1
|
Featherstone LA, Ingle DJ, Wirth W, Duchene S. How does date-rounding affect phylodynamic inference for public health? PLoS Comput Biol 2025; 21:e1012900. [PMID: 40215457 PMCID: PMC11991728 DOI: 10.1371/journal.pcbi.1012900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/21/2025] [Indexed: 04/14/2025] Open
Abstract
Phylodynamic analyses infer epidemiological parameters from pathogen genome sequences for enhanced genomic surveillance in public health. Pathogen genome sequences and their associated sampling dates are the essential data in every analysis. However, sampling dates are usually associated with hospitalisation or testing and can sometimes be used to identify individual patients, posing a threat to patient confidentiality. To lower this risk, sampling dates are often given with reduced date-resolution to the month or year, which can potentially bias inference. Here, we introduce a practical guideline on when date-rounding biases the inference of epidemiologically important parameters across a diverse range of empirical and simulated datasets. We show that the direction of bias varies for different parameters, datasets, and tree priors, while compounding with lower date-resolution and higher substitution rates. We also find that bias decreases for datasets with longer sampling intervals, implying that our guideline is most applicable to emerging datasets. We conclude by discussing future solutions that prioritise patient confidentiality and propose a method for safer sharing of sampling dates that translates them them uniformly by a random number.
Collapse
Affiliation(s)
- Leo A. Featherstone
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Danielle J. Ingle
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Wytamma Wirth
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- DEMI unit, Department of Computational Biology, Institut Pasteur, Paris, France
| |
Collapse
|
2
|
Jonas N, Valerian DM, Henry S, Magembe E, Abednego R, Urio L, Lyamuya E. Prevalence and antimicrobial susceptibility pattern of gram-negative bacteria contaminating the hands of patients' visitors at regional referral hospitals in Dar-es-Salaam. PLoS One 2025; 20:e0320700. [PMID: 40138326 PMCID: PMC11940574 DOI: 10.1371/journal.pone.0320700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Hand contamination by bacteria is a significant source of infection transmission, especially in hospital settings. A healthcare-associated infection is one that a person contracts as a result of their interaction with a hospital. Health care workers', patients' and visitors' hands are all transmission routes for infections, in particular bacterial infections. These infections elevate the economic burden on healthcare systems especially in low-income settings. OBJECTIVE To determine the prevalence of gram-negative bacteria hand contamination among patients' visitors of referral hospitals in Dar es Salaam. METHODOLOGY This was a cross-sectional study conducted at 3 regional referral hospitals: Amana, Temeke and Mwananyamala in March 2023. Dominant hand swabs from 388 systematically selected visitors were taken for bacterial culture and a short interview was conducted to assess factors associated with Gram-negative bacterial hand contamination. Hand swabs collected were cultured on Mac Conkey Agar (MCA), isolates were identified by VITEK MS and appropriate antibiotics were employed in antibiotic susceptibility testing of the isolated Gram-negative bacteria. RESULTS Prevalence of gram-negative bacterial contamination on visitors' hands was 91 (21.1%) on entry and 103 (30.2%) on exit. The most common bacteria contamination was from Klebsiella pneumoniae on both entry and exit points, 37 (41%) and 57 (43%) respectively. Resistance to cephalosporins (Cefotaxime and Ceftriaxone) were the most pronounced. Proportion of ESBL-producing bacteria was significantly higher at exit than at entry. Bacterial contamination was associated with not washing hands APR = 1.5 (95% CI:1.03-2.17), offering services to the patient APR = 1.9 (95% CI:1.21-2.87) and longer hospital stays (more than 7 days) APR = 1.5 (95% CI:1.1-2.0). CONCLUSION To prevent the transmission of bacteria, it is important to emphasize hand hygiene and exposure limits for visitors entering hospital environments.
Collapse
Affiliation(s)
- Ninael Jonas
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania,
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, United Republic of Tanzania,
| | - Donath Mkenda Valerian
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania,
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, United Republic of Tanzania,
| | - Stanslaus Henry
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania,
- University of Dar es salaam, Dar es Salaam, United Republic of Tanzania
| | - Emmanuel Magembe
- National Public Health Laboratory, Dar es Salaam, United Republic of Tanzania
| | - Reuben Abednego
- National Public Health Laboratory, Dar es Salaam, United Republic of Tanzania
| | - Loveness Urio
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, United Republic of Tanzania,
| | - Eligius Lyamuya
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania,
| |
Collapse
|
3
|
Araújo S, Silva V, Quintelas M, Martins Â, Igrejas G, Poeta P. From soil to surface water: exploring Klebsiella 's clonal lineages and antibiotic resistance odyssey in environmental health. BMC Microbiol 2025; 25:97. [PMID: 40012032 DOI: 10.1186/s12866-025-03798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
In the last decade, the presence of resistant bacteria and resistance genes in the environment has been a cause for increasing concern. However, understanding of its contribution to the spread of bacteria remains limited, as the scarcity of studies on how and under what circumstances the environment facilitates the development of resistance poses challenges in mitigating the emergence and spread of mobile resistance factors. Antimicrobial resistance in the environment is considered one of the biggest challenges and threats currently emerging. Thus, monitoring the presence of antibiotic-resistant species, in this particular case, Klebsiella spp., in the environment can be an added value for understanding the epidemiology of infections caused by Klebsiella spp.. Investigating soils and waters as potential reservoirs and transmission vehicles for these bacteria is imperative. Therefore, in this review, we aimed to describe the main genetic lineages present in environmental samples, as well as to describe the multidrug resistance strains associated with each environmental source. The studies analyzed in this review reported a high diversity of species and strains of Klebsiella spp. in the environment. K. pneumoniae was the most prevalent species, both in soil and water samples, and, as expected, often presented a multi-resistant profile. The presence of K. pneumoniae ST11, ST15, and ST147 suggests human and animal origin. Concerning surface waters, there was a great diversity of species and STs of Klebsiella spp. These studies are crucial for assessing the environmental contribution to the spread of pathogenic bacteria.
Collapse
Affiliation(s)
- Sara Araújo
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Department of Genetics and Biotechnology, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal.
- Functional Genomics and Proteomics Unit, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisbon, Portugal.
| | - Micaela Quintelas
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ângela Martins
- Veterinary and Animal Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisbon, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Veterinary and Animal Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
4
|
Cottingham H, Judd LM, Wisniewski JA, Wick RR, Stanton TD, Vezina B, Macesic N, Peleg AY, Okeke IN, Holt KE, Hawkey J. Targeted sequencing of Enterobacterales bacteria using CRISPR-Cas9 enrichment and Oxford Nanopore Technologies. mSystems 2025; 10:e0141324. [PMID: 39772804 PMCID: PMC11834407 DOI: 10.1128/msystems.01413-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Sequencing DNA directly from patient samples enables faster pathogen characterization compared to traditional culture-based approaches, but often yields insufficient sequence data for effective downstream analysis. CRISPR-Cas9 enrichment is designed to improve the yield of low abundance sequences but has not been thoroughly explored with Oxford Nanopore Technologies (ONT) for use in clinical bacterial epidemiology. We designed CRISPR-Cas9 guide RNAs to enrich the human pathogen Klebsiella pneumoniae, by targeting multi-locus sequence type (MLST) and transfer RNA (tRNA) genes, as well as common antimicrobial resistance (AMR) genes and the resistance-associated integron gene intI1. We validated enrichment performance in 20 K. pneumoniae isolates, finding that guides generated successful enrichment across all conserved sites except for one AMR gene in two isolates. Enrichment of MLST genes led to a correct allele call in all seven loci for 8 out of 10 isolates that had depth of 30× or more in these regions. We then compared enriched and unenriched sequencing of three human fecal samples spiked with K. pneumoniae at varying abundance. Enriched sequencing generated 56× and 11.3× the number of AMR and MLST reads, respectively, compared to unenriched sequencing, and required approximately one-third of the computational storage space. Targeting the intI1 gene often led to detection of 10-20 proximal resistance genes due to the long reads produced by ONT sequencing. We demonstrated that CRISPR-Cas9 enrichment combined with ONT sequencing enabled improved genomic characterization outcomes over unenriched sequencing of patient samples. This method could be used to inform infection control strategies by identifying patients colonized with high-risk strains. IMPORTANCE Understanding bacteria in complex samples can be challenging due to their low abundance, which often results in insufficient data for analysis. To improve the detection of harmful bacteria, we implemented a technique aimed at increasing the amount of data from target pathogens when combined with modern DNA sequencing technologies. Our technique uses CRISPR-Cas9 to target specific gene sequences in the bacterial pathogen Klebsiella pneumoniae and improve recovery from human stool samples. We found our enrichment method to significantly outperform traditional methods, generating far more data originating from our target genes. Additionally, we developed new computational techniques to further enhance the analysis, providing a thorough method for characterizing pathogens from complex biological samples.
Collapse
Affiliation(s)
- Hugh Cottingham
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Louise M. Judd
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jessica A. Wisniewski
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ryan R. Wick
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas D. Stanton
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ben Vezina
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nenad Macesic
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Kathryn E. Holt
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jane Hawkey
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Vezina B, Cooper HB, Wisniewski JA, Parker MH, Jenney AWJ, Holt KE, Wyres KL. Wild-Type Domestication: Loss of Intrinsic Metabolic Traits Concealed by Culture in Rich Media. MICROBIAL ECOLOGY 2024; 87:144. [PMID: 39567391 PMCID: PMC11579175 DOI: 10.1007/s00248-024-02459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
Bacteria are typically isolated on rich media to maximise isolation success, removing them from their native evolutionary context. This eliminates selection pressures, enabling otherwise deleterious genomic events to accumulate. Here, we present a cautionary tale of these 'quiet mutations' which can persist unnoticed in bacterial culture lines. We used a combination of microbiological culture (standard and minimal media conditions), whole genome sequencing and metabolic modelling to investigate putative Klebsiella pneumoniae L-histidine auxotrophs. Additionally, we used genome-scale metabolic modelling to predict auxotrophies among completed public genomes (n = 2637). Two sub-populations were identified within a K. pneumoniae frozen stock, differing in their ability to grow in the absence of L-histidine. These sub-populations were the same 'strain', separated by eight single nucleotide variants and an insertion sequence-mediated deletion of the L-histidine biosynthetic operon. The His- sub-population remained undetected for > 10 years despite its inclusion in independent laboratory experiments. Genome-scale metabolic models predicted 0.8% public genomes contained ≥ 1 auxotrophy, with purine/pyrimidine biosynthesis and amino acid metabolism most frequently implicated. We provide a definitive example of the role of standard rich media culture conditions in obscuring biologically relevant mutations (i.e. nutrient auxotrophies) and estimate the prevalence of such auxotrophies using public genome collections. While the prevalence is low, it is not insignificant given the thousands of K. pneumoniae that are isolated for global surveillance and research studies each year. Our data serve as a pertinent reminder that rich-media culturing can cause unnoticed wild-type domestication.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| | - Helena B Cooper
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| | - Jessica A Wisniewski
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew H Parker
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Adam W J Jenney
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Alfred Pathology Service, Microbiology Unit, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Kelly L Wyres
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Di Cesare A, Cornacchia A, Sbaffi T, Sabatino R, Corno G, Cammà C, Calistri P, Pomilio F. Treated wastewater: A hotspot for multidrug- and colistin-resistant Klebsiella pneumoniae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124598. [PMID: 39053799 DOI: 10.1016/j.envpol.2024.124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Wastewater treatment plants are hotspots for the release of antimicrobial resistant pathogenic bacteria into aquatic ecosystems, significantly contributing to the cycle of antimicrobial resistance. Special attention should be paid to antimicrobial resistant ESKAPE bacteria, which have been identified as high-priority targets for control measures. Among them, Klebsiella pneumoniae is particularly noteworthy. In this study, we collected wastewater samples from the inlet, sedimentation tank, and effluent water of a wastewater treatment plant in June, July, October, and November of 2018. We detected and characterized 42 K. pneumoniae strains using whole genome sequencing (15 from the inlet, 8 from the sedimentation tank, and 19 from the effluent). Additionally, the strains were tested for their antimicrobial resistance phenotype. Using whole genome sequencing no distinct patterns were observed in terms of their genetic profiles. All strains were resistant to tetracycline, meanwhile 60%, 47%, and 37.5% of strains isolated from the inlet, sedimentation tank, and effluent, respectively, were multidrug resistant. Some of the multidrug resistant isolates were also resistant to colistin, and nearly all tested positive for the eptB and arnT genes, which are associated with polymyxin resistance. Various antimicrobial resistance genes were linked to mobile genetic elements, and they did not correlate with detected virulence groups or defense systems. Overall, our results, although not quantitative, highlight that multidrug resistant K. pneumoniae strains, including those resistant to colistin and genetically unrelated, being discharged into aquatic ecosystems from wastewater treatment plants. This suggests the necessity of monitoring aimed at genetically characterizing these pathogenic bacteria.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy.
