1
|
Mejía LR, Mendez LP, Rüttimann RW, Gast C, Bandyopadhyay AS. Safety and Immunogenicity of Trivalent Oral Polio Vaccine in Vaccinated Children and Vaccine-Naïve Infants: A Phase 4 Study. Vaccines (Basel) 2024; 12:953. [PMID: 39339985 PMCID: PMC11436059 DOI: 10.3390/vaccines12090953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
In the context of polio eradication, novel oral polio vaccines for type 2 (nOPV2) were developed, and types 1 and 3 polioviruses are being developed. We aimed to generate trivalent oral poliovirus vaccine (tOPV) safety and immunogenicity data as a reference for comparing with novel OPV formulations. This was a single-center, open-label, phase 4 study in March 2016 in the Dominican Republic with healthy children previously vaccinated with ≥3 doses of tOPV receiving one dose of tOPV and vaccine-naïve infants receiving 3 doses of tOPV. Safety and immunogenicity were assessed. No serious adverse reactions or important medical reactions were reported. Seroconversion (SC) rates at Day 28 in children were 32.7%, 36.7%, and 46.9% for types 1, 2, and 3, respectively, and seroprotection (SP) rates 28 days after one dose increased from 89.8% at baseline to 93.9%, 98.0% to 100%, and 83.7% to 98.0% for types 1, 2, and 3, respectively. In infants, SC rates were 88.5%, 98.1%, and 96.2% for types 1, 2, and 3, respectively. SP rates at Day 84 were 93.3%, 100%, and 96.2% for types 1, 2, and 3, respectively. This information can be used as a reference to compare with novel monovalent or trivalent OPVs under development.
Collapse
Affiliation(s)
- Luis Rivera Mejía
- Hospital Universitario Maternidad Nuestra Señora de la Altagracia, Fundación Dominicana de Perinatología PROBEBE, Calle Pedro Henríquez Ureña #49, Santo Domingo 10205, Dominican Republic
| | - Lourdes Peña Mendez
- Clínica Cruz Jiminian, Av Ortega y Gasset 90, Santo Domingo 10501, Dominican Republic
| | - Ricardo W Rüttimann
- Fighting Infectious Diseases in Emerging Countries (FIDEC), 2050 Coral Way, Suite 407, Miami, FL 33145, USA
| | - Chris Gast
- Independent Biostatistician Consultant, Seattle, WA 98029, USA
| | | |
Collapse
|
2
|
Bandyopadhyay AS, Zipursky S. A novel tool to eradicate an ancient scourge: the novel oral polio vaccine type 2 story. THE LANCET. INFECTIOUS DISEASES 2023; 23:e67-e71. [PMID: 36162417 DOI: 10.1016/s1473-3099(22)00582-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023]
Abstract
The recent detection of vaccine-derived poliovirus (VDPV) in London (UK) and a case of paralytic polio in New York (USA) have highlighted how the scourge of poliomyelitis has not been totally overcome and remains an international problem, not confined to Afghanistan and Pakistan (where wild-type 1 poliovirus remains endemic) or as outbreaks of circulating VDPV in countries in Africa. To address the risk of circulating VDPVs, a global collaborative effort over the past decade has enabled the development of novel oral polio vaccine type 2 (nOPV2) that is as immunogenic as the current Sabin strain and so equally effective, while being less likely to revert to neurovirulence than Sabin oral polio vaccines. The successful development of nOPV2-the first such vaccine against type 2 poliovirus and the first vaccine ever authorised by the WHO Prequalification team through its Emergency Use Listing procedure-has led to the deployment of approximately 450 million doses of nOPV2 for outbreak control in 21 countries. It also paved the way for the subsequent Emergency Use Listing approval of COVID-19 vaccines in the global pandemic. Monitoring the use of nOPV2 has confirmed it is more genetically stable and less likely to result in VDPV than the Sabin strain, suggesting that the target of the global eradication of poliomyelitis might be a little more attainable than previously believed.
Collapse
Affiliation(s)
| | - Simona Zipursky
- Polio Eradication, World Health Organisation, Geneva, Switzerland
| |
Collapse
|
3
|
Zaman K, Bandyopadhyay AS, Hoque M, Gast C, Yunus M, Jamil KM, Mainou BA, Konopka-Anstadt JL, Hendley WS, Vincent A, Clemens R, Clemens SAC, Ross AG, Clemens JD, Tritama E. Evaluation of the safety, immunogenicity, and faecal shedding of novel oral polio vaccine type 2 in healthy newborn infants in Bangladesh: a randomised, controlled, phase 2 clinical trial. Lancet 2023; 401:131-139. [PMID: 36495882 PMCID: PMC9860215 DOI: 10.1016/s0140-6736(22)02397-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 2 circulating vaccine-derived polioviruses (cVDPV2) from Sabin oral poliovirus vaccines (OPVs) are the leading cause of poliomyelitis. A novel type 2 OPV (nOPV2) has been developed to be more genetically stable with similar tolerability and immunogenicity to that of Sabin type 2 vaccines to mitigate the risk of cVDPV2. We aimed to assess these aspects of nOPV2 in poliovirus vaccine-naive newborn infants. METHODS In this randomised, double-blind, controlled, phase 2 trial we enrolled newborn infants at the Matlab Health Research Centre, Chandpur, Bangladesh. We included infants who were healthy and were a single birth after at least 37 weeks' gestation. Infants were randomly assigned (2:1) to receive either two doses of nOPV2 or placebo, administered at age 0-3 days and at 4 weeks. Exclusion criteria included receipt of rotavirus or any other poliovirus vaccine, any infection or illness at the time of enrolment (vomiting, diarrhoea, or intolerance to liquids), diagnosis or suspicion of any immunodeficiency disorder in the infant or a close family member, or any contraindication for venipuncture. The primary safety outcome was safety and tolerability after one and two doses of nOPV2, given 4 weeks apart in poliovirus vaccine-naive newborn infants and the primary immunogenicity outcome was the seroconversion rate for neutralising antibodies against type 2 poliovirus, measured 28 days after the first and second vaccinations with nOPV2. Study staff recorded solicited and unsolicited adverse events after each dose during daily home visits for 7 days. Poliovirus neutralising antibody responses were measured in sera drawn at birth and at age 4 weeks and 8 weeks. This study is registered on ClinicalTrials.gov, NCT04693286. FINDINGS Between Sept 21, 2020, and Aug 16, 2021, we screened 334 newborn infants, of whom three (<1%) were found to be ineligible and one (<1%) was withdrawn by the parents; the remaining 330 (99%) infants were assigned to receive nOPV2 (n=220 [67%]) or placebo (n=110 [33%]). nOPV2 was well tolerated; 154 (70%) of 220 newborn infants in the nOPV2 group and 78 (71%) of 110 in the placebo group had solicited adverse events, which were all mild or moderate in severity. Severe unsolicited adverse events in 11 (5%) vaccine recipients and five (5%) placebo recipients were considered unrelated to vaccination. 306 (93%) of 330 infants had seroprotective maternal antibodies against type 2 poliovirus at birth, decreasing to 58 (56%) of 104 in the placebo group at 8 weeks. In the nOPV2 group 196 (90%) of 217 infants seroconverted by week 8 after two doses, when 214 (99%) had seroprotective antibodies. INTERPRETATION nOPV2 was well tolerated and immunogenic in newborn infants, with two doses, at birth and 4 weeks, resulting in almost 99% of infants having protective neutralising antibodies. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Khaelqu Zaman
