1
|
Ovchinnikov A, Potekhina A, Filatova A, Svirida O, Zherebchikova K, Ageev F, Belyavskiy E. Effects of empagliflozin on functional capacity, LV filling pressure, and cardiac reserves in patients with type 2 diabetes mellitus and heart failure with preserved ejection fraction: a randomized controlled open-label trial. Cardiovasc Diabetol 2025; 24:196. [PMID: 40346546 PMCID: PMC12065317 DOI: 10.1186/s12933-025-02756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Clinical trials have established the prognostic benefits of sodium‒glucose cotransporter 2 (SGLT2) inhibitors in patients with type 2 diabetes mellitus (T2DM) and heart failure (HF) with preserved ejection fraction (HFpEF), although the underlying mechanisms are not clearly understood. The purpose of this study was to determine the effects of the SGLT2 inhibitor empagliflozin on functional capacity, left ventricular (LV) diastolic function/filling pressure, and cardiac reserves in patients with HFpEF and T2DM. METHODS In the present prospective single-center trial, we enrolled 70 diabetic patients with stable HF according to the New York Heart Association functional class II-III criteria, an LV ejection fraction ≥ 50%, and increased LV filling pressure at rest and/or during exercise (determined by echocardiography). The patients were randomly assigned in an open-label fashion to the empagliflozin group (10 mg a day, n = 35) or the control group (n = 35) for 6 months. Echocardiography (at rest and during exercise), the 6-min walk test distance (6MWD), blood levels of N-terminal pro-brain natriuretic peptide (NT-proBNP), and the profibrotic biomarker sST2 were analysed at baseline and 6 months after randomization. The primary endpoint was the change in the 6MWD, and the secondary endpoints included the change in the left atrial (LA) volume index, early mitral inflow to mitral annulus relaxation velocity (E/e') ratio both at rest and during exercise, key cardiac reserves and biomarkers in the blood from baseline to 6 months. RESULTS After 6 months of empagliflozin therapy, the 6MWTD significantly increased, whereas the LA volume index and the E/e' ratio both at rest and during exercise decreased compared with those of the control group (P < 0.05 for all). LV diastolic, LA reservoir and contractile, and chronotropic reserves also improved in the empagliflozin group compared with those in the control group (P < 0.05 for all). Furthermore, treatment with empagliflozin led to improvements in NT-proBNP and ST2 blood levels compared with those in the control group (P < 0.05 for both). CONCLUSIONS In diabetic patients with HFpEF, empagliflozin treatment improved exercise capacity, which appeared to be the result of favourable effects on LV diastolic dysfunction and key cardiac reserves: LV diastolic, LA reservoir and contractile, and chronotropic. These haemodynamic mechanisms may underline the benefits of SGLT2 inhibitors in large-scale HFpEF trials. TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov . Unique Identifier NCT03753087.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia.
- Department of Clinical Functional Diagnostics, Russian University of Medicine of the Ministry of Health of the Russian Federation, Dolgorukovskaya St., 4, Moscow, 127006, Russia.
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
- Department of Pulmonary Hypertension and Heart Disease, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
| | - Anastasiia Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
| | - Olga Svirida
- Laboratory of Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
- Outpatient Department, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
| | - Kristina Zherebchikova
- Outpatient Department, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
- Department of Endocrinology No.1, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya St., 8-2, Moscow, 119991, Russia
| | - Fail Ageev
- Outpatient Department, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
| | | |
Collapse
|
2
|
Vlachakis PK, Theofilis P, Tousoulis D. SGLT2 inhibitors in the prevention of diabetic cardiomyopathy: Targeting the silent threat. World J Cardiol 2024; 16:669-672. [PMID: 39600990 PMCID: PMC11586729 DOI: 10.4330/wjc.v16.i11.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
Heart failure (HF) is a major global health challenge, particularly among individuals with type 2 diabetes mellitus (T2DM), who are at significantly higher risk of developing HF. Diabetic cardiomyopathy, a unique form of heart disease, often progresses silently until advanced stages. Recent research has focused on sodium-dependent glucose transporter 2 inhibitors (SGLT2i), originally developed for hyperglycemia, which have shown potential in reducing cardiovascular risks, including HF hospitalizations, irrespective of diabetic status. In this editorial we comment on the article by Grubić Rotkvić et al published in the recent issue of the World Journal of Cardiology. The investigators examined the effects of SGLT2i on myocardial function in T2DM patients with asymptomatic HF, finding significant improvements in stroke volume index and reductions in systemic vascular resistance, suggesting enhanced cardiac output. Additionally, SGLT2i demonstrated anti-inflammatory and antioxidant effects, as well as blood pressure reduction, though the study's limitations-such as small sample size and observational design-necessitate larger randomized trials to confirm these findings. The study underscores the potential of early intervention with SGLT2i in preventing HF progression in T2DM patients.
Collapse
Affiliation(s)
- Panayotis K Vlachakis
- Department of 1st Cardiology, General Hospital of Athens "Hippocratio", University of Athens Medical School, Athens 11527, Greece
| | - Panagiotis Theofilis
- Department of 1st Cardiology, General Hospital of Athens "Hippocratio", University of Athens Medical School, Athens 11527, Greece
| | - Dimitris Tousoulis
- Department of 1st Cardiology, Athens Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
3
|
Li L, Liu H, Chai Q, Wei J, Qin Y, Yang J, Liu H, Qi J, Guo C, Lu Z. Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells. Cell Mol Life Sci 2024; 81:448. [PMID: 39520538 PMCID: PMC11550308 DOI: 10.1007/s00018-024-05486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease. The role of this inhibitor in the context of vascular calcification, however, remains largely uncharacterized. Our findings revealed that DAPA treatment was sufficient to alleviate in vitro and in vivo osteogenic transdifferentiation and vascular calcification. Interestingly, our study demonstrated that DAPA exerts its anti-calcification effects on VSMCs by directly targeting SGLT2, with the overexpression of SGLT2 being sufficient to attenuate these beneficial effects. DAPA was also able to limit the glucose levels and NAD+/NADH ratio in calcified VSMCs, upregulating sirtuin 1 (SIRT1) in a caloric restriction (CR)-dependent manner. The SIRT1-specific siRNA and the SIRT1 inhibitor EX527 attenuated the anti-calcification effects of DAPA treatment. DAPA was also to drive SIRT1-mediated deacetylation and consequent degradation of hypoxia-inducible factor-1α (HIF-1α). The use of cobalt chloride and proteasome inhibitor MG132 to preserve HIF-1α stability mitigated the anti-calcification activity of DAPA. These analyses revealed that the DAPA/SGLT2/SIRT1 axis may therefore represent a viable novel approach to treating vascular calcification, offering new insights into how SGLT2 inhibitors may help prevent and treat vascular calcification.
Collapse
MESH Headings
- Glucosides/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Sirtuin 1/metabolism
- Sirtuin 1/genetics
- Cell Transdifferentiation/drug effects
- Animals
- Benzhydryl Compounds/pharmacology
- Osteogenesis/drug effects
- Signal Transduction/drug effects
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/drug therapy
- Sodium-Glucose Transporter 2/metabolism
- Sodium-Glucose Transporter 2/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Humans
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Mice
- Male
- Mice, Inbred C57BL
- Cells, Cultured
- Glucose/metabolism
Collapse
Affiliation(s)
- Long Li
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Huimin Liu
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Quanyou Chai
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Junyi Wei
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuqiao Qin
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingyao Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - He Liu
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunling Guo
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhaoyang Lu
- Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Huttunen R, Haapanen-Saaristo AM, Hjelt A, Jokilammi A, Paatero I, Järveläinen H. Empagliflozin attenuates hypoxia-induced heart failure of zebrafish embryos via influencing MMP13 expression. Biomed Pharmacother 2024; 180:117453. [PMID: 39332186 DOI: 10.1016/j.biopha.2024.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Today, sodium glucose co-transporter 2 (SGLT2) inhibitors are more than diabetes drugs. They are also indicated in chronic heart failure (HF) treatment in both diabetic and non-diabetic patients, independently of the ejection fraction. Multiple mechanisms have been suggested behind the cardioprotective effects of SGLT2 inhibitors. However, the underlying mechanisms still remain largely unexplored. Here, we used a zebrafish embryo model to search for new potential players whereby SGLT2 inhibitors attenuate HF. METHODS HF in zebrafish embryos was caused exposing them to chemically induced hypoxia. As a SGLT2 inhibitor, we used empagliflozin. Its effect on hypoxia-induced HF of the embryos was evaluated using video microscopy and calculation of fractional shortening (FS) of embryos´ hearts. RT-qPCR of brain natriuretic peptide (bnp) expression was also used to examine empagliflozin´s effect on HF. Transcriptome analysis of total RNA of the embryos was performed to search for new potential mechanisms contributing to the beneficial effect of empagliflozin on HF. RESULTS Empagliflozin significantly attenuated hypoxia-induced HF of zebrafish embryos as shown with improved FS of the hearts and decreased bnp expression. Transcriptome analysis revealed that the improvement of HF in response to empagliflozin was accompanied with decreased matrix metalloproteinase 13a (mmp13a) expression. Treatment of hypoxia-induced embryos with MMP13 inhibitor ameliorated the impaired heart function accordingly to the effect of empagliflozin. MMP13 inhibitor was not toxic to the embryos. CONCLUSIONS Our study shows that empagliflozin´s favorable effect on attenuating HF is mediated via MMP13. MMP13 provides a novel option when developing new therapeutics for HF treatment.
Collapse
Affiliation(s)
- R Huttunen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland
| | - A-M Haapanen-Saaristo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - A Hjelt
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland
| | - A Jokilammi
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland
| | - I Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - H Järveläinen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland; Department of Internal Medicine, Satasairaala Central Hospital, The Wellbeing Services County of Satakunta, Sairaalantie 3, Pori 28500, Finland.
| |
Collapse
|
5
|
Triposkiadis F, Xanthopoulos A, Skoularigis J. Targeting Sodium in Heart Failure. J Pers Med 2024; 14:1064. [PMID: 39452570 PMCID: PMC11508519 DOI: 10.3390/jpm14101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
A dominant event determining the course of heart failure (HF) includes the disruption of the delicate sodium (Na+) and water balance leading to (Na+) and water retention and edema formation. Although incomplete decongestion adversely affects outcomes, it is unknown whether interventions directly targeting (Na+), such as strict dietary (Na+) restriction, intravenous hypertonic saline, and diuretics, reverse this effect. As a result, it is imperative to implement (Na+)-targeting interventions in selected HF patients with established congestion on top of quadruple therapy with angiotensin receptor neprilysin inhibitor, β-adrenergic receptor blocker, mineralocorticoid receptor antagonist, and sodium glucose cotransporter 2 inhibitor, which dramatically improves outcomes. The limited effectiveness of (Na+)-targeting treatments may be partly due to the fact that the current metrics of HF severity have a limited capacity of foreseeing and averting episodes of congestion and guiding (Na+)-targeting treatments, which often leads to dysnatremias, adversely affecting outcomes. Recent evidence suggests that spot urinary sodium measurements may be used as a guide to monitor (Na+)-targeting interventions both in chronic and acute HF. Further, the classical (2)-compartment model of (Na+) storage has been displaced by the (3)-compartment model emphasizing the non-osmotic accumulation of (Na+), chiefly in the skin. 23(Na+) magnetic resonance imaging (MRI) enables the accurate and reliable quantification of tissue (Na+). Another promising approach enabling tissue (Na+) monitoring is based on wearable devices employing ion-selective electrodes for electrolyte detection, including (Na+) and (Cl-). Undoubtably, further studies using 23(Na+)-MRI technology and wearable sensors are required to learn more about the clinical significance of tissue (Na+) storage and (Na+)-related mechanisms of morbidity and mortality in HF.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (J.S.)
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (J.S.)
