1
|
Koay YC, McIntosh B, Ng YH, Cao Y, Wang XS, Han Y, Tomita S, Bai AY, Hunter B, Misra A, Loughrey CM, Bannon PG, Lal S, Lusis AJ, Kaye DM, Larance M, O’Sullivan JF. The Heart Has Intrinsic Ketogenic Capacity that Mediates NAD + Therapy in HFpEF. Circ Res 2025; 136:1113-1130. [PMID: 40211954 PMCID: PMC12063684 DOI: 10.1161/circresaha.124.325550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) has overtaken heart failure with reduced ejection fraction as the leading type of heart failure globally and is marked by high morbidity and mortality rates, yet with only a single approved pharmacotherapy: SGLT2i (sodium-glucose co-transporter 2 inhibitor). A prevailing theory for the mechanism underlying SGLT2i is nutrient deprivation signaling, of which ketogenesis is a hallmark. However, it is unclear whether the canonical ketogenic enzyme, HMGCS2 (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2), plays any cardiac role in HFpEF pathogenesis or therapeutic response. METHODS We used human myocardium, human HFpEF and heart failure with reduced ejection fraction transcardiac blood sampling, an established murine model of HFpEF, ex vivo Langendorff perfusion, stable isotope tracing in isolated cardiomyocytes, targeted metabolomics, proteomics, lipidomics, and a novel cardiomyocyte-specific conditional HMGCS2-deficient model that we generated. RESULTS We demonstrate, for the first time, the intrinsic capacity of the human heart to produce ketones via HMGCS2. We found that increased acetylation of HMGCS2 led to a decrease in the enzyme's specific activity. However, this was overcome by an increase in the steady-state levels of protein. Oxidized form of nicotinamide adenine dinucleotide repletion restored HMGCS2 function via deacetylation, increased fatty acid oxidation, and rescued cardiac function in HFpEF. Critically, using a conditional, cardiomyocyte-specific HMGCS2 knockdown murine model, we revealed that the oxidized form of nicotinamide adenine dinucleotide is unable to rescue HFpEF in the absence of cardiomyocyte HMGCS2. CONCLUSIONS The canonical ketogenic enzyme, HMGCS2, mediates the therapeutic effects of the oxidized form of nicotinamide adenine dinucleotide repletion in HFpEF by restoring normal lipid metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Yen Chin Koay
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Bailey McIntosh
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Yann Huey Ng
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Yang Cao
- Division of Life Sciences and Medicine, Department of Cardiology, The First Affiliated Hospital of USTC (Y.C.), University of Science and Technology of China (USTC), Hefei
- Division of Life Sciences and Medicine, School of Basic Medical Sciences (Y.C.), University of Science and Technology of China (USTC), Hefei
| | - Xiao Suo Wang
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Yanchuang Han
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Saki Tomita
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Angela Yu Bai
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - Benjamin Hunter
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Precision Cardiovascular Laboratory (B.H., S.L.), The University of Sydney, New South Wales, Australia
| | - Ashish Misra
- Heart Research Institute (A.M.), The University of Sydney, New South Wales, Australia
| | - Christopher M. Loughrey
- School of Cardiovascular and Metabolic Health and School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (C.M.L.)
| | - Paul G. Bannon
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Department of Cardiothoracic Surgery (P.G.B., J.F.O.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, New South Wales, Australia (P.G.B., S.L., J.F.O.)
| | - Sean Lal
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Precision Cardiovascular Laboratory (B.H., S.L.), The University of Sydney, New South Wales, Australia
- Department of Cardiology (S.L., J.F.O.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, New South Wales, Australia (P.G.B., S.L., J.F.O.)
| | - Aldons J. Lusis
- Department of Medicine, Microbiology and Human Genetics, University of California, Los Angeles (A.J.L.)
| | - David M. Kaye
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia (D.M.K.)
- Heart Failure Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.M.K.)
- Faculty of Medicine, Nursing, and Health Sciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia (D.M.K.)
| | - Mark Larance
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
| | - John F. O’Sullivan
- Faculty of Medicine and Health, School of Medical Sciences (Y.C.K., B.M., Y.H.N., X.W., Y.H., S.T., A.Y.B., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Cardiometabolic Medicine (Y.C.K., B.M., Y.H.N., X.W., Y.H., P.G.B., S.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Charles Perkins Centre (Y.C.K., B.M., Y.H.N., X.W., Y.H., B.H., P.G.B., S.L., M.L., J.F.O.), The University of Sydney, New South Wales, Australia
- Department of Cardiothoracic Surgery (P.G.B., J.F.O.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Department of Cardiology (S.L., J.F.O.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, New South Wales, Australia (P.G.B., S.L., J.F.O.)
- Faculty of Medicine, Technische Universität Dresden, Germany (J.F.O.)
| |
Collapse
|
2
|
Han Y, Wang J, Xiong Q, Jiang D, Zhu Z, Hui L, Wang M, Qiao Y, Li Y, Han L, Liu Y, Cheng K. A synthesis and quantification method for endogenous metabolites dimethylguanidino valeric acid. Sci Rep 2025; 15:11100. [PMID: 40169761 PMCID: PMC11962117 DOI: 10.1038/s41598-025-94932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
Dimethylguanidino valeric acid (DMGV) is a group of endogenous metabolites derived from arginine-containing proteins and is associated with several metabolic disorders. Latest studies have identified the stereoisomers of DMGV: asymmetric dimethylguanidino valeric acid (ADGV) and symmetric dimethylguanidino valeric acid (SDGV), which are derived from asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), respectively. However, the lack of commercial standards has hampered research into the molecular mechanisms of DMGV and its potential clinical application as biomarkers. Reported chemical synthesis methods have low yields and require specialized chemical synthesis skills and apparatus. Therefore, we aimed to develop a practical and efficient method to synthesize DMGV stereoisomers and determine their precise concentration profile in healthy subjects. A novel biocatalytic method for synthesizing DMGV using alanine-glyoxylate aminotransferase 2 (AGXT2) was developed. A metabolite panel including eight DMGV-related metabolites was also established for human plasma samples using HPLC-MS/MS, and its performance was comprehensively evaluated, especially in terms of quantitative sensitivity, precision and accuracy. Compared with the reported chemical synthesis methods, the biocatalytic approach demonstrates superior yield, conversion rate, and product purity, while being easy to implement in biological laboratories. The established DMGV quantification method has been well validated and successfully applied to measure the contents of these metabolites, especially the concentration profile of ADGV in the plasma of healthy individuals. To sum up, this study provides an efficient and practical biocatalytic approach for DMGV synthesis and determines the levels of DMGV in healthy subjects. These findings will undoubtedly promote future mechanistic studies of DMGV and its future clinical applications.
Collapse
Affiliation(s)
- Yueyuan Han
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Jiahui Wang
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Qianling Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Dingyue Jiang
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Zhenhua Zhu
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Mu Wang
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yixue Qiao
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yi Li
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Lanlan Han
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Ken Cheng
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Province Higher Education Key Laboratory of Cell Therapy Nanoformulation (Construction), Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
3
|
Rodionov RN, Jarzebska N, Koay YC, Li M, Kuhn M, Bornstein SR, Martens-Lobenhoffer J, Eslam M, Chen FW, Rubets E, Markov AG, Weiss N, Birkenfeld A, Schwarz P, Bode-Böger SM, Perakakis N, O’Sullivan JF, George J. Symmetric dimethylguanidino valeric acid, a novel single biomarker of hepatic steatosis. iScience 2024; 27:111366. [PMID: 39660051 PMCID: PMC11629207 DOI: 10.1016/j.isci.2024.111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
There is an unmet need for a biomarker of liver fat. We identified dimethylguanidino valeric acid (DMGV) as a circulating biomarker of liver fat. Here, we assess its two isoforms-symmetric (SDGV) and asymmetric (ADGV)-as biomarkers of steatosis. We determined plasma ADGV, SDGV, related metabolites, alanine aminotransferase (ALT), and the fatty liver index (FLI) in two cohorts and compared their diagnostic performance for liver fat detection. SDGV was the strongest predictor of moderate to severe steatosis. Changes in SDGV correlated with changes in liver fat % in a prospective cohort. In a murine model of fatty liver disease, protein levels and activity of alanine:glyoxylate aminotransferase 2 (AGXT2), which produces SDGV, were increased and coincided with elevation of SDGV concentrations. SDGV is a biomarker of liver fat and its increase in hepatic steatosis results from the upregulation of AGXT2 activity.