- International Centre for Diarrhoeal Disease Research, Chandpur, Bangladesh
| | | | - Masuma Hoque
- International Centre for Diarrhoeal Disease Research, Chandpur, Bangladesh
| | | | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Chandpur, Bangladesh
| | - Khondoker M Jamil
- National Polio and Measles Laboratory, Institute of Public Health, Dhaka, Bangladesh
| | | | | | | | - Annelet Vincent
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ralf Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil
| | - Sue Ann Costa Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil; Department of Paediatrics, Oxford University, Oxford, UK
| | - Allen G Ross
- International Centre for Diarrhoeal Disease Research, Chandpur, Bangladesh; Rural Health Research Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - John D Clemens
- International Centre for Diarrhoeal Disease Research, Chandpur, Bangladesh; International Vaccine Institute, Seoul, South Korea
| | | |
Collapse
|
4
|
Mirzoev A, Macklin GR, Zhang Y, Mainou BA, Sadykova U, Olsavszky VS, Huseynov S, Ruziev M, Saidzoda F, Bobokhonova M, Mach O. Assessment of serological responses following vaccination campaigns with type 2 novel oral polio vaccine: a population-based study in Tajikistan in 2021. Lancet Glob Health 2022; 10:e1807-e1814. [PMID: 36400086 PMCID: PMC9681660 DOI: 10.1016/s2214-109x(22)00412-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Novel oral poliovirus vaccine type 2 (nOPV2) was used to control an outbreak of type 2 circulating vaccine derived poliovirus (cVDPV2) in Tajikistan, in 2021. We measured seroconversion and seroprevalence of type 2 polio antibodies in children who were reported to have received two doses of nOPV2 in outbreak response campaigns. METHODS In this community serosurvey, children born after Jan 1, 2016 were enrolled from seven districts in Tajikistan. Dried blood spot cards were collected before nOPV2 campaigns and after the first and second rounds of the campaigns and were sent to the Centers for Disease Control and Prevention (Atlanta, GA, USA) for microneutralisation assay to determine presence of polio antibodies. The primary endpoint was to assess change in seroprevalence and seroconversion against poliovirus serotype 2 after one and two doses of nOPV2. FINDINGS 228 (97%) of 236 enrolled children were included in the analysis. The type 2 antibody seroprevalence was 26% (53/204; 95% CI 20 to 33) before nOPV2, 77% (161/210; 70 to 82) after one dose of nOPV2, and 83% (174/209; 77 to 88) after two doses of nOPV2. The increase in seroprevalence was statistically significant between baseline and after one nOPV2 dose (51 percentage points [42 to 59], p<0·0001), but not between the first and second doses (6 percentage points [-2 to 15], p=0·12). Seroconversion from the first nOPV2 dose, 67% (89/132; 59 to 75), was significantly greater than that from the second nOPV2 dose, 44% (20/45; 30 to 60; χ2 p=0·010). Total seroconversion after two nOPV2 doses was 77% (101/132; 68 to 83). INTERPRETATION Our study demonstrated strong immune responses following nOPV2 outbreak response campaigns in Tajikistan. Our results support previous clinical trial data on the generation of poliovirus type 2 immunity by nOPV2 and provide evidence that nOPV2 can be appropriate for the cVDPV2 outbreak response. The licensure and WHO prequalification of nOPV2 should be accelerated to facilitate wider use of the vaccine. FUNDING World Health Organization, Centers for Disease Control and Prevention, and Rotary International.
Collapse
Affiliation(s)
| | - Grace R Macklin
- Polio Eradication Department, World Health Organization, Geneva, Switzerland,Correspondence to: Dr Grace R Macklin, Polio Eradication Department, World Health Organization, CH-1211 Geneva, Switzerland
| | - Yiting Zhang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernardo A Mainou
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umeda Sadykova
- World Health Organization, Country Office, Dushanbe, Tajikistan
| | | | - Shahin Huseynov
- World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| | | | | | | | - Ondrej Mach
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| |
Collapse
|
5
|
Soofi SB, Martinez M, Farag NH, Hendley WS, Ehrhardt D, Ahmed I, Hussain I, Weldon W, Kassem AM. Poliovirus Immunity among Children Aged 6-11 and 36-48 Months in 14 Polio High-Risk Provinces of Afghanistan: A Health-Facility-Based Study. Vaccines (Basel) 2022; 10:1726. [PMID: 36298591 PMCID: PMC9610936 DOI: 10.3390/vaccines10101726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Afghanistan is one of two countries where wild poliovirus (WPV) type 1 remains endemic. We conducted a facility-based cross-sectional survey of antipoliovirus antibodies in children in 14 provinces of Afghanistan. The provinces were selected based on programmatic priorities for polio eradication. Children aged 6-11 and 36-48 months attending outpatient clinics were enrolled in the study. We collected venous blood, isolated serum, and conducted neutralization assays to detect poliovirus neutralizing antibodies. A total of 2086 children from the 14 provinces were enrolled. Among the enrolled children, 44.3% were girls; the median age in the 6-11-month group was 9.4 months, and in the 36-48-month group, it was 41.8 months. The most common spoken language was Pashtu (70.8%). Eighty-two percent of children were fully immunized against all the diseases in the vaccination schedule of Afghanistan. In the children aged 6-11 months, seroprevalence to poliovirus type 1 (PV1) was 96.5% and seroprevalence to poliovirus type 3 (PV3) was 93%; in children aged 36-48 months, seroprevalence to PV1 was 99.5% and to PV3 was 98%. Antipoliovirus antibody prevalence for poliovirus type 2 (PV2) was 70.5% in the younger group compared with 90.9% in the older children. Children from Herat and Laghman provinces had almost 100% seroprevalence to PV1, and other provinces also had high prevalence, ranging from 92.0% to 99.0%. A similar finding was seen for antibodies against PV3, ranging from 88% to 100% by province. On the contrary, antibodies to PV2 were low, ranging from 53% for children in the Khost province to around 89% in Kunduz. There was a cluster of 18 seronegative children in the Nuristan province. Overall, the polio eradication program of Afghanistan has been successful in achieving high seroprevalence of poliovirus neutralizing antibodies in the parts of the country included in this study.
