .001) in the control condition. CONCLUSIONS Our findings suggest that light modestly improves self-rated alertness and energy after waking at home regardless of sleep stage, with lower aggression and improvements to working memory only after waking from N3. Contrary to laboratory studies, we did not observe improved performance on the psychomotor vigilance task. Future studies should include measures of visual acuity and comfort to assess the feasibility of interventions in real-world settings.
Collapse
Affiliation(s)
- Cassie J Hilditch
- Fatigue Countermeasures Laboratory, San José State University, San José, California, USA.
| | - Sean Pradhan
- Fatigue Countermeasures Laboratory, San José State University, San José, California, USA; School of Business, Menlo College, Atherton, California, USA
| | - Gregory Costedoat
- Fatigue Countermeasures Laboratory, San José State University, San José, California, USA
| | - Nicholas G Bathurst
- Fatigue Countermeasures Laboratory, NASA Ames Research Center, Moffett Field, California, USA
| | - Zachary Glaros
- Fatigue Countermeasures Laboratory, NASA Ames Research Center, Moffett Field, California, USA
| | - Kevin B Gregory
- Fatigue Countermeasures Laboratory, NASA Ames Research Center, Moffett Field, California, USA
| | - Nita L Shattuck
- Operations Research Department, Naval Postgraduate School, Monterey, California, USA
| | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
19
|
Yaodong C, Zhang Y, Feng G, Lei Y, Liu Q, Liu Y. Light therapy for sleep disturbance comorbid depression in relation to neural circuits and interactive hormones-A systematic review. PLoS One 2023; 18:e0286569. [PMID: 37768984 PMCID: PMC10538739 DOI: 10.1371/journal.pone.0286569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/19/2023] [Indexed: 09/30/2023] Open
Abstract
AIM To provide an overview of the evidence on the effect of light therapy on sleep disturbance and depression, identify the light-active neural and hormonal correlates of the effect of light therapy on sleep disturbance comorbid depression (SDCD), and construct the mechanism by which light therapy alleviates SDCD. METHODS Articles published between 1981 and 2021 in English were accessed using Science Direct, Elsevier, and Google Scholar following a three-step searching process via evolved keywords. The evidence level, reliability, and credibility of the literature were evaluated using the evidence pyramid method, which considers the article type, impact factor, and journal citation report (JCR) partition. RESULTS A total of 372 articles were collected, of which 129 articles fit the inclusion criteria and 44% were at the top of the evidence pyramid hierarchy; 50% were in the first quarter of the JCR partitions. 114 articles provided specific neural and hormonal evidence of light therapy and were further divided into three groups: 37% were related to circadian regulation circuits, 27% were related to emotional regulation circuits, and 36% were related to hormones. CONCLUSIONS First, neural and hormonal light-active pathways for alleviating sleep disturbance or depression were identified, based on which the neural correlates of SDCD were located. Second, the light responses and interactions of hormones were reviewed and summarized, which also provided a way to alleviate SDCD. Finally, the light-active LHb and SCN exert extensive regulation impacts on the circadian and emotional circuits and hormones, forming a dual-core system for alleviating SDCD.
Collapse
Affiliation(s)
- Chen Yaodong
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| | - Yingzi Zhang
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| | - Guo Feng
- Psychological Research and Counseling Center, Southwest Jiaotong Univerisity, Chengdu, China
| | - Yuanfang Lei
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| | - Qiuping Liu
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| | - Yang Liu
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| |
Collapse
|
20
|
Paparella I, Campbell I, Sharifpour R, Beckers E, Berger A, Aizpurua JFB, Koshmanova E, Mortazavi N, Talwar P, Degueldre C, Lamalle L, Sherif S, Phillips C, Maquet P, Vandewalle G. Light modulates task-dependent thalamo-cortical connectivity during an auditory attentional task. Commun Biol 2023; 6:945. [PMID: 37714936 PMCID: PMC10504287 DOI: 10.1038/s42003-023-05337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Exposure to blue wavelength light stimulates alertness and performance by modulating a widespread set of task-dependent cortical and subcortical areas. How light affects the crosstalk between brain areas to trigger this stimulating effect is not established. Here we record the brain activity of 19 healthy young participants (24.05±2.63; 12 women) while they complete an auditory attentional task in darkness or under an active (blue-enriched) or a control (orange) light, in an ultra-high-field 7 Tesla MRI scanner. We test if light modulates the effective connectivity between an area of the posterior associative thalamus, encompassing the pulvinar, and the intraparietal sulcus (IPS), key areas in the regulation of attention. We find that only the blue-enriched light strengthens the connection from the posterior thalamus to the IPS. To the best of our knowledge, our results provide the first empirical data supporting that blue wavelength light affects ongoing non-visual cognitive activity by modulating task-dependent information flow from subcortical to cortical areas.
Collapse
Affiliation(s)
- Ilenia Paparella
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Islay Campbell
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Roya Sharifpour
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Elise Beckers
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ET, Maastricht, The Netherlands
| | - Alexandre Berger
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
- Synergia Medical SA, 1435, Mont-Saint-Guibert, Belgium
| | | | - Ekaterina Koshmanova
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Nasrin Mortazavi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Puneet Talwar
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Christian Degueldre
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Laurent Lamalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Siya Sherif
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Neurology Department, CHU de Liège, 4000, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
21
|
Siraji MA, Spitschan M, Kalavally V, Haque S. Light exposure behaviors predict mood, memory and sleep quality. Sci Rep 2023; 13:12425. [PMID: 37528146 PMCID: PMC10394000 DOI: 10.1038/s41598-023-39636-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
Ample research has shown that light influences our emotions, cognition, and sleep quality. However, little work has examined whether different light exposure-related behaviors, such as daytime exposure to electric light and nighttime usage of gadgets, especially before sleep, influence sleep quality and cognition. Three-hundred-and-one Malaysian adults (MeanAge±SD = 28 ± 9) completed the Light Exposure Behavior Assessment tool that measured five light exposure behaviors. They also completed the Morningness-Eveningness Questionnaire, Positive and Negative Affect Schedule, Pittsburgh Sleep Quality Index, and single items assessing trouble in memory and concentration. A partial least square structural equation model, showing 72.72% predictive power, revealed that less use of wearable blue filters outdoors during the day and more within one hour before sleep predicted early peak time (direct effect = -0.25). Increased time spent outdoors predicted a positive affect (direct effect = 0.33) and a circadian phase advancement (direct effect: rising time = 0.14, peak time = 0.20, retiring time = 0.17). Increased use of mobile phone before sleep predicted a circadian phase delay (direct effect: retiring time = -0.25; rising time = -0.23; peak time = -0.22; morning affect = -0.12), reduced sleep quality (direct effect = 0.13), and increased trouble in memory and concentration (total effect = 0.20 and 0.23, respectively). Increased use of tunable, LED, or dawn-simulating electric light in the morning and daytime predicted a circadian phase advancement (direct effect: peak time = 0.15, morning affect = 0.14, retiring time = 0.15) and good sleep quality (direct effect = -0.16). The results provide valuable insights into developing a healthy light diet to promote health and wellness.