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100, Teramo, Italy
| | - Tomasa Sbaffi
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Raffaella Sabatino
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Gianluca Corno
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100, Teramo, Italy
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100, Teramo, Italy
| |
Collapse
|
7
|
Cocker D, Birgand G, Zhu N, Rodriguez-Manzano J, Ahmad R, Jambo K, Levin AS, Holmes A. Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions. Nat Rev Microbiol 2024; 22:636-649. [PMID: 39048837 DOI: 10.1038/s41579-024-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively. Additionally, innovations in artificial intelligence, data linkage and intelligent systems can be used to better predict and reduce AMR and improve healthcare resilience. In this Review, we examine the mechanisms by which healthcare functions as a driver, reservoir and amplifier of AMR, contextualized within a One Health framework. We also explore the opportunities and innovative solutions that can be used to combat AMR throughout the patient journey. We provide a perspective on the current evidence for the effectiveness of interventions designed to mitigate healthcare-associated AMR and promote healthcare resilience within high-income and resource-limited settings, as well as the challenges associated with their implementation.
Collapse
Affiliation(s)
- Derek Cocker
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Gabriel Birgand
- Centre d'appui pour la Prévention des Infections Associées aux Soins, Nantes, France
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Cibles et medicaments des infections et de l'immunitée, IICiMed, Nantes Universite, Nantes, France
| | - Nina Zhu
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jesus Rodriguez-Manzano
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Raheelah Ahmad
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Health Services Research & Management, City University of London, London, UK
- Dow University of Health Sciences, Karachi, Pakistan
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anna S Levin
- Department of Infectious Disease, School of Medicine & Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alison Holmes
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
8
|
Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun 2024; 92:e0048223. [PMID: 38597634 PMCID: PMC11384780 DOI: 10.1128/iai.00482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
9
|
Cai S, Wang Z, Han X, Hu H, Quan J, Jiang Y, Du X, Zhou Z, Yu Y. The correlation between intestinal colonization and infection of carbapenem-resistant Klebsiella pneumoniae: A systematic review. J Glob Antimicrob Resist 2024; 38:187-193. [PMID: 38777180 DOI: 10.1016/j.jgar.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
As a widely spread Gram-negative bacteria, Klebsiella pneumoniae (KP) mainly causes acquired infections in hospitals, such as lung infections, urinary tract infections, and bloodstream infections. In recent years, the number of multidrug-resistant KP strains has increased dramatically, posing a great threat to human health. Carbapenem-resistant KP (CRKP) can be colonized in human body, especially in gastrointestinal tract, and some colonized patients can be infected during hospitalization, among which invasive operation, underlying disease, admission to intensive care unit, antibiotic use, severity of the primary disease, advanced age, operation, coma, and renal failure are common risk factors for secondary infection. Active screening and preventive measures can effectively prevent the occurrence of CRKP infection. Based on the epidemiological status, this study aims to discuss the correlation between colonization and secondary infection induced by CRKP and risk factors for their happening and provide some reference for nosocomial infection prevention and control.
Collapse
Affiliation(s)
- Shiqi Cai
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhong Han
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huangdu Hu
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Du
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Mills RO, Dadzie I, Le-Viet T, Baker DJ, Addy HPK, Akwetey SA, Donkoh IE, Quansah E, Semanshia PS, Morgan J, Mensah A, Adade NE, Ampah EO, Owusu E, Mwintige P, Amoako EO, Spadar A, Holt KE, Foster-Nyarko E. Genomic diversity and antimicrobial resistance in clinical Klebsiella pneumoniae isolates from tertiary hospitals in Southern Ghana. J Antimicrob Chemother 2024; 79:1529-1539. [PMID: 38751093 PMCID: PMC11215549 DOI: 10.1093/jac/dkae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVES Comprehensive data on the genomic epidemiology of hospital-associated Klebsiella pneumoniae in Ghana are scarce. This study investigated the genomic diversity, antimicrobial resistance patterns, and clonal relationships of 103 clinical K. pneumoniae isolates from five tertiary hospitals in Southern Ghana-predominantly from paediatric patients aged under 5 years (67/103; 65%), with the majority collected from urine (32/103; 31%) and blood (25/103; 24%) cultures. METHODS We generated hybrid Nanopore-Illumina assemblies and employed Pathogenwatch for genotyping via Kaptive [capsular (K) locus and lipopolysaccharide (O) antigens] and Kleborate (antimicrobial resistance and hypervirulence) and determined clonal relationships using core-genome MLST (cgMLST). RESULTS Of 44 distinct STs detected, ST133 was the most common, comprising 23% of isolates (n = 23/103). KL116 (28/103; 27%) and O1 (66/103; 64%) were the most prevalent K-locus and O-antigen types. Single-linkage clustering highlighted the global spread of MDR clones such as ST15, ST307, ST17, ST11, ST101 and ST48, with minimal allele differences (1-5) from publicly available genomes worldwide. Conversely, 17 isolates constituted novel clonal groups and lacked close relatives among publicly available genomes, displaying unique genetic diversity within our study population. A significant proportion of isolates (88/103; 85%) carried resistance genes for ≥3 antibiotic classes, with the blaCTX-M-15 gene present in 78% (n = 80/103). Carbapenem resistance, predominantly due to blaOXA-181 and blaNDM-1 genes, was found in 10% (n = 10/103) of the isolates. CONCLUSIONS Our findings reveal a complex genomic landscape of K. pneumoniae in Southern Ghana, underscoring the critical need for ongoing genomic surveillance to manage the substantial burden of antimicrobial resistance.
Collapse
Affiliation(s)
- Richael O Mills
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Dadzie
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Thanh Le-Viet
- Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK
| | - David J Baker
- Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Humphrey P K Addy
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel A Akwetey
- Department of Clinical Microbiology, University of Development Studies, Tamale, Ghana
| | - Irene E Donkoh
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Quansah
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Prince S Semanshia
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jennifer Morgan
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Abraham Mensah
- Department of Microbiology and Immunology, University of Cape Coast, Cape Coast, Ghana
| | - Nana E Adade
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Emmanuel O Ampah
- Microbiology Department, Greater Accra Regional Hospital, Ridge, Accra, Ghana
| | - Emmanuel Owusu
- Microbiology Department, Greater Accra Regional Hospital, Ridge, Accra, Ghana
| | - Philimon Mwintige
- Microbiology Laboratory, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Eric O Amoako
- Public Health Laboratory, Effia Nkwanta Regional Hospital, Sekondi-Takoradi, Ghana
| | - Anton Spadar
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ebenezer Foster-Nyarko
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| |
Collapse
|
11
|
Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, Tuli HS, Jindal T, Yadav V. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol 2024; 15:1403168. [PMID: 38741745 PMCID: PMC11089201 DOI: 10.3389/fmicb.2024.1403168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Overuse of antibiotics is accelerating the antimicrobial resistance among pathogenic microbes which is a growing public health challenge at the global level. Higher resistance causes severe infections, high complications, longer stays at hospitals and even increased mortality rates. Antimicrobial resistance (AMR) has a significant impact on national economies and their health systems, as it affects the productivity of patients or caregivers due to prolonged hospital stays with high economic costs. The main factor of AMR includes improper and excessive use of antimicrobials; lack of access to clean water, sanitation, and hygiene for humans and animals; poor infection prevention and control measures in hospitals; poor access to medicines and vaccines; lack of awareness and knowledge; and irregularities with legislation. AMR represents a global public health problem, for which epidemiological surveillance systems have been established, aiming to promote collaborations directed at the well-being of human and animal health and the balance of the ecosystem. MDR bacteria such as E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp., and Klebsiella pneumonia can even cause death. These microorganisms use a variety of antibiotic resistance mechanisms, such as the development of drug-deactivating targets, alterations in antibiotic targets, or a decrease in intracellular antibiotic concentration, to render themselves resistant to numerous antibiotics. In context, the United Nations issued the Sustainable Development Goals (SDGs) in 2015 to serve as a worldwide blueprint for a better, more equal, and more sustainable existence on our planet. The SDGs place antimicrobial resistance (AMR) in the context of global public health and socioeconomic issues; also, the continued growth of AMR may hinder the achievement of numerous SDGs. In this review, we discuss the role of environmental pollution in the rise of AMR, different mechanisms underlying the antibiotic resistance, the threats posed by pathogenic microbes, novel antibiotics, strategies such as One Health to combat AMR, and the impact of resistance on sustainability and sustainable development goals.
Collapse
Affiliation(s)
- Shikha Sharma
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
12
|
Blaikie JM, Sapula SA, Siderius NL, Hart BJ, Amsalu A, Leong LE, Warner MS, Venter H. Resistome Analysis of Klebsiella pneumoniae Complex from Residential Aged Care Facilities Demonstrates Intra-facility Clonal Spread of Multidrug-Resistant Isolates. Microorganisms 2024; 12:751. [PMID: 38674695 PMCID: PMC11051875 DOI: 10.3390/microorganisms12040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial-resistant Klebsiella pneumoniae is one of the predominant pathogens in healthcare settings. However, the prevalence and resistome of this organism within residential aged care facilities (RACFs), which are potential hotspots for antimicrobial resistance, remain unexplored. Here, we provide a phenotypic and molecular characterization of antimicrobial-resistant K. pneumoniae isolated from RACFs. K. pneumoniae was isolated from urine, faecal and wastewater samples and facility swabs. The antimicrobial susceptibility profiles of all the isolates were determined and the genomic basis for resistance was explored with whole-genome sequencing on a subset of isolates. A total of 147 K. pneumoniae were isolated, displaying resistance against multiple antimicrobials. Genotypic analysis revealed the presence of beta-lactamases and the ciprofloxacin-resistance determinant QnrB4 but failed to confirm the basis for the observed cephalosporin resistance. Clonal spread of the multidrug-resistant, widely disseminated sequence types 323 and 661 was observed. This study was the first to examine the resistome of K. pneumoniae isolates from RACFs and demonstrated a complexity between genotypic and phenotypic antimicrobial resistance. The intra-facility dissemination and persistence of multidrug-resistant clones is concerning, given that residents are particularly vulnerable to antimicrobial resistant infections, and it highlights the need for continued surveillance and interventions to reduce the risk of outbreaks.
Collapse
Affiliation(s)
- Jack M. Blaikie
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Sylvia A. Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Naomi L. Siderius
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Bradley J. Hart
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Anteneh Amsalu
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
- Department of Medical Microbiology, University of Gondar, Gondar 196, Ethiopia
| | - Lex E.X. Leong
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA 5000, Australia;
| | - Morgyn S. Warner
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA 5000, Australia;
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Infectious Diseases Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| |
Collapse
|
13
|
Ofosu-Appiah F, Acquah EE, Mohammed J, Sakyi Addo C, Agbodzi B, Ofosu DAS, Myers CJ, Mohktar Q, Ampomah OW, Ablordey A, Amissah NA. Klebsiella pneumoniae ST147 harboring blaNDM-1, multidrug resistance and hypervirulence plasmids. Microbiol Spectr 2024; 12:e0301723. [PMID: 38315028 PMCID: PMC10913492 DOI: 10.1128/spectrum.03017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024] Open
Abstract
The spread of hypervirulent (hv) and carbapenem-/multidrug-resistant Klebsiella pneumoniae is an emerging problem in healthcare settings. The New Delhi metallo-β-lactamase-1 (blaNDM-1) is found in Enterobacteriaceae including K. pneumoniae. The blaNDM-1 is capable of hydrolyzing β-lactam antibiotics which are used for treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. This is associated with the unacceptably high mortality rate in immunocompromised burn injury patients. This study reports on the characterization of blaNDM-1 gene and virulence factors in hv carbapenem-/multidrug-resistant K. pneumoniae ST147 in the burns unit of a tertiary teaching hospital during routine surveillance. Two K. pneumoniae strains were obtained from wounds of burn-infected patients from May 2020 to July 2021. The hypervirulence genes and genetic context of the blaNDM-1 gene and mobile genetic elements potentially involved in the transposition of the gene were analyzed. We identified a conserved genetic background and an IS26 and open reading frame flanking the blaNDM-1 gene that could suggest its involvement in the mobilization of the gene. The plasmid harbored additional antibiotic resistance predicted regions that were responsible for resistance to almost all the routinely used antibiotics. To ensure the identification of potential outbreak strains during routine surveillance, investigations on resistance genes and their environment in relation to evolution are necessary for molecular epidemiology.IMPORTANCEData obtained from this study will aid in the prompt identification of disease outbreaks including evolving resistance and virulence of the outbreak bacteria. This will help establish and implement antimicrobial stewardship programs and infection prevention protocols in fragile health systems in countries with limited resources. Integration of molecular surveillance and translation of whole-genome sequencing in routine diagnosis will provide valuable data for control of infection. This study reports for the first time a high-risk clone K. pneumoniae ST147 with hypervirulence and multidrug-resistance features in Ghana.
