1
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
2
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Seinfeld J, Rosales ML, Sobrevilla A, López Yescas JG. Economic assessment of incorporating the hexavalent vaccine as part of the National Immunization Program of Peru. BMC Health Serv Res 2022; 22:651. [PMID: 35570278 PMCID: PMC9109284 DOI: 10.1186/s12913-022-08006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to estimate the economic impact of replacing the current Peruvian primary immunization scheme for infants under 1 year old with an alternative scheme with similar efficacy, based on a hexavalent vaccine. Methods A cost-minimization analysis compared the costs associated with vaccine administration, adverse reactions medical treatment, logistical activities, and indirect social costs associated with time spent by parents in both schemes. A budgetary impact analysis assessed the financial impact of the alternative scheme on healthcare budget. Results Incorporating the hexavalent vaccine would result in a 15.5% net increase in healthcare budget expenditure ($48,281,706 vs $55,744,653). Vaccination costs would increase by 54.1%, whereas logistical and adverse reaction costs would be reduced by 59.8% and 33.1%, respectively. When including indirect social costs in the analysis, the budgetary impact was reduced to 8.7%. Furthermore, the alternative scheme would enable the liberation of 17.5% of national vaccines storage capacity. Conclusions Despite of the significant reduction of logistical and adverse reaction costs, including the hexavalent vaccine into the National Immunization Program of Peru in place of the current vaccination scheme for infants under 1 year of age would increase the public financial budget of the government as it would represent larger vaccine acquisition costs. Incorporating the indirect costs would reduce the budgetary impact demonstrating the social value of the alternative scheme. This merits consideration by government bodies, and future studies investigating such benefits would be informative. Supplementary Information The online version contains supplementary material available at 10.1186/s12913-022-08006-1.
Collapse
Affiliation(s)
- Janice Seinfeld
- Videnza Consultores, Calle Alberto Alexander 2695, Lince, Lima, Perú.
| | | | | | | |
Collapse
|
4
|
Bandyopadhyay AS, Gast C, Rivera L, Sáez-Llorens X, Oberste MS, Weldon WC, Modlin J, Clemens R, Costa Clemens SA, Jimeno J, Rüttimann R. Safety and immunogenicity of inactivated poliovirus vaccine schedules for the post-eradication era: a randomised open-label, multicentre, phase 3, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:559-568. [PMID: 33284114 PMCID: PMC7992032 DOI: 10.1016/s1473-3099(20)30555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Following the global eradication of wild poliovirus, countries using live attenuated oral poliovirus vaccines will transition to exclusive use of inactivated poliovirus vaccine (IPV) or fractional doses of IPV (f-IPV; a f-IPV dose is one-fifth of a normal IPV dose), but IPV supply and cost constraints will necessitate dose-sparing strategies. We compared immunisation schedules of f-IPV and IPV to inform the choice of optimal post-eradication schedule. METHODS This randomised open-label, multicentre, phase 3, non-inferiority trial was done at two centres in Panama and one in the Dominican Republic. Eligible participants were healthy 6-week-old infants with no signs of febrile illness or known allergy to vaccine components. Infants were randomly assigned (1:1:1:1, 1:1:1:2, 2:1:1:1), using computer-generated blocks of four or five until the groups were full, to one of four groups and received: two doses of intradermal f-IPV (administered at 14 and 36 weeks; two f-IPV group); or three doses of intradermal f-IPV (administered at 10, 14, and 36 weeks; three f-IPV group); or two doses of intramuscular IPV (administered at 14 and 36 weeks; two IPV group); or three doses of intramuscular IPV (administered at 10, 14, and 36 weeks; three IPV group). The primary outcome was seroconversion rates based on neutralising antibodies for poliovirus type 1 and type 2 at baseline and at 40 weeks (4 weeks after the second or third vaccinations) in the per-protocol population to allow non-inferiority and eventually superiority comparisons between vaccines and regimens. Three co-primary outcomes concerning poliovirus types 1 and 2 were to determine if seroconversion rates at 40 weeks of age after a two-dose regimen (administered