Collapse
Affiliation(s)
- Mushfiqul Anwar Siraji
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences and Intelligent Lighting Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Vineetha Kalavally
- Department of Electrical and Computer Systems Engineering and Intelligent Lighting Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shamsul Haque
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences and Intelligent Lighting Laboratory, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
22
|
Shoaib Z, Akbar A, Kim ES, Kamran MA, Kim JH, Jeong MY. Utilizing EEG and fNIRS for the detection of sleep-deprivation-induced fatigue and its inhibition using colored light stimulation. Sci Rep 2023; 13:6465. [PMID: 37081056 PMCID: PMC10119294 DOI: 10.1038/s41598-023-33426-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023] Open
Abstract
Drowsy driving is a common, but underestimated phenomenon in terms of associated risks as it often results in crashes causing fatalities and serious injuries. It is a challenging task to alert or reduce the driver's drowsy state using non-invasive techniques. In this study, a drowsiness reduction strategy has been developed and analyzed using exposure to different light colors and recording the corresponding electrical and biological brain activities. 31 subjects were examined by dividing them into 2 classes, a control group, and a healthy group. Fourteen EEG and 42 fNIRS channels were used to gather neurological data from two brain regions (prefrontal and visual cortices). Experiments shining 3 different colored lights have been carried out on them at certain times when there is a high probability to get drowsy. The results of this study show that there is a significant increase in HbO of a sleep-deprived participant when he is exposed to blue light. Similarly, the beta band of EEG also showed an increased response. However, the study found that there is no considerable increase in HbO and beta band power in the case of red and green light exposures. In addition to that, values of other physiological signals acquired such as heart rate, eye blinking, and self-reported Karolinska Sleepiness Scale scores validated the findings predicted by the electrical and biological signals. The statistical significance of the signals achieved has been tested using repeated measures ANOVA and t-tests. Correlation scores were also calculated to find the association between the changes in the data signals with the corresponding changes in the alertness level.
Collapse
Affiliation(s)
- Zeshan Shoaib
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Korea
| | - Arbab Akbar
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Korea
| | - Eung Soo Kim
- Department of Electronic and Robot Engineering, Busan University of Foreign Studies, 65, KeumSaem-Ro 485 beongil, KeumJeong-Gu, Busan, 46234, Korea
| | - Muhammad Ahmad Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Korea
| | - Jun Hyun Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Korea
| | - Myung Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Korea.
| |
Collapse
|
23
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
24
|
Yang CC, Tsujimura SI, Yeh SL. Blue-light background impairs visual exogenous attention shift. Sci Rep 2023; 13:3794. [PMID: 36882407 PMCID: PMC9992692 DOI: 10.1038/s41598-022-24862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 03/09/2023] Open
Abstract
Previous research into the effects of blue light on visual-spatial attention has yielded mixed results due to a lack of properly controlling critical factors like S-cone stimulation, ipRGCs stimulation, and color. We adopted the clock paradigm and systematically manipulated these factors to see how blue light impacts the speed of exogenous and endogenous attention shifts. Experiments 1 and 2 revealed that, relative to the control light, exposure to the blue-light background decreased the speed of exogenous (but not endogenous) attention shift to external stimuli. To further clarify the contribution(s) of blue-light sensitive photoreceptors (i.e., S-cone and ipRGCs), we used a multi-primary system that could manipulate the stimulation of a single type of photoreceptor without changing the stimulation of other photoreceptors (i.e., the silent substitution method). Experiments 3 and 4 revealed that stimulation of S-cones and ipRGCs did not contribute to the impairment of exogenous attention shift. Our findings suggest that associations with blue colors, such as the concept of blue light hazard, cause exogenous attention shift impairment. Some of the previously documented blue-light effects on cognitive performances need to be reevaluated and reconsidered in light of our findings.
Collapse
Affiliation(s)
- Chien-Chun Yang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Sei-Ichi Tsujimura
- Faculty of Design and Architecture, Nagoya City University, Nagoya, Japan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Martin LF, Cheng K, Washington SM, Denton M, Goel V, Khandekar M, Largent-Milnes TM, Patwardhan A, Ibrahim MM. Green Light Exposure Elicits Anti-inflammation, Endogenous Opioid Release and Dampens Synaptic Potentiation to Relieve Post-surgical Pain. THE JOURNAL OF PAIN 2023; 24:509-529. [PMID: 36283655 PMCID: PMC9991952 DOI: 10.1016/j.jpain.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Light therapy improves multiple conditions such as seasonal affective disorders, circadian rhythm dysregulations, and neurodegenerative diseases. However, little is known about its potential benefits in pain management. While current pharmacologic methods are effective in many cases, the associated side effects can limit their use. Non-pharmacological methods would minimize drug dependence, facilitating a reduction of the opioid burden. Green light therapy has been shown to be effective in reducing chronic pain in humans and rodents. However, its underlying mechanisms remain incompletely defined. In this study, we demonstrate that green light exposure reduced postsurgical hypersensitivity in rats. Moreover, this therapy potentiated the antinociceptive effects of morphine and ibuprofen on mechanical allodynia in male rats. Importantly, in female rats, GLED potentiated the antinociceptive effects of morphine but did not affect that of ibuprofen. We showed that green light increases endogenous opioid levels while lessening synaptic plasticity and neuroinflammation. Importantly, this study reveals new insights into how light exposure can affect neuroinflammation and plasticity in both genders. Clinical translation of these results could provide patients with improved pain control and decrease opioid consumption. Given the noninvasive nature of green light, this innovative therapy would be readily implementable in hospitals. PERSPECTIVE: This study provides a potential additional therapy to decrease postsurgical pain. Given the safety, availability, and the efficacy of green light therapy, there is a significant potential for advancing the green light therapy to clinical trials and eventual translation to clinical settings.