Collapse
Affiliation(s)
- Frederick Ofosu-Appiah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ezra E. Acquah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Jibril Mohammed
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Comfort Sakyi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bright Agbodzi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas A. S. Ofosu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Charles J. Myers
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Quaneeta Mohktar
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Opoku-Ware Ampomah
- The Burns Unit, Reconstructive Plastic Surgery and Burns Unit, Korle Bu Teaching Hospital, Accra, Ghana
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nana Ama Amissah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
14
|
Nooij S, Vendrik KEW, Zwittink RD, Ducarmon QR, Keller JJ, Kuijper EJ, Terveer EM. Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. Genome Med 2024; 16:37. [PMID: 38419010 PMCID: PMC10902993 DOI: 10.1186/s13073-024-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.
Collapse
Affiliation(s)
- Sam Nooij
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands.
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands.
| | - Karuna E W Vendrik
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
- Present address: Centre for Infectious Disease Control, Netherlands Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Quinten R Ducarmon
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| | - Elisabeth M Terveer
- Netherlands Donor Feces Bank, Leiden University Center of Infectious Diseases (LUCID) Medical Microbiology and Infection Prevention, Leiden University Medical Center, PO Box 9600, Postzone E4-P, Leiden, 2300RC, Netherlands
- Center for Microbiome Analyses and Therapeutics, LUCID Research, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Selvaraj Anand S, Wu CT, Bremer J, Bhatti M, Treangen TJ, Kalia A, Shelburne SA, Shropshire WC. Identification of a novel CG307 sub-clade in third-generation-cephalosporin-resistant Klebsiella pneumoniae causing invasive infections in the USA. Microb Genom 2024; 10:001201. [PMID: 38407244 PMCID: PMC10926705 DOI: 10.1099/mgen.0.001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the notable clinical impact, recent molecular epidemiology regarding third-generation-cephalosporin-resistant (3GC-R) Klebsiella pneumoniae in the USA remains limited. We performed whole-genome sequencing of 3GC-R K. pneumoniae bacteraemia isolates collected from March 2016 to May 2022 at a tertiary care cancer centre in Houston, TX, USA, using Illumina and Oxford Nanopore Technologies platforms. A comprehensive comparative genomic analysis was performed to dissect population structure, transmission dynamics and pan-genomic signatures of our 3GC-R K. pneumoniae population. Of the 178 3GC-R K. pneumoniae bacteraemias that occurred during our study time frame, we were able to analyse 153 (86 %) bacteraemia isolates, 126 initial and 27 recurrent isolates. While isolates belonging to the widely prevalent clonal group (CG) 258 were rarely observed, the predominant CG, 307, accounted for 37 (29 %) index isolates and displayed a significant correlation (Pearson correlation test P value=0.03) with the annual frequency of 3GC-R K. pneumoniae bacteraemia. Interestingly, only 11 % (4/37) of CG307 isolates belonged to the commonly detected 'Texas-specific' clade that has been observed in previous Texas-based K. pneumoniae antimicrobial-resistance surveillance studies. We identified nearly half of our CG307 isolates (n=18) belonged to a novel, monophyletic CG307 sub-clade characterized by the chromosomally encoded bla SHV-205 and unique accessory genome content. This CG307 sub-clade was detected in various regions of the USA, with genome sequences from 24 additional strains becoming recently available in the National Center for Biotechnology Information (NCBI) SRA database. Collectively, this study underscores the emergence and dissemination of a distinct CG307 sub-clade that is a prevalent cause of 3GC-R K. pneumoniae bacteraemia among cancer patients seen in Houston, TX, and has recently been isolated throughout the USA.
Collapse
Affiliation(s)
- Selvalakshmi Selvaraj Anand
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Chin-Ting Wu
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Jordan Bremer
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Micah Bhatti
- Department of Laboratory Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - William C. Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| |
Collapse
|
16
|
Cooper HB, Vezina B, Hawkey J, Passet V, López-Fernández S, Monk JM, Brisse S, Holt KE, Wyres KL. A validated pangenome-scale metabolic model for the Klebsiella pneumoniae species complex. Microb Genom 2024; 10:001206. [PMID: 38376382 PMCID: PMC10926698 DOI: 10.1099/mgen.0.001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The Klebsiella pneumoniae species complex (KpSC) is a major source of nosocomial infections globally with high rates of resistance to antimicrobials. Consequently, there is growing interest in understanding virulence factors and their association with cellular metabolic processes for developing novel anti-KpSC therapeutics. Phenotypic assays have revealed metabolic diversity within the KpSC, but metabolism research has been neglected due to experiments being difficult and cost-intensive. Genome-scale metabolic models (GSMMs) represent a rapid and scalable in silico approach for exploring metabolic diversity, which compile genomic and biochemical data to reconstruct the metabolic network of an organism. Here we use a diverse collection of 507 KpSC isolates, including representatives of globally distributed clinically relevant lineages, to construct the most comprehensive KpSC pan-metabolic model to date, KpSC pan v2. Candidate metabolic reactions were identified using gene orthology to known metabolic genes, prior to manual curation via extensive literature and database searches. The final model comprised a total of 3550 reactions, 2403 genes and can simulate growth on 360 unique substrates. We used KpSC pan v2 as a reference to derive strain-specific GSMMs for all 507 KpSC isolates, and compared these to GSMMs generated using a prior KpSC pan-reference (KpSC pan v1) and two single-strain references. We show that KpSC pan v2 includes a greater proportion of accessory reactions (8.8 %) than KpSC pan v1 (2.5 %). GSMMs derived from KpSC pan v2 also generate more accurate growth predictions, with high median accuracies of 95.4 % (aerobic, n=37 isolates) and 78.8 % (anaerobic, n=36 isolates) for 124 matched carbon substrates. KpSC pan v2 is freely available at https://github.com/kelwyres/KpSC-pan-metabolic-model, representing a valuable resource for the scientific community, both as a source of curated metabolic information and as a reference to derive accurate strain-specific GSMMs. The latter can be used to investigate the relationship between KpSC metabolism and traits of interest, such as reservoirs, epidemiology, drug resistance or virulence, and ultimately to inform novel KpSC control strategies.
Collapse
Affiliation(s)
- Helena B. Cooper
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Virginie Passet
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Sebastián López-Fernández
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Asare Yeboah EE, Agyepong N, Mbanga J, Amoako DG, Abia ALK, Owusu-Ofori A, Essack SY. Multidrug-resistant Gram-negative bacterial colonization in patients, carriage by healthcare workers and contamination of hospital environments in Ghana. J Infect Public Health 2023; 16 Suppl 1:2-8. [PMID: 37953109 DOI: 10.1016/j.jiph.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Patients already colonized with multidrug-resistant (MDR) Gram-negative bacteria (GNB) on admission to critical care units may be an important source of transmission of these bacteria in hospitals. We sought to determine the prevalence of MDR GNB colonization in patients, staff and the ward environment and to assess the risk factors for colonization of patients in wards. METHODS The study was conducted from April 2021 to July 2021 in a teaching hospital in Ghana. MDR GNB were isolated from rectal, and hand swabs were taken from patients on admission and after 48 h. Swabs from HCW's hands and the ward environment were also taken. Risk factors for colonization with MDR GNB were assessed using univariate and multivariate analysis. RESULTS MDR GNB rectal colonization rate among patients was 50.62% on admission and 44.44% after 48 h. MDR GNB were isolated from 6 (5.26%) and 24 (11.54%) of HCW's hand swabs and environmental swabs, respectively. Previous hospitalization (p-value = 0.021, OR, 95% CI= 7.170 (1.345-38.214) was significantly associated with colonization by MDR GNB after 48 h of admission. Age (21-30 years) (p-value = 0.022, OR, 95% CI = 0.103 (0.015-0.716) was significantly identified as a protective factor associated with a reduced risk of rectal MDR GNB colonization. CONCLUSION The high colonization of MDR GNB in patients, the carriage of MDR GNB on HCW's hands, and the contamination of hospital environments highlights the need for patient screening and stringent infection prevention and control practices to prevent the spread of MDR GNB in hospitals.
Collapse
Affiliation(s)
- Esther Eyram Asare Yeboah
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Sciences, School of Pharmacy, Central University, Miotso, Ghana.
| | - Nicholas Agyepong
- Department of Pharmaceutical Sciences, Sunyani Technical University, Sunyani, Ghana
| | - Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; National University of Science and Technology, Department of Applied Biology & Biochemistry, P Bag AC939, Bulawayo, Zimbabwe
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Integrative Biology and Bioinformatics, University of Guelph, Ontario, Canada
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Environmental Research Foundation, Westville 3630, South Africa
| | - Alexander Owusu-Ofori
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Clinical Microbiology Unit, Laboratory Services Directorate, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
19
|
Kyung SM, Lee JH, Lee ES, Hwang CY, Yoo HS. Whole genome structure and resistance genes in carbapenemase-producing multidrug resistant ST378 Klebsiella pneumoniae. BMC Microbiol 2023; 23:323. [PMID: 37924028 PMCID: PMC10623767 DOI: 10.1186/s12866-023-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Klebsiella pneumoniae (CPKP) is one of the most dangerous multidrug-resistant (MDR) pathogens in human health due to its widespread circulation in the nosocomial environment. CPKP carried by companion dogs, which are close to human beings, should be considered a common threat to public health. However, CPKP dissemination through companion animals is still under consideration of major diagnosis and surveillance systems. METHODS Two CPKP isolates which were genotyped to harbor bla NDM-5-encoding IncX3 plasmids, were subjected to the whole-genome study. Whole bacterial DNA was isolated, sequenced, and assembled with Oxford Nanopore long reads and corrected with short reads from the Illumina NovaSeq 6000 platform. The whole-genome structure and positions of antimicrobial resistance (AMR) genes were identified and visualized using CGView. Worldwide datasets were downloaded from the NCBI GenBank database for whole-genome comparative analysis. The whole-genome phylogenetic analysis was constructed using the identified whole-chromosome SNP sites from K. pneumoniae HS11286. RESULTS As a result of the whole-genome identification, 4 heterogenous plasmids and a single chromosome were identified, each carrying various AMR genes. Multiple novel structures were identified from the AMR genes, coupled with mobile gene elements (MGE). The comparative whole-genome epidemiology revealed that ST378 K. pneumoniae is a novel type of CPKP, carrying a higher prevalence of AMR genes. CONCLUSIONS The characterized whole-genome analysis of this study shows the emergence of a novel type of CPKP strain carrying various AMR genes with variated genomic structures. The presented data in this study show the necessity to develop additional surveillance programs and control measures for a novel type of CPKP strain.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Duran-Bedolla J, Rodríguez-Medina N, Dunn M, Mosqueda-García D, Barrios-Camacho H, Aguilar-Vera A, Aguilar-Vera E, Suárez-Rodríguez R, Ramírez-Trujillo JA, Garza-Ramos U. Plasmids of the incompatibility group FIB K occur in Klebsiella variicola from diverse ecological niches. Int Microbiol 2023; 26:917-927. [PMID: 36971854 DOI: 10.1007/s10123-023-00346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Plasmids play a fundamental role in the evolution of bacteria by allowing them to adapt to different environments and acquire, through horizontal transfer, genes that confer resistance to different classes of antibiotics. Using the available in vitro and in silico plasmid typing systems, we analyzed a set of isolates and public genomes of K. variicola to study its plasmid diversity. The resistome, the plasmid multilocus sequence typing (pMLST), and molecular epidemiology using the MLST system were also studied. A high frequency of IncF plasmids from human isolates but lower frequency from plant isolates were found in our strain collection. In silico detection revealed 297 incompatibility (Inc) groups, but the IncFIBK (216/297) predominated in plasmids from human and environmental samples, followed by IncFIIK (89/297) and IncFIA/FIA(HI1) (75/297). These Inc groups were associated with clinically important ESBL (CTX-M-15), carbapenemases (KPC-2 and NDM-1), and colistin-resistant genes which were associated with major sequence types (ST): ST60, ST20, and ST10. In silico MOB typing showed 76% (311/404) of the genomes contained one or more of the six relaxase families with MOBF being most abundant. We identified untypeable plasmids carrying blaKPC-2, blaIMP-1, and blaSHV-187 but for which a relaxase was found; this may suggest that novel plasmid structures could be emerging in this bacterial species. The plasmid content in K. variicola has limited diversity, predominantly composed of IncFIBK plasmids dispersed in different STs. Plasmid detection using the replicon and MOB typing scheme provide a broader context of the plasmids in K. variicola. This study showed that whole-sequence-based typing provides current insights of the prevalence of plasmid types and their association with antimicrobial resistant genes in K. variicola obtained from humans and environmental niches.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Nadia Rodríguez-Medina
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Michael Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Dalila Mosqueda-García
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Humberto Barrios-Camacho
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Alejandro Aguilar-Vera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Edgar Aguilar-Vera
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Ramón Suárez-Rodríguez
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología (CEIB), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - José Augusto Ramírez-Trujillo
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología (CEIB), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
21
|
Ndlovu T, Kgosietsile L, Motshwarakgole P, Ndlovu SI. Evaluation of Potential Factors Influencing the Dissemination of Multidrug-Resistant Klebsiella pneumoniae and Alternative Treatment Strategies. Trop Med Infect Dis 2023; 8:381. [PMID: 37624319 PMCID: PMC10459473 DOI: 10.3390/tropicalmed8080381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
The increasing reports of multidrug-resistant Klebsiella pneumoniae have emerged as a public health concern, raising questions about the potential routes for the evolution and dissemination of the pathogenic K. pneumoniae into environmental reservoirs. Potential drivers of the increased incidence of antimicrobial-resistant environmental K. pneumoniae include the eminent global climatic variations as a direct or indirect effect of human activities. The ability of microorganisms to adapt and grow at an exponential rate facilitates the distribution of environmental strains with acquired resistant mutations into water systems, vegetation, and soil which are major intersection points with animals and humans. The bacterial pathogen, K. pneumoniae, is one of the critical-priority pathogens listed by the World Health Organization, mostly associated with hospital-acquired infections. However, the increasing prevalence of pathogenic environmental strains with similar characteristics to clinical-antibiotic-resistant K. pneumoniae isolates is concerning. Considering the eminent impact of global climatic variations in the spread and dissemination of multidrug-resistant bacteria, in this review, we closely assess factors influencing the dissemination of this pathogen resulting in increased interaction with the environment, human beings, and animals. We also look at the recent developments in rapid detection techniques as part of the response measures to improve surveillance and preparedness for potential outbreaks. Furthermore, we discuss alternative treatment strategies that include secondary metabolites such as biosurfactants and plant extracts with high antimicrobial properties.