| |
Collapse
|
6
|
Lee J, Rogers HM, Springer DA, Noguchi CT. Neuronal nitric oxide synthase required for erythropoietin modulation of heart function in mice. Front Physiol 2024; 15:1338476. [PMID: 38628440 PMCID: PMC11019009 DOI: 10.3389/fphys.2024.1338476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: Erythropoietin (EPO) acts primarily in regulating red blood cell production mediated by high EPO receptor (EPOR) expression in erythroid progenitor cells. EPO activity in non-erythroid tissue is evident in mice with EPOR restricted to erythroid tissues (ΔEPORE) that become obese, glucose-intolerant, and insulin-resistant. In animal models, nitric oxide synthase (NOS) contributes to EPO activities including erythropoiesis, neuroprotection, and cardioprotection against ischemia-reperfusion injury. However, we found that extended EPO treatment to increase hematocrit compromised heart function, while the loss of neuronal NOS (nNOS) was protective against the deleterious activity of EPO to promote heart failure. Methods: Wild-type (WT) mice, ΔEPORE mice, and nNOS-knockout mice (nNOS-/-) were placed on a high-fat diet to match the ΔEPORE obese phenotype and were treated with EPO for 3 weeks. Hematocrit and metabolic response to EPO treatment were monitored. Cardiac function was assessed by echocardiography and ultrasonography. Results: ΔEPORE mice showed a decrease in the left ventricular outflow tract (LVOT) peak velocity, ejection fraction, and fractional shortening, showing that endogenous non-erythroid EPO response is protective for heart function. EPO treatment increased hematocrit in all mice and decreased fat mass in male WT, demonstrating that EPO regulation of fat mass requires non-erythroid EPOR. EPO treatment also compromised heart function in WT mice, and decreased the pulmonary artery peak velocity (PA peak velocity), LVOT peak velocity, ejection fraction, and fractional shortening, but it had minimal effect in further reducing the heart function in ΔEPORE mice, indicating that the adverse effect of EPO on heart function is not related to EPO-stimulated erythropoiesis. ΔEPORE mice had increased expression of heart failure-associated genes, hypertrophic cardiomyopathy-related genes, and sarcomeric genes that were also elevated with EPO treatment in WT mice. Male and female nNOS-/- mice were protected against diet-induced obesity. EPO treatment in nNOS-/- mice increased the hematocrit that tended to be lower than WT mice and decreased the PA peak velocity but did not affect the LVOT peak velocity, ejection fraction, and fractional shortening, suggesting that nNOS is required for the adverse effect of EPO treatment on heart function in WT mice. EPO treatment did not change expression of heart failure-associated gene expression in nNOS-/- mice. Discussion: Endogenous EPO has a protective effect on heart function. With EPO administration, in contrast to the protective effect to the cardiac injury of acute EPO treatment, extended EPO treatment to increase hematocrit in WT mice adversely affected the heart function with a corresponding increase in expression of heart failure-associated genes. This EPO activity was independent of EPO-stimulated erythropoiesis and required EPOR in non-erythroid tissue and nNOS activity, while nNOS-/- mice were protected from the EPO-associated adverse effect on heart function. These data provide evidence that nNOS contributes to the negative impact on the heart function of high-dose EPO treatment for anemia.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Heather M. Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Danielle A. Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Constance T. Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Ferreira JP, Butler J, Anker SD, Januzzi JL, Panova-Noeva M, Reese-Petersen AL, Sattar N, Schueler E, Pocock SJ, Filippatos G, Packer M, Sumin M, Zannad F. Effects of empagliflozin on collagen biomarkers in patients with heart failure: Findings from the EMPEROR trials. Eur J Heart Fail 2024; 26:274-284. [PMID: 38037709 DOI: 10.1002/ejhf.3101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023] Open
Abstract
AIMS Extracellular matrix remodelling is one of the key pathways involved in heart failure (HF) progression. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) may have a role in attenuating myocardial fibrosis. The impact of SGLT2i on blood markers of collagen turnover in humans is not fully elucidated. This study aimed to investigate the effect of empagliflozin on serum markers of collagen turnover in patients enrolled in the EMPEROR-Preserved and EMPEROR-Reduced trials. METHODS AND RESULTS Overall, 1084 patients (545 in empagliflozin and 539 in placebo) were included in the analysis. Procollagen type I carboxy-terminal propeptide (PICP), a fragment of N-terminal type III collagen (PRO-C3), procollagen type I amino-terminal peptide (PINP), a fragment of C-terminal type VIa3 collagen (PRO-C6), a fragment of type I collagen (C1M), and a fragment of type III collagen (C3M) were measured in serum at baseline, 12 and 52 weeks. A mixed model repeated measurements model was used to evaluate the effect of empagliflozin versus placebo on the analysed biomarkers. Higher baseline PICP, PRO-C6 and PINP levels were associated with older age, a more severe HF presentation, higher levels of natriuretic peptides and high-sensitivity troponin T, and the presence of comorbid conditions such as chronic kidney disease and atrial fibrillation. Higher PICP levels were associated with the occurrence of the study primary endpoint (a composite of HF hospitalization or cardiovascular death), and PRO-C6 and PINP were associated with the occurrence of sustained worsening of kidney function. On the other hand, PRO-C3, C1M, and C3M were not associated with worse HF severity or study outcomes. Compared to placebo, empagliflozin reduced PICP at week 12 by 5% and at week 52 by 8% (week 12: geometric mean ratio = 0.95, 95% confidence interval [CI] 0.91-0.99, p = 0.012; week 52: geometric mean ratio = 0.92, 95% CI 0.88-0.97, p = 0.003). Additionally, empagliflozin reduced PRO-C3 at week 52 by 7% (week 12: geometric mean ratio = 0.98, 95% CI 0.95-1.02, p = 0.42; week 52: geometric mean ratio = 0.93, 95% CI 0.89-0.98, p = 0.003), without impact on other collagen markers. CONCLUSION Our observations are consistent with experimental observations that empagliflozin down-regulates profibrotic signalling. The importance of such an effect for the clinical benefits of SGLT2i in HF remains to be elucidated.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Department of Surgery and Physiology, Cardiovascular Research and Development Center (UnIC@RISE), Faculty of Medicine of the University of Porto, Porto, Portugal
- Centre d'Investigations Cliniques Plurithématique 14-33, Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, Nancy, France
- Cardiovascular Research and Development Center, Nancy, France
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Medicine, University of Mississippi School of Medicine, Jackson, MS, USA
| | - Stefan D Anker
- Department of Cardiology (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - James L Januzzi
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Stuart J Pocock
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Milton Packer
- Baylor University Medical Center, Dallas, TX, USA
- Imperial College, London, UK
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 14-33, Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, Nancy, France
| |
Collapse
|
8
|
Scisciola L, Paolisso P, Belmonte M, Gallinoro E, Delrue L, Taktaz F, Fontanella RA, Degrieck I, Pesapane A, Casselman F, Puocci A, Franzese M, Van Praet F, Torella M, Marfella R, De Feo M, Bartunek J, Paolisso G, Barbato E, Barbieri M, Vanderheyden M. Myocardial sodium-glucose cotransporter 2 expression and cardiac remodelling in patients with severe aortic stenosis: The BIO-AS study. Eur J Heart Fail 2024; 26:471-482. [PMID: 38247224 DOI: 10.1002/ejhf.3145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
AIM Cardiac remodelling plays a major role in the prognosis of patients with aortic stenosis (AS) and could impact the benefits of aortic valve replacement. Our study aimed to evaluate the expression of sodium-glucose cotransporter 2 (SGLT2) gene and protein in patients with severe AS stratified in high gradient (HG) and low flow-low gradient (LF-LG) AS and its association with cardiac functional impairments. METHODS AND RESULTS Gene expression and protein levels of main biomarkers of cardiac fibrosis (galectin-3, sST2, serpin-4, procollagen type I amino-terminal peptide, procollagen type I carboxy-terminal propeptide, collagen, transforming growth factor [TGF]-β), inflammation (growth differentiation factor-15, interleukin-6, nuclear factor-κB [NF-κB]), oxidative stress (superoxide dismutase 1 [SOD1] and 2 [SOD2]), and cardiac metabolism (sodium-hydrogen exchanger, peroxisome proliferator-activated receptor [PPAR]-α, PPAR-γ, glucose transporter 1 [GLUT1] and 4 [GLUT4]) were evaluated in blood samples and heart biopsies of 45 patients with AS. Our study showed SGLT2 gene and protein hyper-expression in patients with LF-LG AS, compared to controls and HG AS (p < 0.05). These differences remained significant even after adjusting for age, gender, body mass index, history of diabetes mellitus, arterial hypertension, and coronary artery disease. SGLT2 gene expression was positively correlated with: (i) TGF-β (r = 0.72, p < 0.001) and collagen (r = 0.73, p < 0.001) as markers of fibrosis; (ii) NF-κB (r = 0.36, p < 0.01) and myocardial interleukin-6 (r = 0.68, p < 0.001) as markers of inflammation: (iii) SOD2 (r = -0.38, p < 0.006) as a marker of oxidative stress; (iv) GLUT4 (r = 0.33, p < 0.02) and PPAR-α (r = 0.36, p < 0.01) as markers of cardiac metabolism. CONCLUSION In patients with LF-LG AS, SGLT2 gene and protein were hyper-expressed in cardiomyocytes and associated with myocardial fibrosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Emanuele Gallinoro
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Leen Delrue
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Ivan Degrieck
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | - Armando Puocci
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | - Michele Torella
- Department of Translation Medical Science, University of Campania 'Luigi Vanvitelli' and Monaldi Hospital, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Marisa De Feo
- Department of Translation Medical Science, University of Campania 'Luigi Vanvitelli' and Monaldi Hospital, Naples, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | |
Collapse
|
9
|
Sayour AA, Oláh A, Ruppert M, Barta BA, Merkely B, Radovits T. Effect of pharmacological selectivity of SGLT2 inhibitors on cardiovascular outcomes in patients with type 2 diabetes: a meta-analysis. Sci Rep 2024; 14:2188. [PMID: 38273008 PMCID: PMC10810805 DOI: 10.1038/s41598-024-52331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce major adverse cardiovascular events (MACE) in type 2 diabetic (T2DM) patients. Pharmacological selectivity of these agents to SGLT2 over SGLT1 is highly variant, with unknown clinical relevance. Genetically reduced SGLT1-but not SGLT2-activity correlates with lower risk of heart failure and mortality, therefore additional non-selective SGLT1 inhibition might be beneficial. In this prespecified meta-analysis, we included 6 randomized, placebo-controlled cardiovascular outcome trials of SGLT2 inhibitors assessing MACE in 57,553 patients with T2DM. Mixed-effects meta-regression revealed that pharmacological selectivity of SGLT2 inhibitors (either as continuous or dichotomized variable) had no significant impact on most outcomes. However, lower SGLT2 selectivity correlated with significantly lower risk of stroke (pseudo-R2 = 78%; p = 0.011). Indeed, dual SGLT1/2 inhibitors significantly reduced the risk of stroke (hazard ratio [HR], 0.78; 95% confidence interval [CI], 0.64-0.94), unlike selective agents (p for interaction = 0.018). The risk of diabetic ketoacidosis and genital infections was higher in both pharmacological groups versus placebo. However, hypotension occurred more often with non-selective SGLT2 inhibitors (odds ratio [OR], 1.87; 95% CI, 1.20-2.92) compared with selective agents (p for interaction = 0.044). In conclusion, dual SGLT1/2 inhibition reduces stroke in high-risk T2DM patients but has limited additional effect on other clinical outcomes.
Collapse
Affiliation(s)
- Alex Ali Sayour
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Városmajor Str. 68, 1122, Budapest, Hungary.
| | - Attila Oláh
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Városmajor Str. 68, 1122, Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Városmajor Str. 68, 1122, Budapest, Hungary
| | - Bálint András Barta
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Városmajor Str. 68, 1122, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Városmajor Str. 68, 1122, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Városmajor Str. 68, 1122, Budapest, Hungary
| |
Collapse
|
10
|
Olaniyi KS, Areloegbe SE, Fiemotongha FE. Cardiac energy depletion in a rat model of polycystic ovarian syndrome is reversed by acetate and associated with inhibitory effect of HDAC2/mTOR. Eur J Pharmacol 2024; 962:176243. [PMID: 38048978 DOI: 10.1016/j.ejphar.2023.176243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
In addition to the clinical manifestation of polycystic ovarian syndrome (PCOS), life-threatening diseases, especially hypertension and cardiovascular disease (CVD) are emerging critical complications of PCOS. Changes in cardiac energy remains an independent risk factor of CVD. Histone deacetylase (HDAC) inhibitors, including acetate has received attention for its beneficial role in energy regulation. Herein we hypothesized that acetate improves cardiac energy homeostasis in experimentally induced PCOS. Female Wistar rats (8-week-old) were divided into groups. To induce PCOS, 1 mg/kg of letrozole was given for 21 days. After confirmation of PCOS, acetate (200 mg/kg) was administered for 6 weeks. Rats with PCOS showed multiple ovarian cysts with androgen excess and decreased SHBG. The rats also manifested impaired glucose tolerance/hyperinsulinemia and hypertriglyceridemia. Increased systemic oxidative stress (malondialdehyde)/inflammatory (NF-kB/SDF-1) markers and nitric oxide deficiency (NO/eNOS) were observed. Though, the body weight was increased without affecting the cardiac mass index of PCOS rats. Nevertheless, there was an increase in cardiac triglyceride and oxidative stress/inflammatory markers with consequent cardiac injury, revealed by decreased levels of SIRT-1/HIF-1α and increased levels of CTGF/TGFβ-1 and plasma troponin T. These led to cardiac ATP depletion with increased AMP and AMP/ATP ratio. These alterations were accompanied by elevated levels of mTOR and HDAC2, which were reversed when treated with acetate. The present results interestingly suggest that HDAC2 inhibition by acetate reversed cardiac energy depletion and attendant cardiomorbidities in experimental PCOS model. A beneficial effect that is accompanied by suppressed expression of mTOR.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
| | - Stephanie E Areloegbe
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Faustina E Fiemotongha
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| |
Collapse
|
11
|