Collapse
Affiliation(s)
- Roman N. Rodionov
- Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, SA 5042 Australia
| | - Natalia Jarzebska
- Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Kuhn
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King’s College London, London, UK
| | - Jens Martens-Lobenhoffer
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Mohammad Eslam
- Institute of Clinical Pharmacology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fei Wen Chen
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Elena Rubets
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander G. Markov
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - Norbert Weiss
- Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Birkenfeld
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Department of Endocrinology, Diabetology and Nephrology, University Hospital of Eberhard-Karls-University Tübingen, Tübingen, Germany
- Germany and Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls University of Tübingen, 72074 Tübingen, Germany
| | - Peter Schwarz
- Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Nikolaos Perakakis
- Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - John F. O’Sullivan
- Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Price Alfred Hospital, Sydney, NSW, Australia
| | - Jacob George
- Institute of Clinical Pharmacology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
4
|
Hunter B, Li M, Parker BL, Koay YC, Harney DJ, Pearson E, Cao J, Chen GT, Guneratne O, Smyth GK, Larance M, O'Sullivan JF, Lal S. Proteomic and metabolomic analyses of the human adult myocardium reveal ventricle-specific regulation in end-stage cardiomyopathies. Commun Biol 2024; 7:1666. [PMID: 39702518 DOI: 10.1038/s42003-024-07306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
The left and right ventricles of the human heart are functionally and developmentally distinct such that genetic or acquired insults can cause dysfunction in one or both ventricles resulting in heart failure. To better understand ventricle-specific molecular changes influencing heart failure development, we first performed unbiased quantitative mass spectrometry on pre-mortem non-diseased human myocardium to compare the metabolome and proteome between the normal left and right ventricles. Constituents of gluconeogenesis, glycolysis, lipogenesis, lipolysis, fatty acid catabolism, the citrate cycle and oxidative phosphorylation were down-regulated in the left ventricle, while glycogenesis, pyruvate and ketone metabolism were up-regulated. Inter-ventricular significance of these metabolic pathways was then found to be diminished within end-stage dilated cardiomyopathy and ischaemic cardiomyopathy, while heart failure-associated pathways were increased in the left ventricle relative to the right within ischaemic cardiomyopathy, such as fluid sheer-stress, increased glutamine-glutamate ratio, and down-regulation of contractile proteins, indicating a left ventricular pathological bias.
Collapse
Affiliation(s)
- Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
| | - Dylan J Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Evangeline Pearson
- Paediatric Oncology and Haematology, Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England
| | - Jacob Cao
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gavin T Chen
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Oneka Guneratne
- Kolling Institute, Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Heart Research Institute, Newtown, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Heianza Y, Wang X, Kou M, Tiwari S, Watrous JD, Rexrode KM, Alotaibi M, Jain M, Sun Q, Manson JE, Qi L. Circulating dimethylguanidino valeric acid, dietary factors, and risk of coronary heart disease. Cardiovasc Res 2024; 120:2147-2154. [PMID: 39243382 PMCID: PMC11646101 DOI: 10.1093/cvr/cvae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 09/09/2024] Open
Abstract
AIMS Circulating dimethylguanidino valeric acid (DMGV) was identified as a novel metabolite related to cardiorespiratory fitness and cardiometabolic abnormalities. Circulating DMGV levels are subjective to dietary modulation; however, studies on its associations with intakes of coronary heart disease (CHD)-related foods/nutrients are limited. We investigated whether plasma DMGV was related to risk of incident CHD. We tested associations of DMGV with CHD-related dietary intakes measured by 7-day dietary records and estimated corresponding disease risk. METHODS AND RESULTS This nested case-control study on the incidence of CHD included 1520 women (760 incident cases of fatal CHD and nonfatal myocardial infarction and 760 controls) from the Nurses' Health Study. Separately, plasma DMGV and CHD-related dietary intakes and cardiometabolic abnormalities were assessed in the Women's Lifestyle Validation Study (WLVS; n = 724). Higher plasma DMGV was related to a greater risk of CHD [relative risk (RR) per 1 SD, 1.26 (95% CI 1.13, 1.40); P-for-linearity = 0.006]. Greater intakes of sodium, energy-dense foods, and processed/red meat were related to higher DMGV levels; every 1 SD intake of sodium was associated with β 0.13 (SE 0.05; P = 0.007) for DMGV Z-scores, which corresponded to a RR of 1.031 (1.016, 1.046) for CHD. High DMGV (the top quartile, Q4) showed a significant RR of 1.60 (1.17, 2.18) after adjusting for diet and lifestyle factors; the RR further adjusting for obesity and hypertension was 1.29 (0.93, 1.79) as compared with the lowest quartile. In both cohorts, greater adiposity and adverse cardiometabolic factor status were significantly related to higher DMGV levels. CONCLUSION Higher levels of plasma DMGV, a metabolite reflecting unfavourable CHD-related dietary intakes, were associated with an increased risk of CHD. The unfavourable association was attenuated by cardiometabolic risk factor status. Our study underscores the potential importance of plasma DMGV as an early biomarker associated with diet and the long-term risk of CHD among women.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA 70112, USA
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA 70112, USA
| | - Minghao Kou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA 70112, USA
| | - Saumya Tiwari
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jeramie D Watrous
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Kathryn M Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mona Alotaibi
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA 70112, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
6
|
Ribeiro RV, Senior AM, Simpson SJ, Tan J, Raubenheimer D, Le Couteur D, Macia L, Holmes A, Eberhard J, O'Sullivan J, Koay YC, Kanjrawi A, Yang J, Kim T, Gosby A. Rapid benefits in older age from transition to whole food diet regardless of protein source or fat to carbohydrate ratio: Arandomised control trial. Aging Cell 2024; 23:e14276. [PMID: 39011855 PMCID: PMC11561649 DOI: 10.1111/acel.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Plant-based diets reduces the risk of chronic conditions. The interaction between protein source and other macronutrients-fat (F) and carbohydrate (C)-has yet to be investigated. The aim was to assess the main and interactive effects of protein-source (plant vs. animal) and F:C (high or low) and the transition from an Australian diet to a whole food diet on various health markers in older individuals. This single-blinded, parallel, randomised experimental trial used a 2 × 2 factorial design to compare pro-vegetarian (70:30 plant to animal) versus omnivorous (50:50 plant to animal) diets at 14% protein and varying fat-to-carbohydrate ratios (high fat ~40% vs. low fat ~30%) over 4 weeks. Study foods were provided, alcohol consumption was discouraged, and dietary intake was determined through food records. Analysis included both RCT and observational data. Changes in appetite, palatability of diets, and dietary intake were assessed. Body composition, muscle strength, function, gut microbiome, and cardiometabolic health parameters were measured. Data from 113 (of the 128 randomised) individuals aged 65-75 years were analysed. Pro-vegetarian diets reduced diastolic blood pressure, total cholesterol and glucose levels. Moreover, the overall sample exhibited increased short-chain fatty acids and FGF21 levels, as well as improvements in body composition, function, and cardio-metabolic parameters irrespective of dietary treatment. Transitioning to a diet rich in fruit, vegetables, fibre, and moderate protein was associated with improved health markers in older age, with added benefits from pro-vegetarian diets. Further research on long-term effects is needed.
Collapse
Affiliation(s)
- Rosilene V. Ribeiro
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Alistair M. Senior
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Stephen J. Simpson
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Jian Tan
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- Chronic Disease Theme, School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - David Raubenheimer
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
| | - David Le Couteur
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- Centre for Education and Research on Ageing and Ageing and Alzheimers Institute, Concord HospitalUniversity of SydneySydneyNew South WalesAustralia
- ANZAC Research InstituteUniversity of Sydney, Concord HospitalSydneyNew South WalesAustralia
| | - Laurence Macia
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- Chronic Disease Theme, School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Sydney CytometryUniversity of SydneySydneyNew South WalesAustralia
| | - Andrew Holmes
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Joerg Eberhard
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- The University of Sydney School of Dentistry, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - John O'Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Cardiology, Royal Prince Alfred HospitalCamperdownNew South WalesAustralia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Alisar Kanjrawi
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Jean Yang
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Mathematics and StatisticsUniversity of SydneySydneyNew South WalesAustralia
| | - Taiyun Kim
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Mathematics and StatisticsUniversity of SydneySydneyNew South WalesAustralia
| | - Alison Gosby
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
7
|
Weiermair T, Svehlikova E, Boulgaropoulos B, Magnes C, Eberl A. Investigating Runner's High: Changes in Mood and Endocannabinoid Concentrations after a 60 min Outdoor Run Considering Sex, Running Frequency, and Age. Sports (Basel) 2024; 12:232. [PMID: 39330709 PMCID: PMC11435531 DOI: 10.3390/sports12090232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Runner's high is a euphoric emotional state occurring during and post-physical exercise. Although previous data indicate endocannabinoids' involvement in animal runner's high, their role in human runner's high remains to be established. We investigated runner's high in healthy humans assessing mood and plasma endocannabinoid concentration changes pre- and post a 60 min outdoor run, considering sex (8 females/8 males), running frequency (4 occasional/12 regular runners) and age (median split 36 years). Mood, AEA, and 2-AG concentrations were significantly increased post-run considering all participants (p < 0.0001, p < 0.0001, p < 0.01, respectively), with 2-AG varying more than AEA concentrations. Concentrations of both endocannabinoids increased pre- to post-run in women (p < 0.01) but the AEA concentration increase was higher in females than in males (p < 0.05). Post-run concentration increase appeared to be more pronounced in occasional than in regular runners for 2-AG but not for AEA. However, regular runners experienced stronger mood increases and better post-run mood than occasional runners. Post-run endocannabinoid concentrations were increased regardless of age. AEA concentrations and their post-run changes were less affected by running frequency and age than those of 2-AG. These findings provide insights into the interplay of physical exercise, physiological/psychological factors and demographics, laying a valuable foundation for future research.