Collapse
Affiliation(s)
- Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, Gaborone 0022, Botswana; (L.K.); (P.M.)
| | - Lebang Kgosietsile
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, Gaborone 0022, Botswana; (L.K.); (P.M.)
| | - Pako Motshwarakgole
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, Gaborone 0022, Botswana; (L.K.); (P.M.)
| | - Sizwe I. Ndlovu
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
22
|
Odewale G, Jibola-Shittu MY, Ojurongbe O, Olowe RA, Olowe OA. Genotypic Determination of Extended Spectrum β-Lactamases and Carbapenemase Production in Clinical Isolates of Klebsiella pneumoniae in Southwest Nigeria. Infect Dis Rep 2023; 15:339-353. [PMID: 37367193 DOI: 10.3390/idr15030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
INTRODUCTION Klebsiella pneumoniae is a major pathogen implicated in healthcare-associated infections. Extended-spectrum β-lactamase (ESBL) and carbapenemase-producing K. pneumoniae isolates are a public health concern. This study investigated the existence of some ESBL and carbapenemase genes among clinical isolates of K. pneumoniae in Southwest Nigeria and additionally determined their circulating clones. MATERIALS AND METHODS Various clinical samples from 420 patients from seven tertiary hospitals within Southwestern Nigeria were processed between February 2018 and July 2019. These samples were cultured on blood agar and MacConkey agar, and the isolated bacteria were identified by Microbact GNB 12E. All K. pneumoniae were confirmed by polymerase chain reaction (PCR) using the 16s rRNA gene. Antibiotic susceptibility testing (AST) was done on these isolates, and the PCR was used to evaluate the common ESBL-encoding genes and carbapenem resistance genes. Genotyping was performed using multi-locus sequencing typing (MLST). RESULTS The overall prevalence of K. pneumoniae in Southwestern Nigeria was 30.5%. The AST revealed high resistance rates to tetracyclines (67.2%), oxacillin (61.7%), ampicillin (60.2%), ciprofloxacin (58.6%), chloramphenicol (56.3%), and lowest resistance to meropenem (43.0%). All isolates were susceptible to polymyxin B. The most prevalent ESBL gene was the TEM gene (47.7%), followed by CTX-M (43.8%), SHV (39.8%), OXA (27.3%), CTX-M-15 (19.5%), CTX-M-2 (11.1%), and CTX-M-9 (10.9%). Among the carbapenemase genes studied, the VIM gene (43.0%) was most detected, followed by OXA-48 (28.9%), IMP (22.7%), NDM (17.2%), KPC (13.3%), CMY (11.7%), and FOX (9.4%). GIM and SPM genes were not detected. MLST identified six different sequence types (STs) in this study. The most dominant ST was ST307 (50%, 5/10), while ST258, ST11, ST147, ST15, and ST321 had (10%, 1/10) each. CONCLUSION High antimicrobial resistance in K. pneumoniae is a clear and present danger for managing infections in Nigeria. Additionally, the dominance of a successful international ST307 clone highlights the importance of ensuring that genomic surveillance remains a priority in the hospital environment in Nigeria.
Collapse
Affiliation(s)
- Gbolabo Odewale
- Department of Microbiology, Federal University, Lokoja P.M.B. 1154, Kogi State, Nigeria
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso P.M.B. 4000, Oyo State, Nigeria
| | | | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso P.M.B. 4000, Oyo State, Nigeria
- Centre for Emerging and Re-Emerging Infectious Diseases (CERID-LAUTECH), Ladoke Akintola University of Technology, Ogbomoso P.M.B. 4000, Oyo State, Nigeria
| | - Rita Ayanbolade Olowe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso P.M.B. 4000, Oyo State, Nigeria
| | - Olugbenga Adekunle Olowe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso P.M.B. 4000, Oyo State, Nigeria
- Centre for Emerging and Re-Emerging Infectious Diseases (CERID-LAUTECH), Ladoke Akintola University of Technology, Ogbomoso P.M.B. 4000, Oyo State, Nigeria
| |
Collapse
|
23
|
Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health 2023; 117:328-341. [PMID: 36089853 PMCID: PMC10177687 DOI: 10.1080/20477724.2022.2121362] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
For people living in developed countries life span is growing at a faster pace than ever. One of the main reasons for such success is attributable to the introduction and extensive use in the clinical practice of antibiotics over the course of the last seven decades. In hospital settings, Klebsiella pneumoniae represents a well-known and commonly described opportunistic pathogen, typically characterized by resistance to several antibiotic classes. On the other hand, the broad wedge of population living in Low and/or Middle Income Countries is increasing rapidly, allowing the spread of several commensal bacteria which are transmitted via human contact. Community transmission has been the original milieu of K. pneumoniae isolates characterized by an outstanding virulence (hypervirulent). These two characteristics, also defined as "pathotypes", originally emerged as different pathways in the evolutionary history of K. pneumoniae. For a long time, the Sequence Type (ST), which is defined by the combination of alleles of the 7 housekeeping genes of the Multi-Locus Sequence Typing, has been a reliable marker of the pathotype: multidrug-resistant clones (e.g. ST258, ST147, ST101) in the Western world and hypervirulent clones (e.g. ST23, ST65, ST86) in the Eastern. Currently, the boundaries separating the two pathotypes are fading away due to several factors, and we are witnessing a worrisome convergence in certain high-risk clones. Here we review the evidence available on confluence of multidrug-resistance and hypervirulence in specific K. pneumoniae clones.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
24
|
Kang F, Chai Z, Li B, Hu M, Yang Z, Wang X, Liu W, Ren H, Jin Y, Yue J. Characterization and Diversity of Klebsiella pneumoniae Prophages. Int J Mol Sci 2023; 24:ijms24119116. [PMID: 37298067 DOI: 10.3390/ijms24119116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Klebsiella pneumoniae is a common human commensal and opportunistic pathogen. In recent years, the clinical isolation and resistance rates of K. pneumoniae have shown a yearly increase, leading to a special interest in mobile genetic elements. Prophages are a representative class of mobile genetic elements that can carry host-friendly genes, transfer horizontally between strains, and coevolve with the host's genome. In this study, we identified 15,946 prophages from the genomes of 1437 fully assembled K. pneumoniae deposited in the NCBI database, with 9755 prophages on chromosomes and 6191 prophages on plasmids. We found prophages to be notably diverse and widely disseminated in the K. pneumoniae genomes. The K. pneumoniae prophages encoded multiple putative virulence factors and antibiotic resistance genes. The comparison of strain types with prophage types suggests that the two may be related. The differences in GC content between the same type of prophages and the genomic region in which they were located indicates the alien properties of the prophages. The overall distribution of GC content suggests that prophages integrated on chromosomes and plasmids may have different evolutionary characteristics. These results suggest a high prevalence of prophages in the K. pneumoniae genome and highlight the effect of prophages on strain characterization.
Collapse
Affiliation(s)
- Fuqiang Kang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zili Chai
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Beiping Li
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Mingda Hu
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zilong Yang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xia Wang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Wenting Liu
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Hongguang Ren
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yuan Jin
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Junjie Yue
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
25
|
Chapman R, Jones L, D'Angelo A, Suliman A, Anwar M, Bagby S. Nanopore-Based Metagenomic Sequencing in Respiratory Tract Infection: A Developing Diagnostic Platform. Lung 2023; 201:171-179. [PMID: 37009923 PMCID: PMC10067523 DOI: 10.1007/s00408-023-00612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Respiratory tract infection (RTI) remains a significant cause of morbidity and mortality across the globe. The optimal management of RTI relies upon timely pathogen identification via evaluation of respiratory samples, a process which utilises traditional culture-based methods to identify offending microorganisms. This process can be slow and often prolongs the use of broad-spectrum antimicrobial therapy, whilst also delaying the introduction of targeted therapy as a result. Nanopore sequencing (NPS) of respiratory samples has recently emerged as a potential diagnostic tool in RTI. NPS can identify pathogens and antimicrobial resistance profiles with greater speed and efficiency than traditional sputum culture-based methods. Increased speed to pathogen identification can improve antimicrobial stewardship by reducing the use of broad-spectrum antibiotic therapy, as well as improving overall clinical outcomes. This new technology is becoming more affordable and accessible, with some NPS platforms requiring minimal sample preparation and laboratory infrastructure. However, questions regarding clinical utility and how best to implement NPS technology within RTI diagnostic pathways remain unanswered. In this review, we introduce NPS as a technology and as a diagnostic tool in RTI in various settings, before discussing the advantages and limitations of NPS, and finally what the future might hold for NPS platforms in RTI diagnostics.