Packer M. Mechanisms of enhanced renal and hepatic erythropoietin synthesis by sodium-glucose cotransporter 2 inhibitors. Eur Heart J 2023; 44:5027-5035. [PMID: 37086098 PMCID: PMC10733737 DOI: 10.1093/eurheartj/ehad235] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major heart failure events, an action that is statistically linked to enhanced erythropoiesis, suggesting that stimulation of erythropoietin and cardioprotection are related to a shared mechanism. Four hypotheses have been proposed to explain how these drugs increase erythropoietin production: (i) renal cortical reoxygenation with rejuvenation of erythropoietin-producing cells; (ii) counterregulatory distal sodium reabsorption leading to increased tubular workload and oxygen consumption, and thus, to localized hypoxia; (iii) increased iron mobilization as a stimulus of hypoxia-inducible factor-2α (HIF-2α)-mediated erythropoietin synthesis; and (iv) direct HIF-2α activation and enhanced erythropoietin gene transcription due to increased sirtuin-1 (SIRT1) signaling. The first two hypotheses assume that the source of increased erythropoietin is the interstitial fibroblast-like cells in the deep renal cortex. However, SGLT2 inhibitors do not alter regional tissue oxygen tension in the non-diabetic kidney, and renal erythropoietin synthesis is markedly impaired in patients with anemia due to chronic kidney disease, and yet, SGLT2 inhibitors produce an unattenuated erythrocytic response in these patients. This observation raises the possibility that the liver contributes to the production of erythropoietin during SGLT2 inhibition. Hypoxia-inducible factor-2α and erythropoietin are coexpressed not only in the kidney but also in hepatocytes; the liver is a major site of production when erythropoietin stimulation is maintained for prolonged periods. The ability of SGLT2 inhibitors to improve iron mobilization by derepressing hepcidin and ferritin would be expected to increase cytosolic ferrous iron, which might stimulate HIF-2α expression in both the kidney and liver through the action of iron regulatory protein 1. Alternatively, the established ability of SGLT2 inhibitors to enhance SIRT1 might be the mechanism of enhanced erythropoietin production with these drugs. In hepatic cell lines, SIRT1 can directly activate HIF-2α by deacetylation, and additionally, through an effect of SIRT in the liver, peroxisome proliferator-activated receptor-γ coactivator-1α binds to hepatic nuclear factor 4 to promote transcription of the erythropoietin gene and synthesis of erythropoietin. Since SIRT1 up-regulation exerts direct cytoprotective effects on the heart and stimulates erythropoietin, it is well-positioned to represent the shared mechanism that links erythropoiesis to cardioprotection during SGLT2 inhibition.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, 621 North Hall Street, Dallas, TX 75226, USA
- Imperial College, London, UK
| |
Collapse
|
12
|
Li N, Zhu QX, Li GZ, Wang T, Zhou H. Empagliflozin ameliorates diabetic cardiomyopathy probably via activating AMPK/PGC-1α and inhibiting the RhoA/ROCK pathway. World J Diabetes 2023; 14:1862-1876. [PMID: 38222788 PMCID: PMC10784799 DOI: 10.4239/wjd.v14.i12.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) increases the risk of hospitalization for heart failure (HF) and mortality in patients with diabetes mellitus. However, no specific therapy to delay the progression of DCM has been identified. Mitochondrial dysfunction, oxidative stress, inflammation, and calcium handling imbalance play a crucial role in the pathological processes of DCM, ultimately leading to cardiomyocyte apoptosis and cardiac dysfunctions. Empagliflozin, a novel glucose-lowering agent, has been confirmed to reduce the risk of hospitalization for HF in diabetic patients. Nevertheless, the molecular mechanisms by which this agent provides cardioprotection remain unclear. AIM To investigate the effects of empagliflozin on high glucose (HG)-induced oxidative stress and cardiomyocyte apoptosis and the underlying molecular mechanism. METHODS Twelve-week-old db/db mice and primary cardiomyocytes from neonatal rats stimulated with HG (30 mmol/L) were separately employed as in vivo and in vitro models. Echocardiography was used to evaluate cardiac function. Flow cytometry and TdT-mediated dUTP-biotin nick end labeling staining were used to assess apoptosis in myocardial cells. Mitochondrial function was assessed by cellular ATP levels and changes in mitochondrial membrane potential. Furthermore, intracellular reactive oxygen species production and superoxide dismutase activity were analyzed. Real-time quantitative PCR was used to analyze Bax and Bcl-2 mRNA expression. Western blot analysis was used to measure the phosphorylation of AMP-activated protein kinase (AMPK) and myosin phosphatase target subunit 1 (MYPT1), as well as the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and active caspase-3 protein levels. RESULTS In the in vivo experiment, db/db mice developed DCM. However, the treatment of db/db mice with empagliflozin (10 mg/kg/d) for 8 wk substantially enhanced cardiac function and significantly reduced myocardial apoptosis, accompanied by an increase in the phosphorylation of AMPK and PGC-1α protein levels, as well as a decrease in the phosphorylation of MYPT1 in the heart. In the in vitro experiment, the findings indicate that treatment of cardiomyocytes with empagliflozin (10 μM) or fasudil (FA) (a ROCK inhibitor, 100 μM) or overexpression of PGC-1α significantly attenuated HG-induced mitochondrial injury, oxidative stress, and cardiomyocyte apoptosis. However, the above effects were partly reversed by the addition of compound C (CC). In cells exposed to HG, empagliflozin treatment increased the protein levels of p-AMPK and PGC-1α protein while decreasing phosphorylated MYPT1 levels, and these changes were mitigated by the addition of CC. Adding FA and overexpressing PGC-1α in cells exposed to HG substantially increased PGC-1α protein levels. In addition, no sodium-glucose cotransporter (SGLT)2 protein expression was detected in cardiomyocytes. CONCLUSION Empagliflozin partially achieves anti-oxidative stress and anti-apoptotic effects on cardiomyocytes under HG conditions by activating AMPK/PGC-1α and suppressing of the RhoA/ROCK pathway independent of SGLT2.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Qiu-Xiao Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Gui-Zhi Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
13
|
Garg S, Kanagala SG, Anamika F, Parikh K, Kaur H, Garg N, Jain R. Beyond Glycemic Control: Mechanistic Insights Into SGLT-2 Inhibitors in Heart Failure Management. Cardiol Rev 2023:00045415-990000000-00178. [PMID: 38019033 DOI: 10.1097/crd.0000000000000632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Heart failure is a common and clinically significant cardiac condition that causes significant morbidity and mortality in the United States. Diabetes and hypertension are 2 of the most common comorbidities associated with heart failure. Other risk factors for heart failure include smoking, obesity, and intrinsic cardiac diseases such as myocardial infarction and valvular pathologies. All of these conditions, to some extent, cause remodeling within the cardiomyocyte, which eventually leads to the development of congestive heart failure. Over the years, using diuretics and medications that inhibit the Renin-Angiotensin-Aldosterone System has been the traditional treatment for congestive heart failure. But in recent years studies in the diabetic population revealed that sodium-glucose cotransporter-2 inhibitors had a negative impact on the remodeling of cardiomyocytes. In this review, we discuss the numerous molecular mechanisms by which these recently developed medicines inhibit remodeling in cardiomyocytes, independent of their intended effect of decreasing blood glucose levels. Furthermore, it emphasizes the use of these drugs in diabetic as well as non-diabetic patients as a promising adjunct to ongoing heart failure treatment.
Collapse
Affiliation(s)
- Shreya Garg
- From the Department of Internal Medicine, Dayanand Medical College & Hospital, Punjab, India
| | | | - Fnu Anamika
- Department of Internal Medicine, University College of Medical Sciences, Delhi, India
| | - Kinna Parikh
- Department of Internal Medicine, GMERS Medical College, Gujarat, India
| | - Harmanjit Kaur
- Department of Internal Medicine, Government Medical College, Punjab, India
| | - Nikita Garg
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL
| | - Rohit Jain
- Department of Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| |
Collapse
|
14
|
Lorenzo M, Jacobs-Cachá C, Palau P, Amiguet M, Seller J, Núñez E, Espriella RDL, Górriz JL, Miñana G, Sanchis J, Bayés-Genis A, Soler MJ, Packer M, Núñez J. Short-Term Changes in Peak VO 2 After Initiation of Dapagliflozin in Heart Failure Across Iron Status. JACC. HEART FAILURE 2023; 11:1611-1622. [PMID: 37676213 DOI: 10.1016/j.jchf.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Some studies have indicated that sodium-glucose cotransporter-2 (SGLT2) inhibitors promote an increase in cell iron use. OBJECTIVES The aim of this study was to examine, in patients with stable heart failure with reduced left ventricular ejection fraction (HFrEF), the effect of dapagliflozin on ferrokinetic parameters and whether short-term changes in peak oxygen consumption (Vo2) after dapagliflozin treatment are influenced by baseline and serial ferrokinetic status. METHODS This was an exploratory analysis of a randomized, double-blind clinical trial that evaluated the effect of dapagliflozin vs placebo on peak Vo2 in patients with HFrEF (NCT04197635) and included 76 of the 90 patients initially enrolled in the trial. Changes in peak Vo2 at 1 and 3 months were explored according to baseline and longitudinal ferrokinetic parameters (natural logarithm [ln] ferritin, transferrin saturation index [TSAT], soluble transferrin receptor, and hepcidin). Linear mixed-effect regression was used for the analyses. RESULTS Compared with placebo, dapagliflozin led to a significant decrease in 3-month ln ferritin (P = 0.040) and an increase in 1-month ln soluble transferrin receptor (P = 0.023). Between-treatment comparisons revealed a stepwise increase in peak Vo2 in the dapagliflozin group at 1 and 3 months, which was especially apparent at lower baseline values of TSAT and ferritin (P < 0.05). Lower time-varying values of TSAT (1 and 3 months) also identified patients with greater improvements in peak Vo2. CONCLUSIONS In patients with stable HFrEF, treatment with dapagliflozin resulted in short-term increases in peak Vo2, which were most marked in patients with surrogates of greater iron deficiency at baseline and during treatment. (Short-Term Effects of Dapagliflozin on Peak Vo2 in HFrEF [DAPA-VO2]; NCT04197635).
Collapse
Affiliation(s)
- Miguel Lorenzo
- Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; INCLIVA, Valencia, Spain
| | | | - Patricia Palau
- Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; INCLIVA, Valencia, Spain
| | - Martina Amiguet
- Cardiology Department, Hospital General Universitario de Castellón, Castellón de la Plana, Spain
| | - Julia Seller
- Cardiology Department, Hospital de Dénia-Marina Salud, Alicante, Spain; Fundación Para Fomento de Investigación Sanitaria y Biomédica CV-Fisabio, Valencia, Spain
| | | | - Rafael de la Espriella
- Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; INCLIVA, Valencia, Spain
| | - Jose Luis Górriz
- Universitat de València, Valencia, Spain; Nephrology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Gema Miñana
- Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; INCLIVA, Valencia, Spain; Universitat de València, Valencia, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Juan Sanchis
- Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; INCLIVA, Valencia, Spain; Universitat de València, Valencia, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Antoni Bayés-Genis
- CIBER Cardiovascular, Madrid, Spain; Cardiology Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Milton Packer
- Baylor Heart and Vascular Institute, Dallas, Texas, USA
| | - Julio Núñez
- Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; INCLIVA, Valencia, Spain; Universitat de València, Valencia, Spain; CIBER Cardiovascular, Madrid, Spain.
| |
Collapse
|
15
|
Ferreira JP, Blatchford JP, Teerlink JR, Kosiborod MN, Angermann CE, Biegus J, Collins SP, Tromp J, Nassif ME, Psotka MA, Comin-Colet J, Mentz RJ, Brueckmann M, Nordaby M, Ponikowski P, Voors AA. Mineralocorticoid receptor antagonist use and the effects of empagliflozin on clinical outcomes in patients admitted for acute heart failure: Findings from EMPULSE. Eur J Heart Fail 2023; 25:1797-1805. [PMID: 37540060 DOI: 10.1002/ejhf.2982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
AIMS In patients hospitalized for acute heart failure (AHF) empagliflozin produced greater clinical benefit than placebo. Many patients with AHF are treated with mineralocorticoid receptor antagonists (MRAs). The interplay between empagliflozin and MRAs in AHF is yet to be explored. This study aimed to evaluate the efficacy and safety of empagliflozin versus placebo according to MRA use at baseline in the EMPULSE trial (NCT04157751). METHODS AND RESULTS In this analysis all comparisons were performed between empagliflozin and placebo, stratified by baseline MRA use. The primary outcome included all-cause death, heart failure events, and a ≥5 point difference in Kansas City Cardiomyopathy Questionnaire (KCCQ) total symptom score at 90 days, assessed using the win ratio (WR). First heart failure hospitalization or cardiovascular death was a secondary outcome. From the 530 patients randomized, 276 (52%) were receiving MRAs at baseline. MRA users were younger, had lower ejection fraction, better renal function, and higher KCCQ scores. The primary outcome showed benefit of empagliflozin irrespective of baseline MRA use (WR 1.46, 95% confidence interval [CI] 1.08-1.97 and WR 1.27, 95% CI 0.93-1.73 in MRA users and non-users, respectively; interaction p = 0.52). The effect of empagliflozin on first heart failure hospitalization or cardiovascular death was not modified by MRA use (hazard ratio [HR] 0.58, 95% CI 0.30-1.11 and HR 0.85, 95% CI 0.47-1.52 in MRA users and non-users, respectively; interaction p = 0.39). Investigator-reported and severe hyperkalaemia events were infrequent (<6%) irrespective of MRA use. CONCLUSIONS In patients admitted for AHF, initiation of empagliflozin produced clinical benefit and was well tolerated irrespective of background MRA use. These findings support the early use of empagliflozin on top of MRA therapy in patients admitted for AHF.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
- F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Jonathan P Blatchford
- Elderbrook Solutions GmbH, Bietigheim-Bissingen, Germany on behalf of Boehringer Ingelheim, Pharma GmbH & Co. KG, Biberach, Germany
| | - John R Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas, MO, USA
| | - Christiane E Angermann
- Comprehensive Heart Failure Center Würzburg, University and University Hospital Würzburg, and Department of Medicine 1, University Hospital Würzburg, Würzburg, Germany
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Sean P Collins
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research and Education Clinical Care, Tennessee Valley Healthcare Facility VA Medical Center, Nashville, TN, USA
| | - Jasper Tromp
- Saw Swee Hock School of Public Health, National University of Singapore, the National University Health System, Singapore, Singapore, Singapore
| | - Michael E Nassif
- Saint Luke's Mid America Heart Institute and the University of Missouri, Kansas, MO, USA
| | | | - Josep Comin-Colet
- Hospital Universitari de Bellvitge, University of Barcelona, IDIBELL and CIBERCV, Barcelona, Spain
| | - Robert J Mentz
- Duke Clinical Research Institute and Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Martina Brueckmann
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matias Nordaby
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Miñana G, de la Espriella R, Palau P, Amiguet M, Seller J, García Pinilla JM, Núñez E, Górriz JL, Valle A, Sanchis J, Bayés-Genís A, Núñez J. Early glomerular filtration rate decline is associated with hemoglobin rise following dapagliflozin initiation in heart failure with reduced ejection fraction. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:783-792. [PMID: 36958534 DOI: 10.1016/j.rec.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
INTRODUCTION AND OBJECTIVES Sodium-glucose cotransporter-2 inhibitors (SGLT2i) induce short-term changes in renal function and hemoglobin. Their pathophysiology is incompletely understood. We aimed to evaluate the relationship between 1- and 3-month estimated glomerular filtration rate (eGFR) and hemoglobin changes following initiation of dapagliflozin in patients with stable heart failure with reduced ejection fraction (HFrEF). METHODS This is a post hoc analysis of a randomized clinical trial that evaluated the effect of dapagliflozin on 1- and 3-month peak oxygen consumption in outpatients with stable HFrEF (DAPA-VO2 trial, NCT04197635). We used linear mixed regression analysis to assess the relationship between eGFR and hemoglobin changes across treatment arms. RESULTS A total of 87 patients were evaluated in this substudy. The mean age was 67.0± 10.5 years, and 21 (24.1%) were women. The mean baseline eGFR and hemoglobin were 66.9±20.7mL/min/1.73m2 and 14.3±1.7g/dL, respectively. Compared with placebo, eGFR did not significantly change at either time points in the dapagliflozin group, but hemoglobin significantly increased at 1 and 3 months. At 1 month, the hemoglobin increase was related to decreases in eGFR only in the dapagliflozin arm (P <.001). At 3 months, there was no significant association in either treatment arms (P=.123). Changes in eGFR were not associated with changes in peak oxygen consumption, quality of life, or natriuretic peptides. CONCLUSIONS In patients with stable HFrEF, 1-month changes in eGFR induced by dapagliflozin are inversely related to changes in hemoglobin. This association was no longer significant at 3 months.
