1
|
Perry M, Hamza I. Heme and immunity: The heme oxygenase dichotomy. J Inorg Biochem 2025; 267:112844. [PMID: 39978176 DOI: 10.1016/j.jinorgbio.2025.112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
Heme, an iron containing organic ring, is required for a diverse range of biological processes across all forms of life. Although this nutrient is essential, its pro-inflammatory and cytotoxic properties can lead to cellular damage. Heme oxygenase 1 (HO-1) is an endoplasmic reticulum (ER)-anchored enzyme that degrades heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The induction of HO-1 by heme presents an interesting dichotomy in the cell: CO and BV possess anti-inflammatory and antioxidant properties while free iron can be detrimental as it can generate hydroxyl radicals through the Fenton reaction. The heme/HO-1 axis is tightly regulated, and can influence cell fate, local tissue environments, and disease outcomes during pathogen infection. In this review we explore the role of heme during macrophage polarization and its ability to act as an immune activator while also examining the contribution of HO-1 and heme during infections with intracellular and extracellular pathogens. We highlight work from the emerging field of nutritional immunity of heme and iron, and how the substrates and byproducts of heme metabolism via HO-1 can be beneficial to the host or the pathogen depending on the context.
Collapse
Affiliation(s)
- Melissa Perry
- Graduate Program in Biological Sciences, University of Maryland, College Park, MD 20742, USA; Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Iqbal Hamza
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Mize M, Baker C, Bowers RD. Very High Warfarin Dosing Requirements in a Patient With Tuberculosis and a Pulmonary Embolism: A Case Report. J Pharm Pract 2025; 38:270-274. [PMID: 39299242 DOI: 10.1177/08971900241285226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Purpose: To describe a case of significantly increased warfarin requirements in a patient receiving rifampin for the management of tuberculosis. Summary: A 76-year-old male was admitted due to altered mentation, cough, and weight loss. He was diagnosed concurrently with tuberculosis and a pulmonary embolism. Given the profound effect of rifampin on CYP450 enzymes, direct oral anticoagulants were avoided and warfarin therapy was selected. Management was further complicated by a gastrointestinal bleed during admission, history of cancer, and low body weight. After several weeks of daily international normalized ratio monitoring, a stable regimen of 14 mg of warfarin daily was established, allowing for the patient's safe discharge. Practice Implications: This report underscores the significance of tailored treatment plans, vigilant monitoring, and interdisciplinary collaboration which are necessary to navigate the complexities associated with these medications and optimize patient outcomes.
Collapse
Affiliation(s)
- Marcus Mize
- Department of Pharmacy, Cape Fear Valley Medical Center, Fayetteville, NC, USA
| | - Carrie Baker
- Department of Pharmacy Practice, Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC, USA
| | - Riley D Bowers
- Department of Pharmacy Practice, Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC, USA
| |
Collapse
|
3
|
Goh JJ, Patel A, Ngara B, van Wijk RC, Strydom N, Wang Q, Van N, Washington TM, Nuermberger EL, Aldridge BB, Roubert C, Sarathy J, Dartois V, Savic RM. Predicting tuberculosis drug efficacy in preclinical and clinical models from in vitro data. iScience 2025; 28:111932. [PMID: 40034847 PMCID: PMC11875147 DOI: 10.1016/j.isci.2025.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/25/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Multiple in vitro potency assays are used to evaluate compounds against Mycobacterium tuberculosis, but a consensus on clinically relevant assays is lacking. We aimed to identify an in vitro assay signature that predicts preclinical efficacy and early clinical outcome. Thirty-one unique in vitro assays were compiled for 10 TB drugs. In vitro EC50 values were compared to pharmacokinetic-pharmacodynamic (PK-PD)-model-derived EC50 values from mice evaluated via multinomial regression. External validation of best-performing in vitro assay combinations was performed using five new TB drugs. Best-performing assay signatures for acute and subacute infections were described by assays that reproduce conditions found in macrophages and foamy macrophages and chronic infection by the ex vivo caseum assay. Subsequent simulated mouse bacterial burden over time using predicted in vivo EC50 was within 2-fold of observations. This study helps us identify clinically relevant assays and prioritize successful drug candidates, saving resources and accelerating clinical success.
Collapse
Affiliation(s)
- Janice J.N. Goh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Anu Patel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Bernard Ngara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rob C. van Wijk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, MA, USA
| | - Tracy M. Washington
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| | - Eric L. Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| | - Christine Roubert
- Evotec ID (LYON) SAS, Lyon, France
- Sanofi R&D, Infectious Diseases TSU, 31036 Toulouse, France
| | - Jansy Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA
| | - Rada M. Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Amare B, Mangano A, Sarker M, Adhikari S. Disseminated Mycobacterium Chelonae infection in an immunocompromised adult: An uncommon etiology of skin infection. IDCases 2024; 39:e02132. [PMID: 39810811 PMCID: PMC11732071 DOI: 10.1016/j.idcr.2024.e02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Mycobacterium Chelonae is a rapidly growing nontuberculous mycobacterium (NTM) that is ubiquitous in the environment and is associated with skin and soft tissue infections (1). Because Mycobacterium Chelonae is an opportunistic infection, it can present as skin abscess, cellulitis, osteomyelitis, pulmonary infection or disseminated infections, particularly in individuals with compromised immune systems or underlying lung conditions such as cystic fibrosis or bronchiectasis. M.Chelonae is one of the most pathogenic rapidly growing mycobacteria (RGM). Diagnosing RGM and distinguishing it from Mycobacterium tuberculosis is important because public health tracking and management is different in these two organisms. Antibiotic susceptibility testing can also provide valuable clues to the species identification of RGM as each species has a specific in vitro antibiotic susceptibility pattern (2). Although incidence of M. Chelonae is increasing, these infections often remain misdiagnosed. This case report discusses the clinical presentation, diagnostic challenges, the rationale for early empiric treatment, and therapeutic options for M. Chelonae infection, emphasizing the importance of timely intervention in immunocompromised individuals.
Collapse
Affiliation(s)
- Biruk Amare
- Department of Medicine, Mary Washington Healthcare, Fredericksburg, VA, USA
| | - Andrew Mangano
- Department of Medicine, Mary Washington Healthcare, Fredericksburg, VA, USA
| | - Moumita Sarker
- Department of Medicine, Mary Washington Healthcare, Fredericksburg, VA, USA
| | - Sagun Adhikari
- Department of Medicine, Mary Washington Healthcare, Fredericksburg, VA, USA
| |
Collapse
|
5
|
Oladeji EO, Enemuo TN, Anthony-Awi TA, Olaniyi AA, Olaku JO, Aransiola PB, Salawu RA, Adedoyin GO, Olatide OO. Disparities in the Clinical Profile of Spinal Tuberculosis in Africa: A Scoping Review of Management and Outcome. World Neurosurg 2024; 192:77-90. [PMID: 39245137 DOI: 10.1016/j.wneu.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Spinal tuberculosis (STB) is a significant contributor to nontraumatic myelopathy. There is a rising burden in Africa, in parallel with the high prevalence of human immunodeficiency virus. We conducted a scoping review to highlight the disparities in the management and outcomes of STB in Africa. METHODS This study was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for scoping review guidelines. AJOL, Embase, MEDLINE, Google Scholar, and Cochrane CENTRAL databases were searched to identify all relevant peer-reviewed articles published on the management of STB in African centers, excluding abstract-only articles, literature reviews, and meta-analyses. RESULTS Sixty studies were eligible for inclusion, comprising data from 3416 patients aged 8 months to 89 years (median, 32 years). Thoracic and lumbar segments were the most commonly affected vertebral regions (thoracic = 42.7%; lumbar = 35.9%). The most common clinical features were back pain and neurological deficits. Lack of essential laboratory and imaging diagnostic infrastructure was a common problem. Patients received antitubercular therapy (ATT) for varying durations, and only 18.3% underwent surgery. A favorable outcome was achieved in 51.6% of patients, 20.3% developed a permanent disability, and the mortality rate was 2.1%. Treatment outcome was adversely affected by a high rate of late presentation and treatment default. CONCLUSIONS ATT remains the mainstay of treatment; however, the duration of treatment varied widely among studies. Further research is required to explore the feasibility and efficacy of short-course ATT in treating STB in the African population.
Collapse
Affiliation(s)
- Emmanuel O Oladeji
- Trauma and Orthopaedics Department, Surgery Interest Group of Africa Lagos, Nigeria.
| | - Tochukwu N Enemuo
- Trauma and Orthopaedics Department, Surgery Interest Group of Africa Lagos, Nigeria
| | | | - Adedamola A Olaniyi
- Trauma and Orthopaedics Department, Surgery Interest Group of Africa Lagos, Nigeria
| | - Japheth O Olaku
- Trauma and Orthopaedics Department, Surgery Interest Group of Africa Lagos, Nigeria
| | - Peter B Aransiola
- Trauma and Orthopaedics Department, Surgery Interest Group of Africa Lagos, Nigeria
| | | | - Gabriel O Adedoyin
- Trauma and Orthopaedics Department, Surgery Interest Group of Africa Lagos, Nigeria
| | | |
Collapse
|
6
|
Oh AL, Makmor-Bakry M, Islahudin F, Ting CY, Chan SK, Tie ST. Development and validation of a predictive scoring model for risk stratification of tuberculosis treatment interruption. Res Social Adm Pharm 2024; 20:1102-1109. [PMID: 39218734 DOI: 10.1016/j.sapharm.2024.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Tuberculosis (TB) treatment interruption poses risks of antimicrobial resistance, potentially leading to treatment failure and mortality. Addressing the risk of early treatment interruption is crucial in tuberculosis care and management to improve treatment outcomes and curb disease transmission. OBJECTIVES This study aimed to identify risk factors of TB treatment interruption and construct a predictive scoring model that enables objective risk stratification for better prediction of treatment interruption. METHODS A multicentre retrospective cohort study was conducted at public health clinics in Sarawak, Malaysia over 11 months from March 2022 to January 2023, involving adult patients aged ≥18 years with drug-susceptible TB diagnosed between 2018 and 2021. Cumulative missed doses or discontinuation of TB medications for ≥2 weeks, either consecutive or non-consecutive, was considered as treatment interruption. The model was developed and internally validated using the split-sample method. Multiple logistic regression analysed 18 pre-defined variables to identify the predictors of TB treatment interruption. The Hosmer-Lemeshow test and area under the receiver operating characteristic curve (AUC) were employed to evaluate model performance. RESULTS Of 2953 cases, two-thirds (1969) were assigned to the derivation cohort, and one-third (984) formed the validation cohort. Positive predictors included smoking, previously treated cases, and adverse drug reactions, while concurrent diabetes was protective. Based on the validation dataset, the model demonstrated good calibration (P = 0.143) with acceptable discriminative ability (AUC = 0.775). A cutoff score of 2.5 out of 11 achieved a sensitivity of 81 % and a specificity of 64.4 %. Risk stratification into low (0-2), medium (3-5), and high-risk (≥6) categories showed ascending interruption rates of 5.3 %, 18.1 %, and 41.3 %, respectively (P < 0.001). CONCLUSION The predictive scoring model aids in risk assessment for TB treatment interruption, enabling focused monitoring and personalized intervention plans for higher-risk groups in the early treatment phase.
Collapse
Affiliation(s)
- Ai Ling Oh
- Centre of Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Department of Pharmacy, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia
| | - Mohd Makmor-Bakry
- Centre of Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Farida Islahudin
- Centre of Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chuo Yew Ting
- Department of Sarawak State Health, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia
| | - Swee Kim Chan
- Division of Respiratory Medicine, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia
| | - Siew Teck Tie
- Division of Respiratory Medicine, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia
| |
Collapse
|
7
|
Alsowaida YS, Sulaiman KA, Mahrous AJ, Alharbi A, Bifari N, Alshahrani WA, Almangour TA, Damfu N, Banamah AA, Raya RRA, Sadawi RA, Alharbi A, Alsolami A, Essa Y, Almagthali AG, Alhejaili SF, Qawwas WA, Alharbi GS, Alkeraidees AS, Alshomrani A, Aljohani MA, Aljuhani O. Evaluation of clinical outcomes of anidulafungin for the treatment of candidemia in hospitalized critically ill patients with obesity: A multicenter, retrospective cohort study. Int J Infect Dis 2024; 148:107234. [PMID: 39241957 DOI: 10.1016/j.ijid.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES To evaluate the clinical outcomes of anidulafungin for candidemia treatment in critically ill patients with obesity. METHODS A multicenter, retrospective cohort study was conducted in Saudi Arabia for critically ill adults with candidemia who received anidulafungin. Patients with obesity have a body mass index ≥30 kg/m2. The primary outcome was the clinical cure rate. RESULTS A total of 146 patients were included, 64 of whom were obese. There were no statistically significant differences in the clinical cure rate (P = 0.63), microbiological cure rate (P = 0.27), or the median time for a clinical cure (P = 0.13) for patients with obesity compared to non-obese patients. The median time for a microbiological cure was longer in non-obese patients than in patients with obesity (P = 0.04). The median hospital length of stay and the median mechanical ventilation durations were numerically longer in patients with obesity. CONCLUSIONS Clinical and microbiological cure rates and time for clinical cure were statistically similar for both groups. Considering the study's limitations (especially with a small sample size), it is uncertain if patients with obesity have similar effectiveness to non-obese patients. Future studies with larger sample sizes are warranted to evaluate if obesity negatively impacts anidulafungin's clinical outcomes for candidemia.