Collapse
Affiliation(s)
- Sajid Bashir Soofi
- Centre of Excellence in Women and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Maureen Martinez
- The Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Noha H. Farag
- The Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - William S. Hendley
- The Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Derek Ehrhardt
- The Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Imran Ahmed
- Centre of Excellence in Women and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Imtiaz Hussain
- Centre of Excellence in Women and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - William Weldon
- The Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Ahmed M. Kassem
- The Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| |
Collapse
|
6
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
7
|
Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, Bandyopadhyay AS, Wright PF. Mucosal immunity to poliovirus. Mucosal Immunol 2022; 15:1-9. [PMID: 34239028 PMCID: PMC8732262 DOI: 10.1038/s41385-021-00428-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
A cornerstone of the global initiative to eradicate polio is the widespread use of live and inactivated poliovirus vaccines in extensive public health campaigns designed to prevent the development of paralytic disease and interrupt transmission of the virus. Central to these efforts is the goal of inducing mucosal immunity able to limit virus replication in the intestine. Recent clinical trials have evaluated new combined regimens of poliovirus vaccines, and demonstrated clear differences in their ability to restrict virus shedding in stool after oral challenge with live virus. Analyses of mucosal immunity accompanying these trials support a critical role for enteric neutralizing IgA in limiting the magnitude and duration of virus shedding. This review summarizes key findings in vaccine-induced intestinal immunity to poliovirus in infants, older children, and adults. The impact of immunization on development and maintenance of protective immunity to poliovirus and the implications for global eradication are discussed.
Collapse
Affiliation(s)
- Ruth I Connor
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Peter F Wright
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
8
|
Bandyopadhyay AS, Gast C, Brickley EB, Rüttimann R, Clemens R, Oberste MS, Weldon WC, Ackerman ME, Connor RI, Wieland-Alter WF, Wright P, Usonis V. A Randomized Phase 4 Study of Immunogenicity and Safety After Monovalent Oral Type 2 Sabin Poliovirus Vaccine Challenge in Children Vaccinated with Inactivated Poliovirus Vaccine in Lithuania. J Infect Dis 2021; 223:119-127. [PMID: 32621741 PMCID: PMC7781454 DOI: 10.1093/infdis/jiaa390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 11/14/2022] Open
Abstract
Background Understanding immunogenicity and safety of monovalent type 2 oral poliovirus vaccine (mOPV2) in inactivated poliovirus vaccine (IPV)–immunized children is of major importance in informing global policy to control circulating vaccine-derived poliovirus outbreaks. Methods In this open-label, phase 4 study (NCT02582255) in 100 IPV-vaccinated Lithuanian 1–5-year-olds, we measured humoral and intestinal type 2 polio neutralizing antibodies before and 28 days after 1 or 2 mOPV2 doses given 28 days apart and measured stool viral shedding after each dose. Parents recorded solicited adverse events (AEs) for 7 days after each dose and unsolicited AEs for 6 weeks after vaccination. Results After 1 mOPV2 challenge, the type 2 seroprotection rate increased from 98% to 100%. Approximately 28 days after mOPV2 challenge 34 of 68 children (50%; 95% confidence interval, 38%–62%) were shedding virus; 9 of 37 (24%; 12%–41%) were shedding 28 days after a second challenge. Before challenge, type 2 intestinal immunity was undetectable in IPV-primed children, but 28 of 87 (32%) had intestinal neutralizing titers ≥32 after 1 mOPV2 dose. No vaccine-related serious or severe AEs were reported. Conclusions High viral excretion after mOPV2 among exclusively IPV-vaccinated children was substantially lower after a subsequent dose, indicating induction of intestinal immunity against type 2 poliovirus.