Collapse
Affiliation(s)
- Gema Miñana
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, Valencia, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Rafael de la Espriella
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, Valencia, España
| | - Patricia Palau
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, Valencia, España
| | - Martina Amiguet
- Departamento de Medicina, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Universitat Jaume I, Castellón, España
| | - Julia Seller
- Servicio de Cardiología, Hospital de Denia, Alicante, España
| | - José Manuel García Pinilla
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España; Servicio de Cardiología, Hospital Universitario Virgen de la Victoria, IBIMA, Málaga, España
| | - Eduardo Núñez
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, Valencia, España.
| | - José Luis Górriz
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, Valencia, España
| | - Alfonso Valle
- Servicio de Cardiología, Hospital de Denia, Alicante, España
| | - Juan Sanchis
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, Valencia, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Antoni Bayés-Genís
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España; Servicio de Cardiología, Hospital Germans Trias i Pujol, Universitat de Barcelona, Badalona, Barcelona, España
| | - Julio Núñez
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, Valencia, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| |
Collapse
|
17
|
Kong J, Li L, Yuan H, Bai F, Yang K, Zhao L, Xu S. In silico discovery of potential sodium-glucose cotransporter-2 inhibitors from natural products for treatment of heart failure via molecular docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2023; 41:8109-8120. [PMID: 36200619 DOI: 10.1080/07391102.2022.2130983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/24/2022] [Indexed: 10/10/2022]
Abstract
Heart failure (HF) is the end stage of cardiovascular disease. Because of its complex condition and poor prognosis, HF has become an important public health problem in the world. Sodium-glucose cotransporter-2 (SGLT2) is a member of the glucose transporter family. Recently, SGLT2 inhibitors have been applied to treat HF. In this study, the main aim was to discover natural SGLT2 inhibitor from Chinese herbs through docking-based virtual screening. Totally 113 natural compounds of potential SGLT2 inhibitor were identified, which displayed docking affinity higher than six approved inhibitors (dapagliflozin (IC50 = 4.9 nM), canagliflozin (IC50 = 4.4 nM 6.7), ipragliflozin (IC50 = 7.4 nM), empagliflozin (IC50 = 3.1 nM), tofogliflozin (IC50 = 4 nM) and luseogliflozin (IC50 = 2.3 nM)) through docking-based virtual screening. Then, the top three hits (ZINC70455591, ZINC85594065 and ZINC14588133) and six known inhibitors were selected for molecular dynamics simulation and the binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area to demonstrate the stability and affinity of docked complexes. These results pointed out that the three docked complexes were stabilized and the chosen compounds were tightly adhering to the binding site of SGLT2. Besides, pharmacokinetic properties of the selected compounds showed those natural compounds may be potential drug candidates. This study may be contributed to further in vitro and in vivo validation and the development of novel SGLT2 inhibitor for treating HF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiwu Kong
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Ling Li
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Huicheng Yuan
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Feng Bai
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Kai Yang
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Liangcun Zhao
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Shaohua Xu
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| |
Collapse
|
18
|
Pandey AK, Bhatt DL, Pandey A, Marx N, Cosentino F, Pandey A, Verma S. Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction. Eur Heart J 2023; 44:3640-3651. [PMID: 37674356 DOI: 10.1093/eurheartj/ehad389] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 09/08/2023] Open
Abstract
For decades, heart failure with preserved ejection fraction (HFpEF) proved an elusive entity to treat. Sodium-glucose cotransporter 2 (SGLT2) inhibitors have recently been shown to reduce the composite of heart failure hospitalization or cardiovascular death in patients with HFpEF in the landmark DELIVER and EMPEROR-Preserved trials. While improvements in blood sugar, blood pressure, and attenuation of kidney disease progression all may play some role, preclinical and translational research have identified additional mechanisms of these agents. The SGLT2 inhibitors have intriguingly been shown to induce a nutrient-deprivation and hypoxic-like transcriptional paradigm, with increased ketosis, erythropoietin, and autophagic flux in addition to altering iron homeostasis, which may contribute to improved cardiac energetics and function. These agents also reduce epicardial adipose tissue and alter adipokine signalling, which may play a role in the reductions in inflammation and oxidative stress observed with SGLT2 inhibition. Emerging evidence also indicates that these drugs impact cardiomyocyte ionic homeostasis although whether this is through indirect mechanisms or via direct, off-target effects on other ion channels has yet to be clearly characterized. Finally, SGLT2 inhibitors have been shown to reduce myofilament stiffness as well as extracellular matrix remodelling/fibrosis in the heart, improving diastolic function. The SGLT2 inhibitors have established themselves as robust, disease-modifying therapies and as recent trial results are incorporated into clinical guidelines, will likely become foundational in the therapy of HFpEF.
Collapse
Affiliation(s)
- Arjun K Pandey
- Michael G. DeGroote School of Medicine, McMaster University, 90 Main Street West, Hamilton, Ontario L8P 1H6, Canada
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Avinash Pandey
- Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, Ontario K1Y 4W7, Canada
| | - Nikolaus Marx
- Department of Internal Medicine, University Hospital Aachen, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Francesco Cosentino
- Division of Cardiology, Department of Medicine, Solna, Karolinska Institutet, Norrbacka S1:02, Stockholm, SE 17177, Sweden
- Heart, Vascular and Neuro Theme, Department of Cardiology, Karolinska University Hospital, Anna Steckséns gata 41, 171 64 Solna, Sweden
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Subodh Verma
- Division of Cardiac Surgery, Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON, Canada
| |
Collapse
|
19
|
Scisciola L, Chianese U, Caponigro V, Basilicata MG, Salviati E, Altucci L, Campiglia P, Paolisso G, Barbieri M, Benedetti R, Sommella E. Multi-omics analysis reveals attenuation of cellular stress by empagliflozin in high glucose-treated human cardiomyocytes. J Transl Med 2023; 21:662. [PMID: 37742032 PMCID: PMC10518098 DOI: 10.1186/s12967-023-04537-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute the gold standard treatment for type 2 diabetes mellitus (T2DM). Among them, empagliflozin (EMPA) has shown beneficial effects against heart failure. Because cardiovascular diseases (mainly diabetic cardiomyopathy) are the leading cause of death in diabetic patients, the use of EMPA could be, simultaneously, cardioprotective and antidiabetic, reducing the risk of death from cardiovascular causes and decreasing the risk of hospitalization for heart failure in T2DM patients. Interestingly, recent studies have shown that EMPA has positive benefits for people with and without diabetes. This finding broadens the scope of EMPA function beyond glucose regulation alone to include a more intricate metabolic process that is, in part, still unknown. Similarly, this significantly increases the number of people with heart diseases who may be eligible for EMPA treatment. METHODS This study aimed to clarify the metabolic effect of EMPA on the human myocardial cell model by using orthogonal metabolomics, lipidomics, and proteomics approaches. The untargeted and multivariate analysis mimicked the fasting blood sugar level of T2DM patients (hyperglycemia: HG) and in the average blood sugar range (normal glucose: NG), with and without the addition of EMPA. RESULTS Results highlighted that EMPA was able to modulate and partially restore the levels of multiple metabolites associated with cellular stress, which were dysregulated in the HG conditions, such as nicotinamide mononucleotide, glucose-6-phosphate, lactic acid, FA 22:6 as well as nucleotide sugars and purine/pyrimidines. Additionally, EMPA regulated the levels of several lipid sub-classes, in particular dihydroceramide and triacylglycerols, which tend to accumulate in HG conditions resulting in lipotoxicity. Finally, EMPA counteracted the dysregulation of endoplasmic reticulum-derived proteins involved in cellular stress management. CONCLUSIONS These results could suggest an effect of EMPA on different metabolic routes, tending to rescue cardiomyocyte metabolic status towards a healthy phenotype.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
- IEOS CNR, Naples, Italy
- Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program, Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program, Naples, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
20
|
Packer M, Cleland JGF. Combining Iron Supplements With SGLT2 Inhibitor-Stimulated Erythropoiesis in Heart Failure: Should We Be Worried About Thromboembolic Events? J Card Fail 2023; 29:403-406. [PMID: 36563739 DOI: 10.1016/j.cardfail.2022.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA; Imperial College, London, UK.
| | - John G F Cleland
- British Heart Foundation Centre of Research Excellence. School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Pugliese NR, Pellicori P, Filidei F, De Biase N, Maffia P, Guzik TJ, Masi S, Taddei S, Cleland JGF. Inflammatory pathways in heart failure with preserved left ventricular ejection fraction: implications for future interventions. Cardiovasc Res 2023; 118:3536-3555. [PMID: 36004819 PMCID: PMC9897694 DOI: 10.1093/cvr/cvac133] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
Many patients with symptoms and signs of heart failure have a left ventricular ejection fraction ≥50%, termed heart failure with preserved ejection fraction (HFpEF). HFpEF is a heterogeneous syndrome mainly affecting older people who have many other cardiac and non-cardiac conditions that often cast doubt on the origin of symptoms, such as breathlessness, or signs, such as peripheral oedema, rendering them neither sensitive nor specific to the diagnosis of HFpEF. Currently, management of HFpEF is mainly directed at controlling symptoms and treating comorbid conditions such as hypertension, atrial fibrillation, anaemia, and coronary artery disease. HFpEF is also characterized by a persistent increase in inflammatory biomarkers. Inflammation may be a key driver of the development and progression of HFpEF and many of its associated comorbidities. Detailed characterization of specific inflammatory pathways may provide insights into the pathophysiology of HFpEF and guide its future management. There is growing interest in novel therapies specifically designed to target deregulated inflammation in many therapeutic areas, including cardiovascular disease. However, large-scale clinical trials investigating the effectiveness of anti-inflammatory treatments in HFpEF are still lacking. In this manuscript, we review the role of inflammation in HFpEF and the possible implications for future trials.
Collapse
Affiliation(s)
| | - Pierpaolo Pellicori
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, Glasgow G12 8QQ, UK
| | - Francesco Filidei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples 80138, Italy
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Internal and Agricultural Medicine, Jagiellonian University, Collegium Medicum, Krakow 31-008, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - John G F Cleland
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
22
|
Connelly KA, Mazer CD, Puar P, Teoh H, Wang CH, Mason T, Akhavein F, Chang CW, Liu MH, Yang NI, Chen WS, Juan YH, Opingari E, Salyani Y, Barbour W, Pasricha A, Ahmed S, Kosmopoulos A, Verma R, Moroney M, Bakbak E, Krishnaraj A, Bhatt DL, Butler J, Kosiborod MN, Lam CSP, Hess DA, Rizzi Coelho-Filho O, Lafreniere-Roula M, Thorpe KE, Quan A, Leiter LA, Yan AT, Verma S. Empagliflozin and Left Ventricular Remodeling in People Without Diabetes: Primary Results of the EMPA-HEART 2 CardioLink-7 Randomized Clinical Trial. Circulation 2023; 147:284-295. [PMID: 36335517 DOI: 10.1161/circulationaha.122.062769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors have been demonstrated to promote reverse cardiac remodeling in people with diabetes or heart failure. Although it has been theorized that sodium-glucose cotransporter 2 inhibitors might afford similar benefits in people without diabetes or prevalent heart failure, this has not been evaluated. We sought to determine whether sodium-glucose cotransporter 2 inhibition with empagliflozin leads to a decrease in left ventricular (LV) mass in people without type 2 diabetes or significant heart failure. METHODS Between April 2021 and January 2022, 169 individuals, 40 to 80 years of age, without diabetes but with risk factors for adverse cardiac remodeling were randomly assigned to empagliflozin (10 mg/d; n=85) or placebo (n=84) for 6 months. The primary outcome was the 6-month change in LV mass indexed (LVMi) to baseline body surface area as measured by cardiac magnetic resonance imaging. Other measures included 6-month changes in LV end-diastolic and LV end-systolic volumes indexed to baseline body surface area and LV ejection fraction. RESULTS Among the 169 participants (141 men [83%]; mean age, 59.3±10.5 years), baseline LVMi was 63.2±17.9 g/m2 and 63.8±14.0 g/m2 for the empagliflozin- and placebo-assigned groups, respectively. The difference (95% CI) in LVMi at 6 months in the empagliflozin group versus placebo group adjusted for baseline LVMi was -0.30 g/m2 (-2.1 to 1.5 g/m2; P=0.74). Median baseline (interquartile range) NT-proBNP (N-terminal-pro B-type natriuretic peptide) was 51 pg/mL (20-105 pg/mL) and 55 pg/mL (21-132 pg/mL) for the empagliflozin- and placebo-assigned groups, respectively. The 6-month treatment effect of empagliflozin versus placebo (95% CI) on blood pressure and NT-proBNP (adjusted for baseline values) were -1.3 mm Hg (-5.2 to 2.6 mm Hg; P=0.52), 0.69 mm Hg (-1.9 to 3.3 mm Hg; P=0.60), and -6.1 pg/mL (-37.0 to 24.8 pg/mL; P=0.70) for systolic blood pressure, diastolic blood pressure, and NT-proBNP, respectively. No clinically meaningful between-group differences in LV volumes (diastolic and systolic indexed to baseline body surface area) or ejection fraction were observed. No difference in adverse events was noted between the groups. CONCLUSIONS Among people with neither diabetes nor significant heart failure but with risk factors for adverse cardiac remodeling, sodium-glucose cotransporter 2 inhibition with empagliflozin did not result in a meaningful reduction in LVMi after 6 months. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04461041.