Collapse
Affiliation(s)
- Robert Chapman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK.
| | - Luke Jones
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Alberto D'Angelo
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Ahmed Suliman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Muhammad Anwar
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
26
|
Shen C, Lv T, Huang G, Zhang X, Zheng L, Chen Y. Genomic Insights Into Molecular Characteristics and Phylogenetic Linkage Between the Cases of Carbapenem-Resistant Klebsiella pneumoniae From a Non-tertiary Hospital in China: A Cohort Study. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-133210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains have been listed as one of the major clinical concerns. Objectives: We investigated CPKP isolates from non-tertiary hospitals to find disseminated clones and analyze extensive phenotypic and genetic diversity in this study. Methods: In this cohort study, a total of 49 CRKP isolates from 3 hospitals in the same region were collected in 2021. The prevalence and antimicrobial susceptibility patterns were analyzed. Clinical data were retrieved from electronic medical record systems. The molecular types, antimicrobial resistance (AMR) profiles, plasmid replicons, and virulence factors were analyzed. The maximum-likelihood phylogenetic tree and transmission networks were constructed using single-nucleotide polymorphisms (SNPs). Results: The median age of patients (N = 49) was 66.0 years, and 85.7% were male. The most common CRKP infection was nosocomial pneumonia (75.5%), followed by bacteremia (10.2%). More than 53% of isolates were resistant to ceftazidime-avibactam (CAZ/AVI). Forty-five isolates were successfully sequenced; the predominant carbapenem-resistant gene was blaKPC-2 (93.3%). The 30-day mortality in our cohort was 24.5%. The most dominant sequence type (ST) was ST11 (60.0%), followed by ST15 (13.3%). Whole genome sequencing (WGS) analysis exhibited dissemination of ST11 strain clones, ST420, and ST15 clones, both within and outside the given hospital. Conclusions: In this surveillance study, several dissemination chains of CRKP were discovered in the hospital and the region, as ST11 was the main epidemic clone. Our findings suggest that effective infection control practices and antimicrobial stewardship are needed in non-tertiary hospitals in China.
Collapse
|
27
|
Foster-Nyarko E, Cottingham H, Wick RR, Judd LM, Lam MMC, Wyres KL, Stanton TD, Tsang KK, David S, Aanensen DM, Brisse S, Holt KE. Nanopore-only assemblies for genomic surveillance of the global priority drug-resistant pathogen, Klebsiella pneumoniae. Microb Genom 2023; 9:mgen000936. [PMID: 36752781 PMCID: PMC9997738 DOI: 10.1099/mgen.0.000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Oxford Nanopore Technologies (ONT) sequencing has rich potential for genomic epidemiology and public health investigations of bacterial pathogens, particularly in low-resource settings and at the point of care, due to its portability and affordability. However, low base-call accuracy has limited the reliability of ONT data for critical tasks such as antimicrobial resistance (AMR) and virulence gene detection and typing, serotype prediction, and cluster identification. Thus, Illumina sequencing remains the standard for genomic surveillance despite higher capital and running costs. We tested the accuracy of ONT-only assemblies for common applied bacterial genomics tasks (genotyping and cluster detection, implemented via Kleborate, Kaptive and Pathogenwatch), using data from 54 unique Klebsiella pneumoniae isolates. ONT reads generated via MinION with R9.4.1 flowcells were basecalled using three alternative models [Fast, High-accuracy (HAC) and Super-accuracy (SUP), available within ONT's Guppy software], assembled with Flye and polished using Medaka. Accuracy of typing using ONT-only assemblies was compared with that of Illumina-only and hybrid ONT+Illumina assemblies, constructed from the same isolates as reference standards. The most resource-intensive ONT-assembly approach (SUP basecalling, with or without Medaka polishing) performed best, yielding reliable capsule (K) type calls for all strains (100 % exact or best matching locus), reliable multi-locus sequence type (MLST) assignment (98.3 % exact match or single-locus variants), and good detection of acquired AMR genes and mutations (88-100 % correct identification across the various drug classes). Distance-based trees generated from SUP+Medaka assemblies accurately reflected overall genetic relationships between isolates. The definition of outbreak clusters from ONT-only assemblies was problematic due to inflation of SNP counts by high base-call errors. However, ONT data could be reliably used to 'rule out' isolates of distinct lineages from suspected transmission clusters. HAC basecalling + Medaka polishing performed similarly to SUP basecalling without polishing. Therefore, we recommend investing compute resources into basecalling (SUP model), wherever compute resources and time allow, and note that polishing is also worthwhile for improved performance. Overall, our results show that MLST, K type and AMR determinants can be reliably identified with ONT-only R9.4.1 flowcell data. However, cluster detection remains challenging with this technology.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- *Correspondence: Ebenezer Foster-Nyarko,
| | - Hugh Cottingham
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ryan R. Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Louise M. Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Margaret M. C. Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Thomas D. Stanton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Kara K. Tsang
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, Oxford University, Oxford OX3 7LF, UK
| | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, Oxford University, Oxford OX3 7LF, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Kathryn E. Holt
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
28
|
Biguenet A, Bouxom H, Bertrand X, Slekovec C. Antibiotic resistance in elderly patients: Comparison of Enterobacterales causing urinary tract infections between community, nursing homes and hospital settings. Infect Dis Now 2023; 53:104640. [PMID: 36621613 DOI: 10.1016/j.idnow.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The objective was to compare the prevalence of antibiotic resistance of, Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae in elderly patients in, three sectors: community, nursing homes, and hospital settings. MATERIAL AND METHODS This study was a retrospective observational study conducted in, Bourgogne Franche-Comté (France). We collected positive urine samples from, patients over 75 years of age from six private laboratories. RESULTS Antibiotic resistance rate for E. coli in nursing homes was close to that of the, ommunity setting. Conversely, resistance of K. pneumoniae in nursing homes was, close to hospital settings. No difference in resistance of P. mirabilis was observed, between the three healthcare sectors. CONCLUSIONS Patients living in nursing homes should not be considered more at risk of, infection by multi-drug resistant E. coli than patients living in community setting. Screening of multi-drug resistant K. pneumoniae could be of interest for nursing home, patients.
Collapse
Affiliation(s)
- A Biguenet
- Hygiène Hospitalière, CHU Besançon, France; UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France.
| | - H Bouxom
- Hygiène Hospitalière, CHU Besançon, France
| | - X Bertrand
- Hygiène Hospitalière, CHU Besançon, France; UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
| | - C Slekovec
- Hygiène Hospitalière, CHU Besançon, France; UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
| |
Collapse
|
29
|
Koreň J, Andrezál M, Drahovská H, Hubenáková Z, Liptáková A, Maliar T. Next-Generation Sequencing of Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated from Patients Hospitalized in the University Hospital Facilities. Antibiotics (Basel) 2022; 11:1538. [PMID: 36358193 PMCID: PMC9686475 DOI: 10.3390/antibiotics11111538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Carbapenem-resistant (CR) Klebsiella pneumoniae represents an urgent worldwide threat. We focused on CR K. pneumoniae in selected facilities of the University Hospital Bratislava (UHB) to investigate sequence types (STs), clonal relatedness, and antimicrobial resistance. Suspected carbapenem-nonsusceptible K. pneumoniae strains were obtained from hospitalized patients. Further examination included carbapenemase confirmation, cgMLST, and quantitative susceptibility testing. Of the total 41 CR K. pneumoniae strains, 26 (63.4%) were determined as ST11 in hospital No. 1; of these ST11, 22 (84.6%) were found in the first internal clinic. Six (14.6%) ST258 and three (7.3%) ST584 occurred in hospital No. 2; the most, i.e., four (66.7%), ST258 were detected in the geriatric clinic. In hospital No. 3, we found two (4.8%) ST584 and one (2.4%) ST258. Of the ST11 set, 24 (92.3%) produced NDM-1. Furthermore, seven (87.5) ST258 and five (100%) ST584 strains generated KPC-2. Antimicrobial resistance was as follows: ertapenem 97.6%, meropenem 63.4%, tigecycline 7.3%, eravacycline 7.3%, and colistin 2.5%. We revealed a presumably epidemiological association of ST11 with transmission, particularly in the first internal clinic of hospital No. 1, while ST258 and ST584 were related to interhospital dissemination between medical facilities No. 2 and No. 3. It is essential to prevent the circulation of these pathogens within and between healthcare facilities.
Collapse
Affiliation(s)
- Ján Koreň
- Institute of Microbiology, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81108 Bratislava, Slovakia
| | - Michal Andrezál
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Zuzana Hubenáková
- Institute of Microbiology, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81108 Bratislava, Slovakia
| | - Adriána Liptáková
- Institute of Microbiology, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81108 Bratislava, Slovakia
| | - Tibor Maliar
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, 91701 Trnava, Slovakia
| |
Collapse
|
30
|
Lewis JM, Mphasa M, Banda R, Beale MA, Heinz E, Mallewa J, Jewell C, Faragher B, Thomson NR, Feasey NA. Colonization dynamics of extended-spectrum beta-lactamase-producing Enterobacterales in the gut of Malawian adults. Nat Microbiol 2022; 7:1593-1604. [PMID: 36065064 PMCID: PMC9519460 DOI: 10.1038/s41564-022-01216-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
Drug-resistant bacteria of the order Enterobacterales which produce extended-spectrum beta-lactamase enzymes (ESBL-Enterobacterales, ESBL-E) are global priority pathogens. Antimicrobial stewardship interventions proposed to curb their spread include shorter courses of antimicrobials to reduce selection pressure but individual-level acquisition and selection dynamics are poorly understood. We sampled stool of 425 adults (aged 16-76 years) in Blantyre, Malawi, over 6 months and used multistate modelling and whole-genome sequencing to understand colonization dynamics of ESBL-E. Models suggest a prolonged effect of antimicrobials such that truncating an antimicrobial course at 2 days has a limited effect in reducing colonization. Genomic analysis shows largely indistinguishable diversity of healthcare-associated and community-acquired isolates, hence some apparent acquisition of ESBL-E during hospitalization may instead represent selection from a patient's microbiota by antimicrobial exposure. Our approach could help guide stewardship protocols; interventions that aim to review and truncate courses of unneeded antimicrobials may be of limited use in preventing ESBL-E colonization.
Collapse
Affiliation(s)
- Joseph M Lewis
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi.
- Liverpool School of Tropical Medicine, Liverpool, UK.
- University of Liverpool, Liverpool, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | | | - Eva Heinz
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
31
|
He Z, Xu W, Zhao H, Li W, Dai Y, Lu H, Zhao L, Zhang C, Li Y, Sun B. Epidemiological characteristics an outbreak of ST11 multidrug-resistant and hypervirulent Klebsiella pneumoniae in Anhui, China. Front Microbiol 2022; 13:996753. [PMID: 36212848 PMCID: PMC9537591 DOI: 10.3389/fmicb.2022.996753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Klebsiella pneumoniae has become a primary threat to global health because of its virulence and resistance. In 2015, China reported multidrug-resistant (MDR) and hypervirulent K. pneumoniae (hvKp) isolates. The emergence of MDR-hvKp poses a significant threat to public health. We collected 76 MDR K. pneumoniae isolates from the same hospital, of which there were a total of six MDR-hvKp isolates. We performed multilocus sequence typing (MLST) and capsular typing, whole genome sequencing, comparative genome analysis, and phylogenetic analysis as well as phenotypic experiments, including growth curves, mucoviscosity assay, Galleria mellonella infection model, human whole blood survival, and human neutrophil bactericidal assay to further characterize the samples. We identified six large plasmids carrying extended spectrum β-lactamase (ESBL) genes or carbapenemase genes (blaCTX–M–65, blaKPC–2, blaSHV–12, blaSHV–158), 9 plasmids containing other drug resistance genes, and 7 hypervirulence plasmids carrying rmpA and rmpA2 in ST11 MDR-hvKp isolates. Some of these plasmids were identical, whereas others differed only by insertion elements. In addition, we identified a plasmid, p21080534_1, that carries hypervirulence genes (iucABCD, iutA, rmpA2), a carbapenemase gene (blaKPC–2), and an ESBL gene (blaSHV–12), as well as MDR-hvKp 21072329, which did not carry rmpA or rmpA2, but exhibited hypervirulence and hypermucoviscosity. ST11 MDR-hvKp derived from hypervirulence and multidrug resistance plasmids not only causes significant treatment difficulties, but also represents an unprecedented challenge to public health. Therefore, urgent measures are needed to limit further spread.