Collapse
Affiliation(s)
| | - Chris Gast
- Biostatistical Consulting, Washington, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ricardo Rüttimann
- Fighting Infectious Diseases in Emerging Countries, Miami, Florida, USA
| | - Ralf Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil
| | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William C Weldon
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Ruth I Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Wendy F Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Peter Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Vytautas Usonis
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Lithuania
| |
Collapse
|
9
|
Bandyopadhyay AS, Gast C, Rivera L, Sáez-Llorens X, Oberste MS, Weldon WC, Modlin J, Clemens R, Costa Clemens SA, Jimeno J, Rüttimann R. Safety and immunogenicity of inactivated poliovirus vaccine schedules for the post-eradication era: a randomised open-label, multicentre, phase 3, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:559-568. [PMID: 33284114 PMCID: PMC7992032 DOI: 10.1016/s1473-3099(20)30555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Following the global eradication of wild poliovirus, countries using live attenuated oral poliovirus vaccines will transition to exclusive use of inactivated poliovirus vaccine (IPV) or fractional doses of IPV (f-IPV; a f-IPV dose is one-fifth of a normal IPV dose), but IPV supply and cost constraints will necessitate dose-sparing strategies. We compared immunisation schedules of f-IPV and IPV to inform the choice of optimal post-eradication schedule. METHODS This randomised open-label, multicentre, phase 3, non-inferiority trial was done at two centres in Panama and one in the Dominican Republic. Eligible participants were healthy 6-week-old infants with no signs of febrile illness or known allergy to vaccine components. Infants were randomly assigned (1:1:1:1, 1:1:1:2, 2:1:1:1), using computer-generated blocks of four or five until the groups were full, to one of four groups and received: two doses of intradermal f-IPV (administered at 14 and 36 weeks; two f-IPV group); or three doses of intradermal f-IPV (administered at 10, 14, and 36 weeks; three f-IPV group); or two doses of intramuscular IPV (administered at 14 and 36 weeks; two IPV group); or three doses of intramuscular IPV (administered at 10, 14, and 36 weeks; three IPV group). The primary outcome was seroconversion rates based on neutralising antibodies for poliovirus type 1 and type 2 at baseline and at 40 weeks (4 weeks after the second or third vaccinations) in the per-protocol population to allow non-inferiority and eventually superiority comparisons between vaccines and regimens. Three co-primary outcomes concerning poliovirus types 1 and 2 were to determine if seroconversion rates at 40 weeks of age after a two-dose regimen (administered at weeks 14 and 36) of intradermally administered f-IPV were non-inferior to a corresponding two-dose regimen of intramuscular IPV; if seroconversion rates at 40 weeks of age after a two-dose IPV regimen (weeks 14 and 36) were non-inferior to those after a three-dose IPV regimen (weeks 10, 14, and 36); and if seroconversion rates after a two-dose f-IPV regimen (weeks 14 and 36) were non-inferior to those after a three-dose f-IPV regimen (weeks 10, 14, and 36). The non-inferiority boundary was set at -10% for the lower bound of the two-sided 95% CI for the seroconversion rate difference.. Safety was assessed as serious adverse events and important medical events. This study is registered on ClinicalTrials.gov, NCT03239496. FINDINGS From Oct 23, 2017, to Nov 13, 2018, we enrolled 773 infants (372 [48%] girls) in Panama and the Dominican Republic (two f-IPV group n=217, three f-IPV group n=178, two IPV group n=178, and three IPV group n=200). 686 infants received all scheduled vaccine doses and were included in the per-protocol analysis. We observed non-inferiority for poliovirus type 1 seroconversion rate at 40 weeks for the two f-IPV dose schedule (95·9% [95% CI 92·0-98·2]) versus the two IPV dose schedule (98·7% [95·4-99·8]), and for the three f-IPV dose schedule (98·8% [95·6-99·8]) versus the three IPV dose schedule (100% [97·9-100]). Similarly, poliovirus type 2 seroconversion rate at 40 weeks for the two f-IPV dose schedule (97·9% [94·8-99·4]) versus the two IPV dose schedule (99·4% [96·4-100]), and for the three f-IPV dose schedule (100% [97·7-100]) versus the three IPV dose schedule (100% [97·9-100]) were non-inferior. Seroconversion rate for the two f-IPV regimen was statistically superior 4 weeks after the last vaccine dose in the 14 and 36 week schedule (95·9% [92·0-98·2]) compared with the 10 and 14 week schedule (83·2% [76·5-88·6]; p=0·0062) for poliovirus type 1. Statistical superiority of the 14 and 36 week schedule was also found for poliovirus type 2 (14 and 36 week schedule 97·9% [94·8-99·4] vs 10 and 14 week schedule 83·9% [77·2-89·2]; p=0·0062), and poliovirus type 3 (14 and 36 week schedule 84·5% [78·7-89·3] vs 10 and 14 week schedule 73·3% [65·8-79·9]; p=0·0062). For IPV, a two dose regimen administered at 14 and 36 weeks (99·4% [96·4-100]) was superior a 10 and 14 week schedule (88·9% [83·4-93·1]; p<0·0001) for poliovirus type 2, but not for type 1 (14 and 36 week schedule 98·7% [95·4-99·8] vs 10 and 14 week schedule 95·6% [91·4-98·1]), or type 3 (14 and 36 week schedule 97·4% [93·5-99·3] vs 10 and 14 week schedule 93·9% [89·3-96·9]). There were no related serious adverse events or important medical events reported in any group showing safety was unaffected by administration route or schedule. INTERPRETATION Our observations suggest that adequate immunity against poliovirus type 1 and type 2 is provided by two doses of either IPV or f-IPV at 14 and 36 weeks of age, and broad immunity is provided with three doses of f-IPV, enabling substantial savings in cost and supply. These novel clinical data will inform global polio immunisation policy for the post-eradication era. FUNDING Bill & Melinda Gates Foundation.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Dominican Republic
- Female
- Humans
- Immunization Schedule
- Immunogenicity, Vaccine
- Infant
- Infant, Newborn
- Male
- Panama
- Poliomyelitis/immunology
- Poliomyelitis/prevention & control
- Poliomyelitis/virology
- Poliovirus/immunology
- Poliovirus Vaccine, Inactivated/administration & dosage
- Poliovirus Vaccine, Inactivated/adverse effects
- Poliovirus Vaccine, Inactivated/immunology
- Poliovirus Vaccine, Oral/administration & dosage
- Poliovirus Vaccine, Oral/adverse effects
- Poliovirus Vaccine, Oral/immunology
- Seroconversion
Collapse
Affiliation(s)
| | - Chris Gast
- Biostatistics Consultant, Seattle, Washington, USA
| | - Luis Rivera
- Hospital Maternidad Nuestra Señora de la Altagracia, Santo Domingo, Dominican Republic
| | - Xavier Sáez-Llorens
- Department of Infectious Disease, Hospital del Niño Dr José Renán Esquivel, Panama City, Panama
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, USA