Collapse
Affiliation(s)
- Kim A Connelly
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada.,Department of Physiology (K.A.C., C.D.M.), University of Toronto, ON, Canada
| | - C David Mazer
- Department of Anesthesia (C.D.M.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Physiology (K.A.C., C.D.M.), University of Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine (C.D.M.), University of Toronto, ON, Canada
| | - Pankaj Puar
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, Canada (P.P., S.A.)
| | - Hwee Teoh
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Division of Endocrinology and Metabolism (H.T., L.A.L.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Tamique Mason
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Farhad Akhavein
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Ching-Wen Chang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Department of Diagnostic Radiology (C.-W.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Min-Hui Liu
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan (M.-H.L.)
| | - Ning-I Yang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Wei-Siang Chen
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Intensive Care Unit, Division of Cardiology, Department of Internal Medicine (W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan
| | - Yu-Hsiang Juan
- School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan.,Institute for Radiological Research (Y.-H.J.), Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan (Y.-H.J.)
| | - Erika Opingari
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Temerty Faculty of Medicine (E.O., A. Kosmopoulos), University of Toronto, ON, Canada
| | - Yaseen Salyani
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - William Barbour
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada (W.B., D.A.H.)
| | - Aryan Pasricha
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Health & Exercise Science, Wake Forest University, Winston-Salem, NC (A.P.)
| | - Shamon Ahmed
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, Canada (P.P., S.A.)
| | - Andrew Kosmopoulos
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Temerty Faculty of Medicine (E.O., A. Kosmopoulos), University of Toronto, ON, Canada
| | - Raj Verma
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - Michael Moroney
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - Ehab Bakbak
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada
| | - Deepak L Bhatt
- Division of Cardiovascular Medicine, Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, MA (D.L.B.)
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX (J.B.).,Department of Medicine, University of Mississippi, Jackson (J.B.)
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City (M.N.K.)
| | - Carolyn S P Lam
- National Heart Centre Singapore (C.S.P.L.).,Division of Cardiology, Duke-National University of Singapore (C.S.P.L.).,Division of Cardiology, Department of Medicine, State University of Campinas (UNICAMP), São Paulo, Brazil (C.S.P.L.)
| | - David A Hess
- Division of Vascular Surgery (D.A.H.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada (W.B., D.A.H.).,Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada (D.A.H.)
| | | | - Myriam Lafreniere-Roula
- Applied Health Research Centre (M.L.-R., K.E.T.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Kevin E Thorpe
- Applied Health Research Centre (M.L.-R., K.E.T.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Dana Lana School of Public Health (K.E.T.), University of Toronto, ON, Canada
| | - Adrian Quan
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Lawrence A Leiter
- Division of Endocrinology and Metabolism (H.T., L.A.L.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada.,Department of Nutritional Sciences (L.A.L.), University of Toronto, ON, Canada
| | - Andrew T Yan
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada
| | - Subodh Verma
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada.,Department of Surgery (S.V.), University of Toronto, ON, Canada
| |
Collapse
|
23
|
Packer M. Alleviation of functional iron deficiency by SGLT2 inhibition in patients with type 2 diabetes. Diabetes Obes Metab 2022; 25:1143-1146. [PMID: 36583283 DOI: 10.1111/dom.14963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
24
|
Ferreira JP, Pimenta J, Moura B, Aguiar C, Franco F. Use of sodium glucose co-transporter 2 inhibitors in acute heart failure: a practical guidance. ESC Heart Fail 2022; 9:4344-4347. [PMID: 36004699 PMCID: PMC9773770 DOI: 10.1002/ehf2.14090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Heart failure (HF) is the most frequent cause of hospital admission among patients 65 years or older. Patients hospitalized for acutely decompensated chronic HF and 'de novo' acute heart failure (AHF) continue to experience unacceptably high post-discharge readmission and mortality rates. METHODS AND RESULTS Until recently, trials had failed to improve outcome in patients with AHF irrespective of ejection fraction with exception of sodium-glucose co-transporter 2 inhibitors (SGLT2i) that improved clinical outcomes in patients hospitalized for AHF in the Study to Test the Effect of Empagliflozin in Patients Who Are in Hospital for Acute Heart Failure (EMPULSE) and in the Effect of Sotagliflozin on Cardiovascular Events in Patients With Type 2 Diabetes Post Worsening Heart Failure (SOLOIST-WHF) trials. CONCLUSIONS This document reviews the potential utility of SGLT2i in patients hospitalized for AHF.
Collapse
Affiliation(s)
- João Pedro Ferreira
- UnIC@RISE, Department of Surgery and PhysiologyFaculty of Medicine of the University of PortoPortoPortugal
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques ‐ Plurithématique 14‐33, and Inserm U1116, CHRU, F‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - Joana Pimenta
- Department of Internal MedicineCentro Hospitalar de Vila Nova de Gaia/EspinhoVila Nova de GaiaPortugal
- UnIC@RISE, Department of MedicineFaculty of Medicine of the University of PortoPortoPortugal
| | - Brenda Moura
- Department of CardiologyHospital das Forças Armadas‐Pólo do Porto, CINTESIS‐Cardiocare, Faculty of Medicine of the University of PortoPortoPortugal
| | - Carlos Aguiar
- Department of Cardiology, Chair of the Advanced Heart Failure and Heart Transplantation UnitSanta Cruz Hospital, Centro Hospitalar de Lisboa OcidentalLisbonPortugal
| | - Fátima Franco
- Department of Cardiology, Chair of the Advanced Heart Failure UnitHospital and University Center of CoimbraCoimbraPortugal
| |
Collapse
|
25
|
Min J, Wu L, Liu Y, Song G, Deng Q, Jin W, Yu W, Abudureyimu M, Pei Z, Ren J. Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis. Life Sci 2022; 312:121207. [PMID: 36403642 DOI: 10.1016/j.lfs.2022.121207] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Trastuzumab (TZM) is commonly used for target therapy in breast cancer patients with high HER2 although the cardiotoxicity restricts its clinical usage. DNA damage and ferroptosis are implicated in anti-tumor drug cardiotoxicity. Given the emerging use of SGLT2 inhibitors in clinical cardiology, this study evaluated the impact of SGLT2 inhibitor Empagliflozin on TZM-induced cardiotoxicity, and mechanism involved with a focus on DNA damage and ferroptosis. Adult C57BL/6 mice were challenged with TZM (10 mg/kg/week, i.p.) or saline for six weeks. A cohort of mice received Empagliflozin (10 mg/kg, i.p.) at the same time. Myocardial function, morphology, ultrastructure, mitochondrial integrity, oxidative stress, DNA damage and various cell death domains were evaluated in TZM-challenged mice with or without Empagliflozin treatment. Our data revealed that TZM challenge overtly increased levels of serum LDH and troponin I, promoted adverse myocardial remodeling (increased heart weight, chamber size, cardiomyocyte area and interstitial fibrosis), contractile dysfunction and intracellular Ca2+ mishandling, oxidative stress, lipid peroxidation, mitochondrial ultrastructural damage, DNA damage, apoptosis and ferroptosis, the effects of which were greatly attenuated or mitigated by Empagliflozin with little effects from Empagliflozin itself. In vitro study indicated that induction of DNA damage mimicked TZM-induced lipid peroxidation and cardiomyocyte contractile dysfunction while the ferroptosis inducer erastin mitigated Empagliflozin-offered protection against lipid peroxidation and cardiomyocyte dysfunction (but not DNA damage). Likewise, in vivo and in vitro inhibition of ferroptosis recapitulated Empagliflozin-offered cardioprotection against TZM exposure. Taken together, these data demonstrated that Empagliflozin may be possible candidate drug for TZM cardiotoxicity likely through a DNA damage-ferroptosis-mediated mechanism.
Collapse
Affiliation(s)
- Jie Min
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Lin Wu
- Department of Cardiology, and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yandong Liu
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Guoliang Song
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Qinqin Deng
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Wei Jin
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Miyesaier Abudureyimu
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China.
| | - Zhaohui Pei
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 330009, China.
| | - Jun Ren
- Department of Cardiology, and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The Anti-Inflammatory Effect of Novel Antidiabetic Agents. Life (Basel) 2022; 12:1829. [PMID: 36362984 PMCID: PMC9696750 DOI: 10.3390/life12111829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
The incidence of type 2 diabetes (T2DM) has been increasing worldwide and remains one of the leading causes of atherosclerotic disease. Several antidiabetic agents have been introduced in trying to regulate glucose control levels with different mechanisms of action. These agents, and sodium-glucose cotransporter-2 inhibitors in particular, have been endorsed by contemporary guidelines in patients with or without T2DM. Their widespread usage during the last three decades has raised awareness in the scientific community concerning their pleiotropic mechanisms of action, including their putative anti-inflammatory effect. In this review, we delve into the anti-inflammatory role and mechanism of the existing antidiabetic agents in the cardiovascular system and their potential use in other chronic sterile inflammatory conditions.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Kostas Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
27
|
SGLT2 Inhibitors Improve Cardiac Failure by Reducing Whole-Body Oxygen Demand: A Hypothesis. Clin Drug Investig 2022; 42:1025-1030. [DOI: 10.1007/s40261-022-01220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
28
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The impact of SGLT2 inhibitors on inflammation: A systematic review and meta-analysis of studies in rodents. Int Immunopharmacol 2022; 111:109080. [PMID: 35908505 DOI: 10.1016/j.intimp.2022.109080] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inhibition of sodium-glucose cotransporter-2 (SGLT2) has received remarkable attention due to the beneficial effects observed in diabetes mellitus, heart failure, and kidney disease. Several mechanisms have been proposed for these pleiotropic effects, including anti-inflammatory ones. Our systematic review and meta-analysis aimed to assess the effect of SGLT2 inhibition on inflammatory markers in experimental models. METHODS A literature search was conducted to detect studies examining the effect of SGLT2 inhibitors on inflammatory markers [interleukin-6 (IL-6), C reactive protein (CRP), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1)]. Consequently, a meta-analysis of the included studies was performed, assessing the differences in the levels of the inflammatory markers between the treatment groups as its primary outcome. Moreover, risk of bias, sensitivity analysis and publication bias were evaluated. RESULTS The systematic literature review yielded 30 studies whose meta-analysis suggested that treatment with an SGLT2 inhibitor resulted in decreases of IL-6 [standardized mean difference (SMD): -1.56, 95% CI -2.06 to -1.05), CRP (SMD: -2.17, 95% CI -2.80 to -1.53), TNF-α (SMD: -1.75, 95% CI -2.14 to -1.37), and MCP-1 (SMD: -2.04, 95% CI -2.91 to -1.17). The effect on CRP and TNF-α was of lesser magnitude in cases of empagliflozin use. Moderate-to-substantial heterogeneity and possible publication bias were noted. The findings remained largely unaffected after the sensitivity analyses, the exclusion of outlying studies, and trim-and-fill analyses. CONCLUSION The present meta-analysis suggests that SGLT2 inhibition results in reduction of inflammatory markers in animal models, further validating the suggested anti-inflammatory mechanism of action.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece; 3rd Cardiology Department, "Sotiria" Regional Hospital for Chest Diseases, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece; 3rd Cardiology Department, "Sotiria" Regional Hospital for Chest Diseases, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, "Hippokration" General Hospital, University of Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
29
|
Li J, Zhou L, Gong H. New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure. Front Cardiovasc Med 2022; 9:903902. [PMID: 36186974 PMCID: PMC9520058 DOI: 10.3389/fcvm.2022.903902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are newly emerging insulin-independent anti-hyperglycemic agents that work independently of β-cells. Quite a few large-scale clinical trials have proven the cardiovascular protective function of SGLT2is in both diabetic and non-diabetic patients. By searching all relevant terms related to our topics over the previous 3 years, including all the names of agents and their brands in PubMed, here we review the mechanisms underlying the improvement of heart failure. We also discuss the interaction of various mechanisms proposed by diverse works of literature, including corresponding and opposing viewpoints to support each subtopic. The regulation of diuresis, sodium excretion, weight loss, better blood pressure control, stimulation of hematocrit and erythropoietin, metabolism remodeling, protection from structural dysregulation, and other potential mechanisms of SGLT2i contributing to heart failure improvement have all been discussed in this manuscript. Although some remain debatable or even contradictory, those newly emerging agents hold great promise for the future in cardiology-related therapies, and more research needs to be conducted to confirm their functionality, particularly in metabolism, Na+-H+ exchange protein, and myeloid angiogenic cells.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Hui Gong
| |
Collapse
|
30
|
Ko TY, Lin TT, Hsu JC, Yang YY, Chuang SL, Lin LY, Kao HL, Ho YL. Incidence, risk factors and predictors of cardiovascular mortality for aortic stenosis among patients with diabetes mellitus. Diabetes Res Clin Pract 2022; 191:110050. [PMID: 36030901 DOI: 10.1016/j.diabres.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
AIMS To find the incidence, risk factors and predictors of cardiovascular (CV) mortality for aortic stenosis (AS) in patients with type 2 diabetes mellitus (T2DM). METHODS Between 2014 and 2019, 20,979 patients with T2DM who underwent echocardiography were enrolled for analysis. The mean follow-up period was 34 months. Multiple risk factors and outcomes for patients with and without AS were presented. RESULTS AS was present in 776 (3.70%) patients. Age, female, chronic kidney disease, hyperlipidemia, and peripheral arterial disease statistically increased risk of AS. The CV mortality (adjusted hazard ratio [aHR] = 1.97; 95% confidence interval [CI] 1.336 - 2.906, p < 0.001) and risk of hospitalization for heart failure (HHF) (aHR = 1.73, 95% CI 1.442-2.082, p < 0.001) were significantly increased in patients with AS, without significant differences in acute myocardial infarction and stroke. Severity of AS, body mass index (<27 kg/m2), hypertension, hyperuricemia, left ventricular dysfunction (ejection fraction < 50%), and hematocrit (<38%) were significantly associated with increased CV mortality and HHF. CONCLUSIONS AS was associated with an increased risk of CV mortality and HHF in patients with T2DM.