Collapse
Affiliation(s)
- Theresia Weiermair
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Eva Svehlikova
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Beate Boulgaropoulos
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Christoph Magnes
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Anita Eberl
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
8
|
Sakamoto E, Kitase Y, Fitt AJ, Zhu Z, Awad K, Brotto M, White KE, Welc SS, Bergwitz C, Bonewald LF. Both enantiomers of β-aminoisobutyric acid BAIBA regulate Fgf23 via MRGPRD receptor by activating distinct signaling pathways in osteocytes. Cell Rep 2024; 43:114397. [PMID: 38935499 PMCID: PMC11350516 DOI: 10.1016/j.celrep.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-β-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/β-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.
Collapse
Affiliation(s)
- Eijiro Sakamoto
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Yukiko Kitase
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Alexander J Fitt
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Zewu Zhu
- Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, CT 06519, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Koay YC, Liu RP, McIntosh B, Vigder N, Lauren S, Bai AY, Tomita S, Li D, Harney D, Hunter B, Zhang Y, Yang J, Bannon P, Philp A, Philp A, Kaye DM, Larance M, Lal S, O’Sullivan JF. The Efficacy of Risk Factor Modification Compared to NAD + Repletion in Diastolic Heart Failure. JACC Basic Transl Sci 2024; 9:733-750. [PMID: 39070276 PMCID: PMC11282886 DOI: 10.1016/j.jacbts.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/30/2024]
Abstract
Heart failure (HF) with left ventricular diastolic dysfunction is a growing global concern. This study evaluated myocardial oxidized nicotinamide adenine dinucleotide (NAD+) levels in human systolic and diastolic HF and in a murine model of HF with preserved ejection fraction, exploring NAD+ repletion as therapy. We quantified myocardial NAD+ and nicotinamide phosphoribosyltransferase levels, assessing restoration with nicotinamide riboside (NR). Findings show significant NAD+ and nicotinamide phosphoribosyltransferase depletion in human diastolic HF myocardium, but NR successfully restored NAD+ levels. In murine HF with preserved ejection fraction, NR as preventive and therapeutic intervention improved metabolic and antioxidant profiles. This study underscores NAD+ repletion's potential in diastolic HF management.
Collapse
Affiliation(s)
- Yen Chin Koay
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Ren Ping Liu
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Bailey McIntosh
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Niv Vigder
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Serlin Lauren
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Angela Yu Bai
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Saki Tomita
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Desmond Li
- BCAL Diagnostics, National Innovation Centre, Eveleigh, New South Wales, Australia
| | - Dylan Harney
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin Hunter
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Precision Cardiovascular Laboratory, The University of Sydney, New South Wales, Australia
| | - Yunwei Zhang
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Jean Yang
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul Bannon
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Ashleigh Philp
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, New South Wales, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Andrew Philp
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Healthy Aging, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - David M. Kaye
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Medicine, Monash University, Melbourne, Australia
| | - Mark Larance
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Sean Lal
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Precision Cardiovascular Laboratory, The University of Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - John F. O’Sullivan
- Cardiometabolic Medicine Group, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Cardim-Pires TR, de Rus Jacquet A, Cicchetti F. Healthy blood, healthy brain: a window into understanding and treating neurodegenerative diseases. J Neurol 2024; 271:3682-3689. [PMID: 38607433 DOI: 10.1007/s00415-024-12337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Our limited understanding of complex neurodegenerative disorders has held us back on the development of efficient therapies. While several approaches are currently being considered, it is still unclear what will be most successful. Among the latest and more novel ideas, the concept of blood or plasma transfusion from young healthy donors to diseased patients is gaining momentum and attracting attention beyond the scientific arena. While young or healthy blood is enriched with protective and restorative components, blood from older subjects may accumulate neurotoxic agents or be impoverished of beneficial factors. In this commentary, we present an overview of the compelling evidence collected in various animal models of brain diseases (e.g., Alzheimer, Parkinson, Huntington) to the actual clinical trials that have been conducted to test the validity of blood-related treatments in neurodegenerative diseases and argue in favor of such approach.
Collapse
Affiliation(s)
- Thyago R Cardim-Pires
- Centre de Recherche du CHU de Québec, Université Laval, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
| | - Aurélie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Université Laval, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1K 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Université Laval, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1K 0A6, Canada.
| |
Collapse
|
11
|
Qadri S, Wang X, Tran C, Fitzpatrick M, Bonnitcha P, Sullivan D, Yki-Järvinen H, O'Sullivan JF. The first human normative ranges and biomarker performance of dimethylguanidino valeric acid isoforms in fatty liver disease. Pathology 2024; 56:391-397. [PMID: 38071157 DOI: 10.1016/j.pathol.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 03/12/2024]
Abstract
We have recently determined dimethylguanidino valeric acid (DMGV) to be a novel biomarker of liver injury in non-alcoholic fatty liver disease (NAFLD) and an independent predictor of incident diabetes over a decade in advance. DMGV consists of two stereo-isomers, asymmetric dimethylguanidino valeric acid (ADGV) and symmetric dimethylguanidino valeric acid (SDGV). Here we report, for the first time, the upper limits of normal of both isomers in humans at the accepted 5.56% liver fat threshold for NAFLD, determined using in vivo magnetic resonance spectroscopy. We performed independent and blinded comparative analyses of ADGV and SDGV levels using two different liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods in (A) our laboratory, and (B) the New South Wales Chemical Pathology state laboratory, using unique columns, LC-MS/MS equipment, extraction protocols and normalisation approaches. Despite these differences, each laboratory reported consistent absolute concentrations across a range of liver fat percentages. We next determined the diagnostic performance of SDGV compared to ADGV in a cohort of 268 individuals with liver fat measurements. In derivation-validation analyses we determined rule-in/rule-out thresholds and the concentration of SDGV that provides optimal performance across sensitivity and specificity for the identification of NAFLD. In conclusion, we have herein determined for the first time the true human plasma reference range of both isoforms of an emerging novel biomarker of NAFLD, at the accepted upper normal threshold of liver fat. We have also identified that SDGV is the isoform with the best diagnostic performance and determined the optimal cut-point for its detection of NAFLD.
Collapse
Affiliation(s)
- Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - XiaoSuo Wang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Heart Research Institute, Newtown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Collin Tran
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Michael Fitzpatrick
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Paul Bonnitcha
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; NSW Health Pathology, NSW, Australia
| | - David Sullivan
- NSW Health Pathology, NSW, Australia; NHMRC Clinical Trials Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Johansson L, Ringmark S, Bergquist J, Skiöldebrand E, Jansson A. A metabolomics perspective on 2 years of high-intensity training in horses. Sci Rep 2024; 14:2139. [PMID: 38273017 PMCID: PMC10810775 DOI: 10.1038/s41598-024-52188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
The plasma metabolomic profile of elite harness horses subjected to different training programmes was explored. All horses had the same training programme from 1.5 until 2 years of age and then high-intensity training was introduced, with horses divided into high and low training groups. Morning blood samples were collected at 1.5, 2, 2.5 and 3.5 years of age. The plasma was analysed using targeted absolute quantitative analysis and a combination of tandem mass spectrometry, flow-injection analysis and liquid chromatography. Differences between the two training groups were observed at 2 years of age, when 161 metabolites and sums and ratios were lower (e.g. ceramide and several triglycerides) and 51 were higher (e.g. aconitic acid, anserine, sum of PUFA cholesteryl esters and solely ketogenic AAs) in High compared with low horses. The metabolites aconitic acid, anserine, leucine, HArg synthesis and sum of solely ketogenic AAs increased over time, while beta alanine synthesis, ceramides and indole decreased. Therefore high-intensity training promoted adaptations linked to aerobic energy production and amino acid metabolism, and potentially also affected pH-buffering and vascular and insulin responses.