Collapse
Affiliation(s)
- Yazed Saleh Alsowaida
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Khalid Al Sulaiman
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia; College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia; Saudi Society for Multidisciplinary Research Development and Education (SCAPE Society), Riyadh, Saudi Arabia.
| | - Ahmad J Mahrous
- Pharmacy Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aisha Alharbi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, Jeddah, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Nisrin Bifari
- Pharmacy Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Thamer A Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nader Damfu
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Infection Prevention and Control Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Aseel A Banamah
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Raghad A Sadawi
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arwa Alharbi
- Pharmaceutical Care Department, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Yahya Essa
- Pharmaceutical Care Department, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | | | - Shahad F Alhejaili
- Pharmaceutical Care Services, King Abdulaziz University Hospital, Jeddah, Saudi Arabia; Pharmaceutical Care Services, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Wed A Qawwas
- Department of Pharmaceutical Care Services, King Abdullah Medical City, Makkah, Saudi Arabia
| | - Ghaida Salamah Alharbi
- Department of Pharmaceutical Care Services, King Abdullah Medical City, Makkah, Saudi Arabia
| | - Atheer Suleiman Alkeraidees
- Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Afnan Alshomrani
- Pharmaceutical Care Department, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Manal A Aljohani
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia; College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ohoud Aljuhani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Bognár B, Spohn R, Lázár V. Drug combinations targeting antibiotic resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:29. [PMID: 39843924 PMCID: PMC11721080 DOI: 10.1038/s44259-024-00047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/02/2024] [Indexed: 01/24/2025]
Abstract
While the rise of antibiotic resistance poses a global health challenge, the development of new antibiotics has slowed down over the past decades. This turned the attention of researchers towards the rational design of drug combination therapies to combat antibiotic resistance. In this review we discuss how drug combinations can exploit the deleterious pleiotropic effects of antibiotic resistance and conclude that each drug interaction has its prospective therapeutic application.
Collapse
Affiliation(s)
- Bence Bognár
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Viktória Lázár
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary.
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
9
|
Kalangi H, Boadla LR, Perlman DC, Yancovitz SR, George V, Salomon N. A true challenge: Disseminated tuberculosis with tuberculous meningitis in a patient with underlying chronic liver disease. IDCases 2024; 37:e02065. [PMID: 39263667 PMCID: PMC11387800 DOI: 10.1016/j.idcr.2024.e02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Tuberculous meningitis (TBM) is a potentially life-threatening form of tuberculosis (TB) that affects the central nervous system. Its management in patients with concomitant chronic liver disease (CLD) presents unique challenges due to altered drug metabolism with potentially impaired spinal fluid drug penetration and hepatotoxicity. The standard regimen for TBM includes isoniazid (INH) and rifampin (RIF), and Pyrazinamide (PZA) which are metabolized by the liver and may cause hepatotoxicity, which can exacerbate preexisting liver disease. Thus, careful consideration is required to balance therapeutic efficacy with potential drug-induced hepatotoxicity. Regular monitoring of liver function tests and clinical response is essential to minimize adverse effects and optimize treatment outcomes. Further research is needed to establish evidence-based guidelines for the tailored management of TBM in this vulnerable patient subset. Overall, the treatment of TBM in patients with severe liver disease should be individualized and closely monitored.
Collapse
Affiliation(s)
- Harika Kalangi
- Division of Infectious Diseases, Mount Sinai Morningside/West/Beth-Israel, 1111 Amsterdam Ave, New York, NY 10025, USA
| | - Laura Rivera Boadla
- Division of Infectious Diseases, Mount Sinai Morningside/West/Beth-Israel, 1111 Amsterdam Ave, New York, NY 10025, USA
| | - David C Perlman
- Division of Infectious Diseases, Mount Sinai Morningside/West/Beth-Israel, 10 Union Square East, Suite 2H, New York, NY 10003, USA
| | - Stanley R Yancovitz
- Division of Infectious Diseases, Mount Sinai Morningside/West/Beth-Israel, 10 Union Square East, Suite 2H, New York, NY 10003, USA
| | - Vani George
- Division of Infectious Diseases, Mount Sinai Morningside/West/Beth-Israel, 10 Union Square East, Suite 2H, New York, NY 10003, USA
| | - Nadim Salomon
- Division of Infectious Diseases, Mount Sinai Morningside/West/Beth-Israel, 10 Union Square East, Suite 2H, New York, NY 10003, USA
| |
Collapse
|
10
|
Akanksha, Mehra S. Conserved Evolutionary Trajectory Can Be Perturbed to Prevent Resistance Evolution under Norfloxacin Pressure by Forcing Mycobacterium smegmatis on Alternate Evolutionary Paths. ACS Infect Dis 2024; 10:2623-2636. [PMID: 38959403 DOI: 10.1021/acsinfecdis.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Antibiotic resistance is a pressing health issue, with the emergence of resistance in bacteria outcompeting the discovery of novel drug candidates. While many studies have used Adaptive Laboratory Evolution (ALE) to understand the determinants of resistance, the influence of the drug dosing profile on the evolutionary trajectory remains understudied. In this study, we employed ALE on Mycobacterium smegmatis exposed to various concentrations of Norfloxacin using both cyclic constant and stepwise increasing drug dosages to examine their impact on the resistance mechanisms selected. Mutations in an efflux pump regulator, LfrR, were found in all of the evolved populations irrespective of the drug profile and population bottleneck, indicating a conserved efflux-based resistance mechanism. This mutation appeared early in the evolutionary trajectory, providing low-level resistance when present alone, with a further increase in resistance resulting from successive accumulation of other mutations. Notably, drug target mutations, similar to those observed in clinical isolates, were only seen above a threshold of greater than 4× the minimum inhibitory concentration (MIC). A combination of three mutations in the genes, lfrR, MSMEG_1959, and MSMEG_5045, was conserved across multiple lineages, leading to high-level resistance and preceding the appearance of drug target mutations. Interestingly, in populations evolved from parental strains lacking the lfrA efflux pump, the primary target of the lfrR regulator, no lfrR gene mutations are selected. Furthermore, evolutional trajectories originating from the ΔlfrA strain displayed early arrest in some lineages and the absence of target gene mutations in those that evolved, albeit delayed. Thus, blocking or inhibiting the expression of efflux pumps can arrest or delay the fixation of drug target mutations, potentially limiting the maximum attainable resistance levels.
Collapse
Affiliation(s)
- Akanksha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
11
|
Bhola N, Gupta C, Wadhwani N. Primary tubercular osteomyelitis of zygoma: A literature review and case report. IDCases 2024; 37:e02044. [PMID: 39188365 PMCID: PMC11347050 DOI: 10.1016/j.idcr.2024.e02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose This study presents a rare case of primary tubercular osteomyelitis of the zygoma, and addresses how combined surgical and medical treatments are effective managing rare presentations of tubercular osteomyelitis in facial bones. Methods A 57-year-old man presented with pain and purulent discharge from the right malar region following trauma. Initial treatments with empirical antibiotics had poor response, hence further investigations were done. Comprehensive diagnostic workup included lab tests, Computed tomography with contrast, and histopathological examination. The patient underwent surgical debridement of the zygomatic bone through an intraoral approach, and debrided tissue was sent for microbiological and histopathological examination, which confirmed tubercular osteomyelitis. Post-surgery, the patient was treated with a four-drug anti-tubercular regimen. Results Following anti-tubercular therapy, the patient showed significant improvement, with no signs of disease recurrence after a year of follow-up. Conclusion Primary tubercular osteomyelitis of the zygoma is extremely rare but should be considered in differential diagnoses of facial swellings and discharging sinuses. This case underscores the importance of a multidisciplinary approach in treating rare presentations of tubercular osteomyelitis.
Collapse
Affiliation(s)
- Nitin Bhola
- Department of Oral and Maxillofacial Surgery, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha, Maharashtra 442001, India
| | - Chetan Gupta
- Department of Oral and Maxillofacial Surgery, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha, Maharashtra 442001, India
| | - Nikhar Wadhwani
- Department of Oral and Maxillofacial Surgery, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha, Maharashtra 442001, India
| |
Collapse
|
12
|
Shah H, Yasobant S, Patel J, Bhavsar P, Saha S, Patel Y, Saxena D, Sinha A. Characteristics and contributing factors of adverse drug reactions: an analytical study of patients with tuberculosis receiving treatment under the National TB Program of India. F1000Res 2024; 11:1388. [PMID: 39935535 PMCID: PMC11811607 DOI: 10.12688/f1000research.125815.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 02/13/2025] Open
Abstract
Background Tuberculosis (TB) continues to pose a serious threat to the public health system in India. Although the National Tuberculosis Elimination Program (NTEP) is providing a wide range of interventions from early diagnosis to complete treatment to reduce morbidity and mortality from TB, adverse drug reactions (ADR) remain a challenge in treatment adherence and completion. Methods An observational cross-sectional study was conducted in selected districts of Gujarat state. A total of 593 reported TB patients were recruited with an adjusted unified distribution based on the type of cases, site of diseases, and service facility through a simple random sampling method. A semi-structured questionnaire tool was used to collect socio-demographic, clinical, and ADR-related data from the TB patients. Data was analyzed for the frequency, percentage, chi-squared, and adjusted odds ratio to find the association between the variables. Results The majority of the study participants were male (87.2%), aged 15 to 60 (57.8%), daily laborers (22.4%), and married (64.2%). Over 75% of individuals had pulmonary TB, with 87% having experienced their first episode, 83% being new cases, and 44.7% having a history of addiction. ADR with mild symptoms was reported by more than a quarter (29%) of TB patients during the intensive phase (77%). The association between ADR experience and drug susceptibility was significant (p<0.005) and drug-resistant TB patients experience two times more ADRs than drug-sensitive TB patients (OR 2.04). Binomial logistic regression was carried out to describe the association between various variables and occurrence of ADRs. Conclusion The study highlighted a need to enhance health care providers' capacity and program structure for managing ADRs among TB patients. In order to completely eliminate TB across the country, it also emphasized the attention for a holistic and all-encompassing strategy for managing TB patients at the field level.
Collapse
Affiliation(s)
- Harsh Shah
- Department of Public Health Science, Indian Institute of Public Health, Gandhinagar, Gandhinagar, Gujarat, 382042, India
| | - Sandul Yasobant
- Department of Public Health Science, Indian Institute of Public Health, Gandhinagar, Gandhinagar, Gujarat, 382042, India
- School of Epidemiology and Public Health, Datta Meghe Institute of Medical Sciences, Wardha, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Jay Patel
- Department of Public Health Science, Indian Institute of Public Health, Gandhinagar, Gandhinagar, Gujarat, 382042, India
| | - Priya Bhavsar
- Department of Public Health Science, Indian Institute of Public Health, Gandhinagar, Gandhinagar, Gujarat, 382042, India
| | - Somen Saha
- Department of Public Health Science, Indian Institute of Public Health, Gandhinagar, Gandhinagar, Gujarat, 382042, India
- School of Epidemiology and Public Health, Datta Meghe Institute of Medical Sciences, Wardha, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Yogesh Patel
- Department of CGC Project, World Health Partners, Noida, Uttar Pradesh, 201301, India
| | - Deepak Saxena
- Department of Public Health Science, Indian Institute of Public Health, Gandhinagar, Gandhinagar, Gujarat, 382042, India
- School of Epidemiology and Public Health, Datta Meghe Institute of Medical Sciences, Wardha, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Anish Sinha
- Department of Public Health Science, Indian Institute of Public Health, Gandhinagar, Gandhinagar, Gujarat, 382042, India
| |
Collapse
|
13
|
Strong EJ, Tan L, Hayes S, Whyte H, Davis RA, West NP. Identification of Axinellamines A and B as Anti-Tubercular Agents. Mar Drugs 2024; 22:298. [PMID: 39057407 PMCID: PMC11277618 DOI: 10.3390/md22070298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis remains a significant global health pandemic. There is an urgent need for new anti-tubercular agents to combat the rising incidence of drug resistance and to offer effective and additive therapeutic options. High-throughput screening of a subset of the NatureBank marine fraction library (n = 2000) identified a sample derived from an Australian marine sponge belonging to the order Haplosclerida that displayed promising anti-mycobacterial activity. Bioassay-guided fractionation of the organic extract from this Haplosclerida sponge led to the purification of previously identified antimicrobial pyrrole alkaloids, axinellamines A (1) and B (2). The axinellamine compounds were found to have a 90% minimum inhibitory concentration (MIC90) of 18 µM and 15 µM, respectively. The removal of protein and complex carbon sources reduced the MIC90 of 1 and 2 to 0.6 and 0.8 µM, respectively. The axinellamines were not toxic to mammalian cells at 25 µM and significantly reduced the intracellular bacterial load by >5-fold. These data demonstrate that axinellamines A and B are effective anti-tubercular agents and promising targets for future medicinal chemistry efforts.