Collapse
Affiliation(s)
- Tsung-Yu Ko
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Tse Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jung Chi Hsu
- Division of Cardiology, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Yen-Yun Yang
- Integrative Medical Database Center, Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Lin Chuang
- Integrative Medical Database Center, Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Li Kao
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Lwun Ho
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Zannad F, Ferreira JP, Butler J, Filippatos G, Januzzi JL, Sumin M, Zwick M, Saadati M, Pocock SJ, Sattar N, Anker SD, Packer M. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights into the EMPEROR programme. Eur Heart J 2022; 43:4991-5002. [PMID: 36017745 PMCID: PMC9769969 DOI: 10.1093/eurheartj/ehac495] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
AIMS Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in diverse patient populations, but their mechanism of action requires further study. The aim is to explore the effect of empagliflozin on the circulating levels of intracellular proteins in patients with heart failure, using large-scale proteomics. METHODS AND RESULTS Over 1250 circulating proteins were measured at baseline, Week 12, and Week 52 in 1134 patients from EMPEROR-Reduced and EMPEROR-Preserved, using the Olink® Explore 1536 platform. Statistical and bioinformatical analyses identified differentially expressed proteins (empagliflozin vs. placebo), which were then linked to demonstrated biological actions in the heart and kidneys. At Week 12, 32 of 1283 proteins fulfilled our threshold for being differentially expressed, i.e. their levels were changed by ≥10% with a false discovery rate <1% (empagliflozin vs. placebo). Among these, nine proteins demonstrated the largest treatment effect of empagliflozin: insulin-like growth factor-binding protein 1, transferrin receptor protein 1, carbonic anhydrase 2, erythropoietin, protein-glutamine gamma-glutamyltransferase 2, thymosin beta-10, U-type mitochondrial creatine kinase, insulin-like growth factor-binding protein 4, and adipocyte fatty acid-binding protein 4. The changes of the proteins from baseline to Week 52 were generally concordant with the changes from the baseline to Week 12, except empagliflozin reduced levels of kidney injury molecule-1 by ≥10% at Week 52, but not at Week 12. The most common biological action of differentially expressed proteins appeared to be the promotion of autophagic flux in the heart, kidney or endothelium, a feature of 6 proteins. Other effects of differentially expressed proteins on the heart included the reduction of oxidative stress, inhibition of inflammation and fibrosis, and the enhancement of mitochondrial health and energy, repair, and regenerative capacity. The actions of differentially expressed proteins in the kidney involved promotion of autophagy, integrity and regeneration, suppression of renal inflammation and fibrosis, and modulation of renal tubular sodium reabsorption. CONCLUSIONS Changes in circulating protein levels in patients with heart failure are consistent with the findings of experimental studies that have shown that the effects of SGLT2 inhibitors are likely related to actions on the heart and kidney to promote autophagic flux, nutrient deprivation signalling and transmembrane sodium transport.
Collapse
Affiliation(s)
- Faiez Zannad
- Corresponding author. Tel: +33 3 83 15 73 15, Fax: +33 3 83 15 73 24, Emails: ;
| | - João Pedro Ferreira
- Corresponding author. Tel: +33 3 83 15 73 15, Fax: +33 3 83 15 73 24, Emails: ;
| | - Javed Butler
- Heart and Vascular Research, Baylor Scott and White Research Institute, 34 Live Oak St Ste 501, Dallas, TX 75204, USA,University of Mississippi Medical Center, 2500 North State Street Jackson, MS 39216, USA
| | - Gerasimos Filippatos
- Heart Failure Unit, National and Kapodistrian University of Athens School of Medicine, Mikras Asias 75, Athina 115 27 Athens, Greece
| | - James L Januzzi
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114USA,The Baim Institute for Clinical Research, 930 Commonwealth Ave #3, Boston, MA 02215USA
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Binger Str. 173, 55218 Ingelheim am RheinGermany
| | - Matthias Zwick
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der RissGermany
| | - Maral Saadati
- Elderbrook Solutions GmbH on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riss, Germany
| | - Stuart J Pocock
- London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HTUK
| | - Naveed Sattar
- BHF, UK School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TAUK
| | - Stefan D Anker
- Department of Cardiology (CVK) Berlin Institute of Health Center for Regenerative Therapies (BCRT) German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany,Institute of Heart Diseases, Wroclaw Medical University, Borowska Street 213, 50-556 Warsaw, Poland
| | - Milton Packer
- Baylor Heart and Vascular Hospital, Baylor University Medical Center, 621 N Hall St, Dallas, TX 75226, USA,Imperial College, London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| |
Collapse
|
32
|
Wicik Z, Nowak A, Jarosz-Popek J, Wolska M, Eyileten C, Siller-Matula JM, von Lewinski D, Sourij H, Filipiak KJ, Postuła M. Characterization of the SGLT2 Interaction Network and Its Regulation by SGLT2 Inhibitors: A Bioinformatic Analysis. Front Pharmacol 2022; 13:901340. [PMID: 36046822 PMCID: PMC9421436 DOI: 10.3389/fphar.2022.901340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2), also known as solute carrier family 5 member 2 (SLC5A2), is a promising target for a new class of drugs primarily established as kidney-targeting, effective glucose-lowering agents used in diabetes mellitus (DM) patients. Increasing evidence indicates that besides renal effects, SGLT2 inhibitors (SGLT2i) have also a systemic impact via indirectly targeting the heart and other tissues. Our hypothesis states that the pleiotropic effects of SGLT2i are associated with their binding force, location of targets in the SGLT2 networks, targets involvement in signaling pathways, and their tissue-specific expression. Methods: Thus, to investigate differences in SGLT2i impact on human organisms, we re-created the SGLT2 interaction network incorporating its inhibitors and metformin and analyzed its tissue-specific expression using publicly available datasets. We analyzed it in the context of the so-called key terms ( autophagy, oxidative stress, aging, senescence, inflammation, AMPK pathways, and mTOR pathways) which seem to be crucial to elucidating the SGLT2 role in a variety of clinical manifestations. Results: Analysis of SGLT2 and its network components’ expression confidence identified selected organs in the following order: kidney, liver, adipose tissue, blood, heart, muscle, intestine, brain, and artery according to the TISSUES database. Drug repurposing analysis of known SGLT2i pointed out the influence of SGLT1 regulators on the heart and intestine tissue. Additionally, dapagliflozin seems to also have a stronger impact on brain tissue through the regulation of SGLT3 and SLC5A11. The shortest path analysis identified interaction SIRT1-SGLT2 among the top five interactions across six from seven analyzed networks associated with the key terms. Other top first-level SGLT2 interactors associated with key terms were not only ADIPOQ, INS, GLUT4, ACE, and GLUT1 but also less recognized ILK and ADCY7. Among other interactors which appeared in multiple shortest-path analyses were GPT, COG2, and MGAM. Enrichment analysis of SGLT2 network components showed the highest overrepresentation of hypertensive disease, DM-related diseases for both levels of SGLT2 interactors. Additionally, for the extended SGLT2 network, we observed enrichment in obesity (including SGLT1), cancer-related terms, neuroactive ligand–receptor interaction, and neutrophil-mediated immunity. Conclusion: This study provides comprehensive and ranked information about the SGLT2 interaction network in the context of tissue expression and can help to predict the clinical effects of the SGLT2i.
Collapse
Affiliation(s)
- Zofia Wicik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Nowak
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wolska
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jolanta M. Siller-Matula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | | | - Marek Postuła
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postuła,
| |
Collapse
|
33
|
Sodium-Glucose Cotransporter-2 Inhibitors-from the Treatment of Diabetes to Therapy of Chronic Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9070225. [PMID: 35877587 PMCID: PMC9325125 DOI: 10.3390/jcdd9070225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are currently the second-line pharmacotherapy in type 2 diabetes, particularly through their effectiveness in reducing glycemia, but also due to their cardioprotective and nephroprotective effects. In light of surprisingly satisfactory results from large, randomized trials on gliflozins, SGLT2 received the highest recommendation (Class IA) with the highest level of evidence (A) in the treatment algorithm for HF with reduced LVEF in recent ESC HF guidelines. This great breakthrough in the treatment of HF is due to different mechanisms of action of gliflozins that are reported to be able to change the natural course of HF by reducing the risk of both hospitalization and death. They are recommended regardless of the patient’s diabetes status. This review summarizes the up-to-date literature on their beneficial and pleiotropic impact on the cardiovascular system.
Collapse
|
34
|
Delgado E, Jódar E, Mezquita-Raya P, Moreno-Pérez Ó. Benefits of SGLT2i for the Treatment of Heart Failure Irrespective of Diabetes Diagnosis: A State-of-the-Art Review. Diabetes Ther 2022; 13:19-34. [PMID: 35704165 PMCID: PMC9198410 DOI: 10.1007/s13300-022-01278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/13/2022] [Indexed: 11/03/2022] Open
Abstract
Morbidity and mortality associated with heart failure (HF) has remained high despite advances in therapy. Furthermore, HF-associated risk in patients with type 2 diabetes mellitus (T2D) is even higher than in patients without T2D owing to the strong reciprocal relationship between conditions. However, until recently, no therapy to treat patients with diabetes also reduced cardiovascular risks related to HF. Recent clinical studies (DAPA-HF, EMPEROR-Reduced and EMPEROR-Preserved, SOLOIST-WHF trial) and meta-analysis have demonstrated that sodium-glucose cotransporter-2 inhibitors (SGLT2i) are among the first antidiabetic drugs capable of reducing cardiovascular risks related to HF and improving the prognosis of patients with and without diabetes. Their pleiotropic mechanisms of action place them at the intersection of hemodynamic, metabolic, and neurohumoral pathways, with clear advantages for treating these patients independent of its glucose-lowering effect. Moreover, the benefits of SGLT2i were consistent across the cardiorenal continuum in different populations and clinical settings, which has led to different guidelines introducing SGLT2i as a first-line treatment for HF.
Collapse
Affiliation(s)
- Elías Delgado
- Department of Medicine, University of Oviedo, Oviedo, Spain
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
| | - Esteban Jódar
- Endocrinology and Clinical Nutrition Department, University Hospital Quiron Salud Madrid, Universidad Europea, Madrid, Spain
| | - Pedro Mezquita-Raya
- Endocrinology and Nutrition Service, Torrecárdenas University Hospital, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, Spain
| | - Óscar Moreno-Pérez
- Endocrinology and Nutrition Department, Alicante General University Hospital, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain.
- Clinical Medicine Department, Miguel Hernández University, Elche, Spain.
| |
Collapse
|
35
|
Wong CKH, Lau KTK, Tang EHM, Lee CH, Lee CYY, Woo YC, Au ICH, Tan KCB, Lui DTW. Cardiovascular benefits of SGLT2 inhibitors in type 2 diabetes, interaction with metformin and role of erythrocytosis: a self-controlled case series study. Cardiovasc Diabetol 2022; 21:92. [PMID: 35658864 PMCID: PMC9166572 DOI: 10.1186/s12933-022-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have proven cardiovascular benefits in patients with type 2 diabetes (T2D). This self-controlled case series study aims to evaluate whether metformin use and SGLT2i-associated erythrocytosis influence its cardiovascular benefits.
Methods
T2D patients with metformin and/or SGLT2i prescriptions between 2015 and 2020 were identified from the Hong Kong population. Study outcomes were composite cardiovascular diseases (CVD), coronary heart disease (CHD), hospitalisation for heart failure (HHF), stroke, and erythrocytosis. Risk periods were patient-time divided into four mutually exclusive windows: (i) ‘baseline period’ of metformin use without SGLT2i; (ii) pre-SGLT2i period; (iii) exposure to SGLT2i without metformin; and (iv) exposure to the drug combination. Another SCCS model was applied to evaluate the association between erythrocytosis and cardiovascular outcomes regarding SGLT2i exposure. Four mutually exclusive risk periods included (i) SGLT2i exposure with erythrocytosis; (ii) SGLT2i exposure without erythrocytosis; (iii) absence of SGLT2i exposure with erythrocytosis; and (iv) absence of SGLT2i exposure without erythrocytosis. Incidence rate ratios (IRR) of events at different risk periods were estimated using conditional Poisson regression model.
Results
Among 20,861 patients with metformin and/or SGLT2i prescriptions, 2575 and 1700 patients with events of composite CVD and erythrocytosis were identified, respectively. Compared to metformin use without SGLT2i, SGLT2i initiation was associated with lower risks of composite CVD, CHD, and HHF—regardless of the presence (CVD: IRR = 0.43, 95% CI 0.37–0.51; CHD: IRR = 0.44, 95% CI 0.37–0.53; HHF: IRR = 0.29, 95% CI 0.22–0.40; all p < 0.001) and absence of concomitant metformin (CVD: IRR = 0.31, 95% CI 0.20–0.48; CHD: IRR = 0.38, 95% CI 0.25–0.59; HHF: IRR = 0.17, 95% CI 0.09–0.31; all p < 0.001); while SGLT2i was neutral on stroke risk. Compared to metformin-SGLT2i combination, exposure to SGLT2i alone was associated with comparable risks of all cardiovascular outcomes (all p > 0.05). Incidence rates of erythrocytosis at baseline, SGLT2i without and with metformin use periods were 0.75, 3.06 and 3.27 per 100 person-years, respectively. SGLT2i users who developed erythrocytosis had lower risk of HHF (IRR = 0.38, 95% CI 0.14–0.99, p = 0.049) than those who did not.
Conclusions
Our real-world data suggested that SGLT2i-associated cardiovascular benefits were not attenuated by metformin use. Further studies will delineate the role of erythrocytosis as a surrogate marker of SGLT2i-associated cardiovascular benefit in reducing HHF.
Collapse
|
36
|
Chrysant SG, Chrysant GS. Beneficial cardiovascular and remodeling effects of SGLT2 inhibitors: pathophysiologic mechanisms. Expert Rev Cardiovasc Ther 2022; 20:223-232. [PMID: 35320057 DOI: 10.1080/14779072.2022.2057949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The intent of this paper is to review the data regarding the multipotential effects of the sodium-glucose cotransporter 2 (SGLT 2) inhibitors, their cardiovascular protective effects, and their mechanism of action. AREAS COVERED The SGLT2 inhibitors exert their beneficial antidiabetic and cardioprotective effects through increased glucose excretion from the kidneys, blood pressure and weight lowering, vasodilation and other potential beneficial effects. They have been used for the treatment of patients with type 2 diabetes mellitus (T2DM) as well as in patients with cardiovascular disease (CVD), coronary artery disease (CAD),and heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). In order to get a better understanding of their mechanism of action for their multiple cardiovascular protective effects, a Medline search of the English language literature was conducted between 2015 and February 2022 and 46 pertinent papers were selected. EXPERT OPINION The analysis of data clearly demonstrated that the use of the SGLT2 inhibitors besides their antidiabetic effects, provide additional protection against CVD, CAD, and HFrEF and HFpEF, and death, but not stroke, in both diabetic and non-diabetic patients. Therefore, they should be preferably used for the treatment of patients with T2DM with preexisting CVD, CAD, and HFrEF and HFpEF.