Collapse
Affiliation(s)
- Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weifeng Xu
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hang Zhao
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanyuan Dai
- Department of Clinical Laboratory, Anhui Provincial Hospital of Anhui Medical University of China, Hefei, China
| | - Huaiwei Lu
- Department of Clinical Laboratory, Anhui Provincial Hospital of Anhui Medical University of China, Hefei, China
| | - Liping Zhao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changfeng Zhang
- Clinical Laboratory Center, First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yujie Li,
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Baolin Sun,
| |
Collapse
|
32
|
Vezina B, Judd LM, McDougall FK, Boardman WSJ, Power ML, Hawkey J, Brisse S, Monk JM, Holt KE, Wyres KL. Transmission of Klebsiella strains and plasmids within and between grey-headed flying fox colonies. Environ Microbiol 2022; 24:4425-4436. [PMID: 35590448 PMCID: PMC9790207 DOI: 10.1111/1462-2920.16047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood. High-resolution genome comparisons of 39 KpSC isolates from grey-headed flying foxes identified five putative strain transmission clusters (four intra- and one inter-colony). The instance of inter-colony strain transmission of K. africana was found between two flying fox populations within flying distance, indicating either direct or indirect transmission through a common food/water source. All 11 plasmids identified within the KpSC isolates showed 73% coverage (mean) and ≥95% identity to human-associated KpSC plasmids, indicating gene flow between human clinical and grey-headed flying fox isolates. Along with strain transmission, inter-species horizontal plasmid transmission between K. pneumoniae and Klebsiella africana was also identified within a flying fox colony. Finally, genome-scale metabolic models were generated to predict and compare substrate usage to previously published KpSC models, from human and environmental sources. These models indicated no distinction on the basis of metabolic capabilities. Instead, metabolic capabilities were consistent with population structure and ST/lineage.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | - Louise M. Judd
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | | | | | - Michelle L. Power
- Department of Biological SciencesMacquarie UniversityNSW2109Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | - Sylvain Brisse
- Institut PasteurUniversité de Paris, Biodiversity and Epidemiology of Bacterial PathogensParisFrance
| | | | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| |
Collapse
|
33
|
Zhang Y, Yu S, Chen C, Sun F, Zhou L, Yao H, Hu J, Li S, Ai J, Jiang N, Wang J, Liu Q, Jin J, Zhang W. Comprehensive Surveillance and Sampling Reveal Carbapenem-Resistant Organism Spreading in Tertiary Hospitals in China. Infect Drug Resist 2022; 15:4563-4573. [PMID: 35999831 PMCID: PMC9393017 DOI: 10.2147/idr.s367398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Carbapenem-resistant organisms (CROs) have posed a great threat to antibiotic use and induce multi-drug resistance. Contamination of the hospital environment and infection of healthcare workers (HCWs) are reported as sources of nosocomial infections. Here, we performed a comprehensive environment sampling and timely epidemiological investigation during outbreaks to investigate the role of the environment and HCWs in CRO transmission. Patients and Methods We enrolled carbapenem-resistant organism outbreaks in ICU-1 of Huashan Hospital from January 2019 to March 2019, and ICU-2 located at west branch of Huashan Hospital from October 2019 to November 2019. Carbapenem-resistant Klebsiella pneumoniae (CRKP) and carbapenem-resistant Acinetobacter baumannii (CRAB) isolates were collected from the patients. We performed a real-time comprehensive environmental and HCW sampling in the two ICUs. Isolated strains from patients and the positive colonies from the screening were sent for whole-genome sequencing. Finally, phylogenetic trees were constructed. Results CRAB and CRKP outbreaks simultaneously occurred in ICU-1; the outbreak involved 13 patients. Meanwhile, the CRKP outbreak in ICU-2 included 11 patients. Twelve out of 146 environment and HCWs samples in ICU-1 were carbapenem-resistant bacteria, including six CRKP and six CRAB strains. For ICU-2, hospital surfaces and HCWs were negative for CRKP. Phylogenetic analyses showed that CRKP strains in ICU-1 were classified into two clades: Clade 1 and Clade 2, sharing a high similarity of isolates from the environment and HCWs. The same phenomenon was observed in CRAB. Conclusion A timely comprehensive sampling combined with genome-based investigation may aid in tracking the transmission route of and controlling the infections. The environment and HCWs could be contaminated during CRO transmission, which calls for strengthened prevention and control measures.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglei Yu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haijun Yao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Hu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shirong Li
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Jiang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qihui Liu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jialin Jin
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Hawkey J, Wyres KL, Judd LM, Harshegyi T, Blakeway L, Wick RR, Jenney AWJ, Holt KE. ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and contribution to infection burden in the hospital setting. Genome Med 2022; 14:97. [PMID: 35999578 PMCID: PMC9396894 DOI: 10.1186/s13073-022-01103-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Resistance to third-generation cephalosporins, often mediated by extended-spectrum beta-lactamases (ESBLs), is a considerable issue in hospital-associated infections as few drugs remain for treatment. ESBL genes are often located on large plasmids that transfer horizontally between strains and species of Enterobacteriaceae and frequently confer resistance to additional drug classes. Whilst plasmid transmission is recognised to occur in the hospital setting, the frequency and impact of plasmid transmission on infection burden, compared to ESBL + strain transmission, is not well understood. Methods We sequenced the genomes of clinical and carriage isolates of Klebsiella pneumoniae species complex from a year-long hospital surveillance study to investigate ESBL burden and plasmid transmission in an Australian hospital. Long-term persistence of a key transmitted ESBL + plasmid was investigated via sequencing of ceftriaxone-resistant isolates during 4 years of follow-up, beginning 3 years after the initial study. Results We found 25 distinct ESBL plasmids. We identified one plasmid, which we called Plasmid A, that carried blaCTX-M-15 in an IncF backbone similar to pKPN-307. Plasmid A was transmitted at least four times into different Klebsiella species/lineages and was responsible for half of all ESBL episodes during the initial 1-year study period. Three of the Plasmid A-positive strains persisted locally 3–6 years later, and Plasmid A was detected in two additional strain backgrounds. Overall Plasmid A accounted for 21% of ESBL + infections in the follow-up period. Conclusions Here, we systematically surveyed ESBL strain and plasmid transmission over 1 year in a single hospital network. Whilst ESBL plasmid transmission events were rare in this setting, they had a significant and sustained impact on the burden of ceftriaxone-resistant and multidrug-resistant infections. If onward transmission of Plasmid A-carrying strains could have been prevented, this may have reduced the number of opportunities for Plasmid A to transmit and create novel ESBL + strains, as well as reducing overall ESBL infection burden.
Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01103-0.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Taylor Harshegyi
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam W J Jenney
- Microbiology Unit & Department of Infectious Diseases, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
35
|
Giufrè M, Errico G, Monaco M, Del Grosso M, Sabbatucci M, Pantosti A, Cerquetti M, Pagnotta M, Marra M, Carollo M, Rossini A, Fogato E, Cesana E, Gentiloni Silverj F, Zabzuni D, Tinelli M. Whole Genome Sequencing and Molecular Analysis of Carbapenemase-Producing Escherichia coli from Intestinal Carriage in Elderly Inpatients. Microorganisms 2022; 10:microorganisms10081561. [PMID: 36013979 PMCID: PMC9413394 DOI: 10.3390/microorganisms10081561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
The spread of carbapenemase-producing (CP) Enterobacterales is currently a worldwide concern, especially in the elderly. Twelve CP-E. coli isolated from rectal swabs of colonized inpatients aged ≥65 years from four hospitals in two Italian cities (Milan and Rome) were analyzed by whole genome sequencing (WGS) to obtain multi-locus sequence typing (MLST), identification of carbapenemase-encoding genes, resistome, plasmid content, and virulence genes. MLST analysis showed the presence of 10 unrelated lineages: ST410 (three isolates from three different hospitals in two cities) and ST12, ST38, ST69, ST95, ST131, ST189, ST648, ST1288, and ST1598 (one isolate each). Most isolates (9/12, 75%) contained a serine-β-lactamase gene (5 blaKPC-3, 2 blaKPC-2, and 2 blaOXA-181), while three isolates harbored a metallo-β-lactamase gene (two blaNDM-5 and one blaVIM-1). In most CP-E. coli, the presence of more than one plasmid was observed, with the predominance of IncF. Several virulence genes were detected. All isolates contained genes enhancing the bacterial fitness, such as gad and terC, and all isolates but one, fimH, encoding type 1 fimbriae. In conclusion, CP-E. coli clones colonizing elderly patients showed heterogeneous genetic backgrounds. We recommend strict surveillance to monitor and prevent the spread of successful, high-risk clones in healthcare settings.
Collapse
Affiliation(s)
- Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
- Correspondence:
| | - Giulia Errico
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Maria Del Grosso
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Michela Sabbatucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Marina Cerquetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Michela Pagnotta
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Manuela Marra
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (M.C.)
| | - Maria Carollo
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (M.C.)
| | | | - Elena Fogato
- Golgi-Redaelli Geriatric Institute, 20146 Milan, Italy;
| | - Elisabetta Cesana
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
| | | | - Dorjan Zabzuni
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
| | - Marco Tinelli
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
- Italian Society of Infectious and Tropical Diseases (SIMIT), 59100 Prato, Italy
| |
Collapse
|
36
|
Hunt M, Letcher B, Malone KM, Nguyen G, Hall MB, Colquhoun RM, Lima L, Schatz MC, Ramakrishnan S, Iqbal Z. Minos: variant adjudication and joint genotyping of cohorts of bacterial genomes. Genome Biol 2022; 23:147. [PMID: 35791022 PMCID: PMC9254434 DOI: 10.1186/s13059-022-02714-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/20/2022] [Indexed: 12/30/2022] Open
Abstract
There are many short-read variant-calling tools, with different strengths and weaknesses. We present a tool, Minos, which combines outputs from arbitrary variant callers, increasing recall without loss of precision. We benchmark on 62 samples from three bacterial species and an outbreak of 385 Mycobacterium tuberculosis samples. Minos also enables joint genotyping; we demonstrate on a large (N=13k) M. tuberculosis cohort, building a map of non-synonymous SNPs and indels in a region where all such variants are assumed to cause rifampicin resistance. We quantify the correlation with phenotypic resistance and then replicate in a second cohort (N=10k).
Collapse
Affiliation(s)
- Martin Hunt
- EMBL-EBI, Cambridge, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | - Rachel M Colquhoun
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | | | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
37
|
Hooban B, Fitzhenry K, O'Connor L, Miliotis G, Joyce A, Chueiri A, Farrell ML, DeLappe N, Tuohy A, Cormican M, Morris D. A Longitudinal Survey of Antibiotic-Resistant Enterobacterales in the Irish Environment, 2019-2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154488. [PMID: 35278563 DOI: 10.1016/j.scitotenv.2022.154488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The natural environment represents a complex reservoir of antibiotic-resistant bacteria as a consequence of different wastewater discharges including anthropogenic and agricultural. Therefore, the aim of this study was to examine sewage and waters across Ireland for the presence of antibiotic-resistant Enterobacterales. Samples were collected from the West, East and South of Ireland. Two periods of sampling took place between July 2019 and November 2020, during which 118 water (30 L) and 36 sewage samples (200 mL) were collected. Waters were filtered using the CapE method, followed by enrichment and culturing. Sewage samples were directly cultured on selective agars. Isolates were identified by MALDI-TOF and antibiotic susceptibility testing was performed in accordance with EUCAST criteria. Selected isolates were examined for blaCTX-M, blaVIM, blaIMP, blaOXA-48, blaNDM, and blaKPC by real time PCR and whole genome sequencing (n = 146). A total of 419 Enterobacterales (348 water, 71 sewage) were isolated from all samples. Hospital sewage isolates displayed the highest percentage resistance to many beta-lactam and aminoglycoside antibiotics. Extended-spectrum beta-lactamase-producers were identified in 78% of water and 50% of sewage samples. One or more carbapenemase-producing Enterobacterales were identified at 23 individual sampling sites (18 water, 5 sewage). This included the detection of blaOXA-48 (n = 18), blaNDM (n = 14), blaKPC (n = 4) and blaOXA-484 (n = 1). All NDM-producing isolates harbored the ble-MBL bleomycin resistance gene. Commonly detected sequence types included Klebsiella ST323, ST17, and ST405 as well as E. coli ST131, ST38 and ST10. Core genome MLST comparisons detected identical E. coli isolates from wastewater treatment plant (WWTP) influent and nursing home sewage, and the surrounding waters. Similarly, one Klebsiella pneumoniae isolated from WWTP influent and the surrounding estuarine water were identical. These results highlight the need for regular monitoring of the aquatic environment for the presence of antibiotic-resistant organisms to adequately inform public health policies.