at weeks 14 and 36) of intradermally administered f-IPV were non-inferior to a corresponding two-dose regimen of intramuscular IPV; if seroconversion rates at 40 weeks of age after a two-dose IPV regimen (weeks 14 and 36) were non-inferior to those after a three-dose IPV regimen (weeks 10, 14, and 36); and if seroconversion rates after a two-dose f-IPV regimen (weeks 14 and 36) were non-inferior to those after a three-dose f-IPV regimen (weeks 10, 14, and 36). The non-inferiority boundary was set at -10% for the lower bound of the two-sided 95% CI for the seroconversion rate difference.. Safety was assessed as serious adverse events and important medical events. This study is registered on ClinicalTrials.gov, NCT03239496. FINDINGS From Oct 23, 2017, to Nov 13, 2018, we enrolled 773 infants (372 [48%] girls) in Panama and the Dominican Republic (two f-IPV group n=217, three f-IPV group n=178, two IPV group n=178, and three IPV group n=200). 686 infants received all scheduled vaccine doses and were included in the per-protocol analysis. We observed non-inferiority for poliovirus type 1 seroconversion rate at 40 weeks for the two f-IPV dose schedule (95·9% [95% CI 92·0-98·2]) versus the two IPV dose schedule (98·7% [95·4-99·8]), and for the three f-IPV dose schedule (98·8% [95·6-99·8]) versus the three IPV dose schedule (100% [97·9-100]). Similarly, poliovirus type 2 seroconversion rate at 40 weeks for the two f-IPV dose schedule (97·9% [94·8-99·4]) versus the two IPV dose schedule (99·4% [96·4-100]), and for the three f-IPV dose schedule (100% [97·7-100]) versus the three IPV dose schedule (100% [97·9-100]) were non-inferior. Seroconversion rate for the two f-IPV regimen was statistically superior 4 weeks after the last vaccine dose in the 14 and 36 week schedule (95·9% [92·0-98·2]) compared with the 10 and 14 week schedule (83·2% [76·5-88·6]; p=0·0062) for poliovirus type 1. Statistical superiority of the 14 and 36 week schedule was also found for poliovirus type 2 (14 and 36 week schedule 97·9% [94·8-99·4] vs 10 and 14 week schedule 83·9% [77·2-89·2]; p=0·0062), and poliovirus type 3 (14 and 36 week schedule 84·5% [78·7-89·3] vs 10 and 14 week schedule 73·3% [65·8-79·9]; p=0·0062). For IPV, a two dose regimen administered at 14 and 36 weeks (99·4% [96·4-100]) was superior a 10 and 14 week schedule (88·9% [83·4-93·1]; p<0·0001) for poliovirus type 2, but not for type 1 (14 and 36 week schedule 98·7% [95·4-99·8] vs 10 and 14 week schedule 95·6% [91·4-98·1]), or type 3 (14 and 36 week schedule 97·4% [93·5-99·3] vs 10 and 14 week schedule 93·9% [89·3-96·9]). There were no related serious adverse events or important medical events reported in any group showing safety was unaffected by administration route or schedule. INTERPRETATION Our observations suggest that adequate immunity against poliovirus type 1 and type 2 is provided by two doses of either IPV or f-IPV at 14 and 36 weeks of age, and broad immunity is provided with three doses of f-IPV, enabling substantial savings in cost and supply. These novel clinical data will inform global polio immunisation policy for the post-eradication era. FUNDING Bill & Melinda Gates Foundation.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Dominican Republic
- Female
- Humans
- Immunization Schedule
- Immunogenicity, Vaccine
- Infant
- Infant, Newborn
- Male
- Panama
- Poliomyelitis/immunology
- Poliomyelitis/prevention & control
- Poliomyelitis/virology
- Poliovirus/immunology
- Poliovirus Vaccine, Inactivated/administration & dosage
- Poliovirus Vaccine, Inactivated/adverse effects
- Poliovirus Vaccine, Inactivated/immunology
- Poliovirus Vaccine, Oral/administration & dosage
- Poliovirus Vaccine, Oral/adverse effects
- Poliovirus Vaccine, Oral/immunology
- Seroconversion
Collapse
Affiliation(s)
| | - Chris Gast
- Biostatistics Consultant, Seattle, Washington, USA
| | - Luis Rivera
- Hospital Maternidad Nuestra Señora de la Altagracia, Santo Domingo, Dominican Republic
| | - Xavier Sáez-Llorens
- Department of Infectious Disease, Hospital del Niño Dr José Renán Esquivel, Panama City, Panama
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, USA
| | - William C Weldon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, USA
| | - John Modlin
- Polio, Global Development, Bill & Melinda Gates Foundation, Seattle, USA
| | - Ralf Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil
| | | | - Jose Jimeno
- Department of Infectious Disease, Hospital del Niño Dr José Renán Esquivel, Panama City, Panama
| | | |