Collapse
Affiliation(s)
- L Johansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07, Uppsala, Sweden
| | - S Ringmark
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07, Uppsala, Sweden
| | - J Bergquist
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07, Uppsala, Sweden
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, P.O. Box 599, 751 24, Uppsala, Sweden
| | - E Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - A Jansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07, Uppsala, Sweden.
| |
Collapse
|
13
|
Sahu B, Pani S, Swalsingh G, Senapati U, Pani P, Pati B, Rout S, Trivedi R, Raj R, Dey S, Jeet A, Kumar D, Bal NC. Long-term physical inactivity induces significant changes in biochemical pathways related to metabolism of proteins and glycerophospholipids in mice. Mol Omics 2024; 20:64-77. [PMID: 37909389 DOI: 10.1039/d3mo00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Physical inactivity affects multiple organ systems, including the musculoskeletal system, which upsets the delicate balance of several secretory factors leading to metabolic derailment. This reduces contractile recruitment of the skeletal muscle with dampening of its oxidative capacity resulting in impaired intramuscular lipid metabolism and substrate utilization. We hypothesized that this altered phenotype would also have an indispensable effect on circulatory cytokines and the level of metabolic intermediates. In this study, comparison between sedentary (SED) and exercised (EXER) animal models showed that organismal metabolic parameters (body mass, oxygen utilization and glucose tolerance) are altered based on physical activity. Our data suggest that cytokines linked to glycemic excursions (insulin, c-peptide, glucagon) and their passive regulators (leptin, BDNF, active ghrelin, and GIP) exhibit changes in the SED group. Furthermore, some of the proinflammatory cytokines and myokines were upregulated in SED. Interestingly, serum metabolite analysis showed that the levels of glucogenic amino acids (alanine, glycine, tryptophan, proline and valine), nitrogenous amino acids (ornithine, asparagine, and glutamine) and myogenic metabolites (taurine, creatine) were altered due to the level of physical activity. A pyrimidine nucleoside (uridine), lipid metabolite (glycerol) and ketone bodies (acetoacetate and acetate) were found to be altered in SED. A Spearman rank correlation study between SED and CTRL showed that cytokines build a deformed network with metabolites in SED, indicating significant modifications in amino acids, phosphatidylinositol phosphate and glycerophospholipid metabolic pathways. Overall, long-term physical inactivity reorganizes the profile of proinflammatory cytokines, glucose sensing hormones, and protein and glycerophospholipid metabolism, which might be the initial factors of metabolic diseases due to SED.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Sunil Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | | | - Unmod Senapati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Benudhara Pati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Subhasmita Rout
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Rimjhim Trivedi
- Centre of Biomedical Research (CBMR), Lucknow, Uttar Pradesh, 226014, India.
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), Lucknow, Uttar Pradesh, 226014, India.
| | - Suchanda Dey
- SOA University, Bhubaneswar, Odisha, 751024, India
| | - Amar Jeet
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Lucknow, Uttar Pradesh, 226014, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
14
|
Qi S, Li X, Yu J, Yin L. Research advances in the application of metabolomics in exercise science. Front Physiol 2024; 14:1332104. [PMID: 38288351 PMCID: PMC10822880 DOI: 10.3389/fphys.2023.1332104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Exercise training can lead to changes in the metabolic composition of an athlete's blood, the magnitude of which depends largely on the intensity and duration of exercise. A variety of behavioral, biochemical, hormonal, and immunological biomarkers are commonly used to assess an athlete's physical condition during exercise training. However, traditional invasive muscle biopsy testing methods are unable to comprehensively detect physiological differences and metabolic changes in the body. Metabolomics technology is a high-throughput, highly sensitive technique that provides a comprehensive assessment of changes in small molecule metabolites (molecular weight <1,500 Da) in the body. By measuring the overall metabolic characteristics of biological samples, we can study the changes of endogenous metabolites in an organism or cell at a certain moment in time, and investigate the interconnection and dynamic patterns between metabolites and physiological changes, thus further understanding the interactions between genes and the environment, and providing possibilities for biomarker discovery, precise training and nutritional programming of athletes. This paper summaries the progress of research on the application of exercise metabolomics in sports science, and looks forward to the future development of exercise metabolomics, with a view to providing new approaches and perspectives for improving human performance, promoting exercise against chronic diseases, and advancing sports science research.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Deng N, Reyes-Uribe L, Fahrmann JF, Thoman WS, Munsell MF, Dennison JB, Murage E, Wu R, Hawk ET, Thirumurthi S, Lynch PM, Dieli-Conwright CM, Lazar AJ, Jindal S, Chu K, Chelvanambi M, Basen-Engquist K, Li Y, Wargo JA, McAllister F, Allison JP, Sharma P, Sinha KM, Hanash S, Gilchrist SC, Vilar E. Exercise Training Reduces the Inflammatory Response and Promotes Intestinal Mucosa-Associated Immunity in Lynch Syndrome. Clin Cancer Res 2023; 29:4361-4372. [PMID: 37724990 PMCID: PMC10618653 DOI: 10.1158/1078-0432.ccr-23-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Lynch syndrome (LS) is a hereditary condition with a high lifetime risk of colorectal and endometrial cancers. Exercise is a non-pharmacologic intervention to reduce cancer risk, though its impact on patients with LS has not been prospectively studied. Here, we evaluated the impact of a 12-month aerobic exercise cycling intervention in the biology of the immune system in LS carriers. PATIENTS AND METHODS To address this, we enrolled 21 patients with LS onto a non-randomized, sequential intervention assignation, clinical trial to assess the effect of a 12-month exercise program that included cycling classes 3 times weekly for 45 minutes versus usual care with a one-time exercise counseling session as control. We analyzed the effects of exercise on cardiorespiratory fitness, circulating, and colorectal-tissue biomarkers using metabolomics, gene expression by bulk mRNA sequencing, and spatial transcriptomics by NanoString GeoMx. RESULTS We observed a significant increase in oxygen consumption (VO2peak) as a primary outcome of the exercise and a decrease in inflammatory markers (prostaglandin E) in colon and blood as the secondary outcomes in the exercise versus usual care group. Gene expression profiling and spatial transcriptomics on available colon biopsies revealed an increase in the colonic mucosa levels of natural killer and CD8+ T cells in the exercise group that were further confirmed by IHC studies. CONCLUSIONS Together these data have important implications for cancer interception in LS, and document for the first-time biological effects of exercise in the immune system of a target organ in patients at-risk for cancer.
Collapse
Affiliation(s)
- Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whittney S. Thoman
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark F. Munsell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T. Hawk
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Selvi Thirumurthi
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M. Lynch
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christina M. Dieli-Conwright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alexander J. Lazar
- Department of Behavioral Science, The University of Texas MD Anderson, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson, Houston, Texas
| | - Sonali Jindal
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
| | - Khoi Chu
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Karen Basen-Engquist
- Department of Behavioral Science, The University of Texas MD Anderson, Houston, Texas
| | - Yisheng Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson, Houston, Texas
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - James P. Allison
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
| | - Padmanee Sharma
- The Immunotherapy Platform, The University of Texas MD Anderson, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson, Houston, Texas
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan C. Gilchrist
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cardiology, The University of Texas MD Anderson, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| |
Collapse
|
17
|
Jaguri A, Al Thani AA, Elrayess MA. Exercise Metabolome: Insights for Health and Performance. Metabolites 2023; 13:694. [PMID: 37367852 DOI: 10.3390/metabo13060694] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Exercise has many benefits for physical and mental well-being. Metabolomics research has allowed scientists to study the impact of exercise on the body by analyzing metabolites released by tissues such as skeletal muscle, bone, and the liver. Endurance training increases mitochondrial content and oxidative enzymes, while resistance training increases muscle fiber and glycolytic enzymes. Acute endurance exercise affects amino acid metabolism, fat metabolism, cellular energy metabolism, and cofactor and vitamin metabolism. Subacute endurance exercise alters amino acid metabolism, lipid metabolism, and nucleotide metabolism. Chronic endurance exercise improves lipid metabolism and changes amino acid metabolism. Acute resistance exercise changes several metabolic pathways, including anaerobic processes and muscular strength. Chronic resistance exercise affects metabolic pathways, resulting in skeletal muscle adaptations. Combined endurance-resistance exercise alters lipid metabolism, carbohydrate metabolism, and amino acid metabolism, increasing anaerobic metabolic capacity and fatigue resistance. Studying exercise-induced metabolites is a growing field, and further research can uncover the underlying metabolic mechanisms and help tailor exercise programs for optimal health and performance.