| | - William C Weldon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, USA
| | - John Modlin
- Polio, Global Development, Bill & Melinda Gates Foundation, Seattle, USA
| | - Ralf Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil
| | | | - Jose Jimeno
- Department of Infectious Disease, Hospital del Niño Dr José Renán Esquivel, Panama City, Panama
| | | |
Collapse
|
10
|
Tagbo BN, Verma H, Mahmud ZM, Ernest K, Nnani RO, Chukwubike C, Craig KT, Hamisu A, Weldon WC, Oberste SM, Jeyaseelan V, Braka F, Mkanda P, Esangbedo D, Olowu A, Nwaze E, Sutter RW. Randomized Controlled Clinical Trial of bivalent Oral Poliovirus Vaccine and Inactivated Poliovirus Vaccine in Nigerian Children. J Infect Dis 2020; 226:299-307. [PMID: 33230550 PMCID: PMC9189759 DOI: 10.1093/infdis/jiaa726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We conducted a trial in Nigeria to assess the immunogenicity of the new bOPV + IPV immunization schedule and gains in type 2 immunity with addition of second dose of IPV. The trial was conducted in August 2016-March 2017 period, well past the tOPV-bOPV switch in April 2016. METHODS This was an open-label, two-arm, non-inferiority, multi-center, randomized controlled trial. We enrolled 572 infants of age ≤14 days and randomized them into two arms. Arm A received bOPV at birth, 6 and 10 weeks, bOPV+IPV at week 14 and IPV at week 18. Arm B received IPV each at 6, 10, 14 weeks and bOPV at 18 weeks of age. RESULTS Seroconversion rates for poliovirus types 1 and 3, respectively, were 98.9% (95%CI:96.7-99.8) and 98.1% (95%CI:88.2-94.8) in Arm A, and 89.6% (95%CI:85.4-93.0) and 98.5% (95%CI:96.3-99.6) in Arm B. Type 2 seroconversion with one dose IPV in Arm A was 72.0% (95%CI:66.2-77.3), which increased significantly with addition of second dose to 95.9% (95%CI:92.8-97.9). CONCLUSION This first trial on the new EPI schedule in a sub-Saharan African country demonstrated excellent immunogenicity against poliovirus types 1 and 3, and substantial/enhanced immunogenicity against poliovirus type 2 after 1 to 2 doses of IPV respectively.
Collapse
Affiliation(s)
- Beckie N Tagbo
- Institute of Child Health/Department of Paediatrics, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | | | | | - Kolade Ernest
- Department of Pediatrics and Child Health, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Roosevelt O Nnani
- Institute of Child Health, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Chinedu Chukwubike
- Institute of Child Health, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | | | | | | | | | | | | | - Pascal Mkanda
- World Health Organization, Regional Office for Africa, Brazzaville, DRC
| | | | | | - Eric Nwaze
- National Primary Health Care Development Agency, Enugu, Nigeria
| | | |
Collapse
|
11
|
Bandyopadhyay AS, Orenstein WA. Evolution of Inactivated Poliovirus Vaccine Use for the Endgame and Beyond. J Infect Dis 2020; 221:861-863. [PMID: 31242297 DOI: 10.1093/infdis/jiz300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
|
12
|
|
13
|
Jorgensen D, Pons-Salort M, Shaw AG, Grassly NC. The role of genetic sequencing and analysis in the polio eradication programme. Virus Evol 2020; 6:veaa040. [PMID: 32782825 PMCID: PMC7409915 DOI: 10.1093/ve/veaa040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genetic sequencing of polioviruses detected through clinical and environmental surveillance is used to confirm detection, identify their likely origin, track geographic patterns of spread, and determine the appropriate vaccination response. The critical importance of genetic sequencing and analysis to the Global Polio Eradication Initiative has grown with the increasing incidence of vaccine-derived poliovirus (VDPV) infections in Africa specifically (470 reported cases in 2019), and globally, alongside persistent transmission of serotype 1 wild-type poliovirus in Pakistan and Afghanistan (197 reported cases in 2019). Adapting what has been learned about the virus genetics and evolution to address these threats has been a major focus of recent work. Here, we review how phylogenetic and phylogeographic methods have been used to trace the spread of wild-type polioviruses and identify the likely origins of VDPVs. We highlight the analysis methods and sequencing technology currently used and the potential for new technologies to speed up poliovirus detection and the interpretation of genetic data. At a pivotal point in the eradication campaign with the threat of anti-vaccine sentiment and donor and public fatigue, innovation is critical to maintain drive and overcome the last remaining circulating virus.
Collapse
Affiliation(s)
- David Jorgensen
- Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Margarita Pons-Salort
- Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Alexander G Shaw
- Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
14
|
Bines JE, Kotloff KL. Next-generation rotavirus vaccines: important progress but work still to be done. THE LANCET. INFECTIOUS DISEASES 2020; 20:762-764. [PMID: 32251640 DOI: 10.1016/s1473-3099(20)30151-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Julie E Bines
- Department of Paediatrics, University of Melbourne, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia.
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Peel MM. Epidemic poliomyelitis, post-poliomyelitis sequelae and the eradication program. MICROBIOLOGY AUSTRALIA 2020. [DOI: 10.1071/ma20053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidemics of paralytic poliomyelitis (polio) first emerged in the late 19th and early 20th centuries in the United States and the Scandinavian countries. They continued through the first half of the 20th century becoming global. A major epidemic occurred in Australia in 1951 but significant outbreaks were reported from the late 1930s to 1954. The poliovirus is an enterovirus that is usually transmitted by the faecal–oral route but only one in about 150 infections results in paralysis when the central nervous system is invaded. The Salk inactivated polio vaccine (IPV) became available in Australia in 1956 and the Sabin live attenuated oral polio vaccine (OPV) was introduced in 1966. After decades of stability, many survivors of the earlier epidemics experience late-onset sequelae including post-polio syndrome. The World Health Organization launched the global polio eradication initiative (GPEI) in 1988 based on the easily administered OPV. The GPEI has resulted in a dramatic decrease in cases of wild polio so that only Pakistan and Afghanistan report such cases in 2020. However, a major challenge to eradication is the reversion of OPV to neurovirulent mutants resulting in circulating vaccine-derived poliovirus (cVDPV). A novel, genetically stabilised OPV has been developed recently to stop the emergence and spread of cVDPV and OPV is being replaced by IPV in immunisation programs worldwide. Eradication of poliomyelitis is near to achievement and the expectation is that poliomyelitis will join smallpox as dreaded epidemic diseases of the past that will be consigned to history.