Collapse
|
5
|
Wallace RM, Cliquet F, Fehlner-Gardiner C, Fooks AR, Sabeta CT, Setién AA, Tu C, Vuta V, Yakobson B, Yang DK, Brückner G, Freuling CM, Knopf L, Metlin A, Pozzetti P, Suseno PP, Shadomy SV, Torres G, Vigilato MAN, Abela-Ridder B, Müller T. Role of Oral Rabies Vaccines in the Elimination of Dog-Mediated Human Rabies Deaths. Emerg Infect Dis 2020; 26:1-9. [PMID: 33219786 PMCID: PMC7706920 DOI: 10.3201/eid2612.201266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Domestic dogs are responsible for nearly all the »59,000 global human rabies deaths that occur annually. Numerous control measures have been successful at eliminating dog-mediated human rabies deaths in upper-income countries, including dog population management, parenteral dog vaccination programs, access to human rabies vaccines, and education programs for bite prevention and wound treatment. Implementing these techniques in resource-poor settings can be challenging; perhaps the greatest challenge is maintaining adequate herd immunity in free-roaming dog populations. Oral rabies vaccines have been a cornerstone in rabies virus elimination from wildlife populations; however, oral vaccines have never been effectively used to control dog-mediated rabies. Here, we convey the perspectives of the World Organisation for Animal Health Rabies Reference Laboratory Directors, the World Organisation for Animal Health expert committee on dog rabies control, and World Health Organization regarding the role of oral vaccines for dogs. We also issue recommendations for overcoming hesitations to expedited field use of appropriate oral vaccines.
Collapse
|
6
|
Thompson KM, Kalkowska DA. Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication. Expert Rev Vaccines 2020; 19:661-686. [PMID: 32741232 PMCID: PMC7497282 DOI: 10.1080/14760584.2020.1791093] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Over the last 20 years (2000-2019) the partners of the Global Polio Eradication Initiative (GPEI) invested in the development and application of mathematical models of poliovirus transmission as well as economics, policy, and risk analyses of polio endgame risk management options, including policies related to poliovirus vaccine use during the polio endgame. AREAS COVERED This review provides a historical record of the polio studies published by the three modeling groups that primarily performed the bulk of this work. This review also systematically evaluates the polio transmission and health economic modeling papers published in English in peer-reviewed journals from 2000 to 2019, highlights differences in approaches and methods, shows the geographic coverage of the transmission modeling performed, identified common themes, and discusses instances of similar or conflicting insights or recommendations. EXPERT OPINION Polio modeling performed during the last 20 years substantially impacted polio vaccine choices, immunization policies, and the polio eradication pathway. As the polio endgame continues, national preferences for polio vaccine formulations and immunization strategies will likely continue to change. Future modeling will likely provide important insights about their cost-effectiveness and their relative benefits with respect to controlling polio and potentially achieving and maintaining eradication.
Collapse
|
7
|
Van Damme P, Coster ID, Bandyopadhyay AS, Suykens L, Rudelsheim P, Neels P, Oberste MS, Weldon WC, Clemens R, Revets H. Poliopolis: pushing boundaries of scientific innovations for disease eradication. Future Microbiol 2019; 14:1321-1330. [PMID: 31482728 DOI: 10.2217/fmb-2019-0196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although global polio eradication is within reach, sustained eradication of all polioviruses requires cessation of oral poliovirus vaccine use to mitigate against vaccine-derived poliovirus circulation and vaccine-associated paralytic poliomyelitis. The first step in this direction was the WHO-recommended global withdrawal of live attenuated type 2 Sabin poliovirus from routine immunisation in May 2016, with future use restricted to outbreak response, and handling controlled by strict containment provisions (GAPIII). This creates unique challenges for development and testing of novel type 2 poliovirus vaccines. We describe the creation of a novel purpose-built containment facility, Poliopolis, to study new monovalent OPV2 vaccine candidates in healthy adult volunteers, which may be a model for future endeavors in vaccine development for emergency use.