Collapse
Affiliation(s)
- Aayami Jaguri
- Weill Cornell Medicine-Qatar, Doha P.O. Box 24811, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
18
|
Chan AS, Wu S, Vernon ST, Tang O, Figtree GA, Liu T, Yang JY, Patrick E. Overcoming cohort heterogeneity for the prediction of subclinical cardiovascular disease risk. iScience 2023; 26:106633. [PMID: 37192969 PMCID: PMC10182278 DOI: 10.1016/j.isci.2023.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/18/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality with an estimated half a billion people affected in 2019. However, detecting signals between specific pathophysiology and coronary plaque phenotypes using complex multi-omic discovery datasets remains challenging due to the diversity of individuals and their risk factors. Given the complex cohort heterogeneity present in those with coronary artery disease (CAD), we illustrate several different methods, both knowledge-guided and data-driven approaches, for identifying subcohorts of individuals with subclinical CAD and distinct metabolomic signatures. We then demonstrate that utilizing these subcohorts can improve the prediction of subclinical CAD and can facilitate the discovery of novel biomarkers of subclinical disease. Analyses acknowledging cohort heterogeneity through identifying and utilizing these subcohorts may be able to advance our understanding of CVD and provide more effective preventative treatments to reduce the burden of this disease in individuals and in society as a whole.
Collapse
Affiliation(s)
- Adam S. Chan
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - Songhua Wu
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Stephen T. Vernon
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Owen Tang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Gemma A. Figtree
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Tongliang Liu
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
- Westmead Medical Institute, Sydney, NSW, Australia
| |
Collapse
|
19
|
Stein JA, Farina EK, Karl JP, Thompson LA, Knapik JJ, Pasiakos SM, McClung JP, Lieberman HR. Biomarkers of oxidative stress, diet and exercise distinguish soldiers selected and non-selected for special forces training. Metabolomics 2023; 19:39. [PMID: 37041398 PMCID: PMC10090007 DOI: 10.1007/s11306-023-01998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
INTRODUCTION The metabolomic profiles of Soldiers entering the U.S. Special Forces Assessment and Selection course (SFAS) have not been evaluated. OBJECTIVES To compare pre-SFAS blood metabolomes of Soldiers selected during SFAS versus those not selected, and explore the relationships between the metabolome, physical performance, and diet quality. METHODS Fasted blood samples and food frequency questionnaires were collected from 761 Soldiers prior to entering SFAS to assess metabolomic profiles and diet quality, respectively. Physical performance was assessed throughout SFAS. RESULTS Between-group differences (False Discovery Rate < 0.05) in 108 metabolites were detected. Selected candidates had higher levels of compounds within xenobiotic, pentose phosphate, and corticosteroid metabolic pathways, while non-selected candidates had higher levels of compounds potentially indicative of oxidative stress (i.e., sphingomyelins, acylcarnitines, glutathione, amino acids). Multiple compounds higher in non-selected versus selected candidates included: 1-carboxyethylphenylalanine; 4-hydroxy-nonenal-glutathione; α-hydroxyisocaproate; hexanoylcarnitine; sphingomyelin and were associated with lower diet quality and worse physical performance. CONCLUSION: Candidates selected during SFAS had higher pre-SFAS levels of circulating metabolites that were associated with resistance to oxidative stress, higher physical performance and higher diet quality. In contrast, non-selected candidates had higher levels of metabolites potentially indicating elevated oxidative stress. These findings indicate that Soldiers who were selected for continued Special Forces training enter the SFAS course with metabolites associated with healthier diets and better physical performance. Additionally, the non-selected candidates had higher levels of metabolites that may indicate elevated oxidative stress, which could result from poor nutrition, non-functional overreaching/overtraining, or incomplete recovery from previous physical activity.
Collapse
Affiliation(s)
- Jesse A Stein
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA.
- Oak Ridge Institute for Science and Education, Belcamp, MD, USA.
| | - Emily K Farina
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - Lauren A Thompson
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - Joseph J Knapik
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - James P McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA
| |
Collapse
|
20
|
Diaz-Canestro C, Chen J, Liu Y, Han H, Wang Y, Honoré E, Lee CH, Lam KSL, Tse MA, Xu A. A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes. Cell Rep Med 2023; 4:100944. [PMID: 36787735 PMCID: PMC9975321 DOI: 10.1016/j.xcrm.2023.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/11/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training.
Collapse
Affiliation(s)
- Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hao Han
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Chi-Ho Lee
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Metabolomics and Lipidomics Signatures of Insulin Resistance and Abdominal Fat Depots in People Living with Obesity. Metabolites 2022; 12:metabo12121272. [PMID: 36557310 PMCID: PMC9781703 DOI: 10.3390/metabo12121272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The liver, skeletal muscle, and adipose tissue are major insulin target tissues and key players in glucose homeostasis. We and others have described diverse insulin resistance (IR) phenotypes in people at risk of developing type 2 diabetes. It is postulated that identifying the IR phenotype in a patient may guide the treatment or the prevention strategy for better health outcomes in populations at risk. Here, we performed plasma metabolomics and lipidomics in a cohort of men and women living with obesity not complicated by diabetes (mean [SD] BMI 36.0 [4.5] kg/m2, n = 62) to identify plasma signatures of metabolites and lipids that align with phenotypes of IR (muscle, liver, or adipose tissue) and abdominal fat depots. We used 2-step hyperinsulinemic-euglycemic clamp with deuterated glucose, oral glucose tolerance test, dual-energy X-ray absorptiometry and abdominal magnetic resonance imaging to assess muscle-, liver- and adipose tissue- IR, beta cell function, body composition, abdominal fat distribution and liver fat, respectively. Spearman’s rank correlation analyses that passed the Benjamini−Hochberg statistical correction revealed that cytidine, gamma-aminobutyric acid, anandamide, and citrate corresponded uniquely with muscle IR, tryptophan, cAMP and phosphocholine corresponded uniquely with liver IR and phenylpyruvate and hydroxy-isocaproic acid corresponded uniquely with adipose tissue IR (p < 7.2 × 10−4). Plasma cholesteryl sulfate (p = 0.00029) and guanidinoacetic acid (p = 0.0001) differentiated between visceral and subcutaneous adiposity, while homogentisate correlated uniquely with liver fat (p = 0.00035). Our findings may help identify diverse insulin resistance and adiposity phenotypes and enable targeted treatments in people living with obesity.
Collapse
|
22
|
Metabolomic Response throughout 16 Weeks of Combined Aerobic and Resistance Exercise Training in Older Women with Metabolic Syndrome. Metabolites 2022; 12:metabo12111041. [PMID: 36355124 PMCID: PMC9693245 DOI: 10.3390/metabo12111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Increases in longevity and obesity have led to a higher prevalence of Metabolic Syndrome (MetS) and several chronic conditions, such as hypertension. The prevalence of MetS and hypertension increases with advancing age and their detrimental effects on health can be attenuated by physical activity. Combined aerobic and resistance exercise training (CT) is recommended to maintain good health in older adults and is known to generate important metabolic adaptations. In this study we performed a metabolomics analysis, based on Hydrogen Nuclear Magnetic Resonance (1H NMR), to investigate the kinetics of changes in metabolism in non-physically active older women with MetS in response to 16 weeks of CT. A subset of women with MetS were selected from a larger randomized trial (that included men and women without MetS), with 12 participants on CT and 13 from the Control Group (CG). CT comprised walking/running at 63% of VO2max, three times/week, and resistance training (RT), consisting of 15 repetitions of seven exercises at moderate intensity, twice/week. Serum metabolomic profile was analysed at baseline (0W), 4 (4W), 8 (8W), 12 (12W) and 16 weeks (16W) for CT or CG. Cardiorespiratory fitness, RT load, blood pressure, body composition, lipid and glycaemic profile were also assessed. After 16 weeks CT increased cardiorespiratory fitness (13.1%, p < 0.05) and RT load (from 48% in the lat pulldown to 160% in the leg press, p < 0.05), but there were no changes in MetS parameters, such as body composition (Body Mass, Body Mass Index (BMI), body fat percentage and waist circumference), blood pressure, lipid and glycaemic profile. However, we identified potential higher substrate to the tricarboxylic acid cycle (increase in 2-Oxobutyrate from 0W (0.0029 ± 0.0009) to 4W (0.0038 ± 0.0011) and 8W (0.0041 ± 0.0015), p < 0.05), followed by alterations (different from 0W, p < 0.05) in the production of ketone bodies (3-Hydroxybutyrate, 0W (0.0717 ± 0.0377) to 16W (0.0397 ± 0.0331), and Acetoacetate, 0W (0.0441 ± 0.0240) to 16W (0.0239 ± 0.0141)), which together might explain the known improvement in fatty acid oxidation with exercise. There was also a late increase in ornithine at 16W of CT. Further studies are needed to investigate the association between these metabolic pathways and clinical outcomes in this population.