Collapse
Affiliation(s)
- Emily J. Strong
- School of Chemistry and Molecular Biosciences, and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- NatureBank, Griffith University, Brisbane, QLD 4111, Australia
| | - Hayden Whyte
- School of Chemistry and Molecular Biosciences, and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rohan A. Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- NatureBank, Griffith University, Brisbane, QLD 4111, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Biosciences, and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
14
|
Zheng J, Dong Z, Jin X, Li J, Zou Y, Bai G, Wu Q, Xu S, Wang Z, Sun X, Liu D, Guo L. In vitro Antibacterial Effect Study of Plasma-Activated Saline on Mycobacterium Tuberculosis. Infect Drug Resist 2024; 17:2315-2328. [PMID: 38882657 PMCID: PMC11179663 DOI: 10.2147/idr.s456181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose This study aimed to investigate the antibacterial effects of plasma-activated saline (PAS) on My-cobacterium tuberculosis (Mtb). Methods We conducted a growth assay on 3 strains of Mtb and an antibiotic sensitivity test on 4 strains of Mtb. Both tests included groups treated with normal saline (NS), PAS, and hydrochloric acid (HCl). The test of antibiotic sensitivity consisted of parallel tests with two concentrations of bacteria suspension: 10-2 and 10-4. The selected antibiotics were rifampicin (RIF), isoniazid (INH), ethambutol (EMB), and streptomycin (SM). The number of bacteria was determined after one month of culture under different conditions. The Kruskal-Wallis test was used to analyze the differences in grouping factors at representative time points. Results The growth assay indicated that PAS significantly inhibited the growth of 3 strains of Mtb compared with NS and HCl treatment groups. Furthermore, except for the initial observation time point, the remaining three observation time points consistently demonstrate no significant differences between the NS group and the HCl group. The antibiotic sensitivity test of INH, SM, and RIF indicated that PAS could inhibit the growth of antibiotic-resistant Mtb, and the antibiotic sensitivity test of INH and SM with bacterial suspension concentration of 10-2 and SM with bacterial suspension concentration of 10-4 showed statistically different results. The antibiotic sensitivity test of EMB indicated that the growth of Mtb in PAS was slower than that in NS and HCl in both antibiotic-resistant and sensitive Mtb, but there was no statistical difference. Conclusion The study indicates that PAS contains a significant amount of active substances and exhibits high oxidizability and an acidic pH state. The unique physicochemical properties of PAS significantly delayed the growth of Mtb, compared to the NS and the HCl. PAS not only inhibited the growth of drug-sensitive strains but also significantly enhanced the sensitivity of drug-resistant strains to anti-tuberculosis drugs, which may provide a new therapeutic strategy for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
- Tuberculosis Prevention and Treatment Hospital in Shaanxi Province, Xi'an, 710100, People's Republic of China
| | - Zepeng Dong
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xianzhen Jin
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jing Li
- Tuberculosis Prevention and Treatment Hospital in Shaanxi Province, Xi'an, 710100, People's Republic of China
| | - Yuanwu Zou
- Tuberculosis Prevention and Treatment Hospital in Shaanxi Province, Xi'an, 710100, People's Republic of China
| | - Guanghong Bai
- Tuberculosis Prevention and Treatment Hospital in Shaanxi Province, Xi'an, 710100, People's Republic of China
| | - Qianhong Wu
- Tuberculosis Prevention and Treatment Hospital in Shaanxi Province, Xi'an, 710100, People's Republic of China
| | - Shenghang Xu
- Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zifeng Wang
- Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Dingxin Liu
- Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Li Guo
- Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| |
Collapse
|
15
|
Tagami Y, Horita N, Kaneko M, Muraoka S, Fukuda N, Izawa A, Kaneko A, Somekawa K, Kamimaki C, Matsumoto H, Tanaka K, Murohashi K, Aoki A, Fujii H, Watanabe K, Hara Y, Kobayashi N, Kaneko T. Whole-Genome Sequencing Predicting Phenotypic Antitubercular Drug Resistance: Meta-analysis. J Infect Dis 2024; 229:1481-1492. [PMID: 37946558 DOI: 10.1093/infdis/jiad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND For simultaneous prediction of phenotypic drug susceptibility test (pDST) for multiple antituberculosis drugs, the whole genome sequencing (WGS) data can be analyzed using either a catalog-based approach, wherein 1 causative mutation suggests resistance, (eg, World Health Organization catalog) or noncatalog-based approach using complicated algorithm (eg, TB-profiler, machine learning). The aim was to estimate the predictive ability of WGS-based tests with pDST as the reference, and to compare the 2 approaches. METHODS Following a systematic literature search, the diagnostic test accuracies for 14 drugs were pooled using a random-effect bivariate model. RESULTS Of 779 articles, 44 with 16 821 specimens for meta-analysis and 13 not for meta-analysis were included. The areas under summary receiver operating characteristic curve suggested test accuracy was excellent (0.97-1.00) for 2 drugs (isoniazid 0.975, rifampicin 0.975), very good (0.93-0.97) for 8 drugs (pyrazinamide 0.946, streptomycin 0.952, amikacin 0.968, kanamycin 0.963, capreomycin 0.965, para-aminosalicylic acid 0.959, levofloxacin 0.960, ofloxacin 0.958), and good (0.75-0.93) for 4 drugs (ethambutol 0.926, moxifloxacin 0.896, ethionamide 0.878, prothionamide 0.908). The noncatalog-based and catalog-based approaches had similar ability for all drugs. CONCLUSIONS WGS accurately identifies isoniazid and rifampicin resistance. For most drugs, positive WGS results reliably predict pDST positive. The 2 approaches had similar ability. CLINICAL TRIALS REGISTRATION UMIN-ID UMIN000049276.
Collapse
Affiliation(s)
- Yoichi Tagami
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Japan
| | - Megumi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Fukuda
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chisato Kamimaki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fujii
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
16
|
Dworkin F, Easton AV, Alex B, Nilsen D. Acquired rifamycin resistance among patients with tuberculosis and HIV in New York City, 2001-2023. J Clin Tuberc Other Mycobact Dis 2024; 35:100429. [PMID: 38560028 PMCID: PMC10979258 DOI: 10.1016/j.jctube.2024.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Introduction Acquired rifamycin resistance (ARR) in tuberculosis (TB) has been associated with HIV infection and can necessitate complicated TB treatment regimens, particularly in people living with HIV (PLWH). This work examines clinical characteristics and treatment outcomes of PLWH who developed ARR from 2001 to 2023 in New York City (NYC) to inform best practices for treating these patients. Methods PLWH who developed ARR 2001-2023 were identified from the NYC TB registry. Results Sixteen PLWH developed ARR; 15 were diagnosed 2001-2009 and the 16th was diagnosed in 2017. Median CD4 count was 48/mm3. On initial presentation, 14 had positive sputum cultures; of these, 12 culture-converted prior to developing ARR. Ten patients completed a course of TB treatment but subsequently relapsed; in six of these cases, ARR was discovered upon relapse, triggering treatment with a non-rifamycin-containing regimen, while in the other four, ARR was discovered during a second round of rifamycin-containing treatment. Three patients were lost to follow-up during their initial course of TB treatment and later returned to care; after being restarted on a rifamycin-containing regimen, ARR was discovered. Finally, three patients culture-converted during their first course of treatment but subsequently had cultures that grew rifamycin-resistant Mycobacterium tuberculosis prior to treatment completion, leading to changes in their treatment regimens. Among the 16 patients, eight died before being cured of TB, seven successfully completed treatment, and one was lost to follow-up. Conclusions PLWH should be monitored closely for the development of ARR during treatment for TB, and sputum culture conversion should be interpreted cautiously in this group. Collecting a final sputum sample may be especially important for PLWH, as treatment failure and relapse were common in this population. The decrease in the number of cases of ARR among PLWH during the study period may reflect the decrease in the total number of PLWH diagnosed with TB in NYC in recent years, improved immune status of PLWH due to increased uptake of antiretroviral drugs, and improvements in the way anti-TB regimens are designed for PLWH (such as recommending daily rather than intermittent rifamycin dosing).
Collapse
Affiliation(s)
- Felicia Dworkin
- New York City Department of Health and Mental Hygiene, 42-09 28th St., Long Island City, NY, 11101-4132, United States
| | - Alice V. Easton
- New York City Department of Health and Mental Hygiene, 42-09 28th St., Long Island City, NY, 11101-4132, United States
| | - Byron Alex
- New York City Department of Health and Mental Hygiene, 42-09 28th St., Long Island City, NY, 11101-4132, United States
| | - Diana Nilsen
- New York City Department of Health and Mental Hygiene, 42-09 28th St., Long Island City, NY, 11101-4132, United States
| |
Collapse
|
17
|
Mehta K, Balazki P, van der Graaf PH, Guo T, van Hasselt JGC. Predictions of Bedaquiline Central Nervous System Exposure in Patients with Tuberculosis Meningitis Using Physiologically based Pharmacokinetic Modeling. Clin Pharmacokinet 2024; 63:657-668. [PMID: 38530588 PMCID: PMC11106169 DOI: 10.1007/s40262-024-01363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The use of bedaquiline as a treatment option for drug-resistant tuberculosis meningitis (TBM) is of interest to address the increased prevalence of resistance to first-line antibiotics. To this end, we describe a whole-body physiologically based pharmacokinetic (PBPK) model for bedaquiline to predict central nervous system (CNS) exposure. METHODS A whole-body PBPK model was developed for bedaquiline and its metabolite, M2. The model included compartments for brain and cerebrospinal fluid (CSF). Model predictions were evaluated by comparison to plasma PK time profiles following different dosing regimens and sparse CSF concentrations data from patients. Simulations were then conducted to compare CNS and lung exposures to plasma exposure at clinically relevant dosing schedules. RESULTS The model appropriately described the observed plasma and CSF bedaquiline and M2 concentrations from patients with pulmonary tuberculosis (TB). The model predicted a high impact of tissue binding on target site drug concentrations in CNS. Predicted unbound exposures within brain interstitial exposures were comparable with unbound vascular plasma and unbound lung exposures. However, unbound brain intracellular exposures were predicted to be 7% of unbound vascular plasma and unbound lung intracellular exposures. CONCLUSIONS The whole-body PBPK model for bedaquiline and M2 predicted unbound concentrations in brain to be significantly lower than the unbound concentrations in the lung at clinically relevant doses. Our findings suggest that bedaquiline may result in relatively inferior efficacy against drug-resistant TBM when compared with efficacy against drug-resistant pulmonary TB.
Collapse
Affiliation(s)
- Krina Mehta
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | | | - Piet H van der Graaf
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara, Canterbury, UK
| | - Tingjie Guo
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J G Coen van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
18
|
Oh AL, Makmor-Bakry M, Islahudin F, Ting CY, Chan SK, Tie ST. Characteristics, predictors and consequences of tuberculosis treatment interruption: A multicentre retrospective cohort study. Trop Med Int Health 2024; 29:434-445. [PMID: 38470004 DOI: 10.1111/tmi.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
OBJECTIVES Treatment interruption is associated with poor tuberculosis (TB) treatment outcomes and increased drug resistance. To address the issue, we aimed to investigate the characteristics, predictors and consequences of treatment interruption. METHODS We conducted a retrospective cohort study by retrieving 4 years (2018-2021) of TB patients' records at 10 public health clinics in Sarawak, Malaysia. Adult patients (≥18 years) with drug-susceptible TB were selected. Treatment interruption was defined as ≥2 weeks of cumulative interruption during treatment. The Chi-square test, Mann-Whitney U test, Kaplan-Meier and Cox proportional hazards regression were used to analyse the data, with p < 0.05 being considered statistically significant. RESULTS Out of 2953 eligible patients, 475 (16.1%) experienced TB treatment interruption. Interruptions were most frequent during the intensive phase (46.9%, n = 223), with the greatest risk within the first 4 weeks of treatment. The median time to interruption was 2 weeks in the intensive phase and the cumulative interruption probability at the end of the intensive phase was 12.9%. Notably, treatment interruption occurred during both intensive and continuation phases for 144 patients (30.3%), while the remaining 108 (22.7%) experienced interruptions only during the continuation phase with a median time to interruption of 16 weeks. Three predictors were identified to increase the risk of treatment interruption: adverse drug reaction (aHR = 8.53, 95% Cl: 6.73-10.82), smoking (aHR = 2.67, 95% Cl: 2.03-3.53) and illicit drug use (aHR = 1.88, 95% Cl: 1.03-3.45). Conversely, underlying diabetes was associated with a reduced likelihood of treatment interruption (aHR = 0.72, 95% Cl: 0.58-0.90). Treatment interruption led to significant differences in treatment restarts (62.3% vs. 0.7%), changes in medications (47.8% vs. 4.9%), prolonged treatment duration (247 days [IQR = 105] vs. 194 days [IQR = 44.3]) and lower successful outcomes (86.5% vs. 99.9%). CONCLUSION Understanding the temporal characteristics, predictors and negative consequences of treatment interruption can guide the development of time-relevant approaches to mitigate the problem.