Collapse
Affiliation(s)
- Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Ilse De Coster
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | | | - Leen Suykens
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | | | | | | | | | - Ralf Clemens
- Global Research in Infectious Diseases (GRID), Rio de Janeiro, Brazil
| | - Hilde Revets
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| |
Collapse
|
8
|
Van Damme P, De Coster I, Bandyopadhyay AS, Revets H, Withanage K, De Smedt P, Suykens L, Oberste MS, Weldon WC, Costa-Clemens SA, Clemens R, Modlin J, Weiner AJ, Macadam AJ, Andino R, Kew OM, Konopka-Anstadt JL, Burns CC, Konz J, Wahid R, Gast C. The safety and immunogenicity of two novel live attenuated monovalent (serotype 2) oral poliovirus vaccines in healthy adults: a double-blind, single-centre phase 1 study. Lancet 2019; 394:148-158. [PMID: 31174831 PMCID: PMC6626986 DOI: 10.1016/s0140-6736(19)31279-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Use of oral live-attenuated polio vaccines (OPV), and injected inactivated polio vaccines (IPV) has almost achieved global eradication of wild polio viruses. To address the goals of achieving and maintaining global eradication and minimising the risk of outbreaks of vaccine-derived polioviruses, we tested novel monovalent oral type-2 poliovirus (OPV2) vaccine candidates that are genetically more stable than existing OPVs, with a lower risk of reversion to neurovirulence. Our study represents the first in-human testing of these two novel OPV2 candidates. We aimed to evaluate the safety and immunogenicity of these vaccines, the presence and extent of faecal shedding, and the neurovirulence of shed virus. METHODS In this double-blind, single-centre phase 1 trial, we isolated participants in a purpose-built containment facility at the University of Antwerp Hospital (Antwerp, Belgium), to minimise the risk of environmental release of the novel OPV2 candidates. Participants, who were recruited by local advertising, were adults (aged 18-50 years) in good health who had previously been vaccinated with IPV, and who would not have any contact with immunosuppressed or unvaccinated people for the duration of faecal shedding at the end of the study. The first participant randomly chose an envelope containing the name of a vaccine candidate, and this determined their allocation; the next 14 participants to be enrolled in the study were sequentially allocated to this group and received the same vaccine. The subsequent 15 participants enrolled after this group were allocated to receive the other vaccine. Participants and the study staff were masked to vaccine groups until the end of the study period. Participants each received a single dose of one vaccine candidate (candidate 1, S2/cre5/S15domV/rec1/hifi3; or candidate 2, S2/S15domV/CpG40), and they were monitored for adverse events, immune responses, and faecal shedding of the vaccine virus for 28 days. Shed virus isolates were tested for the genetic stability of attenuation. The primary outcomes were the incidence and type of serious and severe adverse events, the proportion of participants showing viral shedding in their stools, the time to cessation of viral shedding, the cell culture infective dose of shed virus in virus-positive stools, and a combined index of the prevalence, duration, and quantity of viral shedding in all participants. This study is registered with EudraCT, number 2017-000908-21 and ClinicalTrials.gov, number NCT03430349. FINDINGS Between May 22 and Aug 22, 2017, 48 volunteers were screened, of whom 15 (31%) volunteers were excluded for reasons relating to the inclusion or exclusion criteria, three (6%) volunteers were not treated because of restrictions to the number of participants in each group, and 30 (63%) volunteers were sequentially allocated to groups (15 participants per group). Both novel OPV2 candidates were immunogenic and increased the median blood titre of serum neutralising antibodies; all participants were seroprotected after vaccination. Both candidates had acceptable tolerability, and no serious adverse events occurred during the study. However, severe events were reported in six (40%) participants receiving candidate 1 (eight events) and nine (60%) participants receiving candidate 2 (12 events); most of these events were increased blood creatinine phosphokinase but were not accompanied by clinical signs or symptoms. Vaccine virus was detected in the stools of 15 (100%) participants receiving vaccine candidate 1 and 13 (87%) participants receiving vaccine candidate 2. Vaccine poliovirus shedding stopped at a median of 23 days (IQR 15-36) after candidate 1 administration and 12 days (1-23) after candidate 2 administration. Total shedding, described by the estimated median shedding index (50% cell culture infective dose/g), was observed to be greater with candidate 1 than candidate 2 across all participants (2·8 [95% CI 1·8-3·5] vs 1·0 [0·7-1·6]). Reversion to neurovirulence, assessed as paralysis of transgenic mice, was low in isolates from those vaccinated with both candidates, and sequencing of shed virus indicated that there was no loss of attenuation in domain V of the 5'-untranslated region, the primary site of reversion in Sabin OPV. INTERPRETATION We found that the novel OPV2 candidates were safe and immunogenic in IPV-immunised adults, and our data support the further development of these vaccines to potentially be used for maintaining global eradication of neurovirulent type-2 polioviruses. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| | - Ilse De Coster
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Hilde Revets
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Kanchanamala Withanage
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Philippe De Smedt
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Leen Suykens
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Ralf Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil
| | - John Modlin
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Amy J Weiner
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Andrew J Macadam
- National Institute for Biological Standards and Control, Ridge, UK
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Olen M Kew
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Cara C Burns
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John Konz
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Rahnuma Wahid
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Christopher Gast
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| |
Collapse
|