Collapse
|
23
|
Chen Y, Luo Z, Sun Y, Li F, Han Z, Qi B, Lin J, Lin WW, Yao M, Kang X, Huang J, Sun C, Ying C, Guo C, Xu Y, Chen J, Chen S. Exercise improves choroid plexus epithelial cells metabolism to prevent glial cell-associated neurodegeneration. Front Pharmacol 2022; 13:1010785. [PMID: 36188600 PMCID: PMC9523215 DOI: 10.3389/fphar.2022.1010785] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 02/05/2023] Open
Abstract
Recent studies have shown that physical activities can prevent aging-related neurodegeneration. Exercise improves the metabolic landscape of the body. However, the role of these differential metabolites in preventing neurovascular unit degeneration (NVU) is still unclear. Here, we performed single-cell analysis of brain tissue from young and old mice. Normalized mutual information (NMI) was used to measure heterogeneity between each pair of cells using the non-negative Matrix Factorization (NMF) method. Astrocytes and choroid plexus epithelial cells (CPC), two types of CNS glial cells, differed significantly in heterogeneity depending on their aging status and intercellular interactions. The MetaboAnalyst 5.0 database and the scMetabolism package were used to analyze and calculate the differential metabolic pathways associated with aging in the CPC. These mRNAs and corresponding proteins were involved in the metabolites (R)-3-Hydroxybutyric acid, 2-Hydroxyglutarate, 2-Ketobutyric acid, 3-Hydroxyanthranilic acid, Fumaric acid, L-Leucine, and Oxidized glutathione pathways in CPC. Our results showed that CPC age heterogeneity-associated proteins (ECHS1, GSTT1, HSD17B10, LDHA, and LDHB) might be directly targeted by the metabolite of oxidized glutathione (GSSG). Further molecular dynamics and free-energy simulations confirmed the insight into GSSG's targeting function and free-energy barrier on these CPC age heterogeneity-associated proteins. By inhibiting these proteins in CPC, GSSG inhibits brain energy metabolism, whereas exercise improves the metabolic pathway activity of CPC in NVU by regulating GSSG homeostasis. In order to develop drugs targeting neurodegenerative diseases, further studies are needed to understand how physical exercise enhances NVU function and metabolism by modulating CPC-glial cell interactions.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Huashan Hospital, Fudan University, Shanghai, China
| | - Fangqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Wei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, Hebei
| | - Jiebin Huang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Chenting Ying
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Desai S, Borg B, Cuttler C, Crombie KM, Rabinak CA, Hill MN, Marusak HA. A Systematic Review and Meta-Analysis on the Effects of Exercise on the Endocannabinoid System. Cannabis Cannabinoid Res 2022; 7:388-408. [PMID: 34870469 PMCID: PMC9418357 DOI: 10.1089/can.2021.0113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: The endocannabinoid (eCB) system plays a key role in maintaining homeostasis, including the regulation of metabolism and stress responses. Chronic stress may blunt eCB signaling, and disruptions in eCB signaling have been linked to stress-related psychiatric disorders and physical health conditions, including anxiety, depression, post-traumatic stress disorder (PTSD), diabetes, and obesity. Pharmacological and nonpharmacological behavioral interventions (e.g., exercise) that target the eCB system may be promising therapeutic approaches for the prevention and treatment of stress-related diseases. In this study, we perform a systematic review and the first meta-analysis to examine the impact of exercise on circulating eCB concentrations. Materials and Methods: We performed a review of the MEDLINE (PubMed) database for original articles examining the impact of exercise on eCBs in humans and animal models. A total of 262 articles were screened for initial inclusion. Results: Thirty-three articles (reporting on 57 samples) were included in the systematic review and 10 were included in the meta-analysis. The majority of samples that measured anandamide (AEA) showed a significant increase in AEA concentrations following acute exercise (74.4%), whereas effects on 2-arachidonoylglycerol (2-AG) were inconsistent. The meta-analysis, however, revealed a consistent increase in both AEA and 2-AG following acute exercise across modalities (e.g., running, cycling), species (e.g., humans, mice), and in those with and without pre-existing health conditions (e.g., PTSD, depression). There was substantial heterogeneity in the magnitude of the effect across studies, which may relate to exercise intensity, physical fitness, timing of measurement, and/or fasted state. Effects of chronic exercise were inconsistent. Conclusions: Potential interpretations and implications of exercise-induced mobilization of eCBs are discussed, including refilling of energy stores and mediating analgesic and mood elevating effects of exercise. We also offer recommendations for future work and discuss therapeutic implications for exercise in the prevention and treatment of stress-related psychopathology.
Collapse
Affiliation(s)
- Shreya Desai
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Breanna Borg
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Kevin M. Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Christine A. Rabinak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Practice and Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
25
|
Vike NL, Bari S, Stetsiv K, Talavage TM, Nauman EA, Papa L, Slobounov S, Breiter HC, Cornelis MC. Metabolomic response to collegiate football participation: Pre- and Post-season analysis. Sci Rep 2022; 12:3091. [PMID: 35197541 PMCID: PMC8866500 DOI: 10.1038/s41598-022-07079-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Contact sports participation has been shown to have both beneficial and detrimental effects on health, however little is known about the metabolic sequelae of these effects. We aimed to identify metabolite alterations across a collegiate American football season. Serum was collected from 23 male collegiate football athletes before the athletic season (Pre) and after the last game (Post). Samples underwent nontargeted metabolomic profiling and 1131 metabolites were included for univariate, pathway enrichment, and multivariate analyses. Significant metabolites were assessed against head acceleration events (HAEs). 200 metabolites changed from Pre to Post (P < 0.05 and Q < 0.05); 160 had known identity and mapped to one of 57 pre-defined biological pathways. There was significant enrichment of metabolites belonging to five pathways (P < 0.05): xanthine, fatty acid (acyl choline), medium chain fatty acid, primary bile acid, and glycolysis, gluconeogenesis, and pyruvate metabolism. A set of 12 metabolites was sufficient to discriminate Pre from Post status, and changes in 64 of the 200 metabolites were also associated with HAEs (P < 0.05). In summary, the identified metabolites, and candidate pathways, argue there are metabolic consequences of both physical training and head impacts with football participation. These findings additionally identify a potential set of objective biomarkers of repetitive head injury.
Collapse
Affiliation(s)
- Nicole L Vike
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumra Bari
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Khrystyna Stetsiv
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas M Talavage
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Eric A Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL, USA
| | - Semyon Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.
| | - Hans C Breiter
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
26
|
Siebers M, Biedermann SV, Fuss J. Do Endocannabinoids Cause the Runner’s High? Evidence and Open Questions. Neuroscientist 2022; 29:352-369. [PMID: 35081831 PMCID: PMC10159215 DOI: 10.1177/10738584211069981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The runner’s high is an ephemeral feeling some humans experience during and after endurance exercise. Recent evidence in mice suggests that a runner’s high depends on the release of endocannabinoids (eCBs) during exercise. However, little is known under what circumstances eCBs are released during exercise in humans. This systematic review sampled all data from clinical trials in humans on eCB levels following exercise from the discovery of eCBs until April 20, 2021. PubMed/NCBI, Ovid MEDLINE, and Cochrane library were searched systematically and reviewed following the PRISMA guidelines. From 278 records, 21 met the inclusion criteria. After acute exercise, 14 of 17 studies detected an increase in eCBs. In contrast, after a period of long-term endurance exercise, four articles described a decrease in eCBs. Even though several studies demonstrated an association between eCB levels and features of the runner’s high, reliable proof of the involvement of eCBs in the runner’s high in humans has not yet been achieved due to methodological hurdles. In this review, we suggest how to advance the study of the influence of eCBs on the beneficial effects of exercise and provide recommendations on how endocannabinoid release is most likely to occur under laboratory conditions.