Collapse
Affiliation(s)
- Laurent F Martin
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Kevin Cheng
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Stephanie M Washington
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Millie Denton
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Vasudha Goel
- Department of Anesthesiology, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Maithili Khandekar
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, The University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona
| | - Mohab M Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, The University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona.
| |
Collapse
|
26
|
Blume C, Niedernhuber M, Spitschan M, Slawik HC, Meyer MP, Bekinschtein TA, Cajochen C. Melatonin suppression does not automatically alter sleepiness, vigilance, sensory processing, or sleep. Sleep 2022; 45:zsac199. [PMID: 35998110 PMCID: PMC9644120 DOI: 10.1093/sleep/zsac199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Indexed: 09/19/2023] Open
Abstract
Presleep exposure to short-wavelength light suppresses melatonin and decreases sleepiness with activating effects extending to sleep. This has mainly been attributed to melanopic effects, but mechanistic insights are missing. Thus, we investigated whether two light conditions only differing in the melanopic effects (123 vs. 59 lx melanopic EDI) differentially affect sleep besides melatonin. Additionally, we studied whether the light differentially modulates sensory processing during wakefulness and sleep. Twenty-nine healthy volunteers (18-30 years, 15 women) were exposed to two metameric light conditions (high- vs. low-melanopic, ≈60 photopic lx) for 1 h ending 50 min prior to habitual bed time. This was followed by an 8-h sleep opportunity with polysomnography. Objective sleep measurements were complemented by self-report. Salivary melatonin, subjective sleepiness, and behavioral vigilance were sampled at regular intervals. Sensory processing was evaluated during light exposure and sleep on the basis of neural responses related to violations of expectations in an oddball paradigm. We observed suppression of melatonin by ≈14% in the high- compared to the low-melanopic condition. However, conditions did not differentially affect sleep, sleep quality, sleepiness, or vigilance. A neural mismatch response was evident during all sleep stages, but not differentially modulated by light. Suppression of melatonin by light targeting the melanopic system does not automatically translate to acutely altered levels of vigilance or sleepiness or to changes in sleep, sleep quality, or basic sensory processing. Given contradicting earlier findings and the retinal anatomy, this may suggest that an interaction between melanopsin and cone-rod signals needs to be considered. Clinical Trial Registry: German Clinical Trials Register, DRKS00023602, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00023602.
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland (institution, where the work was performed)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Maria Niedernhuber
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Manuel Spitschan
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland (institution, where the work was performed)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Helen C Slawik
- Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Martin P Meyer
- Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Tristan A Bekinschtein
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland (institution, where the work was performed)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 2022; 8:e10282. [PMID: 36042717 PMCID: PMC9420367 DOI: 10.1016/j.heliyon.2022.e10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Light is necessary for human health and well-being. As we spend more time indoors, we are being increasingly exposed to artificial light. The development of artificial lighting has allowed us to control the brightness, colour, and timing of our light exposure. Yet, the widespread use of artificial light has raised concerns about the impact of altering our light environment on our health. The widespread adoption of personal digital devices over the past decade has exposed us to yet another source of artificial light. We spend a significant amount of time using digital devices with light-emitting screens, including smartphones and tablets, at close range. The light emitted from these devices, while appearing white, has an emission spectrum with a peak in the blue range. Blue light is often characterised as hazardous as its photon energy is higher than that of other wavelengths of visible light. Under certain conditions, visible blue light can cause harm to the retina and other ocular structures. Blue light can also influence the circadian rhythm and processes mediated by melanopsin-expressing intrinsically photosensitive retinal ganglion cells. While the blue component of sunlight is necessary for various physiological processes, whether the low-illuminance artificial blue light emitted from digital devices presents a risk to our health remains an ongoing area of debate. As technological advancements continue, it is relevant to understand how new devices may influence our well-being. This review examines the existing research on artificial blue light safety and the eye, visual performance, and circadian functions.
Collapse
Affiliation(s)
| | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany.,Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
28
|
Sabbah S, Worden MS, Laniado DD, Berson DM, Sanes JN. Luxotonic signals in human prefrontal cortex as a possible substrate for effects of light on mood and cognition. Proc Natl Acad Sci U S A 2022; 119:e2118192119. [PMID: 35867740 PMCID: PMC9282370 DOI: 10.1073/pnas.2118192119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Studies with experimental animals have revealed a mood-regulating neural pathway linking intrinsically photosensitive retinal ganglion cells (ipRGCs) and the prefrontal cortex (PFC), involved in the pathophysiology of mood disorders. Since humans also have light-intensity-encoding ipRGCs, we asked whether a similar pathway exists in humans. Here, functional MRI was used to identify PFC regions and other areas exhibiting light-intensity-dependent signals. We report 26 human brain regions having activation that either monotonically decreases or monotonically increases with light intensity. Luxotonic-related activation occurred across the cerebral cortex, in diverse subcortical structures, and in the cerebellum, encompassing regions with functions related to visual image formation, motor control, cognition, and emotion. Light suppressed PFC activation, which monotonically decreased with increasing light intensity. The sustained time course of light-evoked PFC responses and their susceptibility to prior light exposure resembled those of ipRGCs. These findings offer a functional link between light exposure and PFC-mediated cognitive and affective phenomena.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael S. Worden
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Dimitrios D. Laniado
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Jerome N. Sanes
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
- Center for Neurorestoration and Neurotechnology, Veterans Affairs Providence Healthcare System, Providence, RI 02908
| |
Collapse
|
29
|
Lok R, Joyce DS, Zeitzer JM. Impact of daytime spectral tuning on cognitive function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 230:112439. [PMID: 35398657 DOI: 10.1016/j.jphotobiol.2022.112439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Light at night can improve alertness and cognition. Exposure to daytime light, however, has yielded less conclusive results. In addition to direct effects, daytime light may also mitigate the impact of nocturnal light exposure on alertness. To examine the impact of daytime lighting on daytime cognitive performance, and evening alertness, we studied nine healthy individuals using a within subject crossover design. On four visits, participants were exposed to one of four lighting conditions for 10 h (dim fluorescent, room fluorescent, broad-spectrum LED, standard white LED; the latter three conditions were matched for 100 lx) followed by an exposure to bright evening light. Cognitive performance, subjective and objective measures of alertness were regularly obtained. While daytime alertness was not impacted by light exposure, the broad-spectrum LED light improved several aspects of daytime cognition. The impact of evening light on alertness was not mitigated by the pre-exposure to different daytime lighting conditions. Results suggest that daytime exposure to white light with high melanopic efficacy has the potential to improve daytime cognitive function and that such improvements are likely to be direct rather than a consequence of light-induced changes in alertness.