Collapse
|
16
|
Ciapponi A, Bardach A, Rey Ares L, Glujovsky D, Cafferata ML, Cesaroni S, Bhatti A. Sequential inactivated (IPV) and live oral (OPV) poliovirus vaccines for preventing poliomyelitis. Cochrane Database Syst Rev 2019; 12:CD011260. [PMID: 31801180 PMCID: PMC6953375 DOI: 10.1002/14651858.cd011260.pub2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Poliomyelitis mainly affects unvaccinated children under five years of age, causing irreversible paralysis or even death. The oral polio vaccine (OPV) contains live attenuated virus, which can, in rare cases, cause a paralysis known as vaccine-associated paralytic polio (VAPP), and also vaccine-derived polioviruses (VDPVs) due to acquired neurovirulence after prolonged duration of replication. The incidence of poliomyelitis caused by wild polio virus (WPV) has declined dramatically since the introduction of OPV and later the inactivated polio vaccine (IPV), however, the cases of paralysis linked to the OPV are currently more frequent than those related to the WPV. Therefore, in 2016, the World Health Organization (WHO) recommended at least one IPV dose preceding routine immunisation with OPV to reduce VAPPs and VDPVs until polio could be eradicated. OBJECTIVES To assess the effectiveness, safety, and immunogenicity of sequential IPV-OPV immunisation schemes compared to either OPV or IPV alone. SEARCH METHODS In May 2019 we searched CENTRAL, MEDLINE, Embase, 14 other databases, three trials registers and reports of adverse effects on four web sites. We also searched the references of identified studies, relevant reviews and contacted authors to identify additional references. SELECTION CRITERIA Randomised controlled trials (RCTs), quasi-RCTs, controlled before-after studies, nationwide uncontrolled before-after studies (UBAs), interrupted time series (ITS) and controlled ITS comparing sequential IPV-OPV schedules (one or more IPV doses followed by one or more OPV doses) with IPV alone, OPV alone or non-sequential IPV-OPV combinations. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 21 studies: 16 RCTs involving 6407 healthy infants (age range 96 to 975 days, mean 382 days), one ITS with 28,330 infants and four nationwide studies (two ITS, two UBA). Ten RCTs were conducted in high-income countries; five in the USA, two in the UK, and one each in Chile, Israel, and Oman. The remaining six RCTs were conducted in middle-income countries; China, Bangladesh, Guatemala, India, and Thailand. We rated all included RCTs at low or unclear risk of bias for randomisation domains, most at high or unclear risk of attrition bias, and half at high or unclear risk for conflict of interests. Almost all RCTs were at low risk for the remaining domains. ITSs and UBAs were mainly considered at low risk of bias for most domains. IPV-OPV versus OPV It is uncertain if an IPV followed by OPV schedule is better than OPV alone at reducing the number of WPV cases (very low-certainty evidence); however, it may reduce VAPP cases by 54% to 100% (three nationwide studies; low-certainty evidence). There is little or no difference in vaccination coverage between IPV-OPV and OPV-only schedules (risk ratio (RR) 1.01, 95% confidence interval (CI) 0.96 to 1.06; 1 ITS study; low-certainty evidence). Similarly, there is little or no difference between the two schedule types for the number of serious adverse events (SAEs) (RR 0.88, 95% CI 0.46 to 1.70; 4 studies, 1948 participants; low-certainty evidence); or the number of people with protective humoral response P1 (moderate-certainty evidence), P2 (for the most studied schedule; two IPV doses followed by OPV; low-certainty evidence), and P3 (low-certainty evidence). Two IPV doses followed by bivalent OPV (IIbO) may reduce P2 neutralising antibodies compared to trivalent OPV (moderate-certainty evidence), but may make little or no difference to P1 or P2 neutralising antibodies following an IIO schedule or OPV alone (low-certainty evidence). Both IIO and IIbO schedules may increase P3 neutralising antibodies compared to OPV (moderate-certainty evidence). It may also lead to lower mucosal immunity given increased faecal excretion of P1 (low-certainty evidence), P2 and P3 (moderate-certainty evidence) after OPV challenge. IPV-OPV versus IPV It is uncertain if IPV-OPV is more effective than IPV alone at reducing the number of WPV cases (very low-certainty evidence). There were no data regarding VAPP cases. There is no clear evidence of a difference between IPV-OPV and OPV schedules for the number of people with protective humoral response (low- and moderate-certainty evidence). IPV-OPV schedules may increase mean titres of P1 neutralising antibodies compared to OPV alone (low- and moderate-certainty evidence), but the effect on P2 and P3 titres is not clear (very low- and moderate-certainty evidence). IPV-OPV probably reduces the number of people with P3 poliovirus faecal excretion after OPV challenge with IIO and IIOO sequences (moderate-certainty evidence), and may reduce the number with P2 (low-certainty evidence), but not with P1 (very low-certainty evidence). There may be little or no difference between the schedules in number of SAEs (RR 0.92, 95% CI 0.60 to 1.43; 2 studies, 1063 participants, low-certainty evidence). The number of persons with P2 protective humoral immunity and P2 neutralising antibodies are probably lower with most sequential schemes without P2 components (i.e. bOPV) than with trivalent OPV or IVP alone (moderate-certainty evidence). IPV (3)-OPV versus IPV (2)-OPV One study (137 participants) showed no clear evidence of a difference between three IPV doses followed by OPV and two IPV doses followed by OPV, on the number of people with P1 (RR 0.98, 95% CI 0.93 to 1.03), P2 (RR 1.00, 95% CI 0.97 to 1.03), or P3 (RR 1.01, 95% CI 0.97 to 1.05) protective humoral and intestinal immunity; all moderate-certainty evidence. This study did not report on any other outcomes. AUTHORS' CONCLUSIONS IPV-OPV compared to OPV may reduce VAPPs without affecting vaccination coverage, safety or humoral response, except P2 with sequential schemes without P2 components, but increase poliovirus faecal excretion after OPV challenge for some polio serotypes. Compared to IPV-only schedules, IPV-OPV may have little or no difference on SAEs, probably has little or no effect on persons with protective humoral response, may increase neutralising antibodies, and probably reduces faecal excretion after OPV challenge of certain polio serotypes. Using three IPV doses as part of a IPV-OPV schedule does not appear to be better than two IPV doses for protective humoral response. Sequential schedules during the transition from OPV to IPV-only immunisation schedules seems a reasonable option aligned with current WHO recommendations. Findings could help decision-makers to optimise polio vaccination policies, reducing inequities between countries.