Collapse
Affiliation(s)
- Michael Siebers
- Institute of Forensic Psychiatry and Sex Research, University of Duisburg-Essen, Essen, Germany
- Human Behavior Laboratory, Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah V. Biedermann
- Department of Psychiatry and Psychotherapy, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Fuss
- Institute of Forensic Psychiatry and Sex Research, University of Duisburg-Essen, Essen, Germany
- Human Behavior Laboratory, Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Khoramipour K, Sandbakk Ø, Keshteli AH, Gaeini AA, Wishart DS, Chamari K. Metabolomics in Exercise and Sports: A Systematic Review. Sports Med 2021; 52:547-583. [PMID: 34716906 DOI: 10.1007/s40279-021-01582-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metabolomics is a field of omics science that involves the comprehensive measurement of small metabolites in biological samples. It is increasingly being used to study exercise physiology and exercise-associated metabolism. However, the field of exercise metabolomics has not been extensively reviewed or assessed. OBJECTIVE This review on exercise metabolomics has three aims: (1) to provide an introduction to the general workflow and the different metabolomics technologies used to conduct exercise metabolomics studies; (2) to provide a systematic overview of published exercise metabolomics studies and their findings; and (3) to discuss future perspectives in the field of exercise metabolomics. METHODS We searched electronic databases including Google Scholar, Science Direct, PubMed, Scopus, Web of Science, and the SpringerLink academic journal database between January 1st 2000 and September 30th 2020. RESULTS Based on our detailed analysis of the field, exercise metabolomics studies fall into five major categories: (1) exercise nutrition metabolism; (2) exercise metabolism; (3) sport metabolism; (4) clinical exercise metabolism; and (5) metabolome comparisons. Exercise metabolism is the most popular category. The most common biological samples used in exercise metabolomics studies are blood and urine. Only a small minority of exercise metabolomics studies employ targeted or quantitative techniques, while most studies used untargeted metabolomics techniques. In addition, mass spectrometry was the most commonly used platform in exercise metabolomics studies, identified in approximately 54% of all published studies. Our data indicate that biomarkers or biomarker panels were identified in 34% of published exercise metabolomics studies. CONCLUSION Overall, there is an increasing trend towards better designed, more clinical, mass spectrometry-based metabolomics studies involving larger numbers of participants/patients and larger numbers of metabolites being identified.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Medical Faculty, Kerman University of Medical Sciences, Blvd. 22 Bahman, Kerman, Iran.
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Abbas Ali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Computing Science, University of Alberta, AB, T6G 2E9, Edmonton, Canada
| | - Karim Chamari
- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
28
|
A hierarchical approach to removal of unwanted variation for large-scale metabolomics data. Nat Commun 2021; 12:4992. [PMID: 34404777 PMCID: PMC8371158 DOI: 10.1038/s41467-021-25210-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/23/2021] [Indexed: 01/13/2023] Open
Abstract
Liquid chromatography-mass spectrometry-based metabolomics studies are increasingly applied to large population cohorts, which run for several weeks or even years in data acquisition. This inevitably introduces unwanted intra- and inter-batch variations over time that can overshadow true biological signals and thus hinder potential biological discoveries. To date, normalisation approaches have struggled to mitigate the variability introduced by technical factors whilst preserving biological variance, especially for protracted acquisitions. Here, we propose a study design framework with an arrangement for embedding biological sample replicates to quantify variance within and between batches and a workflow that uses these replicates to remove unwanted variation in a hierarchical manner (hRUV). We use this design to produce a dataset of more than 1000 human plasma samples run over an extended period of time. We demonstrate significant improvement of hRUV over existing methods in preserving biological signals whilst removing unwanted variation for large scale metabolomics studies. Our tools not only provide a strategy for large scale data normalisation, but also provides guidance on the design strategy for large omics studies. Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant information.
Collapse
|
29
|
Barton M, Cardillo C. Exercise is medicine: key to cardiovascular disease and diabetes prevention. Cardiovasc Res 2021; 117:360-363. [PMID: 32702117 DOI: 10.1093/cvr/cvaa226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Matthias Barton
- University of Zürich, Molecular Internal Medicine, Y44 G22, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,Andreas Grüntzig Foundation, Zürich, Switzerland
| | - Carmine Cardillo
- Internal Medicine, Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Vito 1, 00168 Roma, Italy.,Internal Medicine, Università Cattolica del Sacro Cuore, Largo Vito 1, 00168 Roma, Italy
| |
Collapse
|
30
|
Keller J, Zackowski K, Kim S, Chidobem I, Smith M, Farhadi F, Bhargava P. Exercise leads to metabolic changes associated with improved strength and fatigue in people with MS. Ann Clin Transl Neurol 2021; 8:1308-1317. [PMID: 33955210 PMCID: PMC8164856 DOI: 10.1002/acn3.51368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Objective The goal of this exploratory study was to evaluate the effects of an exercise intervention – progressive resistance training (PRT) on the metabolome of people with MS (pwMS) and to link these to changes in clinical outcomes. Methods 14 pwMS with EDSS <4.0 and 13 age‐ and sex‐matched healthy controls completed a 12‐week in‐person PRT exercise intervention. Outcome measures included: plasma metabolomics analysis, cardiovascular fitness tests, EDSS, timed 25‐foot walk (T25FW), six‐minute walk test (6MWT), hip strength, and modified fatigue impact scale (MFIS). We identified changes in the metabolome with PRT intervention in both groups using individual metabolite abundance and weighted correlation network defined metabolite module eigenvalues and then examined correlations in changes in metabolite modules with changes in various clinical outcomes. Results In both groups PRT intervention improved hip strength, distance walked in 6WMT, speed of walking, while fatigue (MFIS) was improved in pwMS. Fatty acid, phospholipid, and sex steroid metabolism were significantly altered by PRT in pwMS but not in controls. Changes in fatigue (MFIS score) were strongly inversely correlated and hip strength was moderately correlated with change in sex steroid metabolite module in pwMS. A similar relationship was noted between change in dehydroepiandrosterone sulfate abundance (sex steroid metabolite) and fatigue in pwMS. We also noted an inverse correlation between changes in fatty acid metabolism and cardiovascular fitness in pwMS. Interpretation PRT‐induced metabolic changes may underlie improved clinical parameters in pwMS and may warrant investigation as potential therapeutic targets in future studies.
Collapse
Affiliation(s)
| | | | - Sol Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ikechukwu Chidobem
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Farzaneh Farhadi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Vernon ST, Tang O, Kim T, Chan AS, Kott KA, Park J, Hansen T, Koay YC, Grieve SM, O’Sullivan JF, Yang JY, Figtree GA. Metabolic Signatures in Coronary Artery Disease: Results from the BioHEART-CT Study. Cells 2021; 10:980. [PMID: 33922315 PMCID: PMC8145337 DOI: 10.3390/cells10050980] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023] Open
Abstract
Despite effective prevention programs targeting cardiovascular risk factors, coronary artery disease (CAD) remains the leading cause of death. Novel biomarkers are needed for improved risk stratification and primary prevention. To assess for independent associations between plasma metabolites and specific CAD plaque phenotypes we performed liquid chromatography mass-spectrometry on plasma from 1002 patients in the BioHEART-CT study. Four metabolites were examined as candidate biomarkers. Dimethylguanidino valerate (DMGV) was associated with presence and amount of CAD (OR) 1.41 (95% Confidence Interval [CI] 1.12-1.79, p = 0.004), calcified plaque, and obstructive CAD (p < 0.05 for both). The association with amount of plaque remained after adjustment for traditional risk factors, ß-coefficient 0.17 (95% CI 0.02-0.32, p = 0.026). Glutamate was associated with the presence of non-calcified plaque, OR 1.48 (95% CI 1.09-2.01, p = 0.011). Phenylalanine was associated with amount of CAD, ß-coefficient 0.33 (95% CI 0.04-0.62, p = 0.025), amount of calcified plaque, (ß-coefficient 0.88, 95% CI 0.23-1.53, p = 0.008), and obstructive CAD, OR 1.84 (95% CI 1.01-3.31, p = 0.046). Trimethylamine N-oxide was negatively associated non-calcified plaque OR 0.72 (95% CI 0.53-0.97, p = 0.029) and the association remained when adjusted for traditional risk factors. In targeted metabolomic analyses including 53 known metabolites and controlling for a 5% false discovery rate, DMGV was strongly associated with the presence of calcified plaque, OR 1.59 (95% CI 1.26-2.01, p = 0.006), obstructive CAD, OR 2.33 (95% CI 1.59-3.43, p = 0.0009), and amount of CAD, ß-coefficient 0.3 (95% CI 0.14-0.45, p = 0.014). In multivariate analyses the lipid and nucleotide metabolic pathways were both associated with the presence of CAD, after adjustment for traditional risk factors. We report novel associations between CAD plaque phenotypes and four metabolites previously associated with CAD. We also identified two metabolic pathways strongly associated with CAD, independent of traditional risk factors. These pathways warrant further investigation at both a biomarker and mechanistic level.
Collapse
Affiliation(s)
- Stephen T. Vernon
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Owen Tang
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
| | - Taiyun Kim
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
- Computational Systems Biology Group, Children’s Medical Research Institute, Westmead, NSW 2145, Australia
| | - Adam S. Chan
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - Katharine A. Kott
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - John Park
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
| | - Thomas Hansen
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Yen C. Koay
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW 2042, Australia
| | - Stuart M. Grieve
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John F. O’Sullivan
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW 2042, Australia
| | - Jean Y. Yang
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Cardiothoracic and Vascular Health, Kolling Institute, Northern Sydney Local Health District, Sydney, NSW 2065, Australia; (S.T.V.); (O.T.); (K.A.K.); (J.P.); (T.H.)