Collapse
Affiliation(s)
- Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Alexandra Chueiri
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Niall DeLappe
- National Salmonella, Shigella and Listeria Reference Laboratory, Galway University Hospitals, Galway, Ireland
| | - Alma Tuohy
- National Salmonella, Shigella and Listeria Reference Laboratory, Galway University Hospitals, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland; National Salmonella, Shigella and Listeria Reference Laboratory, Galway University Hospitals, Galway, Ireland; Health Service Executive, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
38
|
Tinelli M, Rossini A, Scudeller L, Zabzuni D, Errico G, Fogato E, D'Angelo R, Gentiloni Silverj F, Cesana E, Bergamaschini LC, Pasi F, Monaco M, Cerquetti M, Pantosti A, Giufrè M. Dynamics of carbapenemase-producing Enterobacterales intestinal colonisation in the elderly population after hospital discharge, Italy, 2018-2020. Int J Antimicrob Agents 2022; 59:106594. [PMID: 35483624 DOI: 10.1016/j.ijantimicag.2022.106594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 02/03/2023]
Abstract
Carbapenemase-producing Enterobacterales (CPE) represent a serious threat to public health worldwide. Elderly patients are at increased risk of colonisation/infection with CPE. This study aimed to evaluate the persistence of CPE colonisation and the genotypic characteristics of persistent strains in elderly people discharged from Italian hospitals. A longitudinal study was conducted in two Italian cities (March 2018 to September 2020) enrolling 137 patients aged ≥65 years with CPE intestinal colonisation at hospital discharge. CPE colonisation was evaluated after 4, 8 and 12 months. Competing risk analysis was used to explore the association between baseline characteristics and persistence at 4 months. For all isolates, carbapenemase typing and multilocus sequence typing were performed. Persistent isolates underwent whole-genome sequencing. Of 137 patients, 91% carried carbapenemase-producing Klebsiella pneumoniae (CP-KP) and 8.8% carried carbapenemase-producing Escherichia coli. Although a large number of patients were lost to follow-up owing to death or withdrawal, 28/65 patients (43.1%) remained colonised at Month 4; 16/42 (38.1%) and 5/28 (17.9%) were found colonised up to Months 8 and 12, respectively. Colonisation persistence was more frequent in patients with bacteraemia or complicated urinary tract infection while in hospital and in those staying in long-term care facilities (LTCFs). Clonal characteristics of CP-KP isolates did not appear to influence persistence. Isolates obtained from each persistent carrier were identical or highly related by SNP phylogenetic analysis. Identification of patients at higher risk of persistent intestinal carriage after hospital discharge can prompt control measures to limit the transmission of CPE in the community, especially in LTCF settings.
Collapse
Affiliation(s)
- Marco Tinelli
- Italian Society of Infectious and Tropical Diseases (SIMIT), Prato, Italy; IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
| | | | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Dorjan Zabzuni
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
| | - Giulia Errico
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Fogato
- Laboratory of Clinical Microbiology, ASP 'Golgi-Redaelli', Milan, Italy
| | - Roberto D'Angelo
- Laboratory of Clinical Microbiology, ASP 'Golgi-Redaelli', Milan, Italy
| | | | | | | | - Francesca Pasi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Cerquetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
39
|
Hawkey J, Cottingham H, Tokolyi A, Wick RR, Judd LM, Cerdeira L, de Oliveira Garcia D, Wyres KL, Holt KE. Linear plasmids in Klebsiella and other Enterobacteriaceae. Microb Genom 2022; 8. [PMID: 35416146 PMCID: PMC9453081 DOI: 10.1099/mgen.0.000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linear plasmids are extrachromosomal DNA elements that have been found in a small number of bacterial species. To date, the only linear plasmids described in the family Enterobacteriaceae belong to Salmonella, first found in Salmonella enterica Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. Screening of assembly graphs assembled from public read sets identified linear plasmid structures in a further 13 K. pneumoniae species complex genomes. We used these 25 linear plasmid sequences to query all bacterial genome assemblies in the National Center for Biotechnology Information database, and discovered an additional 61 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function; however, each phylogroup carried its own unique toxin–antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug-resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Hugh Cottingham
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Alex Tokolyi
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | | | | | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
40
|
Graney PL, Zhong Z, Post S, Brito I, Singh A. Engineering early memory B-cell-like phenotype in hydrogel-based immune organoids. J Biomed Mater Res A 2022; 110:1435-1447. [PMID: 35388946 PMCID: PMC9214626 DOI: 10.1002/jbm.a.37388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Memory B cells originate in response to antigenic stimulation in B-cell follicles of secondary lymphoid organs where naive B cells undergo maturation within a subanatomical microenvironment, the germinal centers. The understanding of memory B-cell immunology and its regulation is based primarily on sophisticated experiments that involve mouse models. To date, limited evidence exists on whether memory B cells can be successfully engineered ex vivo, specifically using biomaterials-based platforms that support the growth and differentiation of B cells. Here, we report the characterization of a recently reported maleimide-functionalized poly(ethylene glycol) (PEG) hydrogels as immune organoids towards the development of early memory B-cell phenotype and germinal center-like B cells. We demonstrate that the use of interleukin 9 (IL9), IL21, and bacterial antigen presentation as outer membrane-bound fragments drives the conversion of naive, primary murine B cells to early memory phenotype in ex vivo immune organoids. These findings describe the induction of early memory B-cell-like phenotype in immune organoids and highlight the potential of synthetic organoids as a platform for the future development of antigen-specific bona fide memory B cells for the study of the immune system and generation of therapeutic antibodies.
Collapse
Affiliation(s)
- Pamela L Graney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Zhe Zhong
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah Post
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ilana Brito
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ankur Singh
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
41
|
Modelling of the transmission dynamics of carbapenem-resistant Klebsiella pneumoniae in hospitals and design of control strategies. Sci Rep 2022; 12:3805. [PMID: 35264643 PMCID: PMC8907197 DOI: 10.1038/s41598-022-07728-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/21/2022] [Indexed: 01/13/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a major threat to global public health. Epidemiological and infection controls associated with CRKP are challenging because of several potential elements involved in a complicated cycle of transmission. Here, we proposed a comprehensive mathematical model to investigate the transmission dynamics of CRKP, determine factors affecting the prevalence, and evaluate the impact of interventions on transmission. The model includes the essential compartments, which are uncolonized, asymptomatic colonized, symptomatic colonized, and relapsed patients. Additionally, symptomatic colonized and relapsed patients were further classified into subpopulations according to their number of treatment failures or relapses. We found that the admission of colonized patients and use of antibiotics significantly impacted the endemic transmission in health care units. Thus, we introduced the treatment efficacy, defined by combining the treatment duration and probability of successful treatment, to characterize and describe the effects of antibiotic treatment on transmission. We showed that a high antibiotic treatment efficacy results in a significantly reduced likelihood of patient readmission in the health care unit. Additionally, our findings demonstrate that CRKP transmission with different epidemiological characteristics must be controlled using distinct interventions.
Collapse
|
42
|
Chen J, Sun L, Liu X, Yu Q, Qin K, Cao X, Gu J. Metagenomic Assessment of the Pathogenic Risk of Microorganisms in Sputum of Postoperative Patients With Pulmonary Infection. Front Cell Infect Microbiol 2022; 12:855839. [PMID: 35310849 PMCID: PMC8928749 DOI: 10.3389/fcimb.2022.855839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 01/31/2023] Open
Abstract
Respiratory infections are complicated biological processes associated with an unbalanced microbial community and a wide range of pathogens. To date, robust approaches are still required for distinguishing the pathogenic microorganisms from the colonizing ones in the clinical specimens with complex infection. In this study, we retrospectively analyzed the data of conventional culture testing and metagenomic next-generation sequencing (mNGS) of the sputum samples collected from 50 pulmonary infected patients after cardiac surgery from December 2020 and June 2021 in Ruijin Hospital. Taxonomic classification of the sputum metagenomes showed that the numbers of species belonging to bacteria, fungi, and viruses were 682, 58, and 21, respectively. The full spectrum of microorganisms present in the sputum microbiome covered all the species identified by culture, including 12 bacterial species and two fungal species. Based on species-level microbiome profiling, a reference catalog of microbial abundance detection limits was constructed to assess the pathogenic risks of individual microorganisms in the specimens. The proposed screening procedure detected 64 bacterial pathogens, 10 fungal pathogens, and three viruses. In particular, certain opportunistic pathogenic strains can be distinguished from the colonizing ones in the individual specimens. Strain-level identification and phylogenetic analysis were further performed to decipher molecular epidemiological characteristics of four opportunistic etiologic agents, including Klebsiella pneumoniae, Corynebacterium striatum, Staphylococcus aureus, and Candida albicans. Our findings provide a novel metagenomic insight into precision diagnosis for clinically relevant microbes, especially for opportunistic pathogens in the clinical setting.
Collapse
Affiliation(s)
- Junji Chen
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianjie Sun
- Genoxor Medical Science and Technology Inc., Zhejiang, China
| | - Xiaoying Liu
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixiang Yu
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaijie Qin
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejie Cao
- Genoxor Medical Science and Technology Inc., Zhejiang, China
| | - Jianwei Gu
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jianwei Gu,
| |
Collapse
|
43
|
Matono T, Morita M, Nakao N, Teshima Y, Ohnishi M. Genomic insights into virulence factors affecting tissue-invasive Klebsiella pneumoniae infection. Ann Clin Microbiol Antimicrob 2022; 21:2. [PMID: 35123505 PMCID: PMC8817621 DOI: 10.1186/s12941-022-00494-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/18/2022] [Indexed: 01/02/2023] Open
Abstract
Background The key virulence factors responsible for hypervirulent Klebsiella pneumoniae (hvKp) infection remains elusive. Methods We analyzed K. pneumoniae isolates collected between 2017 and 2019 and defined hvKp as a pyogenic infection. Classical K. pneumoniae (cKp) involved a non-invasive infection or uncomplicated bacteremia. Isolates belonging to the K. pneumoniae species complex were excluded. Results We analyzed 112 isolates, including 19 hvKp, 67 cKp, and 26 colonizers, using whole-genome sequencing. Population genomics revealed that the K1-sequence type (ST) 82 (O1v1) clade was distinct from that of the K1-ST23 (O1v2) clone. The virulence gene profiles also differed between K1-ST82 (aerobactin and rmpA) and K1-ST23 (aerobactin, yersiniabactin, salmochelin, colibactin, and rmpA/rmpA2). The K2 genotype was more diverse than that of K1. A neighboring subclade of K1-ST23 (comprising ST29, ST412, ST36, and ST268) showed multidrug resistance and hypervirulence potentials. Logistic-regression analysis revealed that diabetes mellitus was associated with K. pneumoniae infection (odds ratio [OR]: 4.11; 95% confidence interval [CI]: 1.14–14.8). No significant association was found between hvKp diagnosis and clinical characteristics, such as diabetes mellitus or community acquisition. However, the K1 genotype (OR: 9.02; 95% CI: 2.49–32.7; positive-likelihood ratio [LR]: 4.08), rmpA (OR: 8.26; 95% CI: 1.77–38.5; positive LR: 5.83), and aerobactin (OR: 4.59; 95% CI: 1.22–17.2; positive LR: 3.49) were substantial diagnostic predictors of hvKp. Conclusions The K1 genotype, rmpA, and aerobactin are prominent predictors of hvKp, suggesting that further pyogenic (metastatic) infection should be examined clinically. These findings may shed light on key hvKp virulence factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-022-00494-7.
Collapse
|
44
|
Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Front Microbiol 2022; 12:708550. [PMID: 35069461 PMCID: PMC8770865 DOI: 10.3389/fmicb.2021.708550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of the causative infectious agent is essential in the management of infectious diseases, with the ideal diagnostic method being rapid, accurate, and informative, while remaining cost-effective. Traditional diagnostic techniques rely on culturing and cell propagation to isolate and identify the causative pathogen. These techniques are limited by the ability and the time required to grow or propagate an agent in vitro and the facts that identification based on morphological traits are non-specific, insensitive, and reliant on technical expertise. The evolution of next-generation sequencing has revolutionized genomic studies to generate more data at a cheaper cost. These are divided into short- and long-read sequencing technologies, depending on the length of reads generated during sequencing runs. Long-read sequencing also called third-generation sequencing emerged commercially through the instruments released by Pacific Biosciences and Oxford Nanopore Technologies, although relying on different sequencing chemistries, with the first one being more accurate both platforms can generate ultra-long sequence reads. Long-read sequencing is capable of entirely spanning previously established genomic identification regions or potentially small whole genomes, drastically improving the accuracy of the identification of pathogens directly from clinical samples. Long-read sequencing may also provide additional important clinical information, such as antimicrobial resistance profiles and epidemiological data from a single sequencing run. While initial applications of long-read sequencing in clinical diagnosis showed that it could be a promising diagnostic technique, it also has highlighted the need for further optimization. In this review, we show the potential long-read sequencing has in clinical diagnosis of fungal infections and discuss the pros and cons of its implementation.