Collapse
Affiliation(s)
- Ai Ling Oh
- Centre of Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Pharmacy, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia
| | - Mohd Makmor-Bakry
- Centre of Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Farida Islahudin
- Centre of Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chuo Yew Ting
- Department of Sarawak State Health, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia
| | - Swee Kim Chan
- Division of Respiratory Medicine, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia
| | - Siew Teck Tie
- Division of Respiratory Medicine, Department of Internal Medicine, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia
| |
Collapse
|
19
|
Budak M, Via LE, Weiner DM, Barry CE, Nanda P, Michael G, Mdluli K, Kirschner D. A systematic efficacy analysis of tuberculosis treatment with BPaL-containing regimens using a multiscale modeling approach. CPT Pharmacometrics Syst Pharmacol 2024; 13:673-685. [PMID: 38404200 PMCID: PMC11015080 DOI: 10.1002/psp4.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Tuberculosis (TB) is a life-threatening infectious disease. The standard treatment is up to 90% effective; however, it requires the administration of four antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol [HRZE]) over long time periods. This harsh treatment process causes adherence issues for patients because of the long treatment times and a myriad of adverse effects. Therefore, the World Health Organization has focused goals of shortening standard treatment regimens for TB in their End TB Strategy efforts, which aim to reduce TB-related deaths by 95% by 2035. For this purpose, many novel and promising combination antibiotics are being explored that have recently been discovered, such as the bedaquiline, pretomanid, and linezolid (BPaL) regimen. As a result, testing the number of possible combinations with all possible novel regimens is beyond the limit of experimental resources. In this study, we present a unique framework that uses a primate granuloma modeling approach to screen many combination regimens that are currently under clinical and experimental exploration and assesses their efficacies to inform future studies. We tested well-studied regimens such as HRZE and BPaL to evaluate the validity and accuracy of our framework. We also simulated additional promising combination regimens that have not been sufficiently studied clinically or experimentally, and we provide a pipeline for regimen ranking based on their efficacies in granulomas. Furthermore, we showed a correlation between simulation rankings and new marmoset data rankings, providing evidence for the credibility of our framework. This framework can be adapted to any TB regimen and can rank any number of single or combination regimens.
Collapse
Affiliation(s)
- Maral Budak
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and MicrobiologyNational Institute of Allergy and Infectious Diseases (NIAID)BethesdaMarylandUSA
- Tuberculosis Imaging Program, Division of Intramural ResearchNIAIDBethesdaMarylandUSA
| | - Danielle M. Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and MicrobiologyNational Institute of Allergy and Infectious Diseases (NIAID)BethesdaMarylandUSA
- Tuberculosis Imaging Program, Division of Intramural ResearchNIAIDBethesdaMarylandUSA
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and MicrobiologyNational Institute of Allergy and Infectious Diseases (NIAID)BethesdaMarylandUSA
- Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular MedicineObservatoryRepublic of South Africa
- Department of MedicineUniversity of Cape TownObservatoryRepublic of South Africa
| | - Pariksheet Nanda
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Gabrielle Michael
- Molecular, Cellular and Developmental BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Khisimuzi Mdluli
- Bill & Melinda Gates Medical Research InstituteCambridgeMassachusettsUSA
| | - Denise Kirschner
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
20
|
Michael CT, Almohri SA, Linderman JJ, Kirschner DE. A framework for multi-scale intervention modeling: virtual cohorts, virtual clinical trials, and model-to-model comparisons. FRONTIERS IN SYSTEMS BIOLOGY 2024; 3:1283341. [PMID: 39310676 PMCID: PMC11415237 DOI: 10.3389/fsysb.2023.1283341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Computational models of disease progression have been constructed for a myriad of pathologies. Typically, the conceptual implementation for pathology-related in-silico intervention studies has been ad-hoc and similar in design to experimental studies. We introduce a multi-scale interventional design (MID) framework toward two key goals: tracking of disease dynamics from within-body to patient to population scale; and tracking impact(s) of interventions across these same spatial scales. Our MID framework prioritizes investigation of impact on individual patients within virtual pre-clinical trials, instead of replicating the design of experimental studies. We apply a MID framework to develop, organize, and analyze a cohort of virtual patients for the study of tuberculosis (TB) as an example disease. For this study, we use HostSim: our next-generation whole patient-scale computational model of individuals infected with Mycobacterium tuberculosis. HostSim captures infection within lungs by tracking multiple granulomas, together with dynamics occurring with blood and lymph node compartments, the compartments involved during pulmonary TB. We extend HostSim to include a simple drug intervention as an example of our approach and use our MID framework to quantify the impact of treatment at cellular and tissue (granuloma), patient (lungs, lymph nodes and blood), and population scales. Sensitivity analyses allow us to determine which features of virtual patients are the strongest predictors of intervention efficacy across scales. These insights allow us to identify patient-heterogeneous mechanisms that drive outcomes across scales.
Collapse
Affiliation(s)
- Christian T. Michael
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sayed Ahmad Almohri
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Denise E. Kirschner
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Ardakani R, Jia L, Matthews E, Thakur KT. Therapeutic advances in neuroinfectious diseases. Ther Adv Infect Dis 2024; 11:20499361241274246. [PMID: 39314743 PMCID: PMC11418331 DOI: 10.1177/20499361241274246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/05/2024] [Indexed: 09/25/2024] Open
Abstract
There have been several major advances in therapeutic options for the treatment of neurological infections over the past two decades. These advances encompass both the development of new antimicrobial therapies and the repurposing of existing agents for new indications. In addition, advances in our understanding of the host immune response have allowed for the development of new immunomodulatory strategies in the treatment of neurological infections. This review focuses on the key advances in the treatment of neurological infections, including viral, bacterial, fungal, and prion diseases, with a particular focus on immunomodulatory treatment options. This review also highlights the process by which clinicians can request access to therapeutic agents on a compassionate or emergency basis when they may not be commercially available. While many therapeutic advances have been achieved in the past several years, there remains a pressing need for the continued development of additional therapeutic agents in the treatment of neurological infections.
Collapse
Affiliation(s)
- Rumyar Ardakani
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lucy Jia
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth Matthews
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kiran T. Thakur
- Department of Neurology, Columbia University Irving Medical Center, 177 Fort Washington Avenue, Milstein Hospital, 8GS-300, New York, NY 10032, USA
- Program in Neuroinfectious Diseases, Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital
| |
Collapse
|
22
|
Htun ZM, Gul MH, Sadikot RT. Bacterial Infections in Patients Living with HIV. Results Probl Cell Differ 2024; 73:537-549. [PMID: 39242392 PMCID: PMC11841656 DOI: 10.1007/978-3-031-62036-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Pneumonia, as well as other types of acute and chronic lung injuries, remain the leading causes of death in individuals living with HIV. Individuals with HIV who are on antiretroviral therapy continue to have a greater risk for pneumonia, including bacterial and mycobacterial infections. Alveolar macrophages and lung epithelial cells constitute the first line of host defense against invading pathogens. The predisposition of individuals living with HIV to infections despite ante-retroviral therapy is mechanistically related to HIV pro-viruses integrating into host cells, including airway epithelial cells and alveolar macrophages. Alveolar macrophages harbor latent HIV even when individuals appear to have complete suppression on ART. In parallel, pneumonia can irreversibly impair lung function in HIV-infected individuals. Cells that Macrophages exposed to HIV or HIV-related proteins have been shown to secrete exosomes that contain miRNAs. These exosomes can regulate several innate and acquired immune functions by stimulating cytokine production and inflammatory responses. Furthermore, these secreted exosomal miRNAs can shuttle between cells, causing cellular dysfunction in the case of epithelial cells; they disrupt lung epithelial barrier dysfunction, which leads to a predisposition to bacterial infections. We discuss the common bacterial infections that occur in patients living with HIV and provide mechanistic insights into how the intercellular communication of miRNAs results in cellular dysfunction.
Collapse
Affiliation(s)
- Zin Mar Htun
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, NE, USA
| | - Muhammad H Gul
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, NE, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
23
|
Kulniwatcharoen P, Hansapinyo L, Chattipakorn N, Chattipakorn SC. Potential underlying mechanisms of ethambutol induced optic neuropathy: Evidence from in vitro to clinical studies. Food Chem Toxicol 2023; 182:114176. [PMID: 37949203 DOI: 10.1016/j.fct.2023.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Ethambutol is an antibiotic widely used for treatment of Mycobacterium species. Although it is safe to use in patients, the ocular toxic impact, including optic neuropathy and retinopathy, can be observed in patients using ethambutol. After discontinuation of the drug, the ocular toxic effects can be reversible in some patients, but some are not. Ethambutol-induced optic neuropathy has been recognized for more than six decades and the prevalence of optic neuropathy from a standard dose of ethambutol has been reported as 0.7-1.29%. Several factors associated with ethambutol-induced optic neuropathy include dosage/duration of drug, the medical conditions of patients such as renal and hepatic dysfunction and preexisting mitochondrial mutations. Currently, there is no specific treatment and prevention of ethambutol-induced optic neuropathy. In addition, the potential underlying mechanisms of ethambutol-induced optic neuropathy is still unclear. Therefore, this review aimed to summarize and discuss evidence from clinical, in vitro, and in vivo studies in order to explore the potential pathophysiology of ethambutol-induced optic neuropathy. Any contradictory findings are also included and discussed. The insights gained from the review will facilitate the discovery of novel approaches for prevention and treatment of optic neuropathy-induced by ethambutol.
Collapse
Affiliation(s)
- Pichaya Kulniwatcharoen
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Linda Hansapinyo
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
24
|
Lee HS, Wei YF, Shu CC. Influence of Rifamycin on Survival in Patients with Concomitant Lung Cancer and Pulmonary Tuberculosis. Biomedicines 2023; 11:3130. [PMID: 38137350 PMCID: PMC10741138 DOI: 10.3390/biomedicines11123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The coexistence of lung cancer and tuberculosis is not rare. Rifamycin plays a pivotal role in anti-tuberculosis therapy. However, its potential impact on the liver metabolism of oncology drugs raises concerns. We performed this study to explore whether Rifamycin affects the survival of patients with tuberculosis and lung cancer. METHODS Drawing from the Taiwan National Health Insurance Research Database, we identified patients diagnosed with concurrent lung cancer and tuberculosis between 2000 and 2014. Patients were categorized based on whether they underwent rifamycin-inclusive or rifamycin-exempt anti-tuberculosis therapy. Subsequently, we paired them at a 1:1 ratio and evaluated the mortality risk over a two-year span. RESULTS Out of the study participants, 1558 (81.4%) received rifamycin-based anti-tuberculosis therapy, while 356 (18.6%) underwent a rifamycin-free regimen. Analysis revealed no marked variance in the biennial mortality rate between the groups (adjusted hazard ratio: 1.33, 95% confidence interval 0.93-1.90, p = 0.1238). When focusing on the matched sets comprising 127 individuals in each group, the data did not indicate a significant link between rifamycin and a heightened two-year mortality risk (adjusted hazard ratio: 1.00, 95% confidence interval 0.86-1.18, p = 0.9538). CONCLUSIONS For individuals with concomitant lung cancer and tuberculosis, rifamycin's administration did not adversely influence two-year survival. Thus, rifamycin-containing anti-TB regimens should be prescribed for the indicated patients.
Collapse
Affiliation(s)
- Ho-Sheng Lee
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yu-Feng Wei
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824005, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei 100225, Taiwan
| |
Collapse
|
25
|
Lee CS, Ho CH, Liao KM, Wu YC, Shu CC. The incidence of tuberculosis recurrence: Impacts of treatment duration of and adherence to standard anti-tuberculous therapy. J Infect Public Health 2023; 16:1778-1783. [PMID: 37738694 DOI: 10.1016/j.jiph.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND We investigated the impacts of the standard treatment durations of and adherence to standard anti-tuberculous therapy (ATT) on recurrence after the successful completion of tuberculosis (TB) treatment. METHODS We recruited patients with TB who had received treatment for six or nine months from the 2008-2017 databases of the Taiwanese National Health Insurance Research Database. Treatment duration and adherence to standard ATT were analyzed for their impacts on recurrence within two years. Complete adherence to standard ATT was defined as daily use of ethambutol, isoniazid, pyrazinamide, and rifampin for the first two months, and daily use of isoniazid and rifampin for the first six months. RESULTS A total of 33,298 TB patients with new-onset TB were identified and classified into two groups by treatment duration: six months (n = 25,849, 77.63%) and nine months (n = 7449). Sex and age distributions varied between the groups. Treatment duration did not affect TB recurrence within two years (adjusted hazard ratio (AHR): 1.18, 95% confidence interval (C.I.) [0.96-1.44], p = 0.1156). Multivariable logistic regression showed that incomplete adherence to standard anti-tuberculous therapy (80-89% and 90-99% standard anti-TB therapy, AHR: 1.57, 95% C.I. [1.26-1.95], and 1.63, 95% C.I. [1.26-2.06], respectively, p < 0.0001) increased TB recurrence. In addition, male sex, older age, and comorbidity with diabetes mellitus or chronic obstructive pulmonary disease were independent risk factors for TB recurrence within two years. CONCLUSIONS TB recurrence was 1.54% within two years under a DOT era. TB treatment durations of six or nine months did not affect TB recurrence within two years after completion of TB treatment, but incomplete adherence to standard anti-tuberculous therapy might increase the TB recurrence rate.