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; (T.K.); (A.S.C.); (Y.C.K.); (J.F.O.); (J.Y.Y.)
| |
Collapse
|
32
|
Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome. Cells 2021; 10:cells10040938. [PMID: 33920695 PMCID: PMC8072750 DOI: 10.3390/cells10040938] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Evidence suggesting the triangulation of the endocannabinoid system, exercise, and neurological health is emerging. In addition to the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the expanded endocannabinoid system, known as the endocannabinoidome (eCBome), appears to be an important player in this relationship. The eCBome includes several endocannabinoid-like mediators such as N-acylethanolamines and 2-monoacylglycerols, the enzymes involved in their biosynthesis and degradation, and the receptors they affect. This review aims to relate the functional interactions between aerobic exercise, and the molecular and cellular pathways related to endocannabinoids, in the hypothalamus, hippocampus, and the periphery, with special attention given to associations with emotional state, cognition, and mental health. Given the well-documented roles of many eCBome members in regulating stress and neurological processes, we posit that the eCBome is an important effector of exercise-induced central and peripheral adaptive mechanisms that benefit mental health. Gut microbiota imbalance, affecting the gut-brain axis and metabolism, also influences certain eCBome-modulated inflammation pathways. The integrity of the gut microbiota could thus be crucial in the onset of neuroinflammation and mental conditions. Further studies on how the modulation by exercise of the peripheral eCBome affects brain functions could reveal to be key elements in the prevention and treatment of neuropsychological disorders.
Collapse
|
33
|
Candi E, Campanelli M, Sica G, Schinzari F, Rovella V, Di Daniele N, Melino J, Tesauro M. Differences in the vascular and metabolic profiles between metabolically healthy and unhealthy obesity. ENDOCRINE AND METABOLIC SCIENCE 2021; 2:100077. [DOI: 10.1016/j.endmts.2020.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Balagué N, Hristovski R, Almarcha M, Garcia-Retortillo S, Ivanov PC. Network Physiology of Exercise: Vision and Perspectives. Front Physiol 2020; 11:611550. [PMID: 33362584 PMCID: PMC7759565 DOI: 10.3389/fphys.2020.611550] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
The basic theoretical assumptions of Exercise Physiology and its research directions, strongly influenced by reductionism, may hamper the full potential of basic science investigations, and various practical applications to sports performance and exercise as medicine. The aim of this perspective and programmatic article is to: (i) revise the current paradigm of Exercise Physiology and related research on the basis of principles and empirical findings in the new emerging field of Network Physiology and Complex Systems Science; (ii) initiate a new area in Exercise and Sport Science, Network Physiology of Exercise (NPE), with focus on basic laws of interactions and principles of coordination and integration among diverse physiological systems across spatio-temporal scales (from the sub-cellular level to the entire organism), to understand how physiological states and functions emerge, and to improve the efficacy of exercise in health and sport performance; and (iii) to create a forum for developing new research methodologies applicable to the new NPE field, to infer and quantify nonlinear dynamic forms of coupling among diverse systems and establish basic principles of coordination and network organization of physiological systems. Here, we present a programmatic approach for future research directions and potential practical applications. By focusing on research efforts to improve the knowledge about nested dynamics of vertical network interactions, and particularly, the horizontal integration of key organ systems during exercise, NPE may enrich Basic Physiology and diverse fields like Exercise and Sports Physiology, Sports Medicine, Sports Rehabilitation, Sport Science or Training Science and improve the understanding of diverse exercise-related phenomena such as sports performance, fatigue, overtraining, or sport injuries.
Collapse
Affiliation(s)
- Natàlia Balagué
- Complex Systems in Sport, INEFC Universitat de Barcelona (UB), Barcelona, Spain
| | - Robert Hristovski
- Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Maricarmen Almarcha
- Complex Systems in Sport, INEFC Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergi Garcia-Retortillo
- Complex Systems in Sport, INEFC Universitat de Barcelona (UB), Barcelona, Spain
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
| | - Plamen Ch. Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
35
|
Wang J, Gong Y, Chen Z, Wu J, Feng J, Yan S, Lv C, Lu Z, Mu K, Yin X. Sleep disturbances among Chinese residents during the Coronavirus Disease 2019 outbreak and associated factors. Sleep Med 2020; 74:199-203. [PMID: 32861011 PMCID: PMC7411535 DOI: 10.1016/j.sleep.2020.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Sleep status can affect the body's immune status and mental health. This study aims to investigate the sleep status of Chinese residents during the outbreak of Coronavirus Disease 2019 (COVID-19) and to evaluate its related risk factors. METHODS This research carried out a cross-sectional survey in February 2020 (during the COVID-19 outbreak) to investigate the sleep status of residents nationwide in the form of an online questionnaire. Of the 8151 respondents, 6437 were eventually included in the analysis. Logistic regression is applied to analyze the associated factors affecting residents' sleep quality. RESULTS During the COVID-19 outbreak, the incidence of sleep disturbances in residents was 17.65%. Increased risk of sleep disturbances was found to be associated with older age, female gender, and poor self-reported health status. Moreover, the odds ratios (ORs) were 1.42 (95% CI: 1.1-2.64), 1.35 (95% CI: 1.16-1.59), 5.59 (95% CI: 4.32-7.23), respectively. Those residents who believed COVID-19 had caused a high number of deaths or who thought COVID-19 was not easy to cure were more likely to experience sleep disorders, and the ORs were 1.73 (95% CI: 1.43-2.09), 1.57 (95% CI: 1.29-1.91), respectively. Regular exercise was a protective factor for sleep disturbances, OR = 0.77 (95% CI: 0.63-0.93). CONCLUSIONS During the outbreak of COVID-19, nearly one-fifth of participants had sleep disorders. It is necessary to pay more attention to people at high risk for sleep disturbances during the outbreak, adopt effective risk communication methods, enhance residents' rational understanding of COVID-19, and develop practical indoor exercise programs for general public to improve sleep quality.
Collapse
Affiliation(s)
- Jing Wang
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yanhong Gong
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhenyuan Chen
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianxiong Wu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jie Feng
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Shijiao Yan
- School of Public Health, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China; Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China; Emergency and Trauma College, Hainan Medical University, Haikou, Hainan, China
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ketao Mu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxv Yin
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
36
|
Wali JA, Koay YC, Chami J, Wood C, Corcilius L, Payne RJ, Rodionov RN, Birkenfeld AL, Samocha-Bonet D, Simpson SJ, O'Sullivan JF. Nutritional and metabolic regulation of the metabolite dimethylguanidino valeric acid: an early marker of cardiometabolic disease. Am J Physiol Endocrinol Metab 2020; 319:E509-E518. [PMID: 32663097 PMCID: PMC7509244 DOI: 10.1152/ajpendo.00207.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dimethylguanidino valeric acid (DMGV) is a marker of fatty liver disease, incident coronary artery disease, cardiovascular mortality, and incident diabetes. Recently, it was reported that circulating DMGV levels correlated positively with consumption of sugary beverages and negatively with intake of fruits and vegetables in three Swedish community-based cohorts. Here, we validate these results in the Framingham Heart Study Third Generation Cohort. Furthermore, in mice, diets rich in sucrose or fat significantly increased plasma DMGV concentrations. DMGV is the product of metabolism of asymmetric dimethylarginine (ADMA) by the hepatic enzyme AGXT2. ADMA can also be metabolized to citrulline by the cytoplasmic enzyme DDAH1. We report that a high-sucrose diet induced conversion of ADMA exclusively into DMGV (supporting the relationship with sugary beverage intake in humans), while a high-fat diet promoted conversion of ADMA to both DMGV and citrulline. On the contrary, replacing dietary native starch with high-fiber-resistant starch increased ADMA concentrations and induced its conversion to citrulline, without altering DMGV concentrations. In a cohort of obese nondiabetic adults, circulating DMGV concentrations increased and ADMA levels decreased in those with either liver or muscle insulin resistance. This was similar to changes in DMGV and ADMA concentrations found in mice fed a high-sucrose diet. Sucrose is a disaccharide of glucose and fructose. Compared with glucose, incubation of hepatocytes with fructose significantly increased DMGV production. Overall, we provide a comprehensive picture of the dietary determinants of DMGV levels and association with insulin resistance.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jason Chami
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Courtney Wood
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Roman N Rodionov
- University Center for Vascular Medicine and Department of Medicine III-Section Angiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Tübingen, Germany
| | - Dorit Samocha-Bonet
- The Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|