Collapse
Affiliation(s)
- Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States of America
| | - Daniel S Joyce
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States of America; Department of Psychology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States of America; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, United States of America.
| |
Collapse
|
30
|
Maruani J, Geoffroy PA. Multi-Level Processes and Retina-Brain Pathways of Photic Regulation of Mood. J Clin Med 2022; 11:jcm11020448. [PMID: 35054142 PMCID: PMC8781294 DOI: 10.3390/jcm11020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood
Collapse
Affiliation(s)
- Julia Maruani
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| | - Pierre A. Geoffroy
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, F-67000 Strasbourg, France
- GHU Paris—Psychiatry & Neurosciences, 1 Rue Cabanis, F-75014 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| |
Collapse
|
31
|
Lin Z, Hou G, Yao Y, Zhou Z, Zhu F, Liu L, Zeng L, Yang Y, Ma J. 40-Hz Blue Light Changes Hippocampal Activation and Functional Connectivity Underlying Recognition Memory. Front Hum Neurosci 2022; 15:739333. [PMID: 34975431 PMCID: PMC8716555 DOI: 10.3389/fnhum.2021.739333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Research on light modulation has typically examined the wavelength, intensity, and exposure time of light, and measured rhythm, sleep, and cognitive ability to evaluate the regulatory effects of light variables on physiological and cognitive functions. Although the frequency of light is one of the main dimensions of light, few studies have attempted to manipulate it to test the effect on brain activation and performance. Recently, 40-Hz light stimulation has been proven to significantly alleviate deficits in gamma oscillation of the hippocampus caused by Alzheimer’s disease. Although this oscillation is one of the key functional characteristics of performing memory tasks in healthy people, there is no evidence that 40-Hz blue light exposure can effectively regulate brain activities related to complex cognitive tasks. In the current study, we examined the difference in the effects of 40-Hz light or 0-Hz light exposure on brain activation and functional connectivity during a recognition memory task. Through joint augmentation of visual area activation, 40-Hz light enhanced brain areas mostly in the limbic system that are related to memory, such as the hippocampus and thalamus. Conversely, 0-Hz light enhanced brain areas mostly in the prefrontal cortex. Additionally, functional connection analysis, with the hippocampus as the seed point, showed that 40-Hz light enhanced connection with the superior parietal lobe and reduced the connection with the default network. These results indicate that light at a frequency of 40 Hz can change the activity and functional connection of memory-related core brain areas. They also indicate that in the use of light to regulate cognitive functions, its frequency characteristics merit attention.
Collapse
Affiliation(s)
- Zhenglong Lin
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Youli Yao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Zhifeng Zhou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Linjing Liu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Lingwu Zeng
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yatao Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Junxian Ma
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
32
|
Environmental experience design research spectrum for energy and human well-being. HANDBOOK OF ENERGY AND ENVIRONMENTAL SECURITY 2022. [PMCID: PMC9258331 DOI: 10.1016/b978-0-12-824084-7.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Adler AC, Nathanson BH, Chandrakantan A. Monochromic light reduces emergence delirium in children undergoing adenotonsillectomy; a double-blind randomized observational study. BMC Anesthesiol 2021; 21:217. [PMID: 34496743 PMCID: PMC8424999 DOI: 10.1186/s12871-021-01435-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022] Open
Abstract
Background Emergence delirium (ED) is common in pediatric anesthesia. This dissociative state in which the patient is confused from their surroundings and flailing can be self-injurious and traumatic for parents. Treatment is by administration of sedatives which can prolong recovery. The aim of this study was to determine if exposure to monochromatic blue light (MBL) in the immediate phase of recovery could reduce the overall incidence of emergence delirium in children following general inhalational anesthesia. Methods This double blinded randomized controlled study included patients ages 2–6 undergoing adenotonsillectomy. Postoperatively, 104 patients were randomization (52 in each group) for exposure to sham blue or MBL during the first phase (initial 30 min) of recovery. The primary outcome was the incidence of emergence delirium during the first phase. We also examined Pediatric Anesthesia Emergence Delirium (PAED) scores throughout the first phase. Results Emergence Delirium was reported in 5.9% of MBL patients versus 33.3% in the sham group, p = 0.001. Using logistic regression adjusting for age, weight, gender, ASA classification and PAED scores provided an adjusted relative risk ratio of 0.18; 95% CI (0.06, 0.54); p = 0.001 for patients in the MBL group. 23.5% of MBL patients versus 52.9% of sham patients had either ED or PAED scores of 12 or more throughout the first phase of recovery, p = 0.002. This produced an adjusted relative risk of 0.46, 95% CI (0.29, 0.75), p = 0.001. Conclusions Monochromatic blue light represents a non-pharmacologic method to reduce the incidence of emergence delirium and PAED scores in children. Trial Registration #NCT03285243 registered on 15/09/2017 Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01435-1.