Collapse
Affiliation(s)
- Chung-Shu Lee
- Department of Pulmonary and Critical Care Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan; Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taipei, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Cancer Center, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Ming Liao
- Department of Internal Medicine, Chi Mei Medical Center, Chiali, Taiwan
| | - Yu-Cih Wu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
26
|
Winston CA, Marks SM, Carr W. Estimated Costs of 4-Month Pulmonary Tuberculosis Treatment Regimen, United States. Emerg Infect Dis 2023; 29:2102-2104. [PMID: 37735769 PMCID: PMC10521593 DOI: 10.3201/eid2910.230314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
We estimated direct costs of a 4-month or 6-month regimen for drug-susceptible pulmonary tuberculosis treatment in the United States. Costs were $23,000 per person treated. Actual treatment costs will vary depending on examination and medication charges, as well as expenses associated with directly observed therapy.
Collapse
|
27
|
Konstantinidis I, Crothers K, Kunisaki KM, Drummond MB, Benfield T, Zar HJ, Huang L, Morris A. HIV-associated lung disease. Nat Rev Dis Primers 2023; 9:39. [PMID: 37500684 PMCID: PMC11146142 DOI: 10.1038/s41572-023-00450-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
Lung disease encompasses acute, infectious processes and chronic, non-infectious processes such as chronic obstructive pulmonary disease, asthma and lung cancer. People living with HIV are at increased risk of both acute and chronic lung diseases. Although the use of effective antiretroviral therapy has diminished the burden of infectious lung disease, people living with HIV experience growing morbidity and mortality from chronic lung diseases. A key risk factor for HIV-associated lung disease is cigarette smoking, which is more prevalent in people living with HIV than in uninfected people. Other risk factors include older age, history of bacterial pneumonia, Pneumocystis pneumonia, pulmonary tuberculosis and immunosuppression. Mechanistic investigations support roles for aberrant innate and adaptive immunity, local and systemic inflammation, oxidative stress, altered lung and gut microbiota, and environmental exposures such as biomass fuel burning in the development of HIV-associated lung disease. Assessment, prevention and treatment strategies are largely extrapolated from data from HIV-uninfected people. Smoking cessation is essential. Data on the long-term consequences of HIV-associated lung disease are limited. Efforts to continue quantifying the effects of HIV infection on the lung, especially in low-income and middle-income countries, are essential to advance our knowledge and optimize respiratory care in people living with HIV.
Collapse
Affiliation(s)
- Ioannis Konstantinidis
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristina Crothers
- Veterans Affairs Puget Sound Healthcare System and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ken M Kunisaki
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark
| | - Heather J Zar
- Department of Paediatrics & Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Laurence Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Kim HJ, Lee YJ, Song MJ, Kwon BS, Kim YW, Lim SY, Lee YJ, Park JS, Cho YJ, Lee CT, Lee JH. Real-world experience of adverse reactions-necessitated rifampicin-sparing treatment for drug-susceptible pulmonary tuberculosis. Sci Rep 2023; 13:11275. [PMID: 37438379 DOI: 10.1038/s41598-023-38394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
Rifampicin is an important agent for tuberculosis treatment; however, it is often discontinued because of adverse reactions. The treatment regimen then can be administered as that for rifampicin-resistant tuberculosis, which can be toxic. We retrospectively reviewed 114 patients with drug-susceptible pulmonary tuberculosis who discontinued rifampicin due to adverse reactions during an 18 year period at a tertiary referral center, of which 92 (80.7%) exhibited favorable response. Hepatotoxicity was the leading cause of intolerance. Patients with a favorable response were younger and less likely to have comorbidities. The majority of patients were administered four medications during the intensive phase and three to four during the consolidative phase. For those with a favorable response, the median duration of treatment was 10.2 months and the most common intensive regimen was a combination of isoniazid, ethambutol, pyrazinamide, and fluoroquinolone (25%). The most common consolidation regimen was a combination of isoniazid, ethambutol, and fluoroquinolone (22.8%). Among the patients with a favorable response, two (2.2%) experienced recurrence after a follow-up of 3.4 (interquartile range 1.8-6.8) years. For patients with drug-susceptible pulmonary tuberculosis who do not tolerate rifampicin owing to its toxicity, a shorter regimen may be a useful alternative.
Collapse
Affiliation(s)
- Hyung-Jun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ye Jin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung Jin Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byoung Soo Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Yoon Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon-Joo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Sun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Choon-Taek Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Ho Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Singh KP, Carvalho ACC, Centis R, D Ambrosio L, Migliori GB, Mpagama SG, Nguyen BC, Aarnoutse RE, Aleksa A, van Altena R, Bhavani PK, Bolhuis MS, Borisov S, van T Boveneind-Vrubleuskaya N, Bruchfeld J, Caminero JA, Carvalho I, Cho JG, Davies Forsman L, Dedicoat M, Dheda K, Dooley K, Furin J, García-García JM, Garcia-Prats A, Hesseling AC, Heysell SK, Hu Y, Kim HY, Manga S, Marais BJ, Margineanu I, Märtson AG, Munoz Torrico M, Nataprawira HM, Nunes E, Ong CWM, Otto-Knapp R, Palmero DJ, Peloquin CA, Rendon A, Rossato Silva D, Ruslami R, Saktiawati AMI, Santoso P, Schaaf HS, Seaworth B, Simonsson USH, Singla R, Skrahina A, Solovic I, Srivastava S, Stocker SL, Sturkenboom MGG, Svensson EM, Tadolini M, Thomas TA, Tiberi S, Trubiano J, Udwadia ZF, Verhage AR, Vu DH, Akkerman OW, Alffenaar JWC, Denholm JT. Clinical standards for the management of adverse effects during treatment for TB. Int J Tuberc Lung Dis 2023; 27:506-519. [PMID: 37353868 PMCID: PMC10321364 DOI: 10.5588/ijtld.23.0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND: Adverse effects (AE) to TB treatment cause morbidity, mortality and treatment interruption. The aim of these clinical standards is to encourage best practise for the diagnosis and management of AE.METHODS: 65/81 invited experts participated in a Delphi process using a 5-point Likert scale to score draft standards.RESULTS: We identified eight clinical standards. Each person commencing treatment for TB should: Standard 1, be counselled regarding AE before and during treatment; Standard 2, be evaluated for factors that might increase AE risk with regular review to actively identify and manage these; Standard 3, when AE occur, carefully assessed and possible allergic or hypersensitivity reactions considered; Standard 4, receive appropriate care to minimise morbidity and mortality associated with AE; Standard 5, be restarted on TB drugs after a serious AE according to a standardised protocol that includes active drug safety monitoring. In addition: Standard 6, healthcare workers should be trained on AE including how to counsel people undertaking TB treatment, as well as active AE monitoring and management; Standard 7, there should be active AE monitoring and reporting for all new TB drugs and regimens; and Standard 8, knowledge gaps identified from active AE monitoring should be systematically addressed through clinical research.CONCLUSION: These standards provide a person-centred, consensus-based approach to minimise the impact of AE during TB treatment.
Collapse
Affiliation(s)
- K P Singh
- Department of Infectious diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia, Victorian Infectious Disease Unit, Royal Melbourne Hospital, VIC, Australia
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - S G Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - B C Nguyen
- Woolcock Institute of Medical Research, Viet Nam and University of Sydney, NSW, Australia
| | - R E Aarnoutse
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Aleksa
- Grodno State Medical University, Grodno, Belarus
| | - R van Altena
- Asian Harm Reduction Network (AHRN) and Medical Action Myanmar (MAM), Yangon, Myanmar
| | - P K Bhavani
- Indian Council of Medical Research-National Institute for Research in Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M S Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - S Borisov
- Moscow Research and Clinical Center for Tuberculosis Control, Moscow, Russia
| | - N van T Boveneind-Vrubleuskaya
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, Department of Public Health TB Control, Metropolitan Public Health Services, The Hague, The Netherlands
| | - J Bruchfeld
- Departement of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stokholm, Sweden, Departement of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - J A Caminero
- Department of Pneumology. University General Hospital of Gran Canaria "Dr Negrin", Las Palmas, Spain, ALOSA (Active Learning over Sanitary Aspects) TB Academy, Spain
| | - I Carvalho
- Paediatric Department, Vila Nova de Gaia Hospital Centre, Vila Nova de Gaia Outpatient Tuberculosis Centre, Vila Nova de Gaia, Portugal
| | - J G Cho
- Sydney Infecious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - L Davies Forsman
- Departement of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stokholm, Sweden, Departement of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - M Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - K Dheda
- Centre for Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, South African Medical Research Council Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - K Dooley
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - J M García-García
- Tuberculosis Research Programme, SEPAR (Sociedad Española de Neumología y Cirugía Torácica), Barcelona, Spain
| | - A Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa, Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - S K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Y Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - H Y Kim
- Sydney Infecious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - S Manga
- Tuberculosis Department Latin American Society of Thoracic Diseases, Lima, Peru
| | - B J Marais
- Sydney Infecious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia, Department of Infectious Diseases and Microbiology, The Children´s Hospital at Westmead, Westmead, NSW, Australia
| | - I Margineanu
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - A-G Märtson
- Centre of Excellence in Infectious Diseases Research, Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - H M Nataprawira
- Division of Paediatric Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - E Nunes
- Department of Pulmonology of Central Hospital of Maputo, Maputo, Mozambique, Faculty of Medicine of Eduardo Mondlane University, Maputo, Mozambique
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - R Otto-Knapp
- German Central Committee Against Tuberculosis (DZK), Berlin, Germany
| | - D J Palmero
- Hospital Muniz and Instituto Vaccarezza, Buenos Aires, Argentina
| | - C A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - A Rendon
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Neumología, CIPTIR, Monterrey, Mexico
| | - D Rossato Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - A M I Saktiawati
- Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia, Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - P Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - H S Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - B Seaworth
- University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - U S H Simonsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - R Singla
- Department of TB & Respiratory Diseases, National Institute of TB & Respiratory Diseases, New Delhi, India
| | - A Skrahina
- Republican Research and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - I Solovic
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Faculty of Health, Catholic University, Ružomberok, Vyšné Hágy, Slovakia
| | - S Srivastava
- University of Texas Health Science Center at Tyler, Tyler, TX, USA, Department of Medicine, The University of Texas at Tyler School of Medicine, TX, USA, Department of Pharmacy Practice, Texas Tech University Health Science Center, Dallas, TX, USA
| | - S L Stocker
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia, Department of Clinical Pharmacology and Toxicology, St Vincent´s Hospital, Sydney, NSW, Australia
| | - M G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - E M Svensson
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant´Orsola, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - T A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Trubiano
- Department of Infectious diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia, Department of Infectious Diseases, Austin Hospital, Melbourne, VIC, Australia
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - A R Verhage
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D H Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - O W Akkerman
- Department of Pulmonary Diseases and Tuberculosis, Groningen, Haren, the Netherlands, Tuberculosis Center Beatrixoord, University Medical Center Groningen, University of Groningen, Haren, the Netherlands
| | - J W C Alffenaar
- Sydney Infecious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Budak M, Cicchese JM, Maiello P, Borish HJ, White AG, Chishti HB, Tomko J, Frye LJ, Fillmore D, Kracinovsky K, Sakal J, Scanga CA, Lin PL, Dartois V, Linderman JJ, Flynn JL, Kirschner DE. Optimizing tuberculosis treatment efficacy: Comparing the standard regimen with Moxifloxacin-containing regimens. PLoS Comput Biol 2023; 19:e1010823. [PMID: 37319311 PMCID: PMC10306236 DOI: 10.1371/journal.pcbi.1010823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.