Collapse
Affiliation(s)
- Agustín Ciapponi
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Ariel Bardach
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Lucila Rey Ares
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Demián Glujovsky
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
- CEGYR (Centro de Estudios en Genética y Reproducción)Reproductive MedicineViamonte 1432,Buenos AiresArgentina
| | - María Luisa Cafferata
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Silvana Cesaroni
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Aikant Bhatti
- World Health Organization1085, Sector‐B,Pocket‐1, Vasant KunjNew DelhiIndia110070
| | | |
Collapse
|
17
|
Van Damme P, Coster ID, Bandyopadhyay AS, Suykens L, Rudelsheim P, Neels P, Oberste MS, Weldon WC, Clemens R, Revets H. Poliopolis: pushing boundaries of scientific innovations for disease eradication. Future Microbiol 2019; 14:1321-1330. [PMID: 31482728 DOI: 10.2217/fmb-2019-0196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although global polio eradication is within reach, sustained eradication of all polioviruses requires cessation of oral poliovirus vaccine use to mitigate against vaccine-derived poliovirus circulation and vaccine-associated paralytic poliomyelitis. The first step in this direction was the WHO-recommended global withdrawal of live attenuated type 2 Sabin poliovirus from routine immunisation in May 2016, with future use restricted to outbreak response, and handling controlled by strict containment provisions (GAPIII). This creates unique challenges for development and testing of novel type 2 poliovirus vaccines. We describe the creation of a novel purpose-built containment facility, Poliopolis, to study new monovalent OPV2 vaccine candidates in healthy adult volunteers, which may be a model for future endeavors in vaccine development for emergency use.
Collapse
Affiliation(s)
- Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Ilse De Coster
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | | | - Leen Suykens
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | | | | | | | | | - Ralf Clemens
- Global Research in Infectious Diseases (GRID), Rio de Janeiro, Brazil
| | - Hilde Revets
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| |
Collapse
|
18
|
Macklin GR, Grassly NC, Sutter RW, Mach O, Bandyopadhyay AS, Edmunds WJ, O'Reilly KM. Vaccine schedules and the effect on humoral and intestinal immunity against poliovirus: a systematic review and network meta-analysis. THE LANCET. INFECTIOUS DISEASES 2019; 19:1121-1128. [PMID: 31350192 DOI: 10.1016/s1473-3099(19)30301-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND The eradication of wild and vaccine-derived poliovirus requires the global withdrawal of oral poliovirus vaccines (OPVs) and replacement with inactivated poliovirus vaccines (IPVs). The first phase of this effort was the withdrawal of the serotype 2 vaccine in April 2016, with a switch from trivalent OPVs to bivalent OPVs. The aim of our study was to produce comparative estimates of humoral and intestinal mucosal immunity associated with different routine immunisation schedules. METHODS We did a random-effect meta-analysis with single proportions and a network meta-analysis in a Bayesian framework to synthesise direct and indirect data. We searched MEDLINE and the Cochrane Library Central Register of Controlled Trials for randomised controlled trials published from Jan 1, 1980, to Nov 1, 2018, comparing poliovirus immunisation schedules in a primary series. Only trials done outside western Europe or North America and without variation in age schedules (ie, age at administration of the vaccine) between study groups were included in the analyses, because trials in high-income settings differ in vaccine immunogenicity and schedules from other settings and to ensure consistency within the network of trials. Data were extracted directly from the published reports. We assessed seroconversion against poliovirus serotypes 1, 2, and 3, and intestinal immunity against serotype 2, measured by absence of shedding poliovirus after a challenge OPV dose. FINDINGS We identified 437 unique studies; of them, 17 studies with a maximum of 8279 evaluable infants were eligible for assessment of humoral immunity, and eight studies with 4254 infants were eligible for intestinal immunity. For serotype 2, there was low between-trial heterogeneity in the data (τ=0·05, 95% credible interval [CrI] 0·009-0·15) and the risk ratio (RR) of seroconversion after three doses of bivalent OPVs was 0·14 (95% CrI 0·11-0·17) compared with three doses of trivalent OPVs. The addition of one or two full doses of an IPV after a bivalent OPV schedule increased the RR to 0·85 (0·75-1·0) and 1·1 (0·98-1·4). However, the addition of an IPV to bivalent OPV schedules did not significantly increase intestinal immunity (0·33, 0·18-0·61), compared with trivalent OPVs alone. For serotypes 1 and 3, there was susbstantial inconsistency and between-trial heterogeneity between direct and indirect effects, so we only present pooled estmates on seroconversion, which were at least 80% for serotype 1 and at least 88% for serotype 3 for all vaccine schedules. INTERPRETATION For WHO's polio eradication programme, the addition of one IPV dose for all birth cohorts should be prioritised to protect against paralysis caused by type 2 poliovirus; however, this inclusion will not prevent transmission or circulation in areas with faecal-oral transmission. FUNDING UK Medical Research Council.
Collapse
Affiliation(s)
- Grace R Macklin
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, London, UK; Polio Eradication Department, World Health Organization, Geneva, Switzerland.