Collapse
Affiliation(s)
- Adam C Adler
- Department of Anesthesiology, Perioperative and Pain Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX, USA. .,Baylor College of Medicine, Houston, TX, USA.
| | | | - Arvind Chandrakantan
- Department of Anesthesiology, Perioperative and Pain Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Song Y, Lv X, Qin W, Dang W, Chen Z, Nie J, Liu B, Dong W. The Effect of Blue-enriched White Light on Cognitive Performances and Sleepiness of Simulated Shift Workers: A Randomized Controlled Trial. J Occup Environ Med 2021; 63:752-759. [PMID: 33901161 DOI: 10.1097/jom.0000000000002241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Shift work is associated with reduced performance and efficiency, the current study aimed at investigating whether blue-enriched white light could improve workers' performance. METHODS The study, which adopted a randomized controlled trial, was conducted among 48 simulated shift workers. The participants performed sustained attention task, working memory task, and sleepiness task during night shift work. The data was analyzed using two-way repeated measure ANOVA. RESULTS The results indicated that, compared to conventional light, participants' correct responses of the sustained attention significantly increased when they were exposed to blue-enriched white light, correspondingly, the commission errors and omission errors declined. Furthermore, the blue-enriched white light had a significant effect on the decrease of sleepiness. However, the working memory was not significantly affected. CONCLUSION Exposing to blue-enriched white light can improve sustained attention and reduce sleepiness.
Collapse
Affiliation(s)
- Yanping Song
- Peking University Sixth Hospital, Peking University, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health National Clinical Research Center for Mental Disorders, Haidian District, Beijing 100191, PR China (Song, Dang, Dong); National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Haidian District, Beijing 100191, PR China (Song, Dang, Dong); School of Public Health, Peking University, Haidian District, Beijing, 100191, PR China (Xinrui, Qin, Liu); School of Physics, Peking University, Haidian District, Beijing 100871, PR China (Chen, Nie)
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
People are constantly exposed to blue light while engaging in work. It is thus crucial to understand if vast exposure to blue light influences cognitive control, which is essential for working efficiently. Previous studies proposed that the stimulation of intrinsically photosensitive retinal ganglion cells (ipRGCs), a newly discovered photoreceptor that is highly sensitive to blue light, could modulate non-image forming functions. Despite studies that showed blue light (or ipRGCs) enhances brain activations in regions related to cognitive control, how exposure to blue light changes our cognitive control behaviorally remains elusive. We examined whether blue light influences cognitive control through three behavioral tasks in three studies: the sustained attention to response task (SART), the task-switching paradigm, and the Stroop task. Classic effects of the SART, switch cost, and the Stroop effect were found, but no differences were observed in results of different background lights across the six experiments. Together, we conclude that these domains of cognitive control are not influenced by blue light and ipRGCs, and whether the enhancement of blue light on brain activities extends to the behavioral level should be carefully re-examined.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Yun-Chen Tu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Ceglarek A, Hubalewska-Mazgaj M, Lewandowska K, Sikora-Wachowicz B, Marek T, Fafrowicz M. Time-of-day effects on objective and subjective short-term memory task performance. Chronobiol Int 2021; 38:1330-1343. [PMID: 34121547 DOI: 10.1080/07420528.2021.1929279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The time-of-day along with the synchrony effect (better performance at optimal times of the day according to the chronotype) on the cognitive performance has been well established in previous research. This influence is mediated by both circadian and homeostatic processes consistent with the Borbély two-process model. This experiment focused on the objective and subjective performance of the visual short-term memory task requiring holistic processing. Sixty-five young, healthy participants including 40 females were divided into morning and evening types and performed a given task in two sessions - in the morning and in the evening. Type division was made according to the chronotype questionnaire and polymorphism of the PER3 clock gene. The task was a modified version of Deese-Roediger-McDermott paradigm adjusted to study short-term memory, in which visual, abstract stimuli were used. The analysis was based on an exploratory approach investigating the influence of circadian and individual (sex) factors on execution of memory task. Evening types were more accurate in the task compared to morning types, regardless of the part of the day. The time-of-day effect was revealed on objective measures (reaction times for hits and false alarms) and subjective effort put into the performance. The reaction times were slower in the morning unlike the effort that was greater in the evening. The time-of-day × sex interaction was observed in the case of subjective effort: men described the task as more demanding in the evening. The results could be explained by differences in hemispheric dominance depending on the time-of-day. The report provides new patterns of behavioral data analysis, investigating sex aspects and use of self-assessment scales of performance.
Collapse
Affiliation(s)
- Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Koryna Lewandowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Barbara Sikora-Wachowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
37
|
Sur S, Sharma A, Malik I, Bhardwaj SK, Kumar V. Daytime light spectrum affects photoperiodic induction of vernal response in obligate spring migrants. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111017. [PMID: 34126231 DOI: 10.1016/j.cbpa.2021.111017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
It is not well understood how the spectral composition (wavelength) of daylight that varies considerably during the day and seasons affects photoperiodic responses in a seasonal species. Here, we investigated the molecular underpinnings of wavelength-dependent photoperiodic induction in migratory redheaded buntings transferred to 13 h long days in neutral (white), 460 nm (blue), 500 nm (green) or 620 nm (red) wavelength that were compared with one another, and to short day controls for indices of the migratory (body fattening and weight gain, and Zugunruhe) and reproductive (testicular maturation) responses. Buntings showed wavelength-dependent photoperiodic response, with delayed Zugunruhe and slower testis maturation under 620 nm red light. Post-mortem comparison of gene expressions further revealed wavelength-dependence of the photoperiodic molecular response. Whereas there were higher retinal expressions of opn2 (rhodopsin) and opn5 (neuropsin) genes in red daylight, and of rhodopsin-like opsin (rh2) gene in green daylight, the hypothalamic opn2 mRNA levels were higher in blue daylight. Similarly, we found in birds under blue daylight an increased hypothalamic expression of genes involved in the photoperiodic induction (thyroid stimulating hormone subunit beta, tshb; eye absent 3, eya3; deiodinase type 2, dio2) and associated neural responses such as the calcium signaling (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, atp2a2), dopamine biosynthesis (tyrosine hydroxylase, th) and neurogenesis (brain-derived neurotrophic factor, bdnf). These results demonstrate transcriptional changes in parallel to responses associated with migration and reproduction in buntings, and suggest a role of daylight spectrum in photoperiodic induction of the vernal response in obligate spring avian migrants.