Collapse
Affiliation(s)
- Maral Budak
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Joseph M. Cicchese
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Harris B. Chishti
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - L. James Frye
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Fillmore
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer Sakal
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philana Ling Lin
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, United States of America
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
31
|
Stahl JP, Canouï E, Bleibtreu A, Dubée V, Ferry T, Gillet Y, Lemaignen A, Lesprit P, Lorrot M, Lourtet-Hascoët J, Manaquin R, Meyssonnier V, Pavese P, Pham TT, Varon E, Gauzit R. SPILF update on bacterial arthritis in adults and children. Infect Dis Now 2023; 53:104694. [PMID: 36948248 DOI: 10.1016/j.idnow.2023.104694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
In 2020 the French Society of Rhumatology (SFR) published an update of the 1990 recommendations for management of bacterial arthritis in adults. While we (French ID Society, SPILF) totally endorse this update, we wished to provide further information about specific antibiotic treatments. The present update focuses on antibiotics with good distribution in bone and joint. It is important to monitor their dosage, which should be maximized according to PK/PD parameters. Dosages proposed in this update are high, with the optimized mode of administration for intravenous betalactams (continuous or intermittent infusion). We give tools for the best dosage adaptation to conditions such as obesity or renal insufficiency. In case of enterobacter infection, with an antibiogram result "susceptible for high dosage", we recommend the requesting of specialized advice from an ID physician. More often than not, it is possible to prescribe antibiotics via the oral route as soon as blood cultures are sterile and clinical have symptoms shown improvement. Duration of antibiotic treatment is 6 weeks for Staphylococcus aureus, and 4 weeks for the other bacteria (except for Neisseria: 7 days).
Collapse
Affiliation(s)
- J P Stahl
- Université Grenoble Alpes, Maladies Infectieuses, 38700, France.
| | - E Canouï
- Equipe mobile d'infectiologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de Référence des Infections Ostéo-Articulaires complexes (CRIOAc Cochin) APHP-CUP, Paris, France
| | - A Bleibtreu
- Maladies Infectieuseset Tropicales, Hôpital Pitié Salpêtrière, AP-HP Sorbonne Université, Paris France
| | - V Dubée
- Maladies Infectieuses et Tropicales, CHU d'Angers, Angers, France
| | - T Ferry
- Maladies Infectieuses et Tropicales, Centre de Référence des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Hôpital de la Croix-Rousse, 69004, Hospices Civils de Lyon, Lyon, France. Service des Maladies Infectieuses, Département de médecine, Hôpitaux Universitaires de Genève, Suisse
| | - Y Gillet
- Urgences et Réanimation Pédiatrique, Hospices Civils de Lyon, Université Claude Bernard Lyon, France
| | - A Lemaignen
- Maladies Infectieuses, CHRU de Tours, Université de Tours, 37044, France
| | - P Lesprit
- Maladies Infectieuses, CHU Grenoble Alpes, 38043, France
| | - M Lorrot
- Pédiatrie Générale et Equipe Opérationnelle d'Infectiologie, Centre de Référence des Infections Ostéo-Articulaires complexes (CRIOAc Pitié), Hôpital Armand Trousseau AP-HP Sorbonne Université, Paris France
| | | | - R Manaquin
- Maladies Infectieuses et Tropicales, GHSR , CHU de La Réunion, CRAtb La Réunion, Saint-Pierre, 97410, FRANCE
| | - V Meyssonnier
- Centre de Référence des Infections Ostéo-articulaires, GH Diaconesses Croix Saint-Simon, 75020, Paris, France; Service de Médecine Interne Générale, Département de médecine, Hôpitaux Universitaires de Genève, Suisse
| | - P Pavese
- Maladies Infectieuses, CHU Grenoble Alpes, 38043, France
| | - T-T Pham
- Maladies Infectieuses et Tropicales, Centre de Référence des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Hôpital de la Croix-Rousse, 69004, Hospices Civils de Lyon, Lyon, France. Service des Maladies Infectieuses, Département de médecine, Hôpitaux Universitaires de Genève, Suisse
| | - E Varon
- Centre National de Référence des Pneumocoques, CRC-CRB, Centre Hospitalier Intercommunal de Créteil, 94000, Créteil, France
| | - R Gauzit
- Equipe mobile d'infectiologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de Référence des Infections Ostéo-Articulaires complexes (CRIOAc Cochin) APHP-CUP, Paris, France
| | | |
Collapse
|
32
|
Denaro C, Merrill NJ, McQuade ST, Reed L, Kaddi C, Azer K, Piccoli B. A pipeline for testing drug mechanism of action and combination therapies: From microarray data to simulations via Linear-In-Flux-Expressions: Testing four-drug combinations for tuberculosis treatment. Math Biosci 2023; 360:108983. [PMID: 36931620 DOI: 10.1016/j.mbs.2023.108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Computational methods are becoming commonly used in many areas of medical research. Recently, the modeling of biological mechanisms associated with disease pathophysiology have benefited from approaches such as Quantitative Systems Pharmacology (briefly QSP) and Physiologically Based Pharmacokinetics (briefly PBPK). These methodologies show the potential to enhance, if not substitute animal models. The main reasons for this success are the high accuracy and low cost. Solid mathematical foundations of such methods, such as compartmental systems and flux balance analysis, provide a good base on which to build computational tools. However, there are many choices to be made in model design, that will have a large impact on how these methods perform as we scale up the network or perturb the system to uncover the mechanisms of action of new compounds or therapy combinations. A computational pipeline is presented here that starts with available -omic data and utilizes advanced mathematical simulations to inform the modeling of a biochemical system. Specific attention is devoted to creating a modular workflow, including the mathematical rigorous tools to represent complex chemical reactions, and modeling drug action in terms of its impact on multiple pathways. An application to optimizing combination therapy for tuberculosis shows the potential of the approach.
Collapse
Affiliation(s)
- Christopher Denaro
- Center for Computational and Integrative Biology, Rutgers Camden, 201 S. Broadway, Camden, 08102, NJ, USA.
| | - Nathaniel J Merrill
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, 99254, WA, USA
| | - Sean T McQuade
- Center for Computational and Integrative Biology, Rutgers Camden, 201 S. Broadway, Camden, 08102, NJ, USA
| | - Logan Reed
- Department of Mathematical Sciences, Rutgers Camden, 311 N. Fifth Street, Camden, 08102, NJ, USA
| | | | - Karim Azer
- Axcella, 840 Memorial Drive, Cambridge, 02139, MA, USA
| | - Benedetto Piccoli
- Center for Computational and Integrative Biology, Rutgers Camden, 201 S. Broadway, Camden, 08102, NJ, USA; Department of Mathematical Sciences, Rutgers Camden, 311 N. Fifth Street, Camden, 08102, NJ, USA
| |
Collapse
|
33
|
Pettit AC, Phillips PPJ, Kurbatova E, Vernon A, Nahid P, Dawson R, Dooley KE, Sanne I, Waja Z, Mohapi L, Podany AT, Samaneka W, Savic RM, Johnson JL, Muzanyi G, Lalloo UG, Bryant K, Sizemore E, Scott N, Dorman SE, Chaisson RE, Swindells S. Rifapentine With and Without Moxifloxacin for Pulmonary Tuberculosis in People With Human Immunodeficiency Virus (S31/A5349). Clin Infect Dis 2023; 76:e580-e589. [PMID: 36041016 PMCID: PMC10169427 DOI: 10.1093/cid/ciac707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) Trials Consortium Study 31/AIDS Clinical Trials Group A5349, an international randomized open-label phase 3 noninferiority trial showed that a 4-month daily regimen substituting rifapentine for rifampin and moxifloxacin for ethambutol had noninferior efficacy and was safe for the treatment of drug-susceptible pulmonary TB (DS-PTB) compared with the standard 6-month regimen. We explored results among the prespecified subgroup of people with human immunodeficiency virus (HIV) (PWH). METHODS PWH and CD4+ counts ≥100 cells/μL were eligible if they were receiving or about to initiate efavirenz-based antiretroviral therapy (ART). Primary endpoints of TB disease-free survival 12 months after randomization (efficacy) and ≥ grade 3 adverse events (AEs) on treatment (safety) were compared, using a 6.6% noninferiority margin for efficacy. Randomization was stratified by site, pulmonary cavitation, and HIV status. PWH were enrolled in a staged fashion to support cautious evaluation of drug-drug interactions between rifapentine and efavirenz. RESULTS A total of 2516 participants from 13 countries in sub-Saharan Africa, Asia, and the Americas were enrolled. Among 194 (8%) microbiologically eligible PWH, the median CD4+ count was 344 cells/μL (interquartile range: 223-455). The rifapentine-moxifloxacin regimen was noninferior to control (absolute difference in unfavorable outcomes -7.4%; 95% confidence interval [CI] -20.8% to 6.0%); the rifapentine regimen was not noninferior to control (+7.5% [95% CI, -7.3% to +22.4%]). Fewer AEs were reported in rifapentine-based regimens (15%) than the control regimen (21%). CONCLUSIONS In people with HIV-associated DS-PTB with CD4+ counts ≥100 cells/μL on efavirenz-based ART, the 4-month daily rifapentine-moxifloxacin regimen was noninferior to the 6-month control regimen and was safe. CLINICAL TRIALS REGISTRATION NCT02410772.
Collapse
Affiliation(s)
- April C Pettit
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrick P J Phillips
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, California, USA
| | - Ekaterina Kurbatova
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andrew Vernon
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Payam Nahid
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, California, USA
| | - Rodney Dawson
- Center for TB Research Innovation, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Kelly E Dooley
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ian Sanne
- Clinical HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Lerato Mohapi
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Anthony T Podany
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Wadzanai Samaneka
- Department of Medicine, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Rada M Savic
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, California, USA
| | - John L Johnson
- Tuberculosis Research Unit, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda
| | - Grace Muzanyi
- Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda
| | - Umesh G Lalloo
- Enhancing Care Foundation, Durban University of Technology, Durban, South Africa
| | - Kia Bryant
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Erin Sizemore
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nigel Scott
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan E Dorman
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard E Chaisson
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Susan Swindells
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
34
|
Kingdon ADH, Meosa-John AR, Batt SM, Besra GS. Vanoxerine kills mycobacteria through membrane depolarization and efflux inhibition. Front Microbiol 2023; 14:1112491. [PMID: 36778873 PMCID: PMC9909702 DOI: 10.3389/fmicb.2023.1112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium tuberculosis is a deadly pathogen, currently the leading cause of death worldwide from a single infectious agent through tuberculosis infections. If the End TB 2030 strategy is to be achieved, additional drugs need to be identified and made available to supplement the current treatment regimen. In addition, drug resistance is a growing issue, leading to significantly lower treatment success rates, necessitating further drug development. Vanoxerine (GBR12909), a dopamine re-uptake inhibitor, was recently identified as having anti-mycobacterial activity during a drug repurposing screening effort. However, its effects on mycobacteria were not well characterized. Herein, we report vanoxerine as a disruptor of the membrane electric potential, inhibiting mycobacterial efflux and growth. Vanoxerine had an undetectable level of resistance, highlighting the lack of a protein target. This study suggests a mechanism of action for vanoxerine, which will allow for its continued development or use as a tool compound.
Collapse
|
35
|
Manika K, Loukeri A, Sionidou M, Moschos C, Papavasileiou A. Treatment for tuberculosis due to sensitive strains: To shorten or not to shorten? PNEUMON 2023. [DOI: 10.18332/pne/156697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Edwards BD, Mah H, Sabur NF, Brode SK. Hepatotoxicity and tuberculosis treatment outcomes in chronic liver disease. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA 2023; 8:64-74. [PMID: 37008589 PMCID: PMC10052910 DOI: 10.3138/jammi-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 01/28/2023]
Abstract
Background: The treatment of tuberculosis (TB) is known to cause liver injury, however, there is limited data to guide optimal treatment for patients with chronic liver disease. Methods: We undertook a retrospective case series of patients with chronic liver disease and TB disease. The primary objective was to determine if there was a difference in the incidence of drug-induced liver injury (DILI) in patients with cirrhosis versus those with chronic hepatitis. Additionally, we sought to compare TB treatment outcomes, type and duration of therapy, and incidence of adverse events. Results: We included 56 patients (chronic hepatitis 40; cirrhosis 16). There were 33 patients (58.9%) who experienced DILI requiring treatment modification, with no significant difference between groups: 65% vs. 43.8%, p = 0.23. Patients with chronic hepatitis were more likely to receive treatment with standard first-line intensive phase therapy that included a combination of rifampin (RIF), isoniazid, and pyrazinamide (80.8% vs. 19.2%, p = 0.03) and any regimen than included isoniazid (92.5% vs. 68.8%, p = 0.04). The risk of DILI was higher when more hepatotoxic TB medications were used. Overall treatment success in this cohort was low (55.4%), with no significant difference between groups (62.5% vs. 37.5%, p = 0.14). Most patients with treatment success (97%) were able to tolerate a rifamycin. Conclusions: The risk of DILI is high, especially with the use of isoniazid, in patients with TB and chronic liver disease. This risk can be effectively mitigated with no difference in treatment outcomes in the presence of cirrhosis.