Collapse
Affiliation(s)
- Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yiheng Hu
- Research School of Biology, Australia National University, Canberra, ACT, Australia
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
45
|
Peng C, Zhang X, Zhang X, Liu C, Chen Z, Sun H, Wang L. Bacterial Community under the Influence of Microplastics in Indoor Environment and the Health Hazards Associated with Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:422-432. [PMID: 34723495 DOI: 10.1021/acs.est.1c04520] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selectively colonized microbial communities and enriched antibiotic resistance genes (ARGs) in (micro)plastics in aquatic and soil environments make the plastisphere a great health concern. Although microplastics (MPs) are distributed in indoor environments in high abundance, information on the effect of MPs on a microbial community in an indoor environment is lacking. Here, we detected polymers (containing MPs and natural polymers), bacterial communities, and 18 kinds of ARGs in collected indoor dust samples. A significant correlation by Procrustes analysis between bacterial community composition and the abundance of MPs was observed, and correlation tests and redundancy analysis identified specific associations between MP polymers and bacterial taxa, such as polyamide and Actinobacteria. In addition, the abundance of MPs showed a positive correlation with the relative abundance of the ARGs (to 16S RNA), while natural polymers, such as cellulosics, showed positive correlations with the absolute abundance of ARGs and 16S rRNA. Simulated experiments verified that significantly higher bacterial biomasses and ARGs were observed on the surface of cotton, hair, and wool than on MPs, while a higher relative abundance of ARGs was detected on MPs. However, a significantly higher amount of ARG was found on MPs of poly(lactic acid), the biodegradable plastics with the highest yield. In addition to the plastisphere in water and soil environments, MPs in an indoor environment may also affect the bacterial community and specifically enrich ARGs. Moreover, degradable MPs and nondegradable MPs may result in different health hazards due to their distinct effects on bacterial community.
Collapse
Affiliation(s)
- Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaofei Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zeyou Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
46
|
Abbott IJ, van Gorp E, Wyres KL, Wallis SC, Roberts JA, Meletiadis J, Peleg AY. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1324-1333. [PMID: 35211736 PMCID: PMC9047678 DOI: 10.1093/jac/dkac045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction The use of oral fosfomycin for urinary tract infections (UTIs) caused by non-Escherichia coli uropathogens is uncertain, including Klebsiella pneumoniae, the second most common uropathogen. Methods A multicompartment bladder infection in vitro model was used with standard media and synthetic human urine (SHU) to simulate urinary fosfomycin exposure after a single 3 g oral dose (fAUC0–72 16884 mg·h/L, t½ 5.5 h) against 15 K. pneumoniae isolates including ATCC 13883 (MIC 2 to >1024 mg/L) with a constant media inflow (20 mL/h) and 4-hourly voiding of each bladder. The impact of the media (CAMHB + G6P versus SHU) on fosfomycin MIC measurements, drug-free growth kinetics and regrowth after fosfomycin administration was assessed. A low and high starting inoculum (5.5 versus 7.5 log10 cfu/mL) was assessed in the bladder infection model. Results Compared with CAMHB, isolates in SHU had a slower growth rate doubling time (37.7 versus 24.1 min) and reduced growth capacity (9.0 ± 0.3 versus 9.4 ± 0.3 log10 cfu/mL), which was further restricted with increased inflow rate (40 mL/h) and more frequent voids (2-hourly). Regrowth was commonly observed in both media with emergence of fosfomycin resistance promoted by a high starting inoculum in CAMHB (MIC rise to ≥1024 mg/L in 13/14 isolates). Resistance was rarely detected in SHU, even with a high starting inoculum (MIC rise to ≥1024 mg/L in 2/14 isolates). Conclusions Simulated in an in vitro UTI model, the regrowth of K. pneumoniae urinary isolates was inadequately suppressed following oral fosfomycin therapy. Efficacy was further reduced by a high starting inoculum.
Collapse
Affiliation(s)
- Iain J. Abbott
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Corresponding author. E-mail:
| | - Elke van Gorp
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kelly L. Wyres
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Steven C. Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Intensive Care Medicine and Pharmacy Department, Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Athens, Greece
| | - Anton Y. Peleg
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
47
|
Ares-Arroyo M, Rocha EPC, Gonzalez-Zorn B. Evolution of ColE1-like plasmids across γ-Proteobacteria: From bacteriocin production to antimicrobial resistance. PLoS Genet 2021; 17:e1009919. [PMID: 34847155 PMCID: PMC8683028 DOI: 10.1371/journal.pgen.1009919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/17/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is one of the major threats to Public Health worldwide. Understanding the transfer and maintenance of antimicrobial resistance genes mediated by mobile genetic elements is thus urgent. In this work, we focus on the ColE1-like plasmid family, whose distinctive replication and multicopy nature has given rise to key discoveries and tools in molecular biology. Despite being massively used, the hosts, functions, and evolutionary history of these plasmids remain poorly known. Here, we built specific Hidden Markov Model (HMM) profiles to search ColE1 replicons within genomes. We identified 1,035 ColE1 plasmids in five Orders of γ-Proteobacteria, several of which are described here for the first time. The phylogenetic analysis of these replicons and their characteristic MOBP5/HEN relaxases suggest that ColE1 plasmids have diverged apart, with little transfer across orders, but frequent transfer across families. Additionally, ColE1 plasmids show a functional shift over the last decades, losing their characteristic bacteriocin production while gaining several antimicrobial resistance genes, mainly enzymatic determinants and including several extended-spectrum betalactamases and carbapenemases. Furthermore, ColE1 plasmids facilitate the intragenomic mobilization of these determinants, as various replicons were identified co-integrated with large non-ColE1 plasmids, mostly via transposases. These results illustrate how families of plasmids evolve and adapt their gene repertoires to bacterial adaptive requirements. The extraordinary adaptability of bacteria and the massive prevalence of mobile genetic elements within populations has turned antimicrobial resistance into a growing threat to Public Health. Among all the mobile genetic elements, plasmids have been the focus of attention as these extrachromosomal molecules of DNA are able to mobilize several antimicrobial resistance genes at once through conjugation. However, although small mobilizable and non-conjugative replicons have been traditionally overlooked when analyzing plasmid-mediated antimicrobial resistance, they have recently been described as important carriers of AMR genes. In this work, we have analyzed the ColE1-like plasmid family, whose study has been neglected even if they are one of the main groups of small plasmids in natural populations of Proteobacteria. We observed that these plasmids have evolved for a long time within γ-Proteobacteria acquiring different genetic features in specific hosts, being major players in the spread of antimicrobial resistance determinants.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Antimicrobial Resistance Unit (ARU), Faculty of Veterinary Medicine and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Faculty of Veterinary Medicine and VISAVET, Complutense University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
48
|
Hickey C, Nguyen S, Anes J, Hurley D, Donoghue O, Fanning S, Schaffer K. Differences in antimicrobial susceptibility testing complicating management of IMP carbapenemase-producing Enterobacterales infection. J Glob Antimicrob Resist 2021; 27:284-288. [PMID: 34775131 DOI: 10.1016/j.jgar.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES IMP-type carbapenemases are rarely detected in Europe and limited information is available to guide the treatment of infections caused by carbapenemase-producing Enterobacterales (CPE) producing these carbapenemases. Accurate antimicrobial susceptibility testing (AST) results are essential for optimal antibiotic management. Here we report discrepancies in AST of IMP-producing Enterobacterales (IMP-CPE) complicating the management of severe sepsis. METHODS Antimicrobial susceptibilities were analysed by in-house VITEK® 2, Etest and broth microdilution (BMD). Carbapenemase-encoding genes were detected by PCR. Whole-genome sequencing (WGS) was performed using an Illumina MiSeq platform. RESULTS Minimum inhibitory concentrations (MICs) determined by VITEK® 2 for Enterobacter hormaechei and Klebsiella oxytoca blood culture isolates were ≥16 mg/L for meropenem and ≤0.5 mg/L for ertapenem. In contrast, Etest analysis and BMD returned MICs of 2 mg/L and 1 mg/L, respectively. Both isolates tested positive for IMP carbapenemase-encoding genes by PCR. WGS revealed that both isolates carried the same blaIMP-4 gene. Based on VITEK® 2 susceptibilities, initial treatment was with tigecycline and amikacin. After subsequent deterioration, the patient was successfully treated with ertapenem and amikacin. CONCLUSION This case highlights that automated AST by VITEK® 2 can over-report meropenem resistance for IMP carbapenemase-producers compared with Etest and BMD. Clinicians need to be cautious deciding against carbapenem treatment based on VITEK® 2 susceptibility testing results for IMP-positive Enterobacterales. Tigecycline was inferior to carbapenem treatment for pyelonephritis caused by isolates expressing IMP carbapenemases, however specific evidence guiding the treatment of these infections is lacking.
Collapse
Affiliation(s)
- C Hickey
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Department of Clinical Microbiology, St Vincent's University Hospital, Elm Park, Dublin D04 T6F4, Ireland
| | - S Nguyen
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - J Anes
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - D Hurley
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - O Donoghue
- Department of Clinical Microbiology, St Vincent's University Hospital, Elm Park, Dublin D04 T6F4, Ireland
| | - S Fanning
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - K Schaffer
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Department of Clinical Microbiology, St Vincent's University Hospital, Elm Park, Dublin D04 T6F4, Ireland.
| |
Collapse
|
49
|
Arzilli G, Scardina G, Casigliani V, Petri D, Porretta A, Moi M, Lucenteforte E, Rello J, Lopalco P, Baggiani A, Privitera GP, Tavoschi L. Screening for Antimicrobial-Resistant Gram-negative bacteria in hospitalised patients, and risk of progression from colonisation to infection: Systematic review. J Infect 2021; 84:119-130. [PMID: 34793762 DOI: 10.1016/j.jinf.2021.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Transmission of antimicrobial-resistant Gram-negative bacteria (AMR-GNB) among hospitalised patients can lead to new cases of carriage, infection and outbreaks, hence the need for early carrier identification. We aim to explore two key elements that may guide control policies for colonisation/infection in hospital settings: screening practices on admission to hospital wards and risk of developing infection from colonisation. METHODS We searched on PubMed, Scopus and Cochrane databases for studies published from 2010 up to 2021 reporting on adult patients hospitalised in high-income countries. RESULTS The search retrieved 11853 articles. After screening, 100 studies were included. Combining target patient groups and setting type, we identified six screening approaches. The most reported approach was all admitted patients to high-risk (HR) wards (49.4%). The overall prevalence of AMR-GNB was 13.8% (95%CI 9.3-19.0) with significant differences across regions and time. Risk of progression to infection among colonised patients was 11.0% (95%CI 8.0-14.3) and varied according to setting and pathogens' group (p value<0.0001), with higher values reported for Klebsiella species (18.1%; 95%CI 8.9-29.3). CONCLUSIONS While providing a comprehensive overview of the screening approaches, our study underlines the considerable burden of AMR-GNB colonisation and risk of progression to infection in hospitals by pathogen, setting and time.
Collapse
Affiliation(s)
- Guglielmo Arzilli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56123, Italy
| | - Giuditta Scardina
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56123, Italy
| | - Virginia Casigliani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56123, Italy
| | - Davide Petri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56123, Italy
| | - Andrea Porretta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56123, Italy; University Hospital of Pisa, Pisa 56123, Italy.
| | - Marco Moi
- Department of Surgical Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56123, Italy
| | - Jordi Rello
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Clinical Research/epidemiology In Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain; Clinical Research, CHU Nîmes, Nîmes, France
| | - Pierluigi Lopalco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56123, Italy
| | - Angelo Baggiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56123, Italy; University Hospital of Pisa, Pisa 56123, Italy
| | - Gaetano Pierpaolo Privitera
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56123, Italy; University Hospital of Pisa, Pisa 56123, Italy
| | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56123, Italy
| |
Collapse
|
50
|
Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39:1348-1365. [PMID: 34750572 PMCID: PMC8988251 DOI: 10.1038/s41587-021-01108-x] [Citation(s) in RCA: 757] [Impact Index Per Article: 189.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Rapid advances in nanopore technologies for sequencing single long DNA and RNA molecules have led to substantial improvements in accuracy, read length and throughput. These breakthroughs have required extensive development of experimental and bioinformatics methods to fully exploit nanopore long reads for investigations of genomes, transcriptomes, epigenomes and epitranscriptomes. Nanopore sequencing is being applied in genome assembly, full-length transcript detection and base modification detection and in more specialized areas, such as rapid clinical diagnoses and outbreak surveillance. Many opportunities remain for improving data quality and analytical approaches through the development of new nanopores, base-calling methods and experimental protocols tailored to particular applications.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA
| | - Audrey Bollas
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yuru Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|