Collapse
Affiliation(s)
- Sayantan Sur
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
38
|
Hrehová L, Mezian K. Non-pharmacologic treatment of insomnia in primary care settings. Int J Clin Pract 2021; 75:e14084. [PMID: 33555081 DOI: 10.1111/ijcp.14084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Prevalence of insomnia is higher in females and increases with higher age. Besides primary insomnia, comorbid sleep disorders are also common, accompanying different conditions. Considering the possible adverse effects of commonly used drugs to promote sleep, a non-pharmacologic approach should be preferred in most cases. Although generally considered first-line treatment, the non-pharmacologic approach is often underestimated by both patients and physicians. OBJECTIVE To provide primary care physicians an up-to-date approach to the non-pharmacologic treatment of insomnia. METHODS PubMed, Web of Science, and Scopus databases were searched for relevant articles about the non-pharmacologic treatment of insomnia up to December 2020. We restricted our search only to articles written in English. MAIN MESSAGE Most patients presenting with sleep disorder symptoms can be effectively managed in the primary care setting. Primary care physicians may use pharmacologic and non-pharmacologic approaches, while the latter should be generally considered first-line treatment. A primary care physician may opt to refer the patient to a subspecialist for refractory cases. CONCLUSIONS This paper provides an overview of current recommendations and up-to-date evidence for the non-pharmacologic treatment of insomnia. This article emphasizes the importance of cognitive-behavioral therapy for insomnia, likewise, exercise and relaxation techniques. Complementary and alternative approaches are also covered, eg, light therapy, aromatherapy, music therapy, and herbal medicine.
Collapse
Affiliation(s)
- Laura Hrehová
- Institute of General Practice, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamal Mezian
- Department of Rehabilitation Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
39
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Exposure to Short Photoperiod Regime Restores Spatial Cognition in Ventral Subicular Lesioned Rats: Potential Role of Hippocampal Plasticity, Glucocorticoid Receptors, and Neurogenesis. Mol Neurobiol 2021; 58:4437-4459. [PMID: 34024004 DOI: 10.1007/s12035-021-02409-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/27/2021] [Indexed: 12/29/2022]
Abstract
Ambient light influences our mood, behavior, and cognition. Phototherapy has been considered as an effective non-pharmacological intervention strategy in the restoration of cognitive functions following central nervous system insults. However, the cellular and molecular underpinnings of phototherapy-mediated functional recovery are yet to be studied. The present study examines the effectiveness of short photoperiod regime (SPR; 6:18-h light:dark cycle) in restoring the cognitive functions in ventral subicular lesioned rats. Bilateral ventral subicular lesion (VSL) resulted in significant impairment of spatial navigational abilities when tested in the Morris water maze (MWM) task. Further, VSL resulted in reduced expression of glucocorticoid receptors (GRs) and activity-regulated cytoskeletal (Arc) protein and suppression of neurogenesis in the hippocampus. VSL also suppressed the magnitude of long-term potentiation (LTP) in the hippocampal Schaffer collateral-CA1 synapses. However, exposure to SPR for 21 days showed significant restoration of spatial performance in the MWM task as the ventral subicular lesioned rats could deploy higher cognitive allocentric navigational strategies to reach the hidden platform. Further, SPR resulted in enhanced expression of hippocampal GR and Arc protein and neurogenesis but not hippocampal LTP suggestive of appropriate need-based SPR intervention. In conclusion, the study demonstrates the effectiveness of SPR in establishing functional recovery as well as the possible molecular and cellular basis of cognitive recovery in a rat model of neurodegeneration. Such studies provide a framework in understanding the efficacy of non-pharmacological strategies in establishing functional recovery in neurodegenerative conditions.
Collapse
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
40
|
Sun W, Yang Y, Chen X, Cheng Y, Li X, An L. Light Promotes Neural Correlates of Fear Memory via Enhancing Brain-Derived Neurotrophic Factor (BDNF) Expression in the Prelimbic Cortex. ACS Chem Neurosci 2021; 12:1802-1810. [PMID: 33961393 DOI: 10.1021/acschemneuro.1c00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to light has been shown to enhance vigilance and improve working memory, possibly due to changes in prefrontal function. Ample evidence supports the critical role of prefrontal cortex (PFC) in fear memory performance. However, the effects of light on memory processing and its potential mechanisms remain unclear. Here, through rats exposure conditioned to light at different memory phases, we sought evidence for the influences by employing behavioral tests, pharmacological infusions, immunoblotting, and electrophysiological recording. Exposure to light immediately following conditioning of 30 min or longer could effectively improve consolidation of fear memory without altering short-term memory or upgrading the original fear. The absence of significant freezing during baseline and intertrial interval periods ruled out the possibility of a general induction of freezing by light. Meanwhile, rats exposed to light in homecages or conditioning chambers exhibited a similar memory phenotype, indicating that light specifically enhanced the fear stimulus rather than the contextual environment. Furthermore, light exposure elevated the training-induced brain-derived neurotrophic factor (BDNF) expression in the prelimbic, but not infralimbic, subregion of the PFC. Moreover, the BDNF-TrkB pathway, but not the BDNF-p75NTR pathway, was involved in light-mediated fear memory. The enhancement in BDNF activity effectively facilitated firing correlates of prelimbic pyramidal neurons but not fast-spiking interneurons. Blocking the training-induced BDNF by its antibody abolished the effects of light on neural function and fear memory. Therefore, our findings indicate that light enhances training-induced BDNF expression that promotes the neural correlate of memory function.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yan Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiaolian Li
- Department of Neurology, Jinan Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Physiology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
41
|
Zohdi H, Egli R, Guthruf D, Scholkmann F, Wolf U. Color-dependent changes in humans during a verbal fluency task under colored light exposure assessed by SPA-fNIRS. Sci Rep 2021; 11:9654. [PMID: 33958616 PMCID: PMC8102618 DOI: 10.1038/s41598-021-88059-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023] Open
Abstract
Light evokes robust visual and nonvisual physiological and psychological effects in humans, such as emotional and behavioral responses, as well as changes in cognitive brain activity and performance. The aim of this study was to investigate how colored light exposure (CLE) and a verbal fluency task (VFT) interact and affect cerebral hemodynamics, oxygenation, and systemic physiology as determined by systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). 32 healthy adults (17 female, 15 male, age: 25.5 ± 4.3 years) were exposed to blue and red light for 9 min while performing a VFT. Before and after the CLE, subjects were in darkness. We found that this long-term CLE-VFT paradigm elicited distinct changes in the prefrontal cortex and in most systemic physiological parameters. The subjects' performance depended significantly on the type of VFT and the sex of the subject. Compared to red light, blue evoked stronger responses in cerebral hemodynamics and oxygenation in the visual cortex. Color-dependent changes were evident in the recovery phase of several systemic physiological parameters. This study showed that the CLE has effects that endure at least 15 min after cessation of the CLE. This underlines the importance of considering the persistent influence of colored light on brain function, cognition, and systemic physiology in everyday life.