Collapse
Affiliation(s)
- Brett D Edwards
- Department of Medicine, Division of Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Henry Mah
- West Park Healthcare Centre, Toronto, Ontario, Canada
| | - Natasha F Sabur
- West Park Healthcare Centre, Toronto, Ontario, Canada
- St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Sarah K Brode
- West Park Healthcare Centre, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Poladian N, Orujyan D, Narinyan W, Oganyan AK, Navasardyan I, Velpuri P, Chorbajian A, Venketaraman V. Role of NF-κB during Mycobacterium tuberculosis Infection. Int J Mol Sci 2023; 24:1772. [PMID: 36675296 PMCID: PMC9865913 DOI: 10.3390/ijms24021772] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) causes tuberculosis infection in humans worldwide, especially among immunocompromised populations and areas of the world with insufficient funding for tuberculosis treatment. Specifically, M. tb is predominantly exhibited as a latent infection, which poses a greater risk of reactivation for infected individuals. It has been previously shown that M. tb infection requires pro-inflammatory and anti-inflammatory mediators to manage its associated granuloma formation via tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interferon-γ (IFN-γ), and caseum formation via IL-10, respectively. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) has been found to play a unique mediator role in providing a pro-inflammatory response to chronic inflammatory disease processes by promoting the activation of macrophages and the release of various cytokines such as IL-1, IL-6, IL-12, and TNF-α. NF-κB's role is especially interesting in its mechanism of assisting the immune system's defense against M. tb, wherein NF-κB induces IL-2 receptors (IL-2R) to decrease the immune response, but has also been shown to crucially assist in keeping a granuloma and bacterial load contained. In order to understand NF-κB's role in reducing M. tb infection, within this literature review we will discuss the dynamic interaction between M. tb and NF-κB, with a focus on the intracellular signaling pathways and the possible side effects of NF-κB inactivation on M. tb infection. Through a thorough review of these interactions, this review aims to highlight the role of NF-κB in M. tb infection for the purpose of better understanding the complex immune response to M. tb infection and to uncover further potential therapeutic methods.
Collapse
Affiliation(s)
- Nicole Poladian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - William Narinyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Armani K. Oganyan
- College of Osteopathic Medicine, Des Moines University, 3200 Grand Ave, Des Moines, IA 50312, USA
| | - Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Prathosh Velpuri
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
38
|
Oh AL, Makmor-Bakry M, Islahudin F, Wong IC. Prevalence and predictive factors of tuberculosis treatment interruption in the Asia region: a systematic review and meta-analysis. BMJ Glob Health 2023; 8:e010592. [PMID: 36650014 PMCID: PMC9853156 DOI: 10.1136/bmjgh-2022-010592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Tuberculosis (TB) treatment interruption remains a critical challenge leading to poor treatment outcomes. Two-thirds of global new TB cases are mostly contributed by Asian countries, prompting systematic analysis of predictors for treatment interruption due to the variable findings. METHODS Articles published from 2012 to 2021 were searched through seven databases. Studies that established the relationship for risk factors of TB treatment interruption among adult Asian were included. Relevant articles were screened, extracted and appraised using Joanna Briggs Institute's checklists for cohort, case-control and cross-sectional study designs by three reviewers. Meta-analysis was performed using the random effect model in Review Manager software. The pooled prevalence and predictors of treatment interruption were expressed in ORs with 95% CIs; heterogeneity was assessed using the I2 statistic. The publication bias was visually inspected using the funnel plot. RESULTS Fifty eligible studies (658 304 participants) from 17 Asian countries were included. The overall pooled prevalence of treatment interruption was 17% (95% CI 16% to 18%), the highest in Southern Asia (22% (95% CI 16% to 29%)), followed by Eastern Asia (18% (95% CI 16% to 20%)) and South East Asia (16% (95% CI 4% to 28%)). Seven predictors were identified to increase the risk of treatment interruption, namely, male gender (OR 1.38 (95% CI 1.26 to 1.51)), employment (OR 1.43 (95% CI 1.11 to 1.84)), alcohol intake (OR 2.24 (95% CI 1.58 to 3.18)), smoking (OR 2.74 (95% CI 1.98 to 3.78)), HIV-positive (OR 1.50 (95% CI 1.15 to 1.96)), adverse drug reactions (OR 2.01 (95% CI 1.20 to 3.34)) and previously treated cases (OR 1.77 (95% CI 1.39 to 2.26)). All predictors demonstrated substantial heterogeneity except employment and HIV status with no publication bias. CONCLUSION The identification of predictors for TB treatment interruption enables strategised planning and collective intervention to be targeted at the high-risk groups to strengthen TB care and control in the Asia region.
Collapse
Affiliation(s)
- Ai Ling Oh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Makmor-Bakry
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farida Islahudin
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ian Ck Wong
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
39
|
Bhanot A, Lunge A, Kumar N, Kidwai S, Singh R, Sundriyal S, Agarwal N. Discovery of small molecule inhibitors of Mycobacterium tuberculosis ClpC1: SAR studies and antimycobacterial evaluation. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
40
|
Alnewais ME, Landolfa SL, Bean M, Fermo JD. Successful Anticoagulation With Warfarin After Switching From Rifampin to Rifabutin. J Prim Care Community Health 2023; 14:21501319231197588. [PMID: 37750044 PMCID: PMC10521264 DOI: 10.1177/21501319231197588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSE A case of a patient receiving warfarin for pulmonary embolism (PE) concomitantly with rifampin for treatment of active pulmonary tuberculosis (PTB) is presented. A successful clinical intervention whereby the patient achieved therapeutic anticoagulation after switching to an alternative rifamycin antibacterial, rifabutin, is described. SUMMARY The drug-drug interaction between warfarin and rifampin is well known and documented. However, to our knowledge, no case reports of the interaction between warfarin and rifabutin have been published, and literature describing this interaction is lacking. We describe the case of a 27-year-old African American female referred to a pharmacist-managed anticoagulation clinic for treatment of PE with warfarin. The patient was also being treated for active tuberculosis with rifampin, isoniazid, pyrazinamide, and ethambutol. Warfarin was initiated and over the course of 1 month was continuously increased to a total weekly dose (TWD) of 140 mg without ever achieving the target international normalized ratio (INR) of 2 to 3. In an attempt to reach the target INR, rifampin was switched to rifabutin to minimize the drug-drug interaction with warfarin. Six days after this switch, the target INR was achieved with a lower warfarin TWD of 115 mg. Rifabutin interacts with warfarin to a lesser degree than rifampin and may be considered as an alternative in patients taking warfarin who require treatment with a rifamycin. CONCLUSION For patients in whom therapeutic anticoagulation with warfarin has been difficult, the use of rifabutin may be considered in place of rifampin when the concomitant use of a rifamycin is required.
Collapse
Affiliation(s)
- Marwah E. Alnewais
- King Faisal University, Alahsa, Saudi Arabia
- Boston Medical Center, Boston, MA, USA
| | | | | | - Joli D. Fermo
- Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
41
|
Mehta K, Narayanan N, Heysell SK, Bisson GP, Subbian S, Kurepina N, Kreiswirth BN, Vinnard C. Pharmacogenetic variability and the probability of site of action target attainment during tuberculosis meningitis treatment: A physiologically based pharmacokinetic modeling and simulations study. Tuberculosis (Edinb) 2022; 137:102271. [PMID: 36375279 DOI: 10.1016/j.tube.2022.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE AND METHODS Our objective was to investigate the role of patient pharmacogenetic variability in determining site of action target attainment during tuberculous meningitis (TBM) treatment. Rifampin and isoniazid PBPK model that included SLCO1B1 and NAT2 effects on exposures respectively were obtained from literature, modified, and validated using available cerebrospinal-fluid (CSF) concentrations. Population simulations of isoniazid and rifampin concentrations in brain interstitial fluid and probability of target attainment according to genotypes and M. tuberculosis MIC levels, under standard and intensified dosing, were conducted. RESULTS The rifampin and isoniazid model predicted steady-state drug concentration within brain interstitial fluid matched with the observed CSF concentrations. At MIC level of 0.25 mg/L, 57% and 23% of the patients with wild type and heterozygous SLCO1B1 genotype respectively attained the target in CNS with rifampin standard dosing, improving to 98% and 91% respectively with 35 mg/kg dosing. At MIC level of 0.25 mg/L, 33% of fast acetylators attained the target in CNS with isoniazid standard dosing, improving to 90% with 7.5 mg/kg dosing. CONCLUSION In this study, the combined effects of pharmacogenetic and M. tuberculosis MIC variability were potent determinants of target attainment in CNS. The potential for genotype-guided dosing during TBM treatment should be further explored in prospective clinical studies.
Collapse
Affiliation(s)
| | | | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Gregory P Bisson
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Newark, NJ, USA
| | - Natalia Kurepina
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Barry N Kreiswirth
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | |
Collapse
|
42
|
Samukawa N, Yamaguchi T, Ozeki Y, Matsumoto S, Igarashi M, Kinoshita N, Hatano M, Tokudome K, Matsunaga S, Tomita S. An efficient CRISPR interference-based prediction method for synergistic/additive effects of novel combinations of anti-tuberculosis drugs. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748577 DOI: 10.1099/mic.0.001285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is treated by chemotherapy with multiple anti-TB drugs for a long period, spanning 6 months even in a standard course. In perspective, to prevent the emergence of antimicrobial resistance, novel drugs that act synergistically or additively in combination with major anti-TB drugs and, if possible, shorten the duration of TB therapy are needed. However, their combinatorial effect cannot be predicted until the lead identification phase of the drug development. Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a powerful genetic tool that enables high-throughput screening of novel drug targets. The development of anti-TB drugs promises to be accelerated by CRISPRi. This study determined whether CRISPRi could be applicable for predictive screening of the combinatorial effect between major anti-TB drugs and an inhibitor of a novel target. In the checkerboard assay, isoniazid killed Mycobacterium smegmatis synergistically or additively in combinations with rifampicin or ethambutol, respectively. The susceptibility to rifampicin and ethambutol was increased by knockdown of inhA, which encodes a target molecule of isoniazid. Additionally, knockdown of rpoB, which encodes a target molecule of rifampicin, increased the susceptibility to isoniazid and ethambutol, which act synergistically with rifampicin in the checkerboard assay. Moreover, CRISPRi could successfully predict the synergistic action of cyclomarin A, a novel TB drug candidate, with isoniazid or rifampicin. These results demonstrate that CRISPRi is a useful tool not only for drug target exploration but also for screening the combinatorial effects of novel combinations of anti-TB drugs. This study provides a rationale for anti-TB drug development using CRISPRi.
Collapse
Affiliation(s)
- Noriaki Samukawa
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Present address: Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Toyama 1-23-1, Shinjuku-ku, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Masayuki Igarashi
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Naoko Kinoshita
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masaki Hatano
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Kentaro Tokudome
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shinji Matsunaga
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
43
|
Radisic MV, Pujato NR, Bravo PM, Del Grosso RC, Hunter M, Beltramino S, Linares González L, Cornet ML, Del Carmen Rial M, Franzini RL, Dotta AC, León LR, Walther J, Uva PD, Werber G. Tuberculosis treatment without rifampin in kidney/kidney-pancreas transplantation: A case series report. Transpl Infect Dis 2022; 24:e13949. [PMID: 36515463 DOI: 10.1111/tid.13949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The best approach to tuberculosis (TB) treatment in transplanted patients is still unknown. Current guidelines are based on evidence either extrapolated from other populations or observational. Rifampin-containing regimens have strong pharmacokinetic interactions with immunosuppressive regimens, with high rates of organ dysfunction and ∼20% mortality. This report describes the results obtained using non-rifampin-containing regimens to treat confirmed TB in adult patients with kidney/kidney-pancreas transplantation. METHODS Retrospective data analysis from confirmed TB cases in adult kidney/kidney-pancreas transplant recipients (2006-2019), treated "de novo" with non-rifampin-containing regimens. RESULTS Fifty-seven patients had confirmed TB. Thirty patients were treated "de novo" with non-rifampin-containing regimens. These patients' mean age was 49.24 (±11.50) years. Induction immunosuppression was used in 22 patients. Maintenance immunosuppression was tacrolimus-mycophenolate-steroids in 13 (43%), sirolimus-mycophenolate-steroids in 6 (20%), and other immunosuppressive regimens in 11 (36%). Belatacept was used in four patients. TB localizations: pulmonary 43%; disseminated 23%; extrapulmonary 33%. Twenty-seven (90%) patients completed treatment with isoniazid, ethambutol, and levofloxacin (12 months, 23; 9 months, 3; 6 months, 1); 12 of these patients also received pyrazinamide for the first 2 months and were cured with functioning grafts. One patient (3%) lost the graft while on treatment. Two patients (7%) died while on TB treatment. Median (range) follow-up after completion of TB treatment was 32 (8-150) months. No TB relapses were observed. CONCLUSIONS Results with non-rifampin-containing TB treatments in this case series were better (in terms of mortality and graft dysfunction) than those previously described with rifampin-containing regimens in transplanted patients.