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, UK
| | - Roland W Sutter
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | - Ondrej Mach
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | | | - W John Edmunds
- Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Kathleen M O'Reilly
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
19
|
Van Damme P, De Coster I, Bandyopadhyay AS, Revets H, Withanage K, De Smedt P, Suykens L, Oberste MS, Weldon WC, Costa-Clemens SA, Clemens R, Modlin J, Weiner AJ, Macadam AJ, Andino R, Kew OM, Konopka-Anstadt JL, Burns CC, Konz J, Wahid R, Gast C. The safety and immunogenicity of two novel live attenuated monovalent (serotype 2) oral poliovirus vaccines in healthy adults: a double-blind, single-centre phase 1 study. Lancet 2019; 394:148-158. [PMID: 31174831 PMCID: PMC6626986 DOI: 10.1016/s0140-6736(19)31279-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Use of oral live-attenuated polio vaccines (OPV), and injected inactivated polio vaccines (IPV) has almost achieved global eradication of wild polio viruses. To address the goals of achieving and maintaining global eradication and minimising the risk of outbreaks of vaccine-derived polioviruses, we tested novel monovalent oral type-2 poliovirus (OPV2) vaccine candidates that are genetically more stable than existing OPVs, with a lower risk of reversion to neurovirulence. Our study represents the first in-human testing of these two novel OPV2 candidates. We aimed to evaluate the safety and immunogenicity of these vaccines, the presence and extent of faecal shedding, and the neurovirulence of shed virus. METHODS In this double-blind, single-centre phase 1 trial, we isolated participants in a purpose-built containment facility at the University of Antwerp Hospital (Antwerp, Belgium), to minimise the risk of environmental release of the novel OPV2 candidates. Participants, who were recruited by local advertising, were adults (aged 18-50 years) in good health who had previously been vaccinated with IPV, and who would not have any contact with immunosuppressed or unvaccinated people for the duration of faecal shedding at the end of the study. The first participant randomly chose an envelope containing the name of a vaccine candidate, and this determined their allocation; the next 14 participants to be enrolled in the study were sequentially allocated to this group and received the same vaccine. The subsequent 15 participants enrolled after this group were allocated to receive the other vaccine. Participants and the study staff were masked to vaccine groups until the end of the study period. Participants each received a single dose of one vaccine candidate (candidate 1, S2/cre5/S15domV/rec1/hifi3; or candidate 2, S2/S15domV/CpG40), and they were monitored for adverse events, immune responses, and faecal shedding of the vaccine virus for 28 days. Shed virus isolates were tested for the genetic stability of attenuation. The primary outcomes were the incidence and type of serious and severe adverse events, the proportion of participants showing viral shedding in their stools, the time to cessation of viral shedding, the cell culture infective dose of shed virus in virus-positive stools, and a combined index of the prevalence, duration, and quantity of viral shedding in all participants. This study is registered with EudraCT, number 2017-000908-21 and ClinicalTrials.gov, number NCT03430349. FINDINGS Between May 22 and Aug 22, 2017, 48 volunteers were screened, of whom 15 (31%) volunteers were excluded for reasons relating to the inclusion or exclusion criteria, three (6%) volunteers were not treated because of restrictions to the number of participants in each group, and 30 (63%) volunteers were sequentially allocated to groups (15 participants per group). Both novel OPV2 candidates were immunogenic and increased the median blood titre of serum neutralising antibodies; all participants were seroprotected after vaccination. Both candidates had acceptable tolerability, and no serious adverse events occurred during the study. However, severe events were reported in six (40%) participants receiving candidate 1 (eight events) and nine (60%) participants receiving candidate 2 (12 events); most of these events were increased blood creatinine phosphokinase but were not accompanied by clinical signs or symptoms. Vaccine virus was detected in the stools of 15 (100%) participants receiving vaccine candidate 1 and 13 (87%) participants receiving vaccine candidate 2. Vaccine poliovirus shedding stopped at a median of 23 days (IQR 15-36) after candidate 1 administration and 12 days (1-23) after candidate 2 administration. Total shedding, described by the estimated median shedding index (50% cell culture infective dose/g), was observed to be greater with candidate 1 than candidate 2 across all participants (2·8 [95% CI 1·8-3·5] vs 1·0 [0·7-1·6]). Reversion to neurovirulence, assessed as paralysis of transgenic mice, was low in isolates from those vaccinated with both candidates, and sequencing of shed virus indicated that there was no loss of attenuation in domain V of the 5'-untranslated region, the primary site of reversion in Sabin OPV. INTERPRETATION We found that the novel OPV2 candidates were safe and immunogenic in IPV-immunised adults, and our data support the further development of these vaccines to potentially be used for maintaining global eradication of neurovirulent type-2 polioviruses. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| | - Ilse De Coster
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Hilde Revets
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Kanchanamala Withanage
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Philippe De Smedt
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Leen Suykens
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Ralf Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil
| | - John Modlin
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Amy J Weiner
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Andrew J Macadam
- National Institute for Biological Standards and Control, Ridge, UK
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Olen M Kew
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Cara C Burns
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John Konz
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Rahnuma Wahid
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Christopher Gast
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| |
Collapse
|
20
|
Affiliation(s)
- Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium.
| | - Ilse De Coster
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Hilde Revets
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | | |
Collapse
|
21
|
Pöyhönen L, Bustamante J, Casanova JL, Jouanguy E, Zhang Q. Life-Threatening Infections Due to Live-Attenuated Vaccines: Early Manifestations of Inborn Errors of Immunity. J Clin Immunol 2019; 39:376-390. [PMID: 31123910 DOI: 10.1007/s10875-019-00642-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Live-attenuated vaccines (LAVs) can protect humans against 12 viral and three bacterial diseases. By definition, any clinical infection caused by a LAV that is sufficiently severe to require medical intervention attests to an inherited or acquired immunodeficiency that must be diagnosed or identified. Self-healing infections can also result from milder forms of immunodeficiency. We review here the inherited forms of immunodeficiency underlying severe infections of LAVs. Inborn errors of immunity (IEIs) underlying bacille Calmette-Guérin (BCG), oral poliovirus (OPV), vaccine measles virus (vMeV), and oral rotavirus vaccine (ORV) disease have been described from 1951, 1963, 1966, and 2009 onward, respectively. For each of these four LAVs, the underlying IEIs show immunological homogeneity despite genetic heterogeneity. Specifically, BCG disease is due to inborn errors of IFN-γ immunity, OPV disease to inborn errors of B cell immunity, vMeV disease to inborn errors of IFN-α/β and IFN-λ immunity, and ORV disease to adaptive immunity. Severe reactions to the other 11 LAVs have been described yet remain "idiopathic," in the absence of known underlying inherited or acquired immunodeficiencies, and are warranted to be the focus of research efforts. The study of IEIs underlying life-threatening LAV infections is clinically important for the affected patients and their families, as well as immunologically, for the study of the molecular and cellular basis of host defense against both attenuated and parental pathogens.
Collapse
Affiliation(s)
- Laura Pöyhönen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|