Collapse
Affiliation(s)
- Hamoon Zohdi
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Rahel Egli
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Daniel Guthruf
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland
- Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland.
| |
Collapse
|
42
|
Stefani O, Freyburger M, Veitz S, Basishvili T, Meyer M, Weibel J, Kobayashi K, Shirakawa Y, Cajochen C. Changing color and intensity of LED lighting across the day impacts on circadian melatonin rhythms and sleep in healthy men. J Pineal Res 2021; 70:e12714. [PMID: 33378563 DOI: 10.1111/jpi.12714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023]
Abstract
We examined whether dynamically changing light across a scheduled 16-h waking day influences sleepiness, cognitive performance, visual comfort, melatonin secretion, and sleep under controlled laboratory conditions in healthy men. Fourteen participants underwent a 49-h laboratory protocol in a repeated-measures study design. They spent the first 5 hours in the evening under standard lighting, followed by an 8-h nocturnal sleep episode at habitual bedtimes. Thereafter, volunteers either woke up to static light or to a dynamic light that changed spectrum and intensity across the scheduled 16-h waking day. Following an 8-h nocturnal sleep episode, the volunteers spent another 11 hours either under static or dynamic light. Static light attenuated the evening rise in melatonin levels more compared to dynamic light as indexed by a significant reduction in the melatonin AUC prior to bedtime during static light only. Participants felt less vigilant in the evening during dynamic light. After dynamic light, sleep latency was significantly shorter in both the baseline and treatment night while sleep structure, sleep quality, cognitive performance, and visual comfort did not significantly differ. The study shows that dynamic changes in spectrum and intensity of light promote melatonin secretion and sleep initiation in healthy men.
Collapse
Affiliation(s)
- Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Marlène Freyburger
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Simon Veitz
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Tamara Basishvili
- School of Natural Sciences and Medicine, Tengiz Oniani Laboratory of Sleep-Wakefulness Cycle Study, Ilia State University, Tbilisi, Georgia
| | - Martin Meyer
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Janine Weibel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Kumpei Kobayashi
- Development and Engineering Department, Toshiba Materials Co. Ltd, Yokohama-City, Japan
| | - Yasuhiro Shirakawa
- Development and Engineering Department, Toshiba Materials Co. Ltd, Yokohama-City, Japan
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Light-Dependent Effects of Prefrontal rTMS on Emotional Working Memory. Brain Sci 2021; 11:brainsci11040446. [PMID: 33807349 PMCID: PMC8065741 DOI: 10.3390/brainsci11040446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Growing evidence suggests that colored light exposure can affect several brain functions in addition to conscious visual perception. Blue as compared to green light has especially been shown to enhance alertness and vigilance, as well as cognitive functions. However, the role of light exposure in studies using non-invasive brain stimulation remains unclear. Here, we examined the impact of light on cognitive-emotional effects of prefrontal repetitive transcranial magnetic stimulation (rTMS). In a randomized within-subjects design, twenty participants (12 males, 26 ± 4 years) were exposed to blue or green light prior and concomitant to active or sham rTMS (1Hz, 15min, 110% of the resting motor threshold), applied over the right dorsolateral prefrontal cortex (DLPFC). In each condition, an emotional working memory task (EMOBACK) was presented pre- and post-intervention. Stimuli of the EMOBACK task were positive, negative and neutral words. Our results revealed valence-specific stimulation effects in dependence of colored light exposure. More specifically, task accuracy was significantly increased for positive stimuli under blue light and for negative stimuli under green light exposure. Our findings highlight the importance of state-dependency in studies using non-invasive brain stimulation and show blue light exposure to be a potential adjunctive technique to rTMS for enhancing cognitive-emotional modulation.
Collapse
|
44
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
45
|
Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol 2021; 12:636330. [PMID: 33841306 PMCID: PMC8027232 DOI: 10.3389/fneur.2021.636330] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Light profoundly affects our mental and physical health. In particular, light, when not delivered at the appropriate time, may have detrimental effects. In mammals, light is perceived not only by rods and cones but also by a subset of retinal ganglion cells that express the photopigment melanopsin that renders them intrinsically photosensitive (ipRGCs). ipRGCs participate in contrast detection and play critical roles in non-image-forming vision, a set of light responses that include circadian entrainment, pupillary light reflex (PLR), and the modulation of sleep/alertness, and mood. ipRGCs are also found in the human retina, and their response to light has been characterized indirectly through the suppression of nocturnal melatonin and PLR. However, until recently, human ipRGCs had rarely been investigated directly. This gap is progressively being filled as, over the last years, an increasing number of studies provided descriptions of their morphology, responses to light, and gene expression. Here, I review the progress in our knowledge of human ipRGCs, in particular, the different morphological and functional subtypes described so far and how they match the murine subtypes. I also highlight questions that remain to be addressed. Investigating ipRGCs is critical as these few cells play a major role in our well-being. Additionally, as ipRGCs display increased vulnerability or resilience to certain disorders compared to conventional RGCs, a deeper knowledge of their function could help identify therapeutic approaches or develop diagnostic tools. Overall, a better understanding of how light is perceived by the human eye will help deliver precise light usage recommendations and implement light-based therapeutic interventions to improve cognitive performance, mood, and life quality.