Collapse
Affiliation(s)
- Steven G Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | |
Collapse
|
37
|
Sauer F, Riou M, Charles AL, Meyer A, Andres E, Geny B, Talha S. Pathophysiology of Heart Failure: A Role for Peripheral Blood Mononuclear Cells Mitochondrial Dysfunction? J Clin Med 2022; 11:jcm11030741. [PMID: 35160190 PMCID: PMC8836880 DOI: 10.3390/jcm11030741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a leading cause of hospitalization in patients aged more than 65 years and is associated with high mortality rates. A better comprehension of its physiopathology is still needed, and, in addition to neurohormonal systems and sodium glucose co-transporter 2 modulations, recent studies focus on the mitochondrial respiration of peripheral blood circulating cells (PBMCs). Thus, cardiovascular metabolic risk factors and cellular switch with an increased neutrophil/lymphocytes ratio might favor the decreased PBMC mitochondrial respiration observed in relation with HF severity. PBMCs are implicated in the immune system function and mitochondrial dysfunction of PBMC, potentially induced by their passage through a damaged heart and by circulating mitoDAMPs, which can lead to a vicious circle, thus sustaining negative cardiac remodeling during HF. This new approach of HF complex pathophysiology appears to be a promising field of research, and further studies on acute and chronic HF with reduced or preserved LVEF are warranted to better understand whether circulating PBMC mitochondrial function and mitoDAMPs follow-ups in HF patients might show diagnosis, prognosis or therapeutic usefulness.
Collapse
Affiliation(s)
- François Sauer
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Marianne Riou
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Anne-Laure Charles
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Alain Meyer
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Emmanuel Andres
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg, France
| | - Bernard Geny
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
- Correspondence:
| | - Samy Talha
- University of Strasbourg, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France; (F.S.); (M.R.); (A.-L.C.); (A.M.); (E.A.); (S.T.)
- University Hospital of Strasbourg, Physiology and Functional Exploration Service, 1 Place de l’Hôpital, 67091 Strasbourg, France
| |
Collapse
|
38
|
Verma S, Dhingra NK, Butler J, Anker SD, Ferreira JP, Filippatos G, Januzzi JL, Lam CSP, Sattar N, Peil B, Nordaby M, Brueckmann M, Pocock SJ, Zannad F, Packer M. Empagliflozin in the treatment of heart failure with reduced ejection fraction in addition to background therapies and therapeutic combinations (EMPEROR-Reduced): a post-hoc analysis of a randomised, double-blind trial. Lancet Diabetes Endocrinol 2022; 10:35-45. [PMID: 34861154 DOI: 10.1016/s2213-8587(21)00292-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND It is important to evaluate whether a new treatment for heart failure with reduced ejection fraction (HFrEF) provides additive benefit to background foundational treatments. As such, we aimed to evaluate the efficacy and safety of empagliflozin in patients with HFrEF in addition to baseline treatment with specific doses and combinations of disease-modifying therapies. METHODS We performed a post-hoc analysis of the EMPEROR-Reduced randomised, double-blind, parallel-group trial, which took place in 520 centres (hospitals and medical clinics) in 20 countries in Asia, Australia, Europe, North America, and South America. Patients with New York Heart Association (NYHA) classification II-IV with an ejection fraction of 40% or less were randomly assigned (1:1) to receive the addition of either oral empagliflozin 10 mg per day or placebo to background therapy. The primary composite outcome was cardiovascular death and heart failure hospitalisation; the secondary outcome was total heart failure hospital admissions. An extended composite outcome consisted of inpatient and outpatient HFrEF events was also evaluated. Outcomes were analysed according to background use of angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs) or angiotensin receptor neprilysin inhibitors (ARNIs), as well as β blockers and mineralocorticoid receptor antagonists (MRAs) at less than 50% or 50% or more of target doses and in various combinations. This study is registered with ClinicalTrials.gov, NCT03057977. FINDINGS In this post-hoc analysis of 3730 patients (mean age 66·8 years [SD 11·0], 893 [23·9%] women; 1863 [49·9%] in the empagliflozin group, 1867 [50·1%] in the placebo group) assessed between March 6, 2017, and May 28, 2020, empagliflozin reduced the risk of the primary outcome (361 in 1863 participants in the empagliflozin group and 462 of 1867 in the placebo group; HR 0·75 [95% CI 0·65-0·86]) regardless of background therapy or its target doses for ACE inhibitors or ARBs at doses of less than 50% of the target dose (HR 0·85 [0·69-1·06]) and for doses of 50% or more of the target dose (HR 0·67 [0·52-0·88]; pinteraction=0·18). A similar result was seen for β blockers at doses of less than 50% of the target dose (HR 0·66 [0·54-0·80]) and for doses of 50% or more of the target dose (HR 0·81 [0·66-1·00]; pinteraction=0·15). Empagliflozin also reduced the risk of the primary outcome irrespective of background use of triple therapy with an ACE inhibitor, ARB, or ARNI plus β blocker plus MRA (given combination HR 0·73 [0·61-0·88]; not given combination HR 0·76 [0·62-0·94]; pinteraction=0·77). Similar patterns of benefit were observed for the secondary and extended composite outcomes. Empagliflozin was well tolerated and rates of hypotension, symptomatic hypotension, and hyperkalaemia were similar across all subgroups. INTERPRETATION Empagliflozin reduced serious heart failure outcomes across doses and combinations of disease-modifying therapies for HFrEF. Clinically, these data suggest that empagliflozin might be considered as a foundational therapy in patients with HFrEF regardless of their existing background therapy. FUNDING Boehringer Ingelheim and Eli Lilly and Company.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| | - Nitish K Dhingra
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Javed Butler
- Department of Medicine, University of Mississippi School of Medicine, Jackson, MS, USA
| | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Joao Pedro Ferreira
- Centre d'Investigations Cliniques Plurithématique 1433, Université de Lorraine, Institut National de la Santé et de la Recherche Médicale 1116, Centre Hospitalier Régional Universitaire de Nancy, French Clinical Research Infrastructure Network, Investigation Network Initiative- Cardiovascular and Renal Clinical Trialists, Nancy, France; Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece
| | - James L Januzzi
- Division of Cardiology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke- National University of Singapore Medical School, Singapore
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Martina Brueckmann
- Boehringer Ingelheim International, Ingelheim, Germany; Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stuart J Pocock
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 1433, Université de Lorraine, Institut National de la Santé et de la Recherche Médicale 1116, Centre Hospitalier Régional Universitaire de Nancy, French Clinical Research Infrastructure Network, Investigation Network Initiative- Cardiovascular and Renal Clinical Trialists, Nancy, France
| | - Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA; Imperial College London, London, UK
| |
Collapse
|
39
|
Gager GM, von Lewinski D, Sourij H, Jilma B, Eyileten C, Filipiak K, Hülsmann M, Kubica J, Postula M, Siller-Matula JM. Effects of SGLT2 Inhibitors on Ion Homeostasis and Oxidative Stress associated Mechanisms in Heart Failure. Biomed Pharmacother 2021; 143:112169. [PMID: 34560555 DOI: 10.1016/j.biopha.2021.112169] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors present a class of antidiabetic drugs, which inhibit renal glucose reabsorption resulting in the elevation of urinary glucose levels. Within the past years, SGLT2 inhibitors have become increasingly relevant due to their effects beyond glycemic control in patients with type 2 diabetes (T2DM). Although dedicated large trials demonstrated cardioprotective effects of SGLT2 inhibitors, the exact mechanisms responsible for those benefits have not been fully identified. Alterations in Ca2+ signaling and oxidative stress accompanied by excessive reactive oxygen species (ROS) production, fibrosis and inflammatory processes form cornerstones of potential molecular targets for SGLT2 inhibitors. This review focused on three hypotheses for SGLT2 inhibitor-mediated cardioprotection: ion homeostasis, oxidative stress and endothelial dysfunction.
Collapse
Affiliation(s)
- Gloria M Gager
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Krzysztof Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Martin Hülsmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Jacek Kubica
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Jolanta M Siller-Matula
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria; Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland.
| |
Collapse
|
40
|
Nakao M, Shimizu I, Katsuumi G, Yoshida Y, Suda M, Hayashi Y, Ikegami R, Hsiao YT, Okuda S, Soga T, Minamino T. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Sci Rep 2021; 11:18384. [PMID: 34526601 PMCID: PMC8443662 DOI: 10.1038/s41598-021-97787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with type 2 diabetes treated with Sodium glucose transporter 2 (SGLT2) inhibitors show reduced mortality and hospitalization for heart failure (HF). SGLT2 inhibitors are considered to activate multiple cardioprotective pathways; however, underlying mechanisms are not fully described. This study aimed to elucidate the underlying mechanisms of the beneficial effects of SGLT2 inhibitors on the failing heart. We generated a left ventricular (LV) pressure overload model in C57BL/6NCrSlc mice by transverse aortic constriction (TAC) and examined the effects of empagliflozin (EMPA) in this model. We conducted metabolome and transcriptome analyses and histological and physiological examinations. EMPA administration ameliorated pressure overload-induced systolic dysfunction. Metabolomic studies showed that EMPA increased citrulline levels in cardiac tissue and reduced levels of arginine, indicating enhanced metabolism from arginine to citrulline and nitric oxide (NO). Transcriptome suggested possible involvement of the insulin/AKT pathway that could activate NO production through phosphorylation of endothelial NO synthase (eNOS). Histological examination of the mice showed capillary rarefaction and endothelial apoptosis after TAC, both of which were significantly improved by EMPA treatment. This improvement was associated with enhanced expression phospho-eNOS and NO production in cardiac endothelial cells. NOS inhibition attenuated these cardioprotective effects of EMPA. The in vitro studies showed that catecholamine-induced endothelial apoptosis was inhibited by NO, arginine, or AKT activator. EMPA activates the AKT/eNOS/NO pathway, which helps to suppress endothelial apoptosis, maintain capillarization and improve systolic dysfunction during LV pressure overload.
Collapse
Affiliation(s)
- Masaaki Nakao
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuka Hayashi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
41
|
Sayour AA, Ruppert M, Oláh A, Benke K, Barta BA, Zsáry E, Merkely B, Radovits T. Effects of SGLT2 Inhibitors beyond Glycemic Control-Focus on Myocardial SGLT1. Int J Mol Sci 2021; 22:9852. [PMID: 34576016 PMCID: PMC8468664 DOI: 10.3390/ijms22189852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Selective sodium-glucose cotransporter 2 (SGLT2) inhibitors reduced the risk of hospitalization for heart failure in patients with or without type 2 diabetes (T2DM) in large-scale clinical trials. The exact mechanism of action is currently unclear. The dual SGLT1/2 inhibitor sotagliflozin not only reduced hospitalization for HF in patients with T2DM, but also lowered the risk of myocardial infarction and stroke, suggesting a possible additional benefit related to SGLT1 inhibition. In fact, several preclinical studies suggest that SGLT1 plays an important role in cardiac pathophysiological processes. In this review, our aim is to establish the clinical significance of myocardial SGLT1 inhibition through reviewing basic research studies in the context of SGLT2 inhibitor trials.
Collapse
Affiliation(s)
- Alex Ali Sayour
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Városmajor str. 68, H-1122 Budapest, Hungary; (M.R.); (A.O.); (K.B.); (B.A.B.); (E.Z.); (B.M.); (T.R.)
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Alexopoulos A. Mechanisms. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:434-435. [PMID: 34374336 DOI: 10.3238/arztebl.m2021.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Packer M. Differential Pathophysiological Mechanisms in Heart Failure With a Reduced or Preserved Ejection Fraction in Diabetes. JACC-HEART FAILURE 2021; 9:535-549. [PMID: 34325884 DOI: 10.1016/j.jchf.2021.05.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Diabetes promotes the development of both heart failure with a reduced ejection fraction and heart failure with a preserved ejection fraction through diverse mechanisms, which are likely mediated through hyperinsulinemia rather than hyperglycemia. Diabetes promotes nutrient surplus signaling (through Akt and mammalian target of rapamycin complex 1) and inhibits nutrient deprivation signaling (through sirtuin-1 and its downstream effectors); this suppresses autophagy and promotes endoplasmic reticulum and oxidative stress and mitochondrial dysfunction, thereby undermining the health of diabetic cardiomyocytes. The hyperinsulinemia of diabetes may also activate sodium-hydrogen exchangers in cardiomyocytes (leading to injury and loss) and in the proximal renal tubules (leading to sodium retention). Diabetes may cause epicardial adipose tissue expansion, and the resulting secretion of proinflammatory adipocytokines onto the adjoining myocardium can lead to coronary microcirculatory dysfunction and myocardial inflammation and fibrosis. Interestingly, sodium-glucose cotransporter 2 (SGLT2) inhibitors-the only class of antidiabetic medication that reduces serious heart failure events-may act to mitigate each of these mechanisms. SGLT2 inhibitors up-regulate sirtuin-1 and its downstream effectors and autophagic flux, thus explaining the actions of these drugs to reduce oxidative stress, normalize mitochondrial structure and function, and mute proinflammatory pathways in the stressed myocardium. Inhibition of SGLT2 may also lead to a reduction in the activity of sodium-hydrogen exchangers in the kidney (leading to diuresis) and in the heart (attenuating the development of cardiac hypertrophy and systolic dysfunction). Finally, SGLT2 inhibitors reduce the mass and mute the adverse biology of epicardial adipose tissue (and reduce the secretion of leptin), thus explaining the capacity of these drugs to mitigate myocardial inflammation, microcirculatory dysfunction, and fibrosis, and improve ventricular filling dynamics. The pathophysiological mechanisms by which SGLT2 inhibitors may benefit heart failure likely differ depending on ejection fraction, but each represents interference with distinct pathways by which hyperinsulinemia may adversely affect cardiac structure and function.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College, London, United Kingdom.
| |
Collapse
|
44
|
Pollock C, Neuen BL. Sodium-Glucose Cotransporter 2 Inhibition: Rationale and Mechanisms for Kidney and Cardiovascular Protection in People With and Without Diabetes. Adv Chronic Kidney Dis 2021; 28:298-308. [PMID: 34922686 DOI: 10.1053/j.ackd.2021.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/10/2023]
Abstract
Large-scale randomized trials have demonstrated the remarkable capacity of sodium-glucose cotransporter 2 inhibitors to reduce the risk of cardiovascular outcomes and kidney disease progression, irrespective of the presence or absence of type 2 diabetes mellitus. Although the results of these trials have transformed clinical practice guidelines, the mechanisms underpinning the wide-ranging benefits of this class of agents remain incompletely understood and subject to ongoing investigation. Improvements in cardiometabolic risk factors such as glucose, blood pressure, body weight, and albuminuria likely contribute. However, other direct effects on physiological and cellular function, such as restoration of tubuloglomerular feedback, improvements in kidney and cardiac oxygenation and energy efficiency, as well as restoration of normal autophagy are also likely to be important. This review summarizes the rationale and potential mechanisms for cardiorenal protection with sodium-glucose cotransporter 2 inhibitors in people with and without diabetes, their relative importance, and the experimental and clinical lines of evidence supporting these hypotheses.