Collapse
Affiliation(s)
- Marcelo Victor Radisic
- Infectious, Diseases Department, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Natalia Rosana Pujato
- Infectious, Diseases Department, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Pablo Martin Bravo
- Infectious, Diseases Department, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Roxana Constanza Del Grosso
- Internal Medicine Department, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Martin Hunter
- Internal Medicine Department, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Santiago Beltramino
- Critical Care Unit, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Laura Linares González
- Infectious, Diseases Department, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - María Lucía Cornet
- Infectious, Diseases Department, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Maria Del Carmen Rial
- Kidney Transplantation Unit, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Rosa Livia Franzini
- Kidney Transplantation Unit, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Ana C Dotta
- Kidney Transplantation Unit, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Luis Roberto León
- Kidney Transplantation Unit, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Javier Walther
- Kidney Transplantation Unit, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Pablo Daniel Uva
- Kidney-Pancreas Transplantation Unit, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| | - Gustavo Werber
- Critical Care Unit, Instituto de Trasplante y Alta Complejidad (ITAC), Autonomous City of Buenos Aires, Argentina
| |
Collapse
|
44
|
Edwards BD, Field SK. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs 2022; 82:1695-1715. [PMID: 36479687 PMCID: PMC9734533 DOI: 10.1007/s40265-022-01817-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
This article provides an encompassing review of the current pipeline of putative and developed treatments for tuberculosis, including multidrug-resistant strains. The review has organized each compound according to its site of activity. To provide context, mention of drugs within current recommended treatment regimens is made, thereafter followed by discussion on recently developed and upcoming molecules at established and novel targets. The review is designed to provide a clinically applicable understanding of the compounds that are deemed most currently relevant, including those already under clinical study and those that have shown promising pre-clinical results. An extensive review of the efficacy and safety data for key contemporary drugs already incorporated into treatment regimens, such as bedaquiline, pretomanid, and linezolid, is provided. The three levels of the bacterial cell wall (mycolic acid, arabinogalactan, and peptidoglycan layers) are highlighted and important compounds designed to target each layer are delineated. Amongst others, the highly optimistic and potent anti-mycobacterial activity of agents such as BTZ-043, PBTZ 169, and OPC-167832 are emphasized. The evolving spectrum of oxazolidinones, such as sutezolid, delpazolid, and TBI-223, all aiming to exceed the efficacy achieved with linezolid yet offer a safer alternative to the potential toxicity, are reviewed. New and exciting prospective agents with novel mechanisms of impact against TB, including 3-aminomethyl benzoxaboroles and telacebec, are underscored. We describe new diaryloquinolines in development, striving to build on the immense success of bedaquiline. Finally, we discuss some of these compounds that have shown encouraging additive or synergistic benefit when used in combination, providing some promise for the future in treating this ancient scourge.
Collapse
Affiliation(s)
- Brett D Edwards
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada.
| | - Stephen K Field
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada
| |
Collapse
|
45
|
Ghosh A, Saha S. Meta-analysis of sputum microbiome studies identifies airway disease-specific taxonomic and functional signatures. J Med Microbiol 2022; 72. [PMID: 36748565 DOI: 10.1099/jmm.0.001617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction. Studying taxonomic and functional signatures of respiratory microbiomes provide a better understanding of airway diseases.Gap Statement. Several human airway metagenomics studies have identified taxonomic and functional features restricted to a single disease condition and the findings are not comparable across airway diseases due to use of different samples, NGS platforms, and bioinformatics databases and tools.Aim. To study the microbial taxonomic and functional components of sputum microbiome across airway diseases and healthy smokers.Methodology. Here, 57 whole metagenome shotgun sequencing (WMSS) runs coming from the sputum of five airway diseases: asthma, bronchiectasis, chronic obstructive pulmonary diseases (COPD), cystic fibrosis (CF), tuberculosis (TB), and healthy smokers as the control were reanalysed using a common WMSS analysis pipeline.Results. Shannon's index (alpha diversity) of the healthy smoker group was the highest among all. The beta diversity showed that the sputum microbiome is distinct in major airway diseases such as asthma, COPD and cystic fibrosis. The microbial composition based on differential analysis showed that there are specific markers for each airway disease like Acinetobacter bereziniae as a marker for COPD and Achromobacter xylosoxidans as a marker of cystic fibrosis. Pathways and metabolites identified from the sputum microbiome of these five diseases and healthy smokers also show specific markers. 'ppGpp biosynthesis' and 'purine ribonucleosides degradation' pathways were identified as differential markers for bronchiectasis and COPD. In this meta-analysis, besides bacteria kingdom, Aspergillus fumigatus was detected in asthma and COPD, and Roseolovirus human betaherpesvirus 7 was detected in COPD. Our analysis showed that the majority of the gene families specific to the drug-resistant associated genes were detected from opportunistic pathogens across all the groups.Conclusion. In summary, the specific species in the sputum of airway diseases along with the microbial features like specific gene families, pathways, and metabolites were identified which can be explored for better diagnosis and therapy.
Collapse
Affiliation(s)
- Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata - 700091, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata - 700091, India
| |
Collapse
|
46
|
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol 2022; 20:685-701. [PMID: 35478222 PMCID: PMC9045034 DOI: 10.1038/s41579-022-00731-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Despite two decades of intensified research to understand and cure tuberculosis disease, biological uncertainties remain and hamper progress. However, owing to collaborative initiatives including academia, the pharmaceutical industry and non-for-profit organizations, the drug candidate pipeline is promising. This exceptional success comes with the inherent challenge of prioritizing multidrug regimens for clinical trials and revamping trial designs to accelerate regimen development and capitalize on drug discovery breakthroughs. Most wanted are markers of progression from latent infection to active pulmonary disease, markers of drug response and predictors of relapse, in vitro tools to uncover synergies that translate clinically and animal models to reliably assess the treatment shortening potential of new regimens. In this Review, we highlight the benefits and challenges of 'one-size-fits-all' regimens and treatment duration versus individualized therapy based on disease severity and host and pathogen characteristics, considering scientific and operational perspectives.
Collapse
Affiliation(s)
- Véronique A Dartois
- Center for Discovery and Innovation, and Hackensack Meridian School of Medicine, Department of Medical Sciences, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| |
Collapse
|
47
|
Taneja R, Taneja N. Urological problems in elderly patients of tuberculosis. Indian J Tuberc 2022; 69 Suppl 2:S295-S300. [PMID: 36400526 DOI: 10.1016/j.ijtb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Development of tuberculosis is closely linked to poor socioeconomic condition, poor immune functioning and mental health including depression and anxiety. Elderly population becomes an important target group for the disease and deserves special attention. Unique problem with genito urinary tuberculosis (GUTB) in elderly population is the diagnosis. One of the earliest symptoms of GUTB is increased urinary frequency which a large majority in elderly population may already have, owing to their enlarged prostates or an overactive bladder/detrusor over activity mediated centrally or peripherally, which are not uncommon in this group. When left undiagnosed and thereby untreated, GUTB usually leads to irreversible tissue damage and consequences range from abscesses, small capacity urinary bladder to renal failure.
Collapse
Affiliation(s)
- Rajesh Taneja
- Urology and Robotic Surgery, Indraprastha Apollo Hospitals, New Delhi, India.
| | - Nilesh Taneja
- Urology and Robotic Surgery, Indraprastha Apollo Hospitals, New Delhi, India
| |
Collapse
|
48
|
Lippincott CK, Perry A, Munk E, Maltas G, Shah M. Tuberculosis treatment adherence in the era of COVID-19. BMC Infect Dis 2022; 22:800. [PMID: 36289485 PMCID: PMC9607764 DOI: 10.1186/s12879-022-07787-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND In-person directly observed therapy (DOT) is commonly used for tuberculosis (TB) treatment monitoring in the US, with increasing usage of video-DOT (vDOT). We evaluated the impact of COVID-19 on TB treatment adherence, and utilization and effectiveness of vDOT. METHODS We abstracted routinely collected data on individuals treated for TB disease in Baltimore, Maryland between April 2019 and April 2021. Our primary outcomes were to assess vDOT utilization and treatment adherence, defined as the proportion of prescribed doses (7 days/week) verified by observation (in-person versus video-DOT), comparing individuals in the pre-COVID and COVID (April 2020) periods. RESULTS Among 52 individuals with TB disease, 24 (46%) received treatment during the COVID-19 pandemic. vDOT utilization significantly increased in the COVID period (18/24[75%]) compared to pre-COVID (12/28[43%], p = 0.02). Overall, median verified adherence was similar pre-COVID and COVID periods (65% versus 68%, respectively, p = 0.96). Adherence was significantly higher overall when using vDOT (median 86% [IQR 70-98%]) compared to DOT (median 59% [IQR 55-64%], p < 0.01); this improved adherence with vDOT was evident in both the pre-COVID (median 98% vs. 58%, p < 0.01) and COVID period (median 80% vs. 62%, p = 0.01). CONCLUSION vDOT utilization increased during the COVID period and was more effective than in-person DOT at verifying ingestion of prescribed treatment.
Collapse
Affiliation(s)
- Christopher K Lippincott
- Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St, CRB-II, 1M-10, 21287, Baltimore, MD, USA
| | - Allison Perry
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Elizabeth Munk
- Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St, CRB-II, 1M-10, 21287, Baltimore, MD, USA
| | - Gina Maltas
- Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St, CRB-II, 1M-10, 21287, Baltimore, MD, USA
| | - Maunank Shah
- Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St, CRB-II, 1M-10, 21287, Baltimore, MD, USA.
| |
Collapse
|
49
|
Parker CM, Karchmer AW, Fisher MC, Muhammad KM, Yu PA. Safety of Antimicrobials for Postexposure Prophylaxis and Treatment of Anthrax: A Review. Clin Infect Dis 2022; 75:S417-S431. [PMID: 36251549 PMCID: PMC9649414 DOI: 10.1093/cid/ciac592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the causative agent for anthrax, poses a potential bioterrorism threat and is capable of causing mass morbidity and mortality. Antimicrobials are the mainstay of postexposure prophylaxis (PEP) and treatment of anthrax. We conducted this safety review of 24 select antimicrobials to identify any new or emerging serious or severe adverse events (AEs) to help inform their risk-benefit evaluation for anthrax. METHODS Twenty-four antimicrobials were included in this review. Tertiary data sources (e.g. Lactmed, Micromedex, REPROTOX) were reviewed for safety information and summarized to evaluate the known risks of these antimicrobials. PubMed was also searched for published safety information on serious or severe AEs with these antimicrobials; AEs that met inclusion criteria were abstracted and reviewed. RESULTS A total of 1316 articles were reviewed. No consistent observations or patterns were observed among the abstracted AEs for a given antimicrobial; therefore, the literature review did not reveal evidence of new or emerging AEs that would add to the risk-benefit profiles already known from tertiary data sources. CONCLUSIONS The reviewed antimicrobials have known and/or potential serious or severe risks that may influence selection when recommending an antimicrobial for PEP or treatment of anthrax. Given the high fatality rate of anthrax, the risk-benefit evaluation favors use of these antimicrobials for anthrax. The potential risks of antimicrobials should not preclude these reviewed antimicrobials from clinical consideration for anthrax but rather guide appropriate antimicrobial selection and prioritization across different patient populations with risk mitigation measures as warranted.
Collapse
Affiliation(s)
- Corinne M Parker
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adolf W Karchmer
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret C Fisher
- Clinical Professor of Pediatrics, Rutgers Robert Wood Johnson School of Medicine, Monmouth Medical Center, Long Branch, New Jersey, USA
| | - Kalimah M Muhammad
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education Centers for Disease Control and Prevention Fellowship Program, Atlanta, Georgia, USA
| | - Patricia A Yu
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
50
|
Rochanathimoke O, Tragulpiankit P, Turongkaravee S, Jittikoon J, Udomsinprasert W, Chaikledkeaw U. Costs Associated with Adverse Drug Reactions Among HIV/TB Patients in Thailand. CLINICOECONOMICS AND OUTCOMES RESEARCH 2022; 14:587-599. [PMID: 36105845 PMCID: PMC9464632 DOI: 10.2147/ceor.s373489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To assess the direct and indirect costs associated with adverse drug reactions (ADRs) in patients receiving treatment regimens for human immunodeficiency virus (HIV) infection and tuberculosis (TB) in selected Thai hospitals. Patients and Methods This was a retrospective study conducted between October 2014 and September 2019 at three public hospitals in Thailand. Data were obtained from a medical database and spontaneous ADR reporting system of each study site. The out-of-pocket health payments and indirect costs were determined via interviewing. All costs were updated to 2021. Results A total of 432 eligible patients who experienced ADRs due to HIV and TB treatment, and 93 patients were interviewed to determine direct non-medical and indirect costs. The average direct medical cost for ADR was USD 5.65 for mild cases, USD 156.54 for moderate cases, and USD 1,242.45 for severe cases. For direct non-medical costs, the average cost per episode was USD 27.29 in mild ADR, USD 70.86 in moderate ADR and USD 270.66 in severe ADR. The indirect cost incurred in each mild, moderate and severe ADR was USD 41.86, USD 89.34, and USD 552.60, respectively. The Stevens-Johnson syndrome (SJS) had the highest management costs. Conclusion ADRs associated with anti-tuberculosis drugs and antiretroviral drugs seem to have a substantial economic impact from a societal perspective. These findings would be useful for increasing awareness and encouraging early avoidance of ADRs.
Collapse
Affiliation(s)
- Onwipa Rochanathimoke
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pramote Tragulpiankit
- Clinical Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Saowalak Turongkaravee
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Usa Chaikledkeaw
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| |
Collapse
|