Collapse
Affiliation(s)
- Ludovic S Mure
- Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| |
Collapse
|
46
|
Blue-light effects on saccadic eye movements and attentional disengagement. Atten Percept Psychophys 2021; 83:1713-1728. [PMID: 33751450 DOI: 10.3758/s13414-021-02250-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
People are constantly exposed to high-energy blue light as they spend considerable amounts of time reading and browsing materials on electronic products like computers and cellphones. Recent studies suggest that the stimulation of intrinsically photosensitive retinal ganglion cells (ipRGCs)-a newly discovered type of photoreceptor shown to be particularly sensitive to blue light-activates brain regions related to eye movements and attentional orienting (e.g., frontal eye fields). It remains unclear, however, whether and how blue light affects eye movements and attention behaviorally. We examined this by adopting the gap paradigm in which participants made saccades to a peripheral target as quickly and accurately as possible while the fixation sign vanished (i.e., the gap condition) or remained visible. Participants were exposed to blue and orange light on two separate days. Faster saccade latency under blue light was found across two experiments, and the results indicate that blue light shortened saccade latency when attention and eye movements operate simultaneously. Our findings provide evidence for the blue-light facilitatory effect on eye movements and attentional disengagement, and suggest that blue light can enhance the speed of saccadic eye movements.
Collapse
|
47
|
Grant LK, Kent BA, Mayer MD, Stickgold R, Lockley SW, Rahman SA. Daytime Exposure to Short Wavelength-Enriched Light Improves Cognitive Performance in Sleep-Restricted College-Aged Adults. Front Neurol 2021; 12:624217. [PMID: 33692742 PMCID: PMC7937889 DOI: 10.3389/fneur.2021.624217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/29/2021] [Indexed: 11/22/2022] Open
Abstract
We tested the effect of daytime indoor light exposure with varying melanopic strength on cognitive performance in college-aged students who maintained an enforced nightly sleep opportunity of 7 h (i.e., nightly sleep duration no longer than 7 h) for 1 week immediately preceding the day of light exposure. Participants (n = 39; mean age ± SD = 24.5 ± 3.2 years; 21 F) were randomized to an 8 h daytime exposure to one of four white light conditions of equal photopic illuminance (~50 lux at eye level in the vertical plane) but different melanopic illuminance [24–45 melanopic-EDI lux (melEDI)] generated by varying correlated color temperatures [3000K (low-melEDI) or 5000K (high-melEDI)] and spectra [conventional or daylight-like]. Accuracy on a 2-min addition task was 5% better in the daylight-like high-melEDI condition (highest melEDI) compared to the conventional low-melEDI condition (lowest melEDI; p < 0.01). Performance speed on the motor sequence learning task was 3.2 times faster (p < 0.05) during the daylight-like high-melEDI condition compared to the conventional low-melEDI. Subjective sleepiness was 1.5 times lower in the conventional high-melEDI condition compared to the conventional low-melEDI condition, but levels were similar between conventional low- and daylight-like high-melEDI conditions. These results demonstrate that exposure to high-melanopic (short wavelength-enriched) white light improves processing speed, working memory, and procedural learning on a motor sequence task in modestly sleep restricted young adults, and have important implications for optimizing lighting conditions in schools, colleges, and other built environments.
Collapse
Affiliation(s)
- Leilah K Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Brianne A Kent
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Matthew D Mayer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Raikes AC, Dailey NS, Forbeck B, Alkozei A, Killgore WDS. Daily Morning Blue Light Therapy for Post-mTBI Sleep Disruption: Effects on Brain Structure and Function. Front Neurol 2021; 12:625431. [PMID: 33633674 PMCID: PMC7901882 DOI: 10.3389/fneur.2021.625431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness. Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study. Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05). Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.
Collapse
Affiliation(s)
- Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Brittany Forbeck
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
49
|
Kossowski B, Droździel D, Rode K, Michałowski J, Jankowski KS, Wypych M, Wolska A, Marchewka A. The influence of light exposure and chronotype on working memory in humans. Acta Neurobiol Exp (Wars) 2021. [DOI: 10.21307/ane-2021-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Xie B, Zhang Y, Qi H, Yao H, Shang Y, Yuan S, Zhang J. Red light exaggerated sepsis-induced learning impairments and anxiety-like behaviors. Aging (Albany NY) 2020; 12:23739-23760. [PMID: 33197883 PMCID: PMC7762485 DOI: 10.18632/aging.103940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/01/2020] [Indexed: 01/01/2023]
Abstract
Light exerts critical non-visual effects on a multitude of physiological processes and behaviors, including sleep-wake behavior and cognitive function. In this study, we investigated the effects of continued exposure to different colors of light on cognitive function after sepsis in old mice. We found that exposure to red light, but not green light, exaggerated learning impairments and anxiety-like behaviors after sepsis. Red light also induced remarkable splenomegaly and altered the diversity and composition of the fecal microbiota. Pseudo germ-free mice transplanted with fecal bacteria from septic mice exposed to red light developed the same behavioral defects and splenomegaly as their donors. Intriguingly, splenectomy and subdiaphragmatic vagotomy reversed the learning impairments and anxiety-like behaviors resulting from red light exposure after sepsis. After subdiaphragmatic vagotomy, no differences in behavior or spleen size were observed among pseudo germ-free mice transplanted with fecal bacteria from septic mice exposed to different colors of light. Our results suggested that red light exposure after sepsis in old mice causes gut microbiota dysfunction, thus stimulating signaling through the subdiaphragmatic vagus nerve that induces splenomegaly and aggravates learning impairments and anxiety-like behaviors.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Qi
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|