Collapse
|
45
|
Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther 2021; 36:605-618. [PMID: 33844134 DOI: 10.1007/s10557-021-07182-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Hypoxic microenvironment plays a vital role in myocardial ischemia injury, generally leading to the resistance of chemotherapeutic drugs. This induces an intriguing study on mechanism exploration and prodrug design to overcome the hypoxia-induced drug resistance. METHODS In this study, we hypothesized that the overexpression of carbonic anhydrase 9 (CAIX) in myocardial cells is closely related to the drug resistance. Herein, bioinformatics analysis, gene knockdown, and overexpression assay certificated the correlation between CAIX overexpression and hypoxia. An original aspirin-containing CAIX inhibitor AcAs has been developed. RESULTS Based on the downregulation of CAIX level, both in vitro and in vivo, AcAs can overcome the acquired resistance and more effectively attenuate myocardial ischemia and hypoxia injury than that of aspirin. CAIX inhibitor is believed to recover the extracellular pH value so as to ensure the stable effect of aspirin. CONCLUSION Results indicate great potential of CAIX inhibitor for further application in myocardial hypoxia injury therapy.
Collapse
Affiliation(s)
- Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Bin Zhang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Keyu Fan
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jinfeng Liu
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China. .,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China.
| |
Collapse
|
46
|
Empagliflozin in Patients With Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPEROR-Reduced Trial. J Am Coll Cardiol 2021; 77:1381-1392. [PMID: 33736819 DOI: 10.1016/j.jacc.2021.01.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Investigators have hypothesized that sodium-glucose cotransporter 2 (SGLT2) inhibitors exert diuretic effects that contribute to their ability to reduce serious heart failure events, and this action is particularly important in patients with fluid retention. OBJECTIVES This study sought to evaluate the effects of the SGLT2 inhibitor empagliflozin on symptoms, health status, and major heart failure outcomes in patients with and without recent volume overload. METHODS This double-blind randomized trial compared the effects of empagliflozin and placebo in 3,730 patients with heart failure and a reduced ejection fraction, with or without diabetes. Approximately 40% of the patients had volume overload in the 4 weeks before study enrollment. RESULTS Patients with recent volume overload were more likely to have been hospitalized for heart failure and to have received an intravenous diuretic agent in an outpatient setting in the previous 12 months, and to experience a heart failure event following randomization, even though they were more likely to be treated with high doses of a loop diuretic agent as an outpatient (all p < 0.001). When compared with placebo, empagliflozin reduced the composite risk of cardiovascular death or hospitalization for heart failure, decreased total hospitalizations for heart failure, and improved health status and functional class. Yet despite the predisposition of patients with recent volume overload to fluid retention, the magnitude of these benefits (even after 1 month of treatment) was not more marked in patients with recent volume overload (interaction p values > 0.05). Changes in body weight, hematocrit, and natriuretic peptides (each potentially indicative of a diuretic action of SGLT2 inhibitors) did not track each other closely in their time course or in individual patients. CONCLUSIONS Taken together, study findings do not support a dominant role of diuresis in mediating the physiological changes or clinical benefits of SGLT2 inhibitors on the course of heart failure in patients with a reduced ejection fraction. (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction [EMPEROR-Reduced]; NCT03057977).
Collapse
|
47
|
Chaudhary AG, Alreefi FM, Aziz MA. Emerging Pharmacologic Therapies for Heart Failure With Reduced Ejection Fraction. CJC Open 2021; 3:646-657. [PMID: 34027369 PMCID: PMC8134937 DOI: 10.1016/j.cjco.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/17/2021] [Indexed: 10/27/2022] Open
Abstract
The global burden of heart failure has reached epidemic proportions with tremendous health and economic consequences. Sodium glucose cotransporter 2 inhibitors, vericiguat, and omecamtiv mecarbil are novel agents that promise to blunt the high residual risk of heart failure with reduced ejection fraction. We review the vast knowledge base that has rapidly materialized for these agents and is poised to shape the current and future trends and recommendations in heart failure pharmacotherapy.
Collapse
Affiliation(s)
- Ammar G Chaudhary
- Cardiovascular Diseases Department, King Faisal Specialist Hospital and Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| | - Fadi M Alreefi
- Cardiovascular Diseases Department, King Faisal Specialist Hospital and Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| | - Mohammad A Aziz
- Cardiovascular Diseases Department, King Faisal Specialist Hospital and Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Packer M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, Carson P, Anand I, Doehner W, Haass M, Komajda M, Miller A, Pehrson S, Teerlink JR, Brueckmann M, Jamal W, Zeller C, Schnaidt S, Zannad F. Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation 2021; 143:326-336. [PMID: 33081531 PMCID: PMC7834905 DOI: 10.1161/circulationaha.120.051783] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Empagliflozin reduces the risk of cardiovascular death or hospitalization for heart failure in patients with heart failure and a reduced ejection fraction, with or without diabetes, but additional data are needed about the effect of the drug on inpatient and outpatient events that reflect worsening heart failure. METHODS We randomly assigned 3730 patients with class II to IV heart failure with an ejection fraction of ≤40% to double-blind treatment with placebo or empagliflozin (10 mg once daily), in addition to recommended treatments for heart failure, for a median of 16 months. We prospectively collected information on inpatient and outpatient events reflecting worsening heart failure and prespecified their analysis in individual and composite end points. RESULTS Empagliflozin reduced the combined risk of death, hospitalization for heart failure or an emergent/urgent heart failure visit requiring intravenous treatment (415 versus 519 patients; empagliflozin versus placebo, respectively; hazard ratio [HR], 0.76; 95% CI, 0.67-0.87; P<0.0001). This benefit reached statistical significance at 12 days after randomization. Empagliflozin reduced the total number of heart failure hospitalizations that required intensive care (HR, 0.67; 95% CI, 0.50-0.90; P=0.008) and that required a vasopressor or positive inotropic drug or mechanical or surgical intervention (HR, 0.64; 95% CI, 0.47-0.87; P=0.005). As compared with placebo, fewer patients in the empagliflozin group reported intensification of diuretics (297 versus 414 [HR, 0.67; 95% CI, 0.56-0.78; P<0.0001]). Additionally, patients assigned to empagliflozin were 20% to 40% more likely to experience an improvement in New York Heart Association functional class and were 20% to 40% less likely to experience worsening of New York Heart Association functional class, with statistically significant effects that were apparent 28 days after randomization and maintained during long-term follow-up. The risk of any inpatient or outpatient worsening heart failure event in the placebo group was high (48.1 per 100 patient-years of follow-up), and it was reduced by empagliflozin (HR, 0.70; 95% CI, 0.63-0.78; P<0.0001). CONCLUSIONS In patients with heart failure and a reduced ejection fraction, empagliflozin reduced the risk and total number of inpatient and outpatient worsening heart failure events, with benefits seen early after initiation of treatment and sustained for the duration of double-blind therapy. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03057977.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX (M.P.)
- Imperial College, London, UK (M.P.)
| | - Stefan D. Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany (S.D.A., W.D.)
| | - Javed Butler
- Department of Medicine, University of Mississippi School of Medicine, Jackson (J.B.)
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Greece (G.F.)
| | | | - Stuart J. Pocock
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, UK (S.J.P.)
| | - Peter Carson
- Washington DC Veterans Affairs Medical Center (P.C.)
| | - Inder Anand
- Department of Cardiology, University of Minnesota, Minneapolis (I.A.)
| | - Wolfram Doehner
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany (S.D.A., W.D.)
| | - Markus Haass
- Theresienkrankenhaus and St.Hedwig-Klinik, Mannheim, Germany (M.H.)
| | - Michel Komajda
- Department of Cardiology, Hospital Saint Joseph, Paris, France (M.K.)
| | | | - Steen Pehrson
- Department of Cardiology, University Hospital, Rigshospitalet, Copenhagen, Denmark (S.P.)
| | - John R. Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center, CA (J.R.T.)
| | | | - Waheed Jamal
- Boehringer Ingelheim International GmbH, Ingelheim, Germany (M.B., W.J., C.Z.)
| | - Cordula Zeller
- Boehringer Ingelheim International GmbH, Ingelheim, Germany (M.B., W.J., C.Z.)
| | - Sven Schnaidt
- Biostatistics and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany (D.M., S.S.)
| | - Faiez Zannad
- Université de Lorraine, Inserm INI-CRCT, CHRU, Nancy, France (J.P.F., F.Z.)
| |
Collapse
|
49
|
Li N, Zhou H. SGLT2 Inhibitors: A Novel Player in the Treatment and Prevention of Diabetic Cardiomyopathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4775-4788. [PMID: 33192053 PMCID: PMC7654518 DOI: 10.2147/dddt.s269514] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DCM) characterized by diastolic and systolic dysfunction independently of hypertension and coronary heart disease, eventually develops into heart failure, which is strongly linked to a high prevalence of mortality in people with diabetes mellitus (DM). Sodium-glucose cotransporter type2 inhibitors (SGLT2Is) are a novel type of hypoglycemic agent in increasing urinary glucose and sodium excretion. Excitingly, the EMPA-REG clinical trial proved that empagliflozin significantly reduced the relative risk of cardiovascular (CV) death and hospitalization for heart failure (HHF) in patients with type 2 DM (T2DM) plus CV disease (CVD). The EMPRISE trial showed that empagliflozin decreased the risk of HHF in T2DM patients with and without a CVD history in routine care. These beneficial effects of SGLT2Is could not be entirely attributed to glucose-lowering or natriuretic action. There could be potential direct mechanisms of SGLT2Is in cardioprotection. Recent studies have shown the effects of SGLT2Is on cardiac iron homeostasis, mitochondrial function, anti-inflammation, anti-fibrosis, antioxidative stress, and renin-angiotensin-aldosterone system activity, as well as GlcNAcylation in the heart. This article reviews the current literature on the effects of SGLT2Is on DCM in preclinical studies. Possible molecular mechanisms regarding potential benefits of SGLT2Is for DCM are highlighted, with the purpose of providing a novel strategy for preventing DCM.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hong Zhou
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
50
|
Sayour AA, Oláh A, Ruppert M, Barta BA, Horváth EM, Benke K, Pólos M, Hartyánszky I, Merkely B, Radovits T. Characterization of left ventricular myocardial sodium-glucose cotransporter 1 expression in patients with end-stage heart failure. Cardiovasc Diabetol 2020; 19:159. [PMID: 32998746 PMCID: PMC7528261 DOI: 10.1186/s12933-020-01141-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Whereas selective sodium-glucose cotransporter 2 (SGLT2) inhibitors consistently showed cardiovascular protective effects in large outcome trials independent of the presence of type 2 diabetes mellitus (T2DM), the cardiovascular effects of dual SGLT1/2 inhibitors remain to be elucidated. Despite its clinical relevance, data are scarce regarding left ventricular (LV) SGLT1 expression in distinct heart failure (HF) pathologies. We aimed to characterize LV SGLT1 expression in human patients with end-stage HF, in context of the other two major glucose transporters: GLUT1 and GLUT4. Methods Control LV samples (Control, n = 9) were harvested from patients with preserved LV systolic function who went through mitral valve replacement. LV samples from HF patients undergoing heart transplantation (n = 71) were obtained according to the following etiological subgroups: hypertrophic cardiomyopathy (HCM, n = 7); idiopathic dilated cardiomyopathy (DCM, n = 12); ischemic heart disease without T2DM (IHD, n = 14), IHD with T2DM (IHD + T2DM, n = 11); and HF patients with cardiac resynchronization therapy (DCM:CRT, n = 9, IHD:CRT, n = 9 and IHD-T2DM:CRT, n = 9). We measured LV SGLT1, GLUT1 and GLUT4 gene expressions with qRT-PCR. The protein expression of SGLT1, and activating phosphorylation of AMP-activated protein kinase (AMPKα) and extracellular signal-regulated kinase 1/2 (ERK1/2) were quantified by western blotting. Immunohistochemical staining of SGLT1 was performed. Results Compared with controls, LV SGLT1 mRNA and protein expressions were significantly and comparably upregulated in HF patients with DCM, IHD and IHD + T2DM (all P < 0.05), but not in HCM. LV SGLT1 mRNA and protein expressions positively correlated with LVEDD and negatively correlated with EF (all P < 0.01). Whereas AMPKα phosphorylation was positively associated with SGLT1 protein expression, ERK1/2 phosphorylation showed a negative correlation (both P < 0.01). Immunohistochemical staining revealed that SGLT1 expression was predominantly confined to cardiomyocytes, and not fibrotic tissue. Overall, CRT was associated with reduction of LV SGLT1 expression, especially in patients with DCM. Conclusions Myocardial LV SGLT1 is upregulated in patients with HF (except in those with HCM), correlates significantly with parameters of cardiac remodeling (LVEDD) and systolic function (EF), and is downregulated in DCM patients with CRT. The possible role of SGLT1 in LV remodeling needs to be elucidated.
Collapse
Affiliation(s)
- Alex Ali Sayour
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary.
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary
| | - Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary
| | - Bálint András Barta
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary
| | | | - Kálmán Benke
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary
| | - Miklós Pólos
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary
| | - István Hartyánszky
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Semmelweis University, Városmajor u. 68., 1122, Budapest, Hungary
| |